• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 #include <trace/hooks/sched.h>
8 
9 DEFINE_MUTEX(sched_domains_mutex);
10 #ifdef CONFIG_LOCKDEP
11 EXPORT_SYMBOL_GPL(sched_domains_mutex);
12 #endif
13 
14 /* Protected by sched_domains_mutex: */
15 static cpumask_var_t sched_domains_tmpmask;
16 static cpumask_var_t sched_domains_tmpmask2;
17 
18 #ifdef CONFIG_SCHED_DEBUG
19 
sched_debug_setup(char * str)20 static int __init sched_debug_setup(char *str)
21 {
22 	sched_debug_verbose = true;
23 
24 	return 0;
25 }
26 early_param("sched_verbose", sched_debug_setup);
27 
sched_debug(void)28 static inline bool sched_debug(void)
29 {
30 	return sched_debug_verbose;
31 }
32 
33 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
34 const struct sd_flag_debug sd_flag_debug[] = {
35 #include <linux/sched/sd_flags.h>
36 };
37 #undef SD_FLAG
38 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)39 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
40 				  struct cpumask *groupmask)
41 {
42 	struct sched_group *group = sd->groups;
43 	unsigned long flags = sd->flags;
44 	unsigned int idx;
45 
46 	cpumask_clear(groupmask);
47 
48 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
49 	printk(KERN_CONT "span=%*pbl level=%s\n",
50 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
51 
52 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
54 	}
55 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
56 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
57 	}
58 
59 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
60 		unsigned int flag = BIT(idx);
61 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
62 
63 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
64 		    !(sd->child->flags & flag))
65 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
66 			       sd_flag_debug[idx].name);
67 
68 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
69 		    !(sd->parent->flags & flag))
70 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
71 			       sd_flag_debug[idx].name);
72 	}
73 
74 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
75 	do {
76 		if (!group) {
77 			printk("\n");
78 			printk(KERN_ERR "ERROR: group is NULL\n");
79 			break;
80 		}
81 
82 		if (!cpumask_weight(sched_group_span(group))) {
83 			printk(KERN_CONT "\n");
84 			printk(KERN_ERR "ERROR: empty group\n");
85 			break;
86 		}
87 
88 		if (!(sd->flags & SD_OVERLAP) &&
89 		    cpumask_intersects(groupmask, sched_group_span(group))) {
90 			printk(KERN_CONT "\n");
91 			printk(KERN_ERR "ERROR: repeated CPUs\n");
92 			break;
93 		}
94 
95 		cpumask_or(groupmask, groupmask, sched_group_span(group));
96 
97 		printk(KERN_CONT " %d:{ span=%*pbl",
98 				group->sgc->id,
99 				cpumask_pr_args(sched_group_span(group)));
100 
101 		if ((sd->flags & SD_OVERLAP) &&
102 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
103 			printk(KERN_CONT " mask=%*pbl",
104 				cpumask_pr_args(group_balance_mask(group)));
105 		}
106 
107 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
108 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
109 
110 		if (group == sd->groups && sd->child &&
111 		    !cpumask_equal(sched_domain_span(sd->child),
112 				   sched_group_span(group))) {
113 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
114 		}
115 
116 		printk(KERN_CONT " }");
117 
118 		group = group->next;
119 
120 		if (group != sd->groups)
121 			printk(KERN_CONT ",");
122 
123 	} while (group != sd->groups);
124 	printk(KERN_CONT "\n");
125 
126 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
127 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
128 
129 	if (sd->parent &&
130 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
131 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
132 	return 0;
133 }
134 
sched_domain_debug(struct sched_domain * sd,int cpu)135 static void sched_domain_debug(struct sched_domain *sd, int cpu)
136 {
137 	int level = 0;
138 
139 	if (!sched_debug_verbose)
140 		return;
141 
142 	if (!sd) {
143 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
144 		return;
145 	}
146 
147 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
148 
149 	for (;;) {
150 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
151 			break;
152 		level++;
153 		sd = sd->parent;
154 		if (!sd)
155 			break;
156 	}
157 }
158 #else /* !CONFIG_SCHED_DEBUG */
159 
160 # define sched_debug_verbose 0
161 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)162 static inline bool sched_debug(void)
163 {
164 	return false;
165 }
166 #endif /* CONFIG_SCHED_DEBUG */
167 
168 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
169 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
170 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
171 #include <linux/sched/sd_flags.h>
172 0;
173 #undef SD_FLAG
174 
sd_degenerate(struct sched_domain * sd)175 static int sd_degenerate(struct sched_domain *sd)
176 {
177 	if (cpumask_weight(sched_domain_span(sd)) == 1)
178 		return 1;
179 
180 	/* Following flags need at least 2 groups */
181 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
182 	    (sd->groups != sd->groups->next))
183 		return 0;
184 
185 	/* Following flags don't use groups */
186 	if (sd->flags & (SD_WAKE_AFFINE))
187 		return 0;
188 
189 	return 1;
190 }
191 
192 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)193 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
194 {
195 	unsigned long cflags = sd->flags, pflags = parent->flags;
196 
197 	if (sd_degenerate(parent))
198 		return 1;
199 
200 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
201 		return 0;
202 
203 	/* Flags needing groups don't count if only 1 group in parent */
204 	if (parent->groups == parent->groups->next)
205 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
206 
207 	if (~cflags & pflags)
208 		return 0;
209 
210 	return 1;
211 }
212 
213 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
214 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
215 unsigned int sysctl_sched_energy_aware = 1;
216 DEFINE_MUTEX(sched_energy_mutex);
217 bool sched_energy_update;
218 
rebuild_sched_domains_energy(void)219 void rebuild_sched_domains_energy(void)
220 {
221 	mutex_lock(&sched_energy_mutex);
222 	sched_energy_update = true;
223 	rebuild_sched_domains();
224 	sched_energy_update = false;
225 	mutex_unlock(&sched_energy_mutex);
226 }
227 
228 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)229 int sched_energy_aware_handler(struct ctl_table *table, int write,
230 		void *buffer, size_t *lenp, loff_t *ppos)
231 {
232 	int ret, state;
233 
234 	if (write && !capable(CAP_SYS_ADMIN))
235 		return -EPERM;
236 
237 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
238 	if (!ret && write) {
239 		state = static_branch_unlikely(&sched_energy_present);
240 		if (state != sysctl_sched_energy_aware)
241 			rebuild_sched_domains_energy();
242 	}
243 
244 	return ret;
245 }
246 #endif
247 
free_pd(struct perf_domain * pd)248 static void free_pd(struct perf_domain *pd)
249 {
250 	struct perf_domain *tmp;
251 
252 	while (pd) {
253 		tmp = pd->next;
254 		kfree(pd);
255 		pd = tmp;
256 	}
257 }
258 
find_pd(struct perf_domain * pd,int cpu)259 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
260 {
261 	while (pd) {
262 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
263 			return pd;
264 		pd = pd->next;
265 	}
266 
267 	return NULL;
268 }
269 
pd_init(int cpu)270 static struct perf_domain *pd_init(int cpu)
271 {
272 	struct em_perf_domain *obj = em_cpu_get(cpu);
273 	struct perf_domain *pd;
274 
275 	if (!obj) {
276 		if (sched_debug())
277 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
278 		return NULL;
279 	}
280 
281 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
282 	if (!pd)
283 		return NULL;
284 	pd->em_pd = obj;
285 
286 	return pd;
287 }
288 
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)289 static void perf_domain_debug(const struct cpumask *cpu_map,
290 						struct perf_domain *pd)
291 {
292 	if (!sched_debug() || !pd)
293 		return;
294 
295 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
296 
297 	while (pd) {
298 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
299 				cpumask_first(perf_domain_span(pd)),
300 				cpumask_pr_args(perf_domain_span(pd)),
301 				em_pd_nr_perf_states(pd->em_pd));
302 		pd = pd->next;
303 	}
304 
305 	printk(KERN_CONT "\n");
306 }
307 
destroy_perf_domain_rcu(struct rcu_head * rp)308 static void destroy_perf_domain_rcu(struct rcu_head *rp)
309 {
310 	struct perf_domain *pd;
311 
312 	pd = container_of(rp, struct perf_domain, rcu);
313 	free_pd(pd);
314 }
315 
sched_energy_set(bool has_eas)316 static void sched_energy_set(bool has_eas)
317 {
318 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
319 		if (sched_debug())
320 			pr_info("%s: stopping EAS\n", __func__);
321 		static_branch_disable_cpuslocked(&sched_energy_present);
322 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
323 		if (sched_debug())
324 			pr_info("%s: starting EAS\n", __func__);
325 		static_branch_enable_cpuslocked(&sched_energy_present);
326 	}
327 }
328 
329 /*
330  * EAS can be used on a root domain if it meets all the following conditions:
331  *    1. an Energy Model (EM) is available;
332  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
333  *    3. no SMT is detected.
334  *    4. the EM complexity is low enough to keep scheduling overheads low;
335  *    5. frequency invariance support is present;
336  *
337  * The complexity of the Energy Model is defined as:
338  *
339  *              C = nr_pd * (nr_cpus + nr_ps)
340  *
341  * with parameters defined as:
342  *  - nr_pd:    the number of performance domains
343  *  - nr_cpus:  the number of CPUs
344  *  - nr_ps:    the sum of the number of performance states of all performance
345  *              domains (for example, on a system with 2 performance domains,
346  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
347  *
348  * It is generally not a good idea to use such a model in the wake-up path on
349  * very complex platforms because of the associated scheduling overheads. The
350  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
351  * with per-CPU DVFS and less than 8 performance states each, for example.
