1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #undef CREATE_TRACE_POINTS
49 #ifndef __GENKSYMS__
50 #include <trace/hooks/mm.h>
51 #endif
52
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
57
58 /*
59 * Fragmentation score check interval for proactive compaction purposes.
60 */
61 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
62
63 /*
64 * Page order with-respect-to which proactive compaction
65 * calculates external fragmentation, which is used as
66 * the "fragmentation score" of a node/zone.
67 */
68 #if defined CONFIG_TRANSPARENT_HUGEPAGE
69 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
70 #elif defined CONFIG_HUGETLBFS
71 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
72 #else
73 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
74 #endif
75
release_freepages(struct list_head * freelist)76 static unsigned long release_freepages(struct list_head *freelist)
77 {
78 struct page *page, *next;
79 unsigned long high_pfn = 0;
80
81 list_for_each_entry_safe(page, next, freelist, lru) {
82 unsigned long pfn = page_to_pfn(page);
83 list_del(&page->lru);
84 __free_page(page);
85 if (pfn > high_pfn)
86 high_pfn = pfn;
87 }
88
89 return high_pfn;
90 }
91
split_map_pages(struct list_head * list)92 static void split_map_pages(struct list_head *list)
93 {
94 unsigned int i, order, nr_pages;
95 struct page *page, *next;
96 LIST_HEAD(tmp_list);
97
98 list_for_each_entry_safe(page, next, list, lru) {
99 list_del(&page->lru);
100
101 order = page_private(page);
102 nr_pages = 1 << order;
103
104 post_alloc_hook(page, order, __GFP_MOVABLE);
105 if (order)
106 split_page(page, order);
107
108 for (i = 0; i < nr_pages; i++) {
109 list_add(&page->lru, &tmp_list);
110 page++;
111 }
112 }
113
114 list_splice(&tmp_list, list);
115 }
116
117 #ifdef CONFIG_COMPACTION
118
PageMovable(struct page * page)119 int PageMovable(struct page *page)
120 {
121 struct address_space *mapping;
122
123 VM_BUG_ON_PAGE(!PageLocked(page), page);
124 if (!__PageMovable(page))
125 return 0;
126
127 mapping = page_mapping(page);
128 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
129 return 1;
130
131 return 0;
132 }
133 EXPORT_SYMBOL(PageMovable);
134
__SetPageMovable(struct page * page,struct address_space * mapping)135 void __SetPageMovable(struct page *page, struct address_space *mapping)
136 {
137 VM_BUG_ON_PAGE(!PageLocked(page), page);
138 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
139 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
140 }
141 EXPORT_SYMBOL(__SetPageMovable);
142
__ClearPageMovable(struct page * page)143 void __ClearPageMovable(struct page *page)
144 {
145 VM_BUG_ON_PAGE(!PageMovable(page), page);
146 /*
147 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
148 * flag so that VM can catch up released page by driver after isolation.
149 * With it, VM migration doesn't try to put it back.
150 */
151 page->mapping = (void *)((unsigned long)page->mapping &
152 PAGE_MAPPING_MOVABLE);
153 }
154 EXPORT_SYMBOL(__ClearPageMovable);
155
156 /* Do not skip compaction more than 64 times */
157 #define COMPACT_MAX_DEFER_SHIFT 6
158
159 /*
160 * Compaction is deferred when compaction fails to result in a page
161 * allocation success. 1 << compact_defer_shift, compactions are skipped up
162 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
163 */
defer_compaction(struct zone * zone,int order)164 static void defer_compaction(struct zone *zone, int order)
165 {
166 zone->compact_considered = 0;
167 zone->compact_defer_shift++;
168
169 if (order < zone->compact_order_failed)
170 zone->compact_order_failed = order;
171
172 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
173 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
174
175 trace_mm_compaction_defer_compaction(zone, order);
176 }
177
178 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)179 static bool compaction_deferred(struct zone *zone, int order)
180 {
181 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
182
183 if (order < zone->compact_order_failed)
184 return false;
185
186 /* Avoid possible overflow */
187 if (++zone->compact_considered >= defer_limit) {
188 zone->compact_considered = defer_limit;
189 return false;
190 }
191
192 trace_mm_compaction_deferred(zone, order);
193
194 return true;
195 }
196
197 /*
198 * Update defer tracking counters after successful compaction of given order,
199 * which means an allocation either succeeded (alloc_success == true) or is
200 * expected to succeed.
