1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similar to hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corporation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37 * struct alarm_base - Alarm timer bases
38 * @lock: Lock for syncrhonized access to the base
39 * @timerqueue: Timerqueue head managing the list of events
40 * @get_ktime: Function to read the time correlating to the base
41 * @get_timespec: Function to read the namespace time correlating to the base
42 * @base_clockid: clockid for the base
43 */
44 static struct alarm_base {
45 spinlock_t lock;
46 struct timerqueue_head timerqueue;
47 ktime_t (*get_ktime)(void);
48 void (*get_timespec)(struct timespec64 *tp);
49 clockid_t base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer rtctimer;
63 static struct rtc_device *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67 * alarmtimer_get_rtcdev - Return selected rtcdevice
68 *
69 * This function returns the rtc device to use for wakealarms.
70 */
alarmtimer_get_rtcdev(void)71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73 unsigned long flags;
74 struct rtc_device *ret;
75
76 spin_lock_irqsave(&rtcdev_lock, flags);
77 ret = rtcdev;
78 spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80 return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
alarmtimer_rtc_add_device(struct device * dev,struct class_interface * class_intf)84 static int alarmtimer_rtc_add_device(struct device *dev,
85 struct class_interface *class_intf)
86 {
87 unsigned long flags;
88 struct rtc_device *rtc = to_rtc_device(dev);
89 struct platform_device *pdev;
90 int ret = 0;
91
92 if (rtcdev)
93 return -EBUSY;
94
95 if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
96 return -1;
97 if (!device_may_wakeup(rtc->dev.parent))
98 return -1;
99
100 pdev = platform_device_register_data(dev, "alarmtimer",
101 PLATFORM_DEVID_AUTO, NULL, 0);
102 if (!IS_ERR(pdev))
103 device_init_wakeup(&pdev->dev, true);
104
105 spin_lock_irqsave(&rtcdev_lock, flags);
106 if (!IS_ERR(pdev) && !rtcdev) {
107 if (!try_module_get(rtc->owner)) {
108 ret = -1;
109 goto unlock;
110 }
111
112 rtcdev = rtc;
113 /* hold a reference so it doesn't go away */
114 get_device(dev);
115 pdev = NULL;
116 } else {
117 ret = -1;
118 }
119 unlock:
120 spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122 platform_device_unregister(pdev);
123
124 return ret;
125 }
126
alarmtimer_rtc_timer_init(void)127 static inline void alarmtimer_rtc_timer_init(void)
128 {
129 rtc_timer_init(&rtctimer, NULL, NULL);
130 }
131
132 static struct class_interface alarmtimer_rtc_interface = {
133 .add_dev = &alarmtimer_rtc_add_device,
134 };
135
alarmtimer_rtc_interface_setup(void)136 static int alarmtimer_rtc_interface_setup(void)
137 {
138 alarmtimer_rtc_interface.class = rtc_class;
139 return class_interface_register(&alarmtimer_rtc_interface);
140 }
alarmtimer_rtc_interface_remove(void)141 static void alarmtimer_rtc_interface_remove(void)
142 {
143 class_interface_unregister(&alarmtimer_rtc_interface);
144 }
145 #else
alarmtimer_rtc_interface_setup(void)146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)147 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)148 static inline void alarmtimer_rtc_timer_init(void) { }
149 #endif
150
151 /**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161 {
162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163 timerqueue_del(&base->timerqueue, &alarm->node);
164
165 timerqueue_add(&base->timerqueue, &alarm->node);
166 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 }
168
169 /**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
175 *
176 * Must hold base->lock when calling.
177 */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179 {
180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181 return;
182
183 timerqueue_del(&base->timerqueue, &alarm->node);
184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 }
186
187
188 /**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * the next future alarm timer expires.