352  */
353 #define EM_MAX_COMPLEXITY 2048
354 
build_perf_domains(const struct cpumask * cpu_map)355 static bool build_perf_domains(const struct cpumask *cpu_map)
356 {
357 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
358 	struct perf_domain *pd = NULL, *tmp;
359 	int cpu = cpumask_first(cpu_map);
360 	struct root_domain *rd = cpu_rq(cpu)->rd;
361 	bool eas_check = false;
362 
363 	if (!sysctl_sched_energy_aware)
364 		goto free;
365 
366 	/*
367 	 * EAS is enabled for asymmetric CPU capacity topologies.
368 	 * Allow vendor to override if desired.
369 	 */
370 	trace_android_rvh_build_perf_domains(&eas_check);
371 	if (!per_cpu(sd_asym_cpucapacity, cpu) && !eas_check) {
372 		if (sched_debug()) {
373 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
374 					cpumask_pr_args(cpu_map));
375 		}
376 		goto free;
377 	}
378 
379 	/* EAS definitely does *not* handle SMT */
380 	if (sched_smt_active()) {
381 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
382 			cpumask_pr_args(cpu_map));
383 		goto free;
384 	}
385 
386 	if (!arch_scale_freq_invariant()) {
387 		if (sched_debug()) {
388 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
389 				cpumask_pr_args(cpu_map));
390 		}
391 		goto free;
392 	}
393 
394 	for_each_cpu(i, cpu_map) {
395 		/* Skip already covered CPUs. */
396 		if (find_pd(pd, i))
397 			continue;
398 
399 		/* Create the new pd and add it to the local list. */
400 		tmp = pd_init(i);
401 		if (!tmp)
402 			goto free;
403 		tmp->next = pd;
404 		pd = tmp;
405 
406 		/*
407 		 * Count performance domains and performance states for the
408 		 * complexity check.
409 		 */
410 		nr_pd++;
411 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
412 	}
413 
414 	/* Bail out if the Energy Model complexity is too high. */
415 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
416 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
417 						cpumask_pr_args(cpu_map));
418 		goto free;
419 	}
420 
421 	perf_domain_debug(cpu_map, pd);
422 
423 	/* Attach the new list of performance domains to the root domain. */
424 	tmp = rd->pd;
425 	rcu_assign_pointer(rd->pd, pd);
426 	if (tmp)
427 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
428 
429 	return !!pd;
430 
431 free:
432 	free_pd(pd);
433 	tmp = rd->pd;
434 	rcu_assign_pointer(rd->pd, NULL);
435 	if (tmp)
436 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
437 
438 	return false;
439 }
440 #else
free_pd(struct perf_domain * pd)441 static void free_pd(struct perf_domain *pd) { }
442 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
443 
free_rootdomain(struct rcu_head * rcu)444 static void free_rootdomain(struct rcu_head *rcu)
445 {
446 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
447 
448 	cpupri_cleanup(&rd->cpupri);
449 	cpudl_cleanup(&rd->cpudl);
450 	free_cpumask_var(rd->dlo_mask);
451 	free_cpumask_var(rd->rto_mask);
452 	free_cpumask_var(rd->online);
453 	free_cpumask_var(rd->span);
454 	free_pd(rd->pd);
455 	kfree(rd);
456 }
457 
rq_attach_root(struct rq * rq,struct root_domain * rd)458 void rq_attach_root(struct rq *rq, struct root_domain *rd)
459 {
460 	struct root_domain *old_rd = NULL;
461 	unsigned long flags;
462 
463 	raw_spin_rq_lock_irqsave(rq, flags);
464 
465 	if (rq->rd) {
466 		old_rd = rq->rd;
467 
468 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
469 			set_rq_offline(rq);
470 
471 		cpumask_clear_cpu(rq->cpu, old_rd->span);
472 
473 		/*
474 		 * If we dont want to free the old_rd yet then
475 		 * set old_rd to NULL to skip the freeing later
476 		 * in this function:
477 		 */
478 		if (!atomic_dec_and_test(&old_rd->refcount))
479 			old_rd = NULL;
480 	}
481 
482 	atomic_inc(&rd->refcount);
483 	rq->rd = rd;
484 
485 	cpumask_set_cpu(rq->cpu, rd->span);
486 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
487 		set_rq_online(rq);
488 
489 	raw_spin_rq_unlock_irqrestore(rq, flags);
490 
491 	if (old_rd)
492 		call_rcu(&old_rd->rcu, free_rootdomain);
493 }
494 
sched_get_rd(struct root_domain * rd)495 void sched_get_rd(struct root_domain *rd)
496 {
497 	atomic_inc(&rd->refcount);
498 }
499 
sched_put_rd(struct root_domain * rd)500 void sched_put_rd(struct root_domain *rd)
501 {
502 	if (!atomic_dec_and_test(&rd->refcount))
503 		return;
504 
505 	call_rcu(&rd->rcu, free_rootdomain);
506 }
507 
init_rootdomain(struct root_domain * rd)508 static int init_rootdomain(struct root_domain *rd)
509 {
510 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
511 		goto out;
512 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
513 		goto free_span;
514 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
515 		goto free_online;
516 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
517 		goto free_dlo_mask;
518 
519 #ifdef HAVE_RT_PUSH_IPI
520 	rd->rto_cpu = -1;
521 	raw_spin_lock_init(&rd->rto_lock);
522 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
523 #endif
524 
525 	rd->visit_gen = 0;
526 	init_dl_bw(&rd->dl_bw);
527 	if (cpudl_init(&rd->cpudl) != 0)
528 		goto free_rto_mask;
529 
530 	if (cpupri_init(&rd->cpupri) != 0)
531 		goto free_cpudl;
532 	return 0;
533 
534 free_cpudl:
535 	cpudl_cleanup(&rd->cpudl);
536 free_rto_mask:
537 	free_cpumask_var(rd->rto_mask);
538 free_dlo_mask:
539 	free_cpumask_var(rd->dlo_mask);
540 free_online:
541 	free_cpumask_var(rd->online);
542 free_span:
543 	free_cpumask_var(rd->span);
544 out:
545 	return -ENOMEM;
546 }
547 
548 /*
549  * By default the system creates a single root-domain with all CPUs as
550  * members (mimicking the global state we have today).
551  */
552 struct root_domain def_root_domain;
553 
init_defrootdomain(void)554 void init_defrootdomain(void)
555 {
556 	init_rootdomain(&def_root_domain);
557 
558 	atomic_set(&def_root_domain.refcount, 1);
559 }
560 
alloc_rootdomain(void)561 static struct root_domain *alloc_rootdomain(void)
562 {
563 	struct root_domain *rd;
564 
565 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
566 	if (!rd)
567 		return NULL;
568 
569 	if (init_rootdomain(rd) != 0) {
570 		kfree(rd);
571 		return NULL;
572 	}
573 
574 	return rd;
575 }
576 
free_sched_groups(struct sched_group * sg,int free_sgc)577 static void free_sched_groups(struct sched_group *sg, int free_sgc)
578 {
579 	struct sched_group *tmp, *first;
580 
581 	if (!sg)
582 		return;
583 
584 	first = sg;
585 	do {
586 		tmp = sg->next;
587 
588 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
589 			kfree(sg->sgc);
590 
591 		if (atomic_dec_and_test(&sg->ref))
592 			kfree(sg);
593 		sg = tmp;
594 	} while (sg != first);
595 }
596 
destroy_sched_domain(struct sched_domain * sd)597 static void destroy_sched_domain(struct sched_domain *sd)
598 {
599 	/*
600 	 * A normal sched domain may have multiple group references, an
601 	 * overlapping domain, having private groups, only one.  Iterate,
602 	 * dropping group/capacity references, freeing where none remain.
603 	 */
604 	free_sched_groups(sd->groups, 1);
605 
606 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
607 		kfree(sd->shared);
608 	kfree(sd);
609 }
610 
destroy_sched_domains_rcu(struct rcu_head * rcu)611 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
612 {
613 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
614 
615 	while (sd) {
616 		struct sched_domain *parent = sd->parent;
617 		destroy_sched_domain(sd);
618 		sd = parent;
619 	}
620 }
621 
destroy_sched_domains(struct sched_domain * sd)622 static void destroy_sched_domains(struct sched_domain *sd)
623 {
624 	if (sd)
625 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
626 }
627 
628 /*
629  * Keep a special pointer to the highest sched_domain that has
630  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
631  * allows us to avoid some pointer chasing select_idle_sibling().
632  *
633  * Also keep a unique ID per domain (we use the first CPU number in
634  * the cpumask of the domain), this allows us to quickly tell if
635  * two CPUs are in the same cache domain, see cpus_share_cache().
636  */
637 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
638 DEFINE_PER_CPU(int, sd_llc_size);
639 DEFINE_PER_CPU(int, sd_llc_id);
640 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
641 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
642 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
643 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
644 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
645 
update_top_cache_domain(int cpu)646 static void update_top_cache_domain(int cpu)
647 {
648 	struct sched_domain_shared *sds = NULL;
649 	struct sched_domain *sd;
650 	int id = cpu;
651 	int size = 1;
652 
653 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
654 	if (sd) {
655 		id = cpumask_first(sched_domain_span(sd));
656 		size = cpumask_weight(sched_domain_span(sd));
657 		sds = sd->shared;
658 	}
659 
660 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
661 	per_cpu(sd_llc_size, cpu) = size;
662 	per_cpu(sd_llc_id, cpu) = id;
663 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
664 
665 	sd = lowest_flag_domain(cpu, SD_NUMA);
666 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
667 
668 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
669 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
670 
671 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
672 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
673 }
674 
675 /*
676  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
677  * hold the hotplug lock.