201 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)202 void compaction_defer_reset(struct zone *zone, int order,
203 bool alloc_success)
204 {
205 if (alloc_success) {
206 zone->compact_considered = 0;
207 zone->compact_defer_shift = 0;
208 }
209 if (order >= zone->compact_order_failed)
210 zone->compact_order_failed = order + 1;
211
212 trace_mm_compaction_defer_reset(zone, order);
213 }
214
215 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)216 static bool compaction_restarting(struct zone *zone, int order)
217 {
218 if (order < zone->compact_order_failed)
219 return false;
220
221 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
222 zone->compact_considered >= 1UL << zone->compact_defer_shift;
223 }
224
225 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)226 static inline bool isolation_suitable(struct compact_control *cc,
227 struct page *page)
228 {
229 if (cc->ignore_skip_hint)
230 return true;
231
232 return !get_pageblock_skip(page);
233 }
234
reset_cached_positions(struct zone * zone)235 static void reset_cached_positions(struct zone *zone)
236 {
237 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
238 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
239 zone->compact_cached_free_pfn =
240 pageblock_start_pfn(zone_end_pfn(zone) - 1);
241 }
242
243 /*
244 * Compound pages of >= pageblock_order should consistently be skipped until
245 * released. It is always pointless to compact pages of such order (if they are
246 * migratable), and the pageblocks they occupy cannot contain any free pages.
247 */
pageblock_skip_persistent(struct page * page)248 static bool pageblock_skip_persistent(struct page *page)
249 {
250 if (!PageCompound(page))
251 return false;
252
253 page = compound_head(page);
254
255 if (compound_order(page) >= pageblock_order)
256 return true;
257
258 return false;
259 }
260
261 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)262 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
263 bool check_target)
264 {
265 struct page *page = pfn_to_online_page(pfn);
266 struct page *block_page;
267 struct page *end_page;
268 unsigned long block_pfn;
269
270 if (!page)
271 return false;
272 if (zone != page_zone(page))
273 return false;
274 if (pageblock_skip_persistent(page))
275 return false;
276
277 /*
278 * If skip is already cleared do no further checking once the
279 * restart points have been set.
280 */
281 if (check_source && check_target && !get_pageblock_skip(page))
282 return true;
283
284 /*
285 * If clearing skip for the target scanner, do not select a
286 * non-movable pageblock as the starting point.
287 */
288 if (!check_source && check_target &&
289 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
290 return false;
291
292 /* Ensure the start of the pageblock or zone is online and valid */
293 block_pfn = pageblock_start_pfn(pfn);
294 block_pfn = max(block_pfn, zone->zone_start_pfn);
295 block_page = pfn_to_online_page(block_pfn);
296 if (block_page) {
297 page = block_page;
298 pfn = block_pfn;
299 }
300
301 /* Ensure the end of the pageblock or zone is online and valid */
302 block_pfn = pageblock_end_pfn(pfn) - 1;
303 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
304 end_page = pfn_to_online_page(block_pfn);
305 if (!end_page)
306 return false;
307
308 /*
309 * Only clear the hint if a sample indicates there is either a
310 * free page or an LRU page in the block. One or other condition
311 * is necessary for the block to be a migration source/target.
312 */
313 do {
314 if (check_source && PageLRU(page)) {
315 clear_pageblock_skip(page);
316 return true;
317 }
318
319 if (check_target && PageBuddy(page)) {
320 clear_pageblock_skip(page);
321 return true;
322 }
323
324 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
325 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
326 } while (page <= end_page);
327
328 return false;
329 }
330
331 /*
332 * This function is called to clear all cached information on pageblocks that
333 * should be skipped for page isolation when the migrate and free page scanner
334 * meet.
335 */
__reset_isolation_suitable(struct zone * zone)336 static void __reset_isolation_suitable(struct zone *zone)
337 {
338 unsigned long migrate_pfn = zone->zone_start_pfn;
339 unsigned long free_pfn = zone_end_pfn(zone) - 1;
340 unsigned long reset_migrate = free_pfn;
341 unsigned long reset_free = migrate_pfn;
342 bool source_set = false;
343 bool free_set = false;
344
345 if (!zone->compact_blockskip_flush)
346 return;
347
348 zone->compact_blockskip_flush = false;
349
350 /*
351 * Walk the zone and update pageblock skip information. Source looks
352 * for PageLRU while target looks for PageBuddy. When the scanner
353 * is found, both PageBuddy and PageLRU are checked as the pageblock
354 * is suitable as both source and target.
355 */
356 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
357 free_pfn -= pageblock_nr_pages) {
358 cond_resched();
359
360 /* Update the migrate PFN */
361 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
362 migrate_pfn < reset_migrate) {
363 source_set = true;
364 reset_migrate = migrate_pfn;
365 zone->compact_init_migrate_pfn = reset_migrate;
366 zone->compact_cached_migrate_pfn[0] = reset_migrate;
367 zone->compact_cached_migrate_pfn[1] = reset_migrate;
368 }
369
370 /* Update the free PFN */
371 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
372 free_pfn > reset_free) {
373 free_set = true;
374 reset_free = free_pfn;
375 zone->compact_init_free_pfn = reset_free;
376 zone->compact_cached_free_pfn = reset_free;
377 }
378 }
379
380 /* Leave no distance if no suitable block was reset */
381 if (reset_migrate >= reset_free) {
382 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
383 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
384 zone->compact_cached_free_pfn = free_pfn;
385 }
386 }
387
reset_isolation_suitable(pg_data_t * pgdat)388 void reset_isolation_suitable(pg_data_t *pgdat)
389 {
390 int zoneid;
391
392 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
393 struct zone *zone = &pgdat->node_zones[zoneid];
394 if (!populated_zone(zone))
395 continue;
396
397 /* Only flush if a full compaction finished recently */
398 if (zone->compact_blockskip_flush)
399 __reset_isolation_suitable(zone);
400 }
401 }
402
403 /*
404 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
405 * locks are not required for read/writers. Returns true if it was already set.