196 */
alarmtimer_fired(struct hrtimer * timer)197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198 {
199 struct alarm *alarm = container_of(timer, struct alarm, timer);
200 struct alarm_base *base = &alarm_bases[alarm->type];
201 unsigned long flags;
202 int ret = HRTIMER_NORESTART;
203 int restart = ALARMTIMER_NORESTART;
204
205 spin_lock_irqsave(&base->lock, flags);
206 alarmtimer_dequeue(base, alarm);
207 spin_unlock_irqrestore(&base->lock, flags);
208
209 if (alarm->function)
210 restart = alarm->function(alarm, base->get_ktime());
211
212 spin_lock_irqsave(&base->lock, flags);
213 if (restart != ALARMTIMER_NORESTART) {
214 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215 alarmtimer_enqueue(base, alarm);
216 ret = HRTIMER_RESTART;
217 }
218 spin_unlock_irqrestore(&base->lock, flags);
219
220 trace_alarmtimer_fired(alarm, base->get_ktime());
221 return ret;
222
223 }
224
alarm_expires_remaining(const struct alarm * alarm)225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
226 {
227 struct alarm_base *base = &alarm_bases[alarm->type];
228 return ktime_sub(alarm->node.expires, base->get_ktime());
229 }
230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232 #ifdef CONFIG_RTC_CLASS
233 /**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
236 *
237 * When we are going into suspend, we look through the bases
238 * to see which is the soonest timer to expire. We then
239 * set an rtc timer to fire that far into the future, which
240 * will wake us from suspend.
241 */
alarmtimer_suspend(struct device * dev)242 static int alarmtimer_suspend(struct device *dev)
243 {
244 ktime_t min, now, expires;
245 int i, ret, type;
246 struct rtc_device *rtc;
247 unsigned long flags;
248 struct rtc_time tm;
249
250 spin_lock_irqsave(&freezer_delta_lock, flags);
251 min = freezer_delta;
252 expires = freezer_expires;
253 type = freezer_alarmtype;
254 freezer_delta = 0;
255 spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257 rtc = alarmtimer_get_rtcdev();
258 /* If we have no rtcdev, just return */
259 if (!rtc)
260 return 0;
261
262 /* Find the soonest timer to expire*/
263 for (i = 0; i < ALARM_NUMTYPE; i++) {
264 struct alarm_base *base = &alarm_bases[i];
265 struct timerqueue_node *next;
266 ktime_t delta;
267
268 spin_lock_irqsave(&base->lock, flags);
269 next = timerqueue_getnext(&base->timerqueue);
270 spin_unlock_irqrestore(&base->lock, flags);
271 if (!next)
272 continue;
273 delta = ktime_sub(next->expires, base->get_ktime());
274 if (!min || (delta < min)) {
275 expires = next->expires;
276 min = delta;
277 type = i;
278 }
279 }
280 if (min == 0)
281 return 0;
282
283 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
285 return -EBUSY;
286 }
287
288 trace_alarmtimer_suspend(expires, type);
289
290 /* Setup an rtc timer to fire that far in the future */
291 rtc_timer_cancel(rtc, &rtctimer);
292 rtc_read_time(rtc, &tm);
293 now = rtc_tm_to_ktime(tm);
294 now = ktime_add(now, min);
295
296 /* Set alarm, if in the past reject suspend briefly to handle */
297 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298 if (ret < 0)
299 pm_wakeup_event(dev, MSEC_PER_SEC);
300 return ret;
301 }
302
alarmtimer_resume(struct device * dev)303 static int alarmtimer_resume(struct device *dev)
304 {
305 struct rtc_device *rtc;
306
307 rtc = alarmtimer_get_rtcdev();
308 if (rtc)
309 rtc_timer_cancel(rtc, &rtctimer);
310 return 0;
311 }
312
313 #else