678  */
679 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)680 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
681 {
682 	struct rq *rq = cpu_rq(cpu);
683 	struct sched_domain *tmp;
684 	int numa_distance = 0;
685 
686 	/* Remove the sched domains which do not contribute to scheduling. */
687 	for (tmp = sd; tmp; ) {
688 		struct sched_domain *parent = tmp->parent;
689 		if (!parent)
690 			break;
691 
692 		if (sd_parent_degenerate(tmp, parent)) {
693 			tmp->parent = parent->parent;
694 			if (parent->parent)
695 				parent->parent->child = tmp;
696 			/*
697 			 * Transfer SD_PREFER_SIBLING down in case of a
698 			 * degenerate parent; the spans match for this
699 			 * so the property transfers.
700 			 */
701 			if (parent->flags & SD_PREFER_SIBLING)
702 				tmp->flags |= SD_PREFER_SIBLING;
703 			destroy_sched_domain(parent);
704 		} else
705 			tmp = tmp->parent;
706 	}
707 
708 	if (sd && sd_degenerate(sd)) {
709 		tmp = sd;
710 		sd = sd->parent;
711 		destroy_sched_domain(tmp);
712 		if (sd)
713 			sd->child = NULL;
714 	}
715 
716 	for (tmp = sd; tmp; tmp = tmp->parent)
717 		numa_distance += !!(tmp->flags & SD_NUMA);
718 
719 	sched_domain_debug(sd, cpu);
720 
721 	rq_attach_root(rq, rd);
722 	tmp = rq->sd;
723 	rcu_assign_pointer(rq->sd, sd);
724 	dirty_sched_domain_sysctl(cpu);
725 	destroy_sched_domains(tmp);
726 
727 	update_top_cache_domain(cpu);
728 }
729 
730 struct s_data {
731 	struct sched_domain * __percpu *sd;
732 	struct root_domain	*rd;
733 };
734 
735 enum s_alloc {
736 	sa_rootdomain,
737 	sa_sd,
738 	sa_sd_storage,
739 	sa_none,
740 };
741 
742 /*
743  * Return the canonical balance CPU for this group, this is the first CPU
744  * of this group that's also in the balance mask.
745  *
746  * The balance mask are all those CPUs that could actually end up at this
747  * group. See build_balance_mask().
748  *
749  * Also see should_we_balance().
750  */
group_balance_cpu(struct sched_group * sg)751 int group_balance_cpu(struct sched_group *sg)
752 {
753 	return cpumask_first(group_balance_mask(sg));
754 }
755 
756 
757 /*
758  * NUMA topology (first read the regular topology blurb below)
759  *
760  * Given a node-distance table, for example:
761  *
762  *   node   0   1   2   3
763  *     0:  10  20  30  20
764  *     1:  20  10  20  30
765  *     2:  30  20  10  20
766  *     3:  20  30  20  10
767  *
768  * which represents a 4 node ring topology like:
769  *
770  *   0 ----- 1
771  *   |       |
772  *   |       |
773  *   |       |
774  *   3 ----- 2
775  *
776  * We want to construct domains and groups to represent this. The way we go
777  * about doing this is to build the domains on 'hops'. For each NUMA level we
778  * construct the mask of all nodes reachable in @level hops.
779  *
780  * For the above NUMA topology that gives 3 levels:
781  *
782  * NUMA-2	0-3		0-3		0-3		0-3
783  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
784  *
785  * NUMA-1	0-1,3		0-2		1-3		0,2-3
786  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
787  *
788  * NUMA-0	0		1		2		3
789  *
790  *
791  * As can be seen; things don't nicely line up as with the regular topology.
792  * When we iterate a domain in child domain chunks some nodes can be
793  * represented multiple times -- hence the "overlap" naming for this part of
794  * the topology.
795  *
796  * In order to minimize this overlap, we only build enough groups to cover the
797  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
798  *
799  * Because:
800  *
801  *  - the first group of each domain is its child domain; this
802  *    gets us the first 0-1,3
803  *  - the only uncovered node is 2, who's child domain is 1-3.
804  *
805  * However, because of the overlap, computing a unique CPU for each group is
806  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
807  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
808  * end up at those groups (they would end up in group: 0-1,3).
809  *
810  * To correct this we have to introduce the group balance mask. This mask
811  * will contain those CPUs in the group that can reach this group given the
812  * (child) domain tree.
813  *
814  * With this we can once again compute balance_cpu and sched_group_capacity
815  * relations.
816  *
817  * XXX include words on how balance_cpu is unique and therefore can be
818  * used for sched_group_capacity links.
819  *
820  *
821  * Another 'interesting' topology is:
822  *
823  *   node   0   1   2   3
824  *     0:  10  20  20  30
825  *     1:  20  10  20  20
826  *     2:  20  20  10  20
827  *     3:  30  20  20  10
828  *
829  * Which looks a little like:
830  *
831  *   0 ----- 1
832  *   |     / |
833  *   |   /   |
834  *   | /     |
835  *   2 ----- 3
836  *
837  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
838  * are not.
839  *
840  * This leads to a few particularly weird cases where the sched_domain's are
841  * not of the same number for each CPU. Consider:
842  *
843  * NUMA-2	0-3						0-3
844  *  groups:	{0-2},{1-3}					{1-3},{0-2}
845  *
846  * NUMA-1	0-2		0-3		0-3		1-3
847  *
848  * NUMA-0	0		1		2		3
849  *
850  */
851 
852 
853 /*
854  * Build the balance mask; it contains only those CPUs that can arrive at this
855  * group and should be considered to continue balancing.
856  *
857  * We do this during the group creation pass, therefore the group information
858  * isn't complete yet, however since each group represents a (child) domain we
859  * can fully construct this using the sched_domain bits (which are already
860  * complete).
861  */
862 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)863 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
864 {
865 	const struct cpumask *sg_span = sched_group_span(sg);
866 	struct sd_data *sdd = sd->private;
867 	struct sched_domain *sibling;
868 	int i;
869 
870 	cpumask_clear(mask);
871 
872 	for_each_cpu(i, sg_span) {
873 		sibling = *per_cpu_ptr(sdd->sd, i);
874 
875 		/*
876 		 * Can happen in the asymmetric case, where these siblings are
877 		 * unused. The mask will not be empty because those CPUs that
878 		 * do have the top domain _should_ span the domain.
879 		 */
880 		if (!sibling->child)
881 			continue;
882 
883 		/* If we would not end up here, we can't continue from here */
884 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
885 			continue;
886 
887 		cpumask_set_cpu(i, mask);
888 	}
889 
890 	/* We must not have empty masks here */
891 	WARN_ON_ONCE(cpumask_empty(mask));
892 }
893 
894 /*
895  * XXX: This creates per-node group entries; since the load-balancer will
896  * immediately access remote memory to construct this group's load-balance
897  * statistics having the groups node local is of dubious benefit.
898  */
899 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)900 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
901 {
902 	struct sched_group *sg;
903 	struct cpumask *sg_span;
904 
905 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
906 			GFP_KERNEL, cpu_to_node(cpu));
907 
908 	if (!sg)
909 		return NULL;
910 
911 	sg_span = sched_group_span(sg);
912 	if (sd->child)
913 		cpumask_copy(sg_span, sched_domain_span(sd->child));
914 	else
915 		cpumask_copy(sg_span, sched_domain_span(sd));
916 
917 	atomic_inc(&sg->ref);
918 	return sg;
919 }
920 
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)921 static void init_overlap_sched_group(struct sched_domain *sd,
922 				     struct sched_group *sg)
923 {
924 	struct cpumask *mask = sched_domains_tmpmask2;
925 	struct sd_data *sdd = sd->private;
926 	struct cpumask *sg_span;
927 	int cpu;
928 
929 	build_balance_mask(sd, sg, mask);
930 	cpu = cpumask_first(mask);
931 
932 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
933 	if (atomic_inc_return(&sg->sgc->ref) == 1)
934 		cpumask_copy(group_balance_mask(sg), mask);
935 	else
936 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
937 
938 	/*
939 	 * Initialize sgc->capacity such that even if we mess up the
940 	 * domains and no possible iteration will get us here, we won't
941 	 * die on a /0 trap.
942 	 */
943 	sg_span = sched_group_span(sg);
944 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
945 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
946 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
947 }
948 
949 static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)950 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
951 {
952 	/*
953 	 * The proper descendant would be the one whose child won't span out
954 	 * of sd
955 	 */
956 	while (sibling->child &&
957 	       !cpumask_subset(sched_domain_span(sibling->child),
958 			       sched_domain_span(sd)))
959 		sibling = sibling->child;
960 
961 	/*
962 	 * As we are referencing sgc across different topology level, we need
963 	 * to go down to skip those sched_domains which don't contribute to
964 	 * scheduling because they will be degenerated in cpu_attach_domain
965 	 */
966 	while (sibling->child &&
967 	       cpumask_equal(sched_domain_span(sibling->child),
968 			     sched_domain_span(sibling)))
969 		sibling = sibling->child;
970 
971 	return sibling;
972 }
973 
974 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)975 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
976 {
977 	struct sched_group *first = NULL, *last = NULL, *sg;
978 	const struct cpumask *span = sched_domain_span(sd);
979 	struct cpumask *covered = sched_domains_tmpmask;
980 	struct sd_data *sdd = sd->private;
981 	struct sched_domain *sibling;
982 	int i;
983 
984 	cpumask_clear(covered);
985 
986 	for_each_cpu_wrap(i, span, cpu) {
987 		struct cpumask *sg_span;
988 
989 		if (cpumask_test_cpu(i, covered))
990 			continue;
991 
992 		sibling = *per_cpu_ptr(sdd->sd, i);
993 
994 		/*
995 		 * Asymmetric node setups can result in situations where the
996 		 * domain tree is of unequal depth, make sure to skip domains
997 		 * that already cover the entire range.