406 */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)407 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
408 unsigned long pfn)
409 {
410 bool skip;
411
412 /* Do no update if skip hint is being ignored */
413 if (cc->ignore_skip_hint)
414 return false;
415
416 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
417 return false;
418
419 skip = get_pageblock_skip(page);
420 if (!skip && !cc->no_set_skip_hint)
421 set_pageblock_skip(page);
422
423 return skip;
424 }
425
update_cached_migrate(struct compact_control * cc,unsigned long pfn)426 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
427 {
428 struct zone *zone = cc->zone;
429
430 pfn = pageblock_end_pfn(pfn);
431
432 /* Set for isolation rather than compaction */
433 if (cc->no_set_skip_hint)
434 return;
435
436 if (pfn > zone->compact_cached_migrate_pfn[0])
437 zone->compact_cached_migrate_pfn[0] = pfn;
438 if (cc->mode != MIGRATE_ASYNC &&
439 pfn > zone->compact_cached_migrate_pfn[1])
440 zone->compact_cached_migrate_pfn[1] = pfn;
441 }
442
443 /*
444 * If no pages were isolated then mark this pageblock to be skipped in the
445 * future. The information is later cleared by __reset_isolation_suitable().
446 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)447 static void update_pageblock_skip(struct compact_control *cc,
448 struct page *page, unsigned long pfn)
449 {
450 struct zone *zone = cc->zone;
451
452 if (cc->no_set_skip_hint)
453 return;
454
455 if (!page)
456 return;
457
458 set_pageblock_skip(page);
459
460 /* Update where async and sync compaction should restart */
461 if (pfn < zone->compact_cached_free_pfn)
462 zone->compact_cached_free_pfn = pfn;
463 }
464 #else
isolation_suitable(struct compact_control * cc,struct page * page)465 static inline bool isolation_suitable(struct compact_control *cc,
466 struct page *page)
467 {
468 return true;
469 }
470
pageblock_skip_persistent(struct page * page)471 static inline bool pageblock_skip_persistent(struct page *page)
472 {
473 return false;
474 }
475
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)476 static inline void update_pageblock_skip(struct compact_control *cc,
477 struct page *page, unsigned long pfn)
478 {
479 }
480
update_cached_migrate(struct compact_control * cc,unsigned long pfn)481 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
482 {
483 }
484
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)485 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
486 unsigned long pfn)
487 {
488 return false;
489 }
490 #endif /* CONFIG_COMPACTION */
491
492 /*
493 * Compaction requires the taking of some coarse locks that are potentially
494 * very heavily contended. For async compaction, trylock and record if the
495 * lock is contended. The lock will still be acquired but compaction will
496 * abort when the current block is finished regardless of success rate.
497 * Sync compaction acquires the lock.
498 *
499 * Always returns true which makes it easier to track lock state in callers.
500 */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)501 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
502 struct compact_control *cc)
503 __acquires(lock)
504 {
505 /* Track if the lock is contended in async mode */
506 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
507 if (spin_trylock_irqsave(lock, *flags))
508 return true;
509
510 cc->contended = true;
511 }
512
513 spin_lock_irqsave(lock, *flags);
514 return true;
515 }
516
517 /*
518 * Compaction requires the taking of some coarse locks that are potentially
519 * very heavily contended. The lock should be periodically unlocked to avoid
520 * having disabled IRQs for a long time, even when there is nobody waiting on
521 * the lock. It might also be that allowing the IRQs will result in
522 * need_resched() becoming true. If scheduling is needed, async compaction
523 * aborts. Sync compaction schedules.
524 * Either compaction type will also abort if a fatal signal is pending.
525 * In either case if the lock was locked, it is dropped and not regained.
526 *
527 * Returns true if compaction should abort due to fatal signal pending, or
528 * async compaction due to need_resched()
529 * Returns false when compaction can continue (sync compaction might have
530 * scheduled)
531 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)532 static bool compact_unlock_should_abort(spinlock_t *lock,
533 unsigned long flags, bool *locked, struct compact_control *cc)
534 {
535 if (*locked) {
536 spin_unlock_irqrestore(lock, flags);
537 *locked = false;
538 }
539
540 if (fatal_signal_pending(current)) {
541 cc->contended = true;
542 return true;
543 }
544
545 cond_resched();
546
547 return false;
548 }
549
550 /*
551 * Isolate free pages onto a private freelist. If @strict is true, will abort
552 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
553 * (even though it may still end up isolating some pages).