alarmtimer_suspend(struct device * dev)314 static int alarmtimer_suspend(struct device *dev)
315 {
316 return 0;
317 }
318
alarmtimer_resume(struct device * dev)319 static int alarmtimer_resume(struct device *dev)
320 {
321 return 0;
322 }
323 #endif
324
325 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328 {
329 timerqueue_init(&alarm->node);
330 alarm->timer.function = alarmtimer_fired;
331 alarm->function = function;
332 alarm->type = type;
333 alarm->state = ALARMTIMER_STATE_INACTIVE;
334 }
335
336 /**
337 * alarm_init - Initialize an alarm structure
338 * @alarm: ptr to alarm to be initialized
339 * @type: the type of the alarm
340 * @function: callback that is run when the alarm fires
341 */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344 {
345 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346 HRTIMER_MODE_ABS);
347 __alarm_init(alarm, type, function);
348 }
349 EXPORT_SYMBOL_GPL(alarm_init);
350
351 /**
352 * alarm_start - Sets an absolute alarm to fire
353 * @alarm: ptr to alarm to set
354 * @start: time to run the alarm
355 */
alarm_start(struct alarm * alarm,ktime_t start)356 void alarm_start(struct alarm *alarm, ktime_t start)
357 {
358 struct alarm_base *base = &alarm_bases[alarm->type];
359 unsigned long flags;
360
361 spin_lock_irqsave(&base->lock, flags);
362 alarm->node.expires = start;
363 alarmtimer_enqueue(base, alarm);
364 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365 spin_unlock_irqrestore(&base->lock, flags);
366
367 trace_alarmtimer_start(alarm, base->get_ktime());
368 }
369 EXPORT_SYMBOL_GPL(alarm_start);
370
371 /**
372 * alarm_start_relative - Sets a relative alarm to fire
373 * @alarm: ptr to alarm to set
374 * @start: time relative to now to run the alarm
375 */
alarm_start_relative(struct alarm * alarm,ktime_t start)376 void alarm_start_relative(struct alarm *alarm, ktime_t start)
377 {
378 struct alarm_base *base = &alarm_bases[alarm->type];
379
380 start = ktime_add_safe(start, base->get_ktime());
381 alarm_start(alarm, start);
382 }
383 EXPORT_SYMBOL_GPL(alarm_start_relative);
384
alarm_restart(struct alarm * alarm)385 void alarm_restart(struct alarm *alarm)
386 {
387 struct alarm_base *base = &alarm_bases[alarm->type];
388 unsigned long flags;
389
390 spin_lock_irqsave(&base->lock, flags);
391 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392 hrtimer_restart(&alarm->timer);
393 alarmtimer_enqueue(base, alarm);
394 spin_unlock_irqrestore(&base->lock, flags);
395 }
396 EXPORT_SYMBOL_GPL(alarm_restart);
397
398 /**
399 * alarm_try_to_cancel - Tries to cancel an alarm timer
400 * @alarm: ptr to alarm to be canceled
401 *
402 * Returns 1 if the timer was canceled, 0 if it was not running,
403 * and -1 if the callback was running
404 */
alarm_try_to_cancel(struct alarm * alarm)405 int alarm_try_to_cancel(struct alarm *alarm)
406 {
407 struct alarm_base *base = &alarm_bases[alarm->type];
408 unsigned long flags;
409 int ret;
410
411 spin_lock_irqsave(&base->lock, flags);
412 ret = hrtimer_try_to_cancel(&alarm->timer);
413 if (ret >= 0)
414 alarmtimer_dequeue(base, alarm);
415 spin_unlock_irqrestore(&base->lock, flags);
416
417 trace_alarmtimer_cancel(alarm, base->get_ktime());
418 return ret;
419 }
420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423 /**
424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425 * @alarm: ptr to alarm to be canceled
426 *
427 * Returns 1 if the timer was canceled, 0 if it was not active.