998 		 *
999 		 * In that case build_sched_domains() will have terminated the
1000 		 * iteration early and our sibling sd spans will be empty.
1001 		 * Domains should always include the CPU they're built on, so
1002 		 * check that.
1003 		 */
1004 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1005 			continue;
1006 
1007 		/*
1008 		 * Usually we build sched_group by sibling's child sched_domain
1009 		 * But for machines whose NUMA diameter are 3 or above, we move
1010 		 * to build sched_group by sibling's proper descendant's child
1011 		 * domain because sibling's child sched_domain will span out of
1012 		 * the sched_domain being built as below.
1013 		 *
1014 		 * Smallest diameter=3 topology is:
1015 		 *
1016 		 *   node   0   1   2   3
1017 		 *     0:  10  20  30  40
1018 		 *     1:  20  10  20  30
1019 		 *     2:  30  20  10  20
1020 		 *     3:  40  30  20  10
1021 		 *
1022 		 *   0 --- 1 --- 2 --- 3
1023 		 *
1024 		 * NUMA-3       0-3             N/A             N/A             0-3
1025 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1026 		 *
1027 		 * NUMA-2       0-2             0-3             0-3             1-3
1028 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1029 		 *
1030 		 * NUMA-1       0-1             0-2             1-3             2-3
1031 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1032 		 *
1033 		 * NUMA-0       0               1               2               3
1034 		 *
1035 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1036 		 * group span isn't a subset of the domain span.
1037 		 */
1038 		if (sibling->child &&
1039 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1040 			sibling = find_descended_sibling(sd, sibling);
1041 
1042 		sg = build_group_from_child_sched_domain(sibling, cpu);
1043 		if (!sg)
1044 			goto fail;
1045 
1046 		sg_span = sched_group_span(sg);
1047 		cpumask_or(covered, covered, sg_span);
1048 
1049 		init_overlap_sched_group(sibling, sg);
1050 
1051 		if (!first)
1052 			first = sg;
1053 		if (last)
1054 			last->next = sg;
1055 		last = sg;
1056 		last->next = first;
1057 	}
1058 	sd->groups = first;
1059 
1060 	return 0;
1061 
1062 fail:
1063 	free_sched_groups(first, 0);
1064 
1065 	return -ENOMEM;
1066 }
1067 
1068 
1069 /*
1070  * Package topology (also see the load-balance blurb in fair.c)
1071  *
1072  * The scheduler builds a tree structure to represent a number of important
1073  * topology features. By default (default_topology[]) these include:
1074  *
1075  *  - Simultaneous multithreading (SMT)
1076  *  - Multi-Core Cache (MC)
1077  *  - Package (DIE)
1078  *
1079  * Where the last one more or less denotes everything up to a NUMA node.
1080  *
1081  * The tree consists of 3 primary data structures:
1082  *
1083  *	sched_domain -> sched_group -> sched_group_capacity
1084  *	    ^ ^             ^ ^
1085  *          `-'             `-'
1086  *
1087  * The sched_domains are per-CPU and have a two way link (parent & child) and
1088  * denote the ever growing mask of CPUs belonging to that level of topology.
1089  *
1090  * Each sched_domain has a circular (double) linked list of sched_group's, each
1091  * denoting the domains of the level below (or individual CPUs in case of the
1092  * first domain level). The sched_group linked by a sched_domain includes the
1093  * CPU of that sched_domain [*].
1094  *
1095  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1096  *
1097  * CPU   0   1   2   3   4   5   6   7
1098  *
1099  * DIE  [                             ]
1100  * MC   [             ] [             ]
1101  * SMT  [     ] [     ] [     ] [     ]
1102  *
1103  *  - or -
1104  *
1105  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1106  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1107  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1108  *
1109  * CPU   0   1   2   3   4   5   6   7
1110  *
1111  * One way to think about it is: sched_domain moves you up and down among these
1112  * topology levels, while sched_group moves you sideways through it, at child
1113  * domain granularity.
1114  *
1115  * sched_group_capacity ensures each unique sched_group has shared storage.
1116  *
1117  * There are two related construction problems, both require a CPU that
1118  * uniquely identify each group (for a given domain):
1119  *
1120  *  - The first is the balance_cpu (see should_we_balance() and the
1121  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1122  *    continue balancing at a higher domain.
1123  *
1124  *  - The second is the sched_group_capacity; we want all identical groups
1125  *    to share a single sched_group_capacity.
1126  *
1127  * Since these topologies are exclusive by construction. That is, its
1128  * impossible for an SMT thread to belong to multiple cores, and cores to
1129  * be part of multiple caches. There is a very clear and unique location
1130  * for each CPU in the hierarchy.
1131  *
1132  * Therefore computing a unique CPU for each group is trivial (the iteration
1133  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1134  * group), we can simply pick the first CPU in each group.
1135  *
1136  *
1137  * [*] in other words, the first group of each domain is its child domain.
1138  */
1139 
get_group(int cpu,struct sd_data * sdd)1140 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1141 {
1142 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1143 	struct sched_domain *child = sd->child;
1144 	struct sched_group *sg;
1145 	bool already_visited;
1146 
1147 	if (child)
1148 		cpu = cpumask_first(sched_domain_span(child));
1149 
1150 	sg = *per_cpu_ptr(sdd->sg, cpu);
1151 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1152 
1153 	/* Increase refcounts for claim_allocations: */
1154 	already_visited = atomic_inc_return(&sg->ref) > 1;
1155 	/* sgc visits should follow a similar trend as sg */
1156 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1157 
1158 	/* If we have already visited that group, it's already initialized. */
1159 	if (already_visited)
1160 		return sg;
1161 
1162 	if (child) {
1163 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1164 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1165 	} else {
1166 		cpumask_set_cpu(cpu, sched_group_span(sg));
1167 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1168 	}
1169 
1170 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1171 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1172 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1173 
1174 	return sg;
1175 }
1176 
1177 /*
1178  * build_sched_groups will build a circular linked list of the groups
1179  * covered by the given span, will set each group's ->cpumask correctly,
1180  * and will initialize their ->sgc.
1181  *
1182  * Assumes the sched_domain tree is fully constructed
1183  */
1184 static int
build_sched_groups(struct sched_domain * sd,int cpu)1185 build_sched_groups(struct sched_domain *sd, int cpu)
1186 {
1187 	struct sched_group *first = NULL, *last = NULL;
1188 	struct sd_data *sdd = sd->private;
1189 	const struct cpumask *span = sched_domain_span(sd);
1190 	struct cpumask *covered;
1191 	int i;
1192 
1193 	lockdep_assert_held(&sched_domains_mutex);
1194 	covered = sched_domains_tmpmask;
1195 
1196 	cpumask_clear(covered);
1197 
1198 	for_each_cpu_wrap(i, span, cpu) {
1199 		struct sched_group *sg;
1200 
1201 		if (cpumask_test_cpu(i, covered))
1202 			continue;
1203 
1204 		sg = get_group(i, sdd);
1205 
1206 		cpumask_or(covered, covered, sched_group_span(sg));
1207 
1208 		if (!first)
1209 			first = sg;
1210 		if (last)
1211 			last->next = sg;
1212 		last = sg;
1213 	}
1214 	last->next = first;
1215 	sd->groups = first;
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Initialize sched groups cpu_capacity.
1222  *
1223  * cpu_capacity indicates the capacity of sched group, which is used while
1224  * distributing the load between different sched groups in a sched domain.
1225  * Typically cpu_capacity for all the groups in a sched domain will be same
1226  * unless there are asymmetries in the topology. If there are asymmetries,
1227  * group having more cpu_capacity will pickup more load compared to the
1228  * group having less cpu_capacity.
1229  */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1230 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1231 {
1232 	struct sched_group *sg = sd->groups;
1233 
1234 	WARN_ON(!sg);
1235 
1236 	do {
1237 		int cpu, max_cpu = -1;
1238 
1239 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1240 
1241 		if (!(sd->flags & SD_ASYM_PACKING))
1242 			goto next;
1243 
1244 		for_each_cpu(cpu, sched_group_span(sg)) {
1245 			if (max_cpu < 0)
1246 				max_cpu = cpu;
1247 			else if (sched_asym_prefer(cpu, max_cpu))
1248 				max_cpu = cpu;
1249 		}
1250 		sg->asym_prefer_cpu = max_cpu;
1251 
1252 next:
1253 		sg = sg->next;
1254 	} while (sg != sd->groups);
1255 
1256 	if (cpu != group_balance_cpu(sg))
1257 		return;
1258 
1259 	update_group_capacity(sd, cpu);
1260 }
1261 
1262 /*
1263  * Asymmetric CPU capacity bits
1264  */
1265 struct asym_cap_data {
1266 	struct list_head link;
1267 	unsigned long capacity;
1268 	unsigned long cpus[];
1269 };
1270 
1271 /*
1272  * Set of available CPUs grouped by their corresponding capacities
1273  * Each list entry contains a CPU mask reflecting CPUs that share the same
1274  * capacity.
1275  * The lifespan of data is unlimited.
1276  */
1277 static LIST_HEAD(asym_cap_list);
1278 
1279 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1280 
1281 /*
1282  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1283  * Provides sd_flags reflecting the asymmetry scope.
1284  */
1285 static inline int
asym_cpu_capacity_classify(const struct cpumask * sd_span,const struct cpumask * cpu_map)1286 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1287 			   const struct cpumask *cpu_map)
1288 {
1289 	struct asym_cap_data *entry;
1290 	int count = 0, miss = 0;
1291 
1292 	/*
1293 	 * Count how many unique CPU capacities this domain spans across
1294 	 * (compare sched_domain CPUs mask with ones representing  available
1295 	 * CPUs capacities). Take into account CPUs that might be offline:
1296 	 * skip those.