554 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)555 static unsigned long isolate_freepages_block(struct compact_control *cc,
556 unsigned long *start_pfn,
557 unsigned long end_pfn,
558 struct list_head *freelist,
559 unsigned int stride,
560 bool strict)
561 {
562 int nr_scanned = 0, total_isolated = 0;
563 struct page *cursor;
564 unsigned long flags = 0;
565 bool locked = false;
566 unsigned long blockpfn = *start_pfn;
567 unsigned int order;
568
569 /* Strict mode is for isolation, speed is secondary */
570 if (strict)
571 stride = 1;
572
573 cursor = pfn_to_page(blockpfn);
574
575 /* Isolate free pages. */
576 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
577 int isolated;
578 struct page *page = cursor;
579
580 /*
581 * Periodically drop the lock (if held) regardless of its
582 * contention, to give chance to IRQs. Abort if fatal signal
583 * pending or async compaction detects need_resched()
584 */
585 if (!(blockpfn % SWAP_CLUSTER_MAX)
586 && compact_unlock_should_abort(&cc->zone->lock, flags,
587 &locked, cc))
588 break;
589
590 nr_scanned++;
591
592 /*
593 * For compound pages such as THP and hugetlbfs, we can save
594 * potentially a lot of iterations if we skip them at once.
595 * The check is racy, but we can consider only valid values
596 * and the only danger is skipping too much.
597 */
598 if (PageCompound(page)) {
599 const unsigned int order = compound_order(page);
600
601 if (likely(order < MAX_ORDER)) {
602 blockpfn += (1UL << order) - 1;
603 cursor += (1UL << order) - 1;
604 }
605 goto isolate_fail;
606 }
607
608 if (!PageBuddy(page))
609 goto isolate_fail;
610
611 /*
612 * If we already hold the lock, we can skip some rechecking.
613 * Note that if we hold the lock now, checked_pageblock was
614 * already set in some previous iteration (or strict is true),
615 * so it is correct to skip the suitable migration target
616 * recheck as well.
617 */
618 if (!locked) {
619 locked = compact_lock_irqsave(&cc->zone->lock,
620 &flags, cc);
621
622 /* Recheck this is a buddy page under lock */
623 if (!PageBuddy(page))
624 goto isolate_fail;
625 }
626
627 /* Found a free page, will break it into order-0 pages */
628 order = buddy_order(page);
629 isolated = __isolate_free_page(page, order);
630 if (!isolated)
631 break;
632 set_page_private(page, order);
633
634 total_isolated += isolated;
635 cc->nr_freepages += isolated;
636 list_add_tail(&page->lru, freelist);
637
638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 blockpfn += isolated;
640 break;
641 }
642 /* Advance to the end of split page */
643 blockpfn += isolated - 1;
644 cursor += isolated - 1;
645 continue;
646
647 isolate_fail:
648 if (strict)
649 break;
650 else
651 continue;
652
653 }
654
655 if (locked)
656 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658 /*
659 * There is a tiny chance that we have read bogus compound_order(),
660 * so be careful to not go outside of the pageblock.
661 */
662 if (unlikely(blockpfn > end_pfn))
663 blockpfn = end_pfn;
664
665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 nr_scanned, total_isolated);
667
668 /* Record how far we have got within the block */
669 *start_pfn = blockpfn;
670
671 /*
672 * If strict isolation is requested by CMA then check that all the
673 * pages requested were isolated. If there were any failures, 0 is
674 * returned and CMA will fail.
675 */
676 if (strict && blockpfn < end_pfn)
677 total_isolated = 0;
678
679 cc->total_free_scanned += nr_scanned;
680 if (total_isolated)
681 count_compact_events(COMPACTISOLATED, total_isolated);
682 return total_isolated;
683 }
684
685 /**
686 * isolate_freepages_range() - isolate free pages.
687 * @cc: Compaction control structure.
688 * @start_pfn: The first PFN to start isolating.
689 * @end_pfn: The one-past-last PFN.
690 *
691 * Non-free pages, invalid PFNs, or zone boundaries within the
692 * [start_pfn, end_pfn) range are considered errors, cause function to
693 * undo its actions and return zero.
694 *
695 * Otherwise, function returns one-past-the-last PFN of isolated page
696 * (which may be greater then end_pfn if end fell in a middle of
697 * a free page).
698 */
699 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)700 isolate_freepages_range(struct compact_control *cc,
701 unsigned long start_pfn, unsigned long end_pfn)
702 {
703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 LIST_HEAD(freelist);
705
706 pfn = start_pfn;
707 block_start_pfn = pageblock_start_pfn(pfn);
708 if (block_start_pfn < cc->zone->zone_start_pfn)
709 block_start_pfn = cc->zone->zone_start_pfn;
710 block_end_pfn = pageblock_end_pfn(pfn);
711
712 for (; pfn < end_pfn; pfn += isolated,
713 block_start_pfn = block_end_pfn,
714 block_end_pfn += pageblock_nr_pages) {
715 /* Protect pfn from changing by isolate_freepages_block */
716 unsigned long isolate_start_pfn = pfn;
717
718 block_end_pfn = min(block_end_pfn, end_pfn);
719
720 /*
721 * pfn could pass the block_end_pfn if isolated freepage
722 * is more than pageblock order. In this case, we adjust
723 * scanning range to right one.