428 */
alarm_cancel(struct alarm * alarm)429 int alarm_cancel(struct alarm *alarm)
430 {
431 for (;;) {
432 int ret = alarm_try_to_cancel(alarm);
433 if (ret >= 0)
434 return ret;
435 hrtimer_cancel_wait_running(&alarm->timer);
436 }
437 }
438 EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442 {
443 u64 overrun = 1;
444 ktime_t delta;
445
446 delta = ktime_sub(now, alarm->node.expires);
447
448 if (delta < 0)
449 return 0;
450
451 if (unlikely(delta >= interval)) {
452 s64 incr = ktime_to_ns(interval);
453
454 overrun = ktime_divns(delta, incr);
455
456 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457 incr*overrun);
458
459 if (alarm->node.expires > now)
460 return overrun;
461 /*
462 * This (and the ktime_add() below) is the
463 * correction for exact:
464 */
465 overrun++;
466 }
467
468 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469 return overrun;
470 }
471 EXPORT_SYMBOL_GPL(alarm_forward);
472
__alarm_forward_now(struct alarm * alarm,ktime_t interval,bool throttle)473 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
474 {
475 struct alarm_base *base = &alarm_bases[alarm->type];
476 ktime_t now = base->get_ktime();
477
478 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
479 /*
480 * Same issue as with posix_timer_fn(). Timers which are
481 * periodic but the signal is ignored can starve the system
482 * with a very small interval. The real fix which was
483 * promised in the context of posix_timer_fn() never
484 * materialized, but someone should really work on it.
485 *
486 * To prevent DOS fake @now to be 1 jiffie out which keeps
487 * the overrun accounting correct but creates an
488 * inconsistency vs. timer_gettime(2).
489 */
490 ktime_t kj = NSEC_PER_SEC / HZ;
491
492 if (interval < kj)
493 now = ktime_add(now, kj);
494 }
495
496 return alarm_forward(alarm, now, interval);
497 }
498
alarm_forward_now(struct alarm * alarm,ktime_t interval)499 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
500 {
501 return __alarm_forward_now(alarm, interval, false);
502 }
503 EXPORT_SYMBOL_GPL(alarm_forward_now);
504
505 #ifdef CONFIG_POSIX_TIMERS
506
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)507 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
508 {
509 struct alarm_base *base;
510 unsigned long flags;
511 ktime_t delta;
512
513 switch(type) {
514 case ALARM_REALTIME:
515 base = &alarm_bases[ALARM_REALTIME];
516 type = ALARM_REALTIME_FREEZER;
517 break;
518 case ALARM_BOOTTIME:
519 base = &alarm_bases[ALARM_BOOTTIME];
520 type = ALARM_BOOTTIME_FREEZER;
521 break;
522 default:
523 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
524 return;
525 }
526
527 delta = ktime_sub(absexp, base->get_ktime());
528
529 spin_lock_irqsave(&freezer_delta_lock, flags);
530 if (!freezer_delta || (delta < freezer_delta)) {
531 freezer_delta = delta;
532 freezer_expires = absexp;
533 freezer_alarmtype = type;
534 }
535 spin_unlock_irqrestore(&freezer_delta_lock, flags);
536 }
537
538 /**
539 * clock2alarm - helper that converts from clockid to alarmtypes
540 * @clockid: clockid.
541 */
clock2alarm(clockid_t clockid)542 static enum alarmtimer_type clock2alarm(clockid_t clockid)
543 {
544 if (clockid == CLOCK_REALTIME_ALARM)
545 return ALARM_REALTIME;
546 if (clockid == CLOCK_BOOTTIME_ALARM)
547 return ALARM_BOOTTIME;
548 return -1;
549 }
550
551 /**
552 * alarm_handle_timer - Callback for posix timers
553 * @alarm: alarm that fired
554 * @now: time at the timer expiration
555 *
556 * Posix timer callback for expired alarm timers.
557 *
558 * Return: whether the timer is to be restarted
559 */
alarm_handle_timer(struct alarm * alarm,ktime_t now)560 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
561 ktime_t now)
562 {
563 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
564 it.alarm.alarmtimer);
565 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
566 unsigned long flags;
567 int si_private = 0;
568
569 spin_lock_irqsave(&ptr->it_lock, flags);
570
571 ptr->it_active = 0;
572 if (ptr->it_interval)
573 si_private = ++ptr->it_requeue_pending;
574
575 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
576 /*
577 * Handle ignored signals and rearm the timer. This will go
578 * away once we handle ignored signals proper. Ensure that
579 * small intervals cannot starve the system.