1297 	 */
1298 	list_for_each_entry(entry, &asym_cap_list, link) {
1299 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1300 			++count;
1301 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1302 			++miss;
1303 	}
1304 
1305 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1306 
1307 	/* No asymmetry detected */
1308 	if (count < 2)
1309 		return 0;
1310 	/* Some of the available CPU capacity values have not been detected */
1311 	if (miss)
1312 		return SD_ASYM_CPUCAPACITY;
1313 
1314 	/* Full asymmetry */
1315 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1316 
1317 }
1318 
asym_cpu_capacity_update_data(int cpu)1319 static inline void asym_cpu_capacity_update_data(int cpu)
1320 {
1321 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1322 	struct asym_cap_data *entry = NULL;
1323 
1324 	list_for_each_entry(entry, &asym_cap_list, link) {
1325 		if (capacity == entry->capacity)
1326 			goto done;
1327 	}
1328 
1329 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1330 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1331 		return;
1332 	entry->capacity = capacity;
1333 	list_add(&entry->link, &asym_cap_list);
1334 done:
1335 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1336 }
1337 
1338 /*
1339  * Build-up/update list of CPUs grouped by their capacities
1340  * An update requires explicit request to rebuild sched domains
1341  * with state indicating CPU topology changes.
1342  */
asym_cpu_capacity_scan(void)1343 static void asym_cpu_capacity_scan(void)
1344 {
1345 	struct asym_cap_data *entry, *next;
1346 	int cpu;
1347 
1348 	list_for_each_entry(entry, &asym_cap_list, link)
1349 		cpumask_clear(cpu_capacity_span(entry));
1350 
1351 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_FLAG_DOMAIN))
1352 		asym_cpu_capacity_update_data(cpu);
1353 
1354 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1355 		if (cpumask_empty(cpu_capacity_span(entry))) {
1356 			list_del(&entry->link);
1357 			kfree(entry);
1358 		}
1359 	}
1360 
1361 	/*
1362 	 * Only one capacity value has been detected i.e. this system is symmetric.
1363 	 * No need to keep this data around.
1364 	 */
1365 	if (list_is_singular(&asym_cap_list)) {
1366 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1367 		list_del(&entry->link);
1368 		kfree(entry);
1369 	}
1370 }
1371 
1372 /*
1373  * Initializers for schedule domains
1374  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1375  */
1376 
1377 static int default_relax_domain_level = -1;
1378 int sched_domain_level_max;
1379 
setup_relax_domain_level(char * str)1380 static int __init setup_relax_domain_level(char *str)
1381 {
1382 	if (kstrtoint(str, 0, &default_relax_domain_level))
1383 		pr_warn("Unable to set relax_domain_level\n");
1384 
1385 	return 1;
1386 }
1387 __setup("relax_domain_level=", setup_relax_domain_level);
1388 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1389 static void set_domain_attribute(struct sched_domain *sd,
1390 				 struct sched_domain_attr *attr)
1391 {
1392 	int request;
1393 
1394 	if (!attr || attr->relax_domain_level < 0) {
1395 		if (default_relax_domain_level < 0)
1396 			return;
1397 		request = default_relax_domain_level;
1398 	} else
1399 		request = attr->relax_domain_level;
1400 
1401 	if (sd->level > request) {
1402 		/* Turn off idle balance on this domain: */
1403 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1404 	}
1405 }
1406 
1407 static void __sdt_free(const struct cpumask *cpu_map);
1408 static int __sdt_alloc(const struct cpumask *cpu_map);
1409 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1410 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1411 				 const struct cpumask *cpu_map)
1412 {
1413 	switch (what) {
1414 	case sa_rootdomain:
1415 		if (!atomic_read(&d->rd->refcount))
1416 			free_rootdomain(&d->rd->rcu);
1417 		fallthrough;
1418 	case sa_sd:
1419 		free_percpu(d->sd);
1420 		fallthrough;
1421 	case sa_sd_storage:
1422 		__sdt_free(cpu_map);
1423 		fallthrough;
1424 	case sa_none:
1425 		break;
1426 	}
1427 }
1428 
1429 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1430 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1431 {
1432 	memset(d, 0, sizeof(*d));
1433 
1434 	if (__sdt_alloc(cpu_map))
1435 		return sa_sd_storage;
1436 	d->sd = alloc_percpu(struct sched_domain *);
1437 	if (!d->sd)
1438 		return sa_sd_storage;
1439 	d->rd = alloc_rootdomain();
1440 	if (!d->rd)
1441 		return sa_sd;
1442 
1443 	return sa_rootdomain;
1444 }
1445 
1446 /*
1447  * NULL the sd_data elements we've used to build the sched_domain and
1448  * sched_group structure so that the subsequent __free_domain_allocs()
1449  * will not free the data we're using.
1450  */
claim_allocations(int cpu,struct sched_domain * sd)1451 static void claim_allocations(int cpu, struct sched_domain *sd)
1452 {
1453 	struct sd_data *sdd = sd->private;
1454 
1455 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1456 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1457 
1458 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1459 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1460 
1461 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1462 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1463 
1464 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1465 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1466 }
1467 
1468 #ifdef CONFIG_NUMA
1469 enum numa_topology_type sched_numa_topology_type;
1470 
1471 static int			sched_domains_numa_levels;
1472 static int			sched_domains_curr_level;
1473 
1474 int				sched_max_numa_distance;
1475 static int			*sched_domains_numa_distance;
1476 static struct cpumask		***sched_domains_numa_masks;
1477 int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1478 
1479 static unsigned long __read_mostly *sched_numa_onlined_nodes;
1480 #endif
1481 
1482 /*
1483  * SD_flags allowed in topology descriptions.
1484  *
1485  * These flags are purely descriptive of the topology and do not prescribe
1486  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1487  * function:
1488  *
1489  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1490  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1491  *   SD_NUMA                - describes NUMA topologies
1492  *
1493  * Odd one out, which beside describing the topology has a quirk also
1494  * prescribes the desired behaviour that goes along with it:
1495  *
1496  *   SD_ASYM_PACKING        - describes SMT quirks
1497  */
1498 #define TOPOLOGY_SD_FLAGS		\
1499 	(SD_SHARE_CPUCAPACITY	|	\
1500 	 SD_SHARE_PKG_RESOURCES |	\
1501 	 SD_NUMA		|	\
1502 	 SD_ASYM_PACKING)
1503 
1504 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)1505 sd_init(struct sched_domain_topology_level *tl,
1506 	const struct cpumask *cpu_map,
1507 	struct sched_domain *child, int cpu)
1508 {
1509 	struct sd_data *sdd = &tl->data;
1510 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1511 	int sd_id, sd_weight, sd_flags = 0;
1512 	struct cpumask *sd_span;
1513 
1514 #ifdef CONFIG_NUMA
1515 	/*
1516 	 * Ugly hack to pass state to sd_numa_mask()...
1517 	 */
1518 	sched_domains_curr_level = tl->numa_level;
1519 #endif
1520 
1521 	sd_weight = cpumask_weight(tl->mask(cpu));
1522 
1523 	if (tl->sd_flags)
1524 		sd_flags = (*tl->sd_flags)();
1525 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1526 			"wrong sd_flags in topology description\n"))
1527 		sd_flags &= TOPOLOGY_SD_FLAGS;
1528 
1529 	*sd = (struct sched_domain){
1530 		.min_interval		= sd_weight,
1531 		.max_interval		= 2*sd_weight,
1532 		.busy_factor		= 16,
1533 		.imbalance_pct		= 117,
1534 
1535 		.cache_nice_tries	= 0,
1536 
1537 		.flags			= 1*SD_BALANCE_NEWIDLE
1538 					| 1*SD_BALANCE_EXEC
1539 					| 1*SD_BALANCE_FORK
1540 					| 0*SD_BALANCE_WAKE
1541 					| 1*SD_WAKE_AFFINE
1542 					| 0*SD_SHARE_CPUCAPACITY
1543 					| 0*SD_SHARE_PKG_RESOURCES
1544 					| 0*SD_SERIALIZE
1545 					| 1*SD_PREFER_SIBLING
1546 					| 0*SD_NUMA
1547 					| sd_flags
1548 					,
1549 
1550 		.last_balance		= jiffies,
1551 		.balance_interval	= sd_weight,
1552 		.max_newidle_lb_cost	= 0,
1553 		.next_decay_max_lb_cost	= jiffies,
1554 		.child			= child,
1555 #ifdef CONFIG_SCHED_DEBUG
1556 		.name			= tl->name,
1557 #endif
1558 	};
1559 
1560 	sd_span = sched_domain_span(sd);
1561 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1562 	sd_id = cpumask_first(sd_span);
1563 
1564 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1565 
1566 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1567 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1568 		  "CPU capacity asymmetry not supported on SMT\n");
1569 
1570 	/*
1571 	 * Convert topological properties into behaviour.
1572 	 */
1573 	/* Don't attempt to spread across CPUs of different capacities. */
1574 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1575 		sd->child->flags &= ~SD_PREFER_SIBLING;
1576 
1577 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1578 		sd->imbalance_pct = 110;
1579 
1580 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1581 		sd->imbalance_pct = 117;
1582 		sd->cache_nice_tries = 1;
1583 
1584 #ifdef CONFIG_NUMA
1585 	} else if (sd->flags & SD_NUMA) {
1586 		sd->cache_nice_tries = 2;
1587 
1588 		sd->flags &= ~SD_PREFER_SIBLING;
1589 		sd->flags |= SD_SERIALIZE;
1590 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1591 			sd->flags &= ~(SD_BALANCE_EXEC |
1592 				       SD_BALANCE_FORK |
1593 				       SD_WAKE_AFFINE);
1594 		}
1595 
1596 #endif
1597 	} else {
1598 		sd->cache_nice_tries = 1;
1599 	}
1600 
1601 	/*
1602 	 * For all levels sharing cache; connect a sched_domain_shared
1603 	 * instance.