724 */
725 if (pfn >= block_end_pfn) {
726 block_start_pfn = pageblock_start_pfn(pfn);
727 block_end_pfn = pageblock_end_pfn(pfn);
728 block_end_pfn = min(block_end_pfn, end_pfn);
729 }
730
731 if (!pageblock_pfn_to_page(block_start_pfn,
732 block_end_pfn, cc->zone))
733 break;
734
735 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 block_end_pfn, &freelist, 0, true);
737
738 /*
739 * In strict mode, isolate_freepages_block() returns 0 if
740 * there are any holes in the block (ie. invalid PFNs or
741 * non-free pages).
742 */
743 if (!isolated)
744 break;
745
746 /*
747 * If we managed to isolate pages, it is always (1 << n) *
748 * pageblock_nr_pages for some non-negative n. (Max order
749 * page may span two pageblocks).
750 */
751 }
752
753 /* __isolate_free_page() does not map the pages */
754 split_map_pages(&freelist);
755
756 if (pfn < end_pfn) {
757 /* Loop terminated early, cleanup. */
758 release_freepages(&freelist);
759 return 0;
760 }
761
762 /* We don't use freelists for anything. */
763 return pfn;
764 }
765
766 #ifdef CONFIG_COMPACTION
isolate_and_split_free_page(struct page * page,struct list_head * list)767 unsigned long isolate_and_split_free_page(struct page *page,
768 struct list_head *list)
769 {
770 unsigned long isolated;
771 unsigned int order;
772
773 if (!PageBuddy(page))
774 return 0;
775
776 order = buddy_order(page);
777 isolated = __isolate_free_page(page, order);
778 if (!isolated)
779 return 0;
780
781 set_page_private(page, order);
782 list_add(&page->lru, list);
783
784 split_map_pages(list);
785
786 return isolated;
787 }
788 EXPORT_SYMBOL_GPL(isolate_and_split_free_page);
789 #endif
790
791 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)792 static bool too_many_isolated(pg_data_t *pgdat)
793 {
794 unsigned long active, inactive, isolated;
795
796 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
797 node_page_state(pgdat, NR_INACTIVE_ANON);
798 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
799 node_page_state(pgdat, NR_ACTIVE_ANON);
800 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
801 node_page_state(pgdat, NR_ISOLATED_ANON);
802
803 return isolated > (inactive + active) / 2;
804 }
805
806 /**
807 * isolate_migratepages_block() - isolate all migrate-able pages within
808 * a single pageblock
809 * @cc: Compaction control structure.
810 * @low_pfn: The first PFN to isolate
811 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
812 * @mode: Isolation mode to be used.
813 *
814 * Isolate all pages that can be migrated from the range specified by
815 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
816 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
817 * -ENOMEM in case we could not allocate a page, or 0.
818 * cc->migrate_pfn will contain the next pfn to scan.
819 *
820 * The pages are isolated on cc->migratepages list (not required to be empty),
821 * and cc->nr_migratepages is updated accordingly.
822 */
823 static int
isolate_migratepages_block(struct compact_control_ext * cc_ext,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t mode)824 isolate_migratepages_block(struct compact_control_ext *cc_ext, unsigned long low_pfn,
825 unsigned long end_pfn, isolate_mode_t mode)
826 {
827 struct compact_control *cc = cc_ext->cc;
828 pg_data_t *pgdat = cc->zone->zone_pgdat;
829 unsigned long nr_scanned = 0, nr_isolated = 0;
830 struct lruvec *lruvec;
831 unsigned long flags = 0;
832 struct lruvec *locked = NULL;
833 struct page *page = NULL, *valid_page = NULL;
834 struct address_space *mapping;
835 unsigned long start_pfn = low_pfn;
836 bool skip_on_failure = false;
837 unsigned long next_skip_pfn = 0;
838 bool skip_updated = false;
839 int ret = 0;
840
841 cc->migrate_pfn = low_pfn;
842
843 /*
844 * Ensure that there are not too many pages isolated from the LRU
845 * list by either parallel reclaimers or compaction. If there are,
846 * delay for some time until fewer pages are isolated
847 */
848 while (unlikely(too_many_isolated(pgdat))) {
849 /* stop isolation if there are still pages not migrated */
850 if (cc->nr_migratepages)
851 return -EAGAIN;
852
853 /* async migration should just abort */
854 if (cc->mode == MIGRATE_ASYNC)
855 return -EAGAIN;
856
857 congestion_wait(BLK_RW_ASYNC, HZ/10);
858
859 if (fatal_signal_pending(current))
860 return -EINTR;
861 }
862
863 cond_resched();
864
865 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
866 skip_on_failure = true;
867 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
868 }
869
870 /* Time to isolate some pages for migration */
871 for (; low_pfn < end_pfn; low_pfn++) {
872
873 if (skip_on_failure && low_pfn >= next_skip_pfn) {
874 /*
875 * We have isolated all migration candidates in the
876 * previous order-aligned block, and did not skip it due
877 * to failure. We should migrate the pages now and
878 * hopefully succeed compaction.