580 */
581 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
582 ++ptr->it_requeue_pending;
583 ptr->it_active = 1;
584 result = ALARMTIMER_RESTART;
585 }
586 spin_unlock_irqrestore(&ptr->it_lock, flags);
587
588 return result;
589 }
590
591 /**
592 * alarm_timer_rearm - Posix timer callback for rearming timer
593 * @timr: Pointer to the posixtimer data struct
594 */
alarm_timer_rearm(struct k_itimer * timr)595 static void alarm_timer_rearm(struct k_itimer *timr)
596 {
597 struct alarm *alarm = &timr->it.alarm.alarmtimer;
598
599 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
600 alarm_start(alarm, alarm->node.expires);
601 }
602
603 /**
604 * alarm_timer_forward - Posix timer callback for forwarding timer
605 * @timr: Pointer to the posixtimer data struct
606 * @now: Current time to forward the timer against
607 */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)608 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
609 {
610 struct alarm *alarm = &timr->it.alarm.alarmtimer;
611
612 return alarm_forward(alarm, timr->it_interval, now);
613 }
614
615 /**
616 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
617 * @timr: Pointer to the posixtimer data struct
618 * @now: Current time to calculate against
619 */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)620 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
621 {
622 struct alarm *alarm = &timr->it.alarm.alarmtimer;
623
624 return ktime_sub(alarm->node.expires, now);
625 }
626
627 /**
628 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
629 * @timr: Pointer to the posixtimer data struct
630 */
alarm_timer_try_to_cancel(struct k_itimer * timr)631 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
632 {
633 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
634 }
635
636 /**
637 * alarm_timer_wait_running - Posix timer callback to wait for a timer
638 * @timr: Pointer to the posixtimer data struct
639 *
640 * Called from the core code when timer cancel detected that the callback
641 * is running. @timr is unlocked and rcu read lock is held to prevent it
642 * from being freed.
643 */
alarm_timer_wait_running(struct k_itimer * timr)644 static void alarm_timer_wait_running(struct k_itimer *timr)
645 {
646 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
647 }
648
649 /**
650 * alarm_timer_arm - Posix timer callback to arm a timer
651 * @timr: Pointer to the posixtimer data struct
652 * @expires: The new expiry time
653 * @absolute: Expiry value is absolute time
654 * @sigev_none: Posix timer does not deliver signals
655 */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)656 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
657 bool absolute, bool sigev_none)
658 {
659 struct alarm *alarm = &timr->it.alarm.alarmtimer;
660 struct alarm_base *base = &alarm_bases[alarm->type];
661
662 if (!absolute)
663 expires = ktime_add_safe(expires, base->get_ktime());
664 if (sigev_none)
665 alarm->node.expires = expires;
666 else
667 alarm_start(&timr->it.alarm.alarmtimer, expires);
668 }
669
670 /**
671 * alarm_clock_getres - posix getres interface
672 * @which_clock: clockid
673 * @tp: timespec to fill
674 *
675 * Returns the granularity of underlying alarm base clock
676 */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)677 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
678 {
679 if (!alarmtimer_get_rtcdev())
680 return -EINVAL;
681
682 tp->tv_sec = 0;
683 tp->tv_nsec = hrtimer_resolution;
684 return 0;
685 }
686
687 /**
688 * alarm_clock_get_timespec - posix clock_get_timespec interface
689 * @which_clock: clockid
690 * @tp: timespec to fill.
691 *
692 * Provides the underlying alarm base time in a tasks time namespace.