1604 	 */
1605 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1606 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1607 		atomic_inc(&sd->shared->ref);
1608 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1609 	}
1610 
1611 	sd->private = sdd;
1612 
1613 	return sd;
1614 }
1615 
1616 /*
1617  * Topology list, bottom-up.
1618  */
1619 static struct sched_domain_topology_level default_topology[] = {
1620 #ifdef CONFIG_SCHED_SMT
1621 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1622 #endif
1623 #ifdef CONFIG_SCHED_MC
1624 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1625 #endif
1626 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1627 	{ NULL, },
1628 };
1629 
1630 static struct sched_domain_topology_level *sched_domain_topology =
1631 	default_topology;
1632 
1633 #define for_each_sd_topology(tl)			\
1634 	for (tl = sched_domain_topology; tl->mask; tl++)
1635 
set_sched_topology(struct sched_domain_topology_level * tl)1636 void set_sched_topology(struct sched_domain_topology_level *tl)
1637 {
1638 	if (WARN_ON_ONCE(sched_smp_initialized))
1639 		return;
1640 
1641 	sched_domain_topology = tl;
1642 }
1643 
1644 #ifdef CONFIG_NUMA
1645 
sd_numa_mask(int cpu)1646 static const struct cpumask *sd_numa_mask(int cpu)
1647 {
1648 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1649 }
1650 
sched_numa_warn(const char * str)1651 static void sched_numa_warn(const char *str)
1652 {
1653 	static int done = false;
1654 	int i,j;
1655 
1656 	if (done)
1657 		return;
1658 
1659 	done = true;
1660 
1661 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1662 
1663 	for (i = 0; i < nr_node_ids; i++) {
1664 		printk(KERN_WARNING "  ");
1665 		for (j = 0; j < nr_node_ids; j++)
1666 			printk(KERN_CONT "%02d ", node_distance(i,j));
1667 		printk(KERN_CONT "\n");
1668 	}
1669 	printk(KERN_WARNING "\n");
1670 }
1671 
find_numa_distance(int distance)1672 bool find_numa_distance(int distance)
1673 {
1674 	int i;
1675 
1676 	if (distance == node_distance(0, 0))
1677 		return true;
1678 
1679 	for (i = 0; i < sched_domains_numa_levels; i++) {
1680 		if (sched_domains_numa_distance[i] == distance)
1681 			return true;
1682 	}
1683 
1684 	return false;
1685 }
1686 
1687 /*
1688  * A system can have three types of NUMA topology:
1689  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1690  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1691  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1692  *
1693  * The difference between a glueless mesh topology and a backplane
1694  * topology lies in whether communication between not directly
1695  * connected nodes goes through intermediary nodes (where programs
1696  * could run), or through backplane controllers. This affects
1697  * placement of programs.
1698  *
1699  * The type of topology can be discerned with the following tests:
1700  * - If the maximum distance between any nodes is 1 hop, the system
1701  *   is directly connected.
1702  * - If for two nodes A and B, located N > 1 hops away from each other,
1703  *   there is an intermediary node C, which is < N hops away from both
1704  *   nodes A and B, the system is a glueless mesh.
1705  */
init_numa_topology_type(void)1706 static void init_numa_topology_type(void)
1707 {
1708 	int a, b, c, n;
1709 
1710 	n = sched_max_numa_distance;
1711 
1712 	if (sched_domains_numa_levels <= 2) {
1713 		sched_numa_topology_type = NUMA_DIRECT;
1714 		return;
1715 	}
1716 
1717 	for_each_online_node(a) {
1718 		for_each_online_node(b) {
1719 			/* Find two nodes furthest removed from each other. */
1720 			if (node_distance(a, b) < n)
1721 				continue;
1722 
1723 			/* Is there an intermediary node between a and b? */
1724 			for_each_online_node(c) {
1725 				if (node_distance(a, c) < n &&
1726 				    node_distance(b, c) < n) {
1727 					sched_numa_topology_type =
1728 							NUMA_GLUELESS_MESH;
1729 					return;
1730 				}
1731 			}
1732 
1733 			sched_numa_topology_type = NUMA_BACKPLANE;
1734 			return;
1735 		}
1736 	}
1737 }
1738 
1739 
1740 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1741 
sched_init_numa(void)1742 void sched_init_numa(void)
1743 {
1744 	struct sched_domain_topology_level *tl;
1745 	unsigned long *distance_map;
1746 	int nr_levels = 0;
1747 	int i, j;
1748 
1749 	/*
1750 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1751 	 * unique distances in the node_distance() table.
1752 	 */
1753 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1754 	if (!distance_map)
1755 		return;
1756 
1757 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1758 	for (i = 0; i < nr_node_ids; i++) {
1759 		for (j = 0; j < nr_node_ids; j++) {
1760 			int distance = node_distance(i, j);
1761 
1762 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1763 				sched_numa_warn("Invalid distance value range");
1764 				return;
1765 			}
1766 
1767 			bitmap_set(distance_map, distance, 1);
1768 		}
1769 	}
1770 	/*
1771 	 * We can now figure out how many unique distance values there are and
1772 	 * allocate memory accordingly.
1773 	 */
1774 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1775 
1776 	sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1777 	if (!sched_domains_numa_distance) {
1778 		bitmap_free(distance_map);
1779 		return;
1780 	}
1781 
1782 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1783 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1784 		sched_domains_numa_distance[i] = j;
1785 	}
1786 
1787 	bitmap_free(distance_map);
1788 
1789 	/*
1790 	 * 'nr_levels' contains the number of unique distances
1791 	 *
1792 	 * The sched_domains_numa_distance[] array includes the actual distance
1793 	 * numbers.
1794 	 */
1795 
1796 	/*
1797 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1798 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1799 	 * the array will contain less then 'nr_levels' members. This could be
1800 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1801 	 * in other functions.
1802 	 *
1803 	 * We reset it to 'nr_levels' at the end of this function.
1804 	 */
1805 	sched_domains_numa_levels = 0;
1806 
1807 	sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1808 	if (!sched_domains_numa_masks)
1809 		return;
1810 
1811 	/*
1812 	 * Now for each level, construct a mask per node which contains all
1813 	 * CPUs of nodes that are that many hops away from us.
1814 	 */
1815 	for (i = 0; i < nr_levels; i++) {
1816 		sched_domains_numa_masks[i] =
1817 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1818 		if (!sched_domains_numa_masks[i])
1819 			return;
1820 
1821 		for (j = 0; j < nr_node_ids; j++) {
1822 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1823 			int k;
1824 
1825 			if (!mask)
1826 				return;
1827 
1828 			sched_domains_numa_masks[i][j] = mask;
1829 
1830 			for_each_node(k) {
1831 				/*
1832 				 * Distance information can be unreliable for
1833 				 * offline nodes, defer building the node
1834 				 * masks to its bringup.
1835 				 * This relies on all unique distance values
1836 				 * still being visible at init time.
1837 				 */
1838 				if (!node_online(j))
1839 					continue;
1840 
1841 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1842 					sched_numa_warn("Node-distance not symmetric");
1843 
1844 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1845 					continue;
1846 
1847 				cpumask_or(mask, mask, cpumask_of_node(k));
1848 			}
1849 		}
1850 	}
1851 
1852 	/* Compute default topology size */
1853 	for (i = 0; sched_domain_topology[i].mask; i++);
1854 
1855 	tl = kzalloc((i + nr_levels + 1) *
1856 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1857 	if (!tl)
1858 		return;
1859 
1860 	/*
1861 	 * Copy the default topology bits..
1862 	 */
1863 	for (i = 0; sched_domain_topology[i].mask; i++)
1864 		tl[i] = sched_domain_topology[i];
1865 
1866 	/*
1867 	 * Add the NUMA identity distance, aka single NODE.
1868 	 */
1869 	tl[i++] = (struct sched_domain_topology_level){
1870 		.mask = sd_numa_mask,
1871 		.numa_level = 0,
1872 		SD_INIT_NAME(NODE)
1873 	};
1874 
1875 	/*
1876 	 * .. and append 'j' levels of NUMA goodness.
1877 	 */
1878 	for (j = 1; j < nr_levels; i++, j++) {
1879 		tl[i] = (struct sched_domain_topology_level){
1880 			.mask = sd_numa_mask,
1881 			.sd_flags = cpu_numa_flags,
1882 			.flags = SDTL_OVERLAP,
1883 			.numa_level = j,
1884 			SD_INIT_NAME(NUMA)
1885 		};
1886 	}
1887 
1888 	sched_domain_topology = tl;
1889 
1890 	sched_domains_numa_levels = nr_levels;
1891 	sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
1892 
1893 	init_numa_topology_type();
1894 
1895 	sched_numa_onlined_nodes = bitmap_alloc(nr_node_ids, GFP_KERNEL);
1896 	if (!sched_numa_onlined_nodes)
1897 		return;
1898 
1899 	bitmap_zero(sched_numa_onlined_nodes, nr_node_ids);
1900 	for_each_online_node(i)
1901 		bitmap_set(sched_numa_onlined_nodes, i, 1);
1902 }
1903 
__sched_domains_numa_masks_set(unsigned int node)1904 static void __sched_domains_numa_masks_set(unsigned int node)
1905 {
1906 	int i, j;
1907 
1908 	/*
1909 	 * NUMA masks are not built for offline nodes in sched_init_numa().