879 */
880 if (nr_isolated)
881 break;
882
883 /*
884 * We failed to isolate in the previous order-aligned
885 * block. Set the new boundary to the end of the
886 * current block. Note we can't simply increase
887 * next_skip_pfn by 1 << order, as low_pfn might have
888 * been incremented by a higher number due to skipping
889 * a compound or a high-order buddy page in the
890 * previous loop iteration.
891 */
892 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
893 }
894
895 /*
896 * Periodically drop the lock (if held) regardless of its
897 * contention, to give chance to IRQs. Abort completely if
898 * a fatal signal is pending.
899 */
900 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
901 if (locked) {
902 unlock_page_lruvec_irqrestore(locked, flags);
903 locked = NULL;
904 }
905
906 if (fatal_signal_pending(current)) {
907 cc->contended = true;
908 ret = -EINTR;
909
910 goto fatal_pending;
911 }
912
913 cond_resched();
914 }
915
916 nr_scanned++;
917
918 page = pfn_to_page(low_pfn);
919
920 /*
921 * Check if the pageblock has already been marked skipped.
922 * Only the aligned PFN is checked as the caller isolates
923 * COMPACT_CLUSTER_MAX at a time so the second call must
924 * not falsely conclude that the block should be skipped.
925 */
926 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
927 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
928 low_pfn = end_pfn;
929 page = NULL;
930 goto isolate_abort;
931 }
932 valid_page = page;
933 }
934
935 if (PageHuge(page) && cc->alloc_contig) {
936 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
937
938 /*
939 * Fail isolation in case isolate_or_dissolve_huge_page()
940 * reports an error. In case of -ENOMEM, abort right away.
941 */
942 if (ret < 0) {
943 /* Do not report -EBUSY down the chain */
944 if (ret == -EBUSY)
945 ret = 0;
946 low_pfn += (1UL << compound_order(page)) - 1;
947 goto isolate_fail;
948 }
949
950 if (PageHuge(page)) {
951 /*
952 * Hugepage was successfully isolated and placed
953 * on the cc->migratepages list.
954 */
955 low_pfn += compound_nr(page) - 1;
956 goto isolate_success_no_list;
957 }
958
959 /*
960 * Ok, the hugepage was dissolved. Now these pages are
961 * Buddy and cannot be re-allocated because they are
962 * isolated. Fall-through as the check below handles
963 * Buddy pages.
964 */
965 }
966
967 /*
968 * Skip if free. We read page order here without zone lock
969 * which is generally unsafe, but the race window is small and
970 * the worst thing that can happen is that we skip some
971 * potential isolation targets.
972 */
973 if (PageBuddy(page)) {
974 unsigned long freepage_order = buddy_order_unsafe(page);
975
976 /*
977 * Without lock, we cannot be sure that what we got is
978 * a valid page order. Consider only values in the
979 * valid order range to prevent low_pfn overflow.
980 */
981 if (freepage_order > 0 && freepage_order < MAX_ORDER)
982 low_pfn += (1UL << freepage_order) - 1;
983 continue;
984 }
985
986 /*
987 * Regardless of being on LRU, compound pages such as THP and
988 * hugetlbfs are not to be compacted unless we are attempting
989 * an allocation much larger than the huge page size (eg CMA).
990 * We can potentially save a lot of iterations if we skip them
991 * at once. The check is racy, but we can consider only valid
992 * values and the only danger is skipping too much.
993 */
994 if (PageCompound(page) && !cc->alloc_contig) {
995 const unsigned int order = compound_order(page);
996
997 if (likely(order < MAX_ORDER))
998 low_pfn += (1UL << order) - 1;
999 goto isolate_fail;
1000 }
1001
1002 /*
1003 * Check may be lockless but that's ok as we recheck later.
1004 * It's possible to migrate LRU and non-lru movable pages.
1005 * Skip any other type of page
1006 */
1007 if (!PageLRU(page)) {
1008 /*
1009 * __PageMovable can return false positive so we need
1010 * to verify it under page_lock.
1011 */
1012 if (unlikely(__PageMovable(page)) &&
1013 !PageIsolated(page)) {
1014 if (locked) {
1015 unlock_page_lruvec_irqrestore(locked, flags);
1016 locked = NULL;
1017 }
1018
1019 if (!isolate_movable_page(page, mode))
1020 goto isolate_success;
1021 }
1022
1023 goto isolate_fail;
1024 }
1025
1026 /*
1027 * Be careful not to clear PageLRU until after we're
1028 * sure the page is not being freed elsewhere -- the
1029 * page release code relies on it.