693 */
alarm_clock_get_timespec(clockid_t which_clock,struct timespec64 * tp)694 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
695 {
696 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
697
698 if (!alarmtimer_get_rtcdev())
699 return -EINVAL;
700
701 base->get_timespec(tp);
702
703 return 0;
704 }
705
706 /**
707 * alarm_clock_get_ktime - posix clock_get_ktime interface
708 * @which_clock: clockid
709 *
710 * Provides the underlying alarm base time in the root namespace.
711 */
alarm_clock_get_ktime(clockid_t which_clock)712 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
713 {
714 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
715
716 if (!alarmtimer_get_rtcdev())
717 return -EINVAL;
718
719 return base->get_ktime();
720 }
721
722 /**
723 * alarm_timer_create - posix timer_create interface
724 * @new_timer: k_itimer pointer to manage
725 *
726 * Initializes the k_itimer structure.
727 */
alarm_timer_create(struct k_itimer * new_timer)728 static int alarm_timer_create(struct k_itimer *new_timer)
729 {
730 enum alarmtimer_type type;
731
732 if (!alarmtimer_get_rtcdev())
733 return -EOPNOTSUPP;
734
735 if (!capable(CAP_WAKE_ALARM))
736 return -EPERM;
737
738 type = clock2alarm(new_timer->it_clock);
739 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
740 return 0;
741 }
742
743 /**
744 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
745 * @alarm: ptr to alarm that fired
746 * @now: time at the timer expiration
747 *
748 * Wakes up the task that set the alarmtimer
749 *
750 * Return: ALARMTIMER_NORESTART
751 */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)752 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
753 ktime_t now)
754 {
755 struct task_struct *task = (struct task_struct *)alarm->data;
756
757 alarm->data = NULL;
758 if (task)
759 wake_up_process(task);
760 return ALARMTIMER_NORESTART;
761 }
762
763 /**
764 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
765 * @alarm: ptr to alarmtimer
766 * @absexp: absolute expiration time
767 * @type: alarm type (BOOTTIME/REALTIME).
768 *
769 * Sets the alarm timer and sleeps until it is fired or interrupted.
770 */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)771 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
772 enum alarmtimer_type type)
773 {
774 struct restart_block *restart;
775 alarm->data = (void *)current;
776 do {
777 set_current_state(TASK_INTERRUPTIBLE);
778 alarm_start(alarm, absexp);
779 if (likely(alarm->data))
780 schedule();
781
782 alarm_cancel(alarm);
783 } while (alarm->data && !signal_pending(current));
784
785 __set_current_state(TASK_RUNNING);
786
787 destroy_hrtimer_on_stack(&alarm->timer);
788
789 if (!alarm->data)
790 return 0;
791
792 if (freezing(current))
793 alarmtimer_freezerset(absexp, type);
794 restart = ¤t->restart_block;
795 if (restart->nanosleep.type != TT_NONE) {
796 struct timespec64 rmt;
797 ktime_t rem;
798
799 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
800
801 if (rem <= 0)
802 return 0;
803 rmt = ktime_to_timespec64(rem);
804
805 return nanosleep_copyout(restart, &rmt);
806 }
807 return -ERESTART_RESTARTBLOCK;
808 }
809
810 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))811 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
812 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
813 {
814 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
815 HRTIMER_MODE_ABS);
816 __alarm_init(alarm, type, function);
817 }
818
819 /**
820 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
821 * @restart: ptr to restart block
822 *
823 * Handles restarted clock_nanosleep calls
824 */
alarm_timer_nsleep_restart(struct restart_block * restart)825 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
826 {
827 enum alarmtimer_type type = restart->nanosleep.clockid;
828 ktime_t exp = restart->nanosleep.expires;
829 struct alarm alarm;
830