1910 	 * Thus, when a CPU of a never-onlined-before node gets plugged in,
1911 	 * adding that new CPU to the right NUMA masks is not sufficient: the
1912 	 * masks of that CPU's node must also be updated.
1913 	 */
1914 	if (test_bit(node, sched_numa_onlined_nodes))
1915 		return;
1916 
1917 	bitmap_set(sched_numa_onlined_nodes, node, 1);
1918 
1919 	for (i = 0; i < sched_domains_numa_levels; i++) {
1920 		for (j = 0; j < nr_node_ids; j++) {
1921 			if (!node_online(j) || node == j)
1922 				continue;
1923 
1924 			if (node_distance(j, node) > sched_domains_numa_distance[i])
1925 				continue;
1926 
1927 			/* Add remote nodes in our masks */
1928 			cpumask_or(sched_domains_numa_masks[i][node],
1929 				   sched_domains_numa_masks[i][node],
1930 				   sched_domains_numa_masks[0][j]);
1931 		}
1932 	}
1933 
1934 	/*
1935 	 * A new node has been brought up, potentially changing the topology
1936 	 * classification.
1937 	 *
1938 	 * Note that this is racy vs any use of sched_numa_topology_type :/
1939 	 */
1940 	init_numa_topology_type();
1941 }
1942 
sched_domains_numa_masks_set(unsigned int cpu)1943 void sched_domains_numa_masks_set(unsigned int cpu)
1944 {
1945 	int node = cpu_to_node(cpu);
1946 	int i, j;
1947 
1948 	__sched_domains_numa_masks_set(node);
1949 
1950 	for (i = 0; i < sched_domains_numa_levels; i++) {
1951 		for (j = 0; j < nr_node_ids; j++) {
1952 			if (!node_online(j))
1953 				continue;
1954 
1955 			/* Set ourselves in the remote node's masks */
1956 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1957 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1958 		}
1959 	}
1960 }
1961 
sched_domains_numa_masks_clear(unsigned int cpu)1962 void sched_domains_numa_masks_clear(unsigned int cpu)
1963 {
1964 	int i, j;
1965 
1966 	for (i = 0; i < sched_domains_numa_levels; i++) {
1967 		for (j = 0; j < nr_node_ids; j++)
1968 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1969 	}
1970 }
1971 
1972 /*
1973  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1974  *                             closest to @cpu from @cpumask.
1975  * cpumask: cpumask to find a cpu from
1976  * cpu: cpu to be close to
1977  *
1978  * returns: cpu, or nr_cpu_ids when nothing found.
1979  */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1980 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1981 {
1982 	int i, j = cpu_to_node(cpu);
1983 
1984 	for (i = 0; i < sched_domains_numa_levels; i++) {
1985 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1986 		if (cpu < nr_cpu_ids)
1987 			return cpu;
1988 	}
1989 	return nr_cpu_ids;
1990 }
1991 
1992 #endif /* CONFIG_NUMA */
1993 
__sdt_alloc(const struct cpumask * cpu_map)1994 static int __sdt_alloc(const struct cpumask *cpu_map)
1995 {
1996 	struct sched_domain_topology_level *tl;
1997 	int j;
1998 
1999 	for_each_sd_topology(tl) {
2000 		struct sd_data *sdd = &tl->data;
2001 
2002 		sdd->sd = alloc_percpu(struct sched_domain *);
2003 		if (!sdd->sd)
2004 			return -ENOMEM;
2005 
2006 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2007 		if (!sdd->sds)
2008 			return -ENOMEM;
2009 
2010 		sdd->sg = alloc_percpu(struct sched_group *);
2011 		if (!sdd->sg)
2012 			return -ENOMEM;
2013 
2014 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2015 		if (!sdd->sgc)
2016 			return -ENOMEM;
2017 
2018 		for_each_cpu(j, cpu_map) {
2019 			struct sched_domain *sd;
2020 			struct sched_domain_shared *sds;
2021 			struct sched_group *sg;
2022 			struct sched_group_capacity *sgc;
2023 
2024 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2025 					GFP_KERNEL, cpu_to_node(j));
2026 			if (!sd)
2027 				return -ENOMEM;
2028 
2029 			*per_cpu_ptr(sdd->sd, j) = sd;
2030 
2031 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2032 					GFP_KERNEL, cpu_to_node(j));
2033 			if (!sds)
2034 				return -ENOMEM;
2035 
2036 			*per_cpu_ptr(sdd->sds, j) = sds;
2037 
2038 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2039 					GFP_KERNEL, cpu_to_node(j));
2040 			if (!sg)
2041 				return -ENOMEM;
2042 
2043 			sg->next = sg;
2044 
2045 			*per_cpu_ptr(sdd->sg, j) = sg;
2046 
2047 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2048 					GFP_KERNEL, cpu_to_node(j));
2049 			if (!sgc)
2050 				return -ENOMEM;
2051 
2052 #ifdef CONFIG_SCHED_DEBUG
2053 			sgc->id = j;
2054 #endif
2055 
2056 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2057 		}
2058 	}
2059 
2060 	return 0;
2061 }
2062 
__sdt_free(const struct cpumask * cpu_map)2063 static void __sdt_free(const struct cpumask *cpu_map)
2064 {
2065 	struct sched_domain_topology_level *tl;
2066 	int j;
2067 
2068 	for_each_sd_topology(tl) {
2069 		struct sd_data *sdd = &tl->data;
2070 
2071 		for_each_cpu(j, cpu_map) {
2072 			struct sched_domain *sd;
2073 
2074 			if (sdd->sd) {
2075 				sd = *per_cpu_ptr(sdd->sd, j);
2076 				if (sd && (sd->flags & SD_OVERLAP))
2077 					free_sched_groups(sd->groups, 0);
2078 				kfree(*per_cpu_ptr(sdd->sd, j));
2079 			}
2080 
2081 			if (sdd->sds)
2082 				kfree(*per_cpu_ptr(sdd->sds, j));
2083 			if (sdd->sg)
2084 				kfree(*per_cpu_ptr(sdd->sg, j));
2085 			if (sdd->sgc)
2086 				kfree(*per_cpu_ptr(sdd->sgc, j));
2087 		}
2088 		free_percpu(sdd->sd);
2089 		sdd->sd = NULL;
2090 		free_percpu(sdd->sds);
2091 		sdd->sds = NULL;
2092 		free_percpu(sdd->sg);
2093 		sdd->sg = NULL;
2094 		free_percpu(sdd->sgc);
2095 		sdd->sgc = NULL;
2096 	}
2097 }
2098 
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)2099 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2100 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2101 		struct sched_domain *child, int cpu)
2102 {
2103 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2104 
2105 	if (child) {
2106 		sd->level = child->level + 1;
2107 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2108 		child->parent = sd;
2109 
2110 		if (!cpumask_subset(sched_domain_span(child),
2111 				    sched_domain_span(sd))) {
2112 			pr_err("BUG: arch topology borken\n");
2113 #ifdef CONFIG_SCHED_DEBUG
2114 			pr_err("     the %s domain not a subset of the %s domain\n",
2115 					child->name, sd->name);
2116 #endif
2117 			/* Fixup, ensure @sd has at least @child CPUs. */
2118 			cpumask_or(sched_domain_span(sd),
2119 				   sched_domain_span(sd),
2120 				   sched_domain_span(child));
2121 		}
2122 
2123 	}
2124 	set_domain_attribute(sd, attr);
2125 
2126 	return sd;
2127 }
2128 
2129 /*
2130  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2131  * any two given CPUs at this (non-NUMA) topology level.
2132  */
topology_span_sane(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,int cpu)2133 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2134 			      const struct cpumask *cpu_map, int cpu)
2135 {
2136 	int i;
2137 
2138 	/* NUMA levels are allowed to overlap */
2139 	if (tl->flags & SDTL_OVERLAP)
2140 		return true;
2141 
2142 	/*
2143 	 * Non-NUMA levels cannot partially overlap - they must be either
2144 	 * completely equal or completely disjoint. Otherwise we can end up
2145 	 * breaking the sched_group lists - i.e. a later get_group() pass
2146 	 * breaks the linking done for an earlier span.