1030 */
1031 if (unlikely(!get_page_unless_zero(page)))
1032 goto isolate_fail;
1033
1034 /*
1035 * Migration will fail if an anonymous page is pinned in memory,
1036 * so avoid taking lru_lock and isolating it unnecessarily in an
1037 * admittedly racy check.
1038 */
1039 mapping = page_mapping(page);
1040 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1041 goto isolate_fail_put;
1042
1043 /*
1044 * Only allow to migrate anonymous pages in GFP_NOFS context
1045 * because those do not depend on fs locks.
1046 */
1047 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1048 goto isolate_fail_put;
1049
1050 /* Only take pages on LRU: a check now makes later tests safe */
1051 if (!PageLRU(page))
1052 goto isolate_fail_put;
1053
1054 /* Compaction might skip unevictable pages but CMA takes them */
1055 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1056 goto isolate_fail_put;
1057
1058 /*
1059 * To minimise LRU disruption, the caller can indicate with
1060 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1061 * it will be able to migrate without blocking - clean pages
1062 * for the most part. PageWriteback would require blocking.
1063 */
1064 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1065 goto isolate_fail_put;
1066
1067 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1068 bool migrate_dirty;
1069
1070 /*
1071 * Only pages without mappings or that have a
1072 * ->migratepage callback are possible to migrate
1073 * without blocking. However, we can be racing with
1074 * truncation so it's necessary to lock the page
1075 * to stabilise the mapping as truncation holds
1076 * the page lock until after the page is removed
1077 * from the page cache.
1078 */
1079 if (!trylock_page(page))
1080 goto isolate_fail_put;
1081
1082 mapping = page_mapping(page);
1083 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1084 unlock_page(page);
1085 if (!migrate_dirty)
1086 goto isolate_fail_put;
1087 }
1088
1089 /* Try isolate the page */
1090 if (!TestClearPageLRU(page))
1091 goto isolate_fail_put;
1092
1093 lruvec = mem_cgroup_page_lruvec(page);
1094
1095 /* If we already hold the lock, we can skip some rechecking */
1096 if (lruvec != locked) {
1097 if (locked)
1098 unlock_page_lruvec_irqrestore(locked, flags);
1099
1100 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1101 locked = lruvec;
1102
1103 lruvec_memcg_debug(lruvec, page);
1104
1105 /* Try get exclusive access under lock */
1106 if (!skip_updated) {
1107 skip_updated = true;
1108 if (test_and_set_skip(cc, page, low_pfn))
1109 goto isolate_abort;
1110 }
1111
1112 /*
1113 * Page become compound since the non-locked check,
1114 * and it's on LRU. It can only be a THP so the order
1115 * is safe to read and it's 0 for tail pages.
1116 */
1117 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1118 low_pfn += compound_nr(page) - 1;
1119 SetPageLRU(page);
1120 goto isolate_fail_put;
1121 }
1122 }
1123
1124 /* The whole page is taken off the LRU; skip the tail pages. */
1125 if (PageCompound(page))
1126 low_pfn += compound_nr(page) - 1;
1127
1128 /* Successfully isolated */
1129 del_page_from_lru_list(page, lruvec);
1130 mod_node_page_state(page_pgdat(page),
1131 NR_ISOLATED_ANON + page_is_file_lru(page),
1132 thp_nr_pages(page));
1133
1134 isolate_success:
1135 list_add(&page->lru, &cc->migratepages);
1136 isolate_success_no_list:
1137 cc->nr_migratepages += compound_nr(page);
1138 if (!PageAnon(page))
1139 cc_ext->nr_migrate_file_pages += compound_nr(page);
1140 nr_isolated += compound_nr(page);
1141
1142 /*
1143 * Avoid isolating too much unless this block is being
1144 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1145 * or a lock is contended. For contention, isolate quickly to
1146 * potentially remove one source of contention.
1147 */
1148 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1149 !cc->rescan && !cc->contended) {
1150 ++low_pfn;
1151 break;
1152 }
1153
1154 continue;
1155
1156 isolate_fail_put:
1157 /* Avoid potential deadlock in freeing page under lru_lock */
1158 if (locked) {
1159 unlock_page_lruvec_irqrestore(locked, flags);
1160 locked = NULL;
1161 }
1162 put_page(page);
1163
1164 isolate_fail:
1165 if (!skip_on_failure && ret != -ENOMEM)
1166 continue;
1167
1168 /*
1169 * We have isolated some pages, but then failed. Release them
1170 * instead of migrating, as we cannot form the cc->order buddy
1171 * page anyway.