831 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
832
833 return alarmtimer_do_nsleep(&alarm, exp, type);
834 }
835
836 /**
837 * alarm_timer_nsleep - alarmtimer nanosleep
838 * @which_clock: clockid
839 * @flags: determines abstime or relative
840 * @tsreq: requested sleep time (abs or rel)
841 *
842 * Handles clock_nanosleep calls against _ALARM clockids
843 */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)844 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
845 const struct timespec64 *tsreq)
846 {
847 enum alarmtimer_type type = clock2alarm(which_clock);
848 struct restart_block *restart = ¤t->restart_block;
849 struct alarm alarm;
850 ktime_t exp;
851 int ret = 0;
852
853 if (!alarmtimer_get_rtcdev())
854 return -EOPNOTSUPP;
855
856 if (flags & ~TIMER_ABSTIME)
857 return -EINVAL;
858
859 if (!capable(CAP_WAKE_ALARM))
860 return -EPERM;
861
862 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
863
864 exp = timespec64_to_ktime(*tsreq);
865 /* Convert (if necessary) to absolute time */
866 if (flags != TIMER_ABSTIME) {
867 ktime_t now = alarm_bases[type].get_ktime();
868
869 exp = ktime_add_safe(now, exp);
870 } else {
871 exp = timens_ktime_to_host(which_clock, exp);
872 }
873
874 ret = alarmtimer_do_nsleep(&alarm, exp, type);
875 if (ret != -ERESTART_RESTARTBLOCK)
876 return ret;
877
878 /* abs timers don't set remaining time or restart */
879 if (flags == TIMER_ABSTIME)
880 return -ERESTARTNOHAND;
881
882 restart->nanosleep.clockid = type;
883 restart->nanosleep.expires = exp;
884 set_restart_fn(restart, alarm_timer_nsleep_restart);
885 return ret;
886 }
887
888 const struct k_clock alarm_clock = {
889 .clock_getres = alarm_clock_getres,
890 .clock_get_ktime = alarm_clock_get_ktime,
891 .clock_get_timespec = alarm_clock_get_timespec,
892 .timer_create = alarm_timer_create,
893 .timer_set = common_timer_set,
894 .timer_del = common_timer_del,
895 .timer_get = common_timer_get,
896 .timer_arm = alarm_timer_arm,
897 .timer_rearm = alarm_timer_rearm,
898 .timer_forward = alarm_timer_forward,
899 .timer_remaining = alarm_timer_remaining,
900 .timer_try_to_cancel = alarm_timer_try_to_cancel,
901 .timer_wait_running = alarm_timer_wait_running,
902 .nsleep = alarm_timer_nsleep,
903 };
904 #endif /* CONFIG_POSIX_TIMERS */
905
906
907 /* Suspend hook structures */
908 static const struct dev_pm_ops alarmtimer_pm_ops = {
909 .suspend = alarmtimer_suspend,
910 .resume = alarmtimer_resume,
911 };
912
913 static struct platform_driver alarmtimer_driver = {
914 .driver = {
915 .name = "alarmtimer",
916 .pm = &alarmtimer_pm_ops,
917 }
918 };
919
get_boottime_timespec(struct timespec64 * tp)920 static void get_boottime_timespec(struct timespec64 *tp)
921 {
922 ktime_get_boottime_ts64(tp);
923 timens_add_boottime(tp);
924 }
925
926 /**
927 * alarmtimer_init - Initialize alarm timer code
928 *
929 * This function initializes the alarm bases and registers
930 * the posix clock ids.
931 */
alarmtimer_init(void)932 static int __init alarmtimer_init(void)
933 {
934 int error;
935 int i;
936
937 alarmtimer_rtc_timer_init();
938
939 /* Initialize alarm bases */
940 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
941 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
942 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
943 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
944 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
945 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
946 for (i = 0; i < ALARM_NUMTYPE; i++) {
947 timerqueue_init_head(&alarm_bases[i].timerqueue);
948 spin_lock_init(&alarm_bases[i].lock);
949 }
950
951 error = alarmtimer_rtc_interface_setup();
952 if (error)
953 return error;
954
955 error = platform_driver_register(&alarmtimer_driver);
956 if (error)
957 goto out_if;
958
959 return 0;
960 out_if:
961 alarmtimer_rtc_interface_remove();
962 return error;
963 }
964 device_initcall(alarmtimer_init);
965