2147 	 */
2148 	for_each_cpu(i, cpu_map) {
2149 		if (i == cpu)
2150 			continue;
2151 		/*
2152 		 * We should 'and' all those masks with 'cpu_map' to exactly
2153 		 * match the topology we're about to build, but that can only
2154 		 * remove CPUs, which only lessens our ability to detect
2155 		 * overlaps
2156 		 */
2157 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2158 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2159 			return false;
2160 	}
2161 
2162 	return true;
2163 }
2164 
2165 /*
2166  * Build sched domains for a given set of CPUs and attach the sched domains
2167  * to the individual CPUs
2168  */
2169 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2170 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2171 {
2172 	enum s_alloc alloc_state = sa_none;
2173 	struct sched_domain *sd;
2174 	struct s_data d;
2175 	struct rq *rq = NULL;
2176 	int i, ret = -ENOMEM;
2177 	bool has_asym = false;
2178 
2179 	if (WARN_ON(cpumask_empty(cpu_map)))
2180 		goto error;
2181 
2182 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2183 	if (alloc_state != sa_rootdomain)
2184 		goto error;
2185 
2186 	/* Set up domains for CPUs specified by the cpu_map: */
2187 	for_each_cpu(i, cpu_map) {
2188 		struct sched_domain_topology_level *tl;
2189 
2190 		sd = NULL;
2191 		for_each_sd_topology(tl) {
2192 
2193 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2194 				goto error;
2195 
2196 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2197 
2198 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2199 
2200 			if (tl == sched_domain_topology)
2201 				*per_cpu_ptr(d.sd, i) = sd;
2202 			if (tl->flags & SDTL_OVERLAP)
2203 				sd->flags |= SD_OVERLAP;
2204 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2205 				break;
2206 		}
2207 	}
2208 
2209 	/* Build the groups for the domains */
2210 	for_each_cpu(i, cpu_map) {
2211 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2212 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2213 			if (sd->flags & SD_OVERLAP) {
2214 				if (build_overlap_sched_groups(sd, i))
2215 					goto error;
2216 			} else {
2217 				if (build_sched_groups(sd, i))
2218 					goto error;
2219 			}
2220 		}
2221 	}
2222 
2223 	/* Calculate CPU capacity for physical packages and nodes */
2224 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2225 		if (!cpumask_test_cpu(i, cpu_map))
2226 			continue;
2227 
2228 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2229 			claim_allocations(i, sd);
2230 			init_sched_groups_capacity(i, sd);
2231 		}
2232 	}
2233 
2234 	/* Attach the domains */
2235 	rcu_read_lock();
2236 	for_each_cpu(i, cpu_map) {
2237 		rq = cpu_rq(i);
2238 		sd = *per_cpu_ptr(d.sd, i);
2239 
2240 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2241 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2242 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2243 
2244 		cpu_attach_domain(sd, d.rd, i);
2245 	}
2246 	rcu_read_unlock();
2247 
2248 	if (has_asym)
2249 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2250 
2251 	if (rq && sched_debug_verbose) {
2252 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2253 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2254 	}
2255 	trace_android_vh_build_sched_domains(has_asym);
2256 
2257 	ret = 0;
2258 error:
2259 	__free_domain_allocs(&d, alloc_state, cpu_map);
2260 
2261 	return ret;
2262 }
2263 
2264 /* Current sched domains: */
2265 static cpumask_var_t			*doms_cur;
2266 
2267 /* Number of sched domains in 'doms_cur': */
2268 static int				ndoms_cur;
2269 
2270 /* Attributes of custom domains in 'doms_cur' */
2271 static struct sched_domain_attr		*dattr_cur;
2272 
2273 /*
2274  * Special case: If a kmalloc() of a doms_cur partition (array of
2275  * cpumask) fails, then fallback to a single sched domain,
2276  * as determined by the single cpumask fallback_doms.
2277  */
2278 static cpumask_var_t			fallback_doms;
2279 
2280 /*
2281  * arch_update_cpu_topology lets virtualized architectures update the
2282  * CPU core maps. It is supposed to return 1 if the topology changed
2283  * or 0 if it stayed the same.
2284  */
arch_update_cpu_topology(void)2285 int __weak arch_update_cpu_topology(void)
2286 {
2287 	return 0;
2288 }
2289 
alloc_sched_domains(unsigned int ndoms)2290 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2291 {
2292 	int i;
2293 	cpumask_var_t *doms;
2294 
2295 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2296 	if (!doms)
2297 		return NULL;
2298 	for (i = 0; i < ndoms; i++) {
2299 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2300 			free_sched_domains(doms, i);
2301 			return NULL;
2302 		}
2303 	}
2304 	return doms;
2305 }
2306 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2307 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2308 {
2309 	unsigned int i;
2310 	for (i = 0; i < ndoms; i++)
2311 		free_cpumask_var(doms[i]);
2312 	kfree(doms);
2313 }
2314 
2315 /*
2316  * Set up scheduler domains and groups.  For now this just excludes isolated
2317  * CPUs, but could be used to exclude other special cases in the future.
2318  */
sched_init_domains(const struct cpumask * cpu_map)2319 int sched_init_domains(const struct cpumask *cpu_map)
2320 {
2321 	int err;
2322 
2323 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2324 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2325 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2326 
2327 	arch_update_cpu_topology();
2328 	asym_cpu_capacity_scan();
2329 	ndoms_cur = 1;
2330 	doms_cur = alloc_sched_domains(ndoms_cur);
2331 	if (!doms_cur)
2332 		doms_cur = &fallback_doms;
2333 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2334 	err = build_sched_domains(doms_cur[0], NULL);
2335 
2336 	return err;
2337 }
2338 
2339 /*
2340  * Detach sched domains from a group of CPUs specified in cpu_map
2341  * These CPUs will now be attached to the NULL domain
2342  */
detach_destroy_domains(const struct cpumask * cpu_map)2343 static void detach_destroy_domains(const struct cpumask *cpu_map)
2344 {
2345 	unsigned int cpu = cpumask_any(cpu_map);
2346 	int i;
2347 
2348 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2349 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2350 
2351 	rcu_read_lock();
2352 	for_each_cpu(i, cpu_map)
2353 		cpu_attach_domain(NULL, &def_root_domain, i);
2354 	rcu_read_unlock();
2355 }
2356 
2357 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2358 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2359 			struct sched_domain_attr *new, int idx_new)
2360 {
2361 	struct sched_domain_attr tmp;
2362 
2363 	/* Fast path: */
2364 	if (!new && !cur)
2365 		return 1;
2366 
2367 	tmp = SD_ATTR_INIT;
2368 
2369 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2370 			new ? (new + idx_new) : &tmp,
2371 			sizeof(struct sched_domain_attr));
2372 }
2373 
2374 /*
2375  * Partition sched domains as specified by the 'ndoms_new'
2376  * cpumasks in the array doms_new[] of cpumasks. This compares
2377  * doms_new[] to the current sched domain partitioning, doms_cur[].
2378  * It destroys each deleted domain and builds each new domain.
2379  *
2380  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2381  * The masks don't intersect (don't overlap.) We should setup one
2382  * sched domain for each mask. CPUs not in any of the cpumasks will
2383  * not be load balanced. If the same cpumask appears both in the
2384  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2385  * it as it is.
2386  *
2387  * The passed in 'doms_new' should be allocated using
2388  * alloc_sched_domains.  This routine takes ownership of it and will
2389  * free_sched_domains it when done with it. If the caller failed the
2390  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2391  * and partition_sched_domains() will fallback to the single partition
2392  * 'fallback_doms', it also forces the domains to be rebuilt.
2393  *
2394  * If doms_new == NULL it will be replaced with cpu_online_mask.
2395  * ndoms_new == 0 is a special case for destroying existing domains,
2396  * and it will not create the default domain.
2397  *
2398  * Call with hotplug lock and sched_domains_mutex held
2399  */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2400 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2401 				    struct sched_domain_attr *dattr_new)
2402 {
2403 	bool __maybe_unused has_eas = false;
2404 	int i, j, n;
2405 	int new_topology;
2406 
2407 	lockdep_assert_held(&sched_domains_mutex);
2408 
2409 	/* Let the architecture update CPU core mappings: */
2410 	new_topology = arch_update_cpu_topology();
2411 	/* Trigger rebuilding CPU capacity asymmetry data */
2412 	if (new_topology)
2413 		asym_cpu_capacity_scan();
2414 
2415 	if (!doms_new) {
2416 		WARN_ON_ONCE(dattr_new);
2417 		n = 0;
2418 		doms_new = alloc_sched_domains(1);
2419 		if (doms_new) {
2420 			n = 1;
2421 			cpumask_and(doms_new[0], cpu_active_mask,
2422 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2423 		}
2424 	} else {
2425 		n = ndoms_new;
2426 	}
2427 
2428 	/* Destroy deleted domains: */
2429 	for (i = 0; i < ndoms_cur; i++) {
2430 		for (j = 0; j < n && !new_topology; j++) {
2431 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2432 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2433 				struct root_domain *rd;
2434 
2435 				/*
2436 				 * This domain won't be destroyed and as such
2437 				 * its dl_bw->total_bw needs to be cleared.  It
2438 				 * will be recomputed in function
2439 				 * update_tasks_root_domain().
2440 				 */
2441 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2442 				dl_clear_root_domain(rd);
2443 				goto match1;
2444 			}
2445 		}
2446 		/* No match - a current sched domain not in new doms_new[] */
2447 		detach_destroy_domains(doms_cur[i]);
2448 match1:
2449 		;
2450 	}
2451 
2452 	n = ndoms_cur;
2453 	if (!doms_new) {
2454 		n = 0;
2455 		doms_new = &fallback_doms;
2456 		cpumask_and(doms_new[0], cpu_active_mask,
2457 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2458 	}
2459 
2460 	/* Build new domains: */
2461 	for (i = 0; i < ndoms_new; i++) {
2462 		for (j = 0; j < n && !new_topology; j++) {
2463 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2464 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2465 				goto match2;
2466 		}
2467 		/* No match - add a new doms_new */
2468 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2469 match2:
2470 		;
2471 	}
2472 
2473 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2474 	/* Build perf. domains: */
2475 	for (i = 0; i < ndoms_new; i++) {
2476 		for (j = 0; j < n && !sched_energy_update; j++) {
2477 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2478 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2479 				has_eas = true;
2480 				goto match3;
2481 			}
2482 		}
2483 		/* No match - add perf. domains for a new rd */
2484 		has_eas |= build_perf_domains(doms_new[i]);
2485 match3:
2486 		;
2487 	}
2488 	sched_energy_set(has_eas);
2489 #endif
2490 
2491 	/* Remember the new sched domains: */
2492 	if (doms_cur != &fallback_doms)
2493 		free_sched_domains(doms_cur, ndoms_cur);
2494 
2495 	kfree(dattr_cur);
2496 	doms_cur = doms_new;
2497 	dattr_cur = dattr_new;
2498 	ndoms_cur = ndoms_new;
2499 
2500 	update_sched_domain_debugfs();
2501 }
2502 
2503 /*
2504  * Call with hotplug lock held
2505  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2506 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2507 			     struct sched_domain_attr *dattr_new)
2508 {
2509 	mutex_lock(&sched_domains_mutex);
2510 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2511 	mutex_unlock(&sched_domains_mutex);
2512 }
2513