1172 */
1173 if (nr_isolated) {
1174 if (locked) {
1175 unlock_page_lruvec_irqrestore(locked, flags);
1176 locked = NULL;
1177 }
1178 putback_movable_pages(&cc->migratepages);
1179 cc->nr_migratepages = 0;
1180 cc_ext->nr_migrate_file_pages = 0;
1181 nr_isolated = 0;
1182 }
1183
1184 if (low_pfn < next_skip_pfn) {
1185 low_pfn = next_skip_pfn - 1;
1186 /*
1187 * The check near the loop beginning would have updated
1188 * next_skip_pfn too, but this is a bit simpler.
1189 */
1190 next_skip_pfn += 1UL << cc->order;
1191 }
1192
1193 if (ret == -ENOMEM)
1194 break;
1195 }
1196
1197 /*
1198 * The PageBuddy() check could have potentially brought us outside
1199 * the range to be scanned.
1200 */
1201 if (unlikely(low_pfn > end_pfn))
1202 low_pfn = end_pfn;
1203
1204 page = NULL;
1205
1206 isolate_abort:
1207 if (locked)
1208 unlock_page_lruvec_irqrestore(locked, flags);
1209 if (page) {
1210 SetPageLRU(page);
1211 put_page(page);
1212 }
1213
1214 /*
1215 * Updated the cached scanner pfn once the pageblock has been scanned
1216 * Pages will either be migrated in which case there is no point
1217 * scanning in the near future or migration failed in which case the
1218 * failure reason may persist. The block is marked for skipping if
1219 * there were no pages isolated in the block or if the block is
1220 * rescanned twice in a row.
1221 */
1222 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1223 if (valid_page && !skip_updated)
1224 set_pageblock_skip(valid_page);
1225 update_cached_migrate(cc, low_pfn);
1226 }
1227
1228 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1229 nr_scanned, nr_isolated);
1230
1231 fatal_pending:
1232 cc->total_migrate_scanned += nr_scanned;
1233 if (nr_isolated)
1234 count_compact_events(COMPACTISOLATED, nr_isolated);
1235
1236 cc->migrate_pfn = low_pfn;
1237
1238 return ret;
1239 }
1240
1241 /**
1242 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1243 * @cc: Compaction control structure.
1244 * @start_pfn: The first PFN to start isolating.
1245 * @end_pfn: The one-past-last PFN.
1246 *
1247 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1248 * in case we could not allocate a page, or 0.
1249 */
1250 int
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1251 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1252 unsigned long end_pfn)
1253 {
1254 struct compact_control_ext cc_ext = { .cc = cc };
1255 unsigned long pfn, block_start_pfn, block_end_pfn;
1256 int ret = 0;
1257
1258 /* Scan block by block. First and last block may be incomplete */
1259 pfn = start_pfn;
1260 block_start_pfn = pageblock_start_pfn(pfn);
1261 if (block_start_pfn < cc->zone->zone_start_pfn)
1262 block_start_pfn = cc->zone->zone_start_pfn;
1263 block_end_pfn = pageblock_end_pfn(pfn);
1264
1265 for (; pfn < end_pfn; pfn = block_end_pfn,
1266 block_start_pfn = block_end_pfn,
1267 block_end_pfn += pageblock_nr_pages) {
1268
1269 block_end_pfn = min(block_end_pfn, end_pfn);
1270
1271 if (!pageblock_pfn_to_page(block_start_pfn,
1272 block_end_pfn, cc->zone))
1273 continue;
1274
1275 ret = isolate_migratepages_block(&cc_ext, pfn, block_end_pfn,
1276 ISOLATE_UNEVICTABLE);
1277
1278 if (ret)
1279 break;
1280
1281 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1282 break;
1283 }
1284
1285 return ret;
1286 }
1287
1288 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1289 #ifdef CONFIG_COMPACTION
1290
suitable_migration_source(struct compact_control * cc,struct page * page)1291 static bool suitable_migration_source(struct compact_control *cc,
1292 struct page *page)
1293 {
1294 int block_mt;
1295
1296 if (pageblock_skip_persistent(page))
1297 return false;
1298
1299 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1300 return true;
1301
1302 block_mt = get_pageblock_migratetype(page);
1303
1304 if (cc->migratetype == MIGRATE_MOVABLE)
1305 return is_migrate_movable(block_mt);
1306 else
1307 return block_mt == cc->migratetype;
1308 }
1309
1310 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control_ext * cc_ext,struct page * page)1311 static bool suitable_migration_target(struct compact_control_ext *cc_ext,
1312 struct page *page)
1313 {
1314 struct compact_control *cc = cc_ext->cc;
1315 /* If the page is a large free page, then disallow migration */
1316 if (PageBuddy(page)) {
1317 /*
1318 * We are checking page_order without zone->lock taken. But
1319 * the only small danger is that we skip a potentially suitable
1320 * pageblock, so it's not worth to check order for valid range.
1321 */
1322 if (buddy_order_unsafe(page) >= pageblock_order)
1323 return false;
1324 }
1325
1326 if (cc->ignore_block_suitable)
1327 return true;
1328
1329 /* Allow file pages to migrate only into MIGRATE_MOVABLE blocks */
1330 if (cc_ext->nr_migrate_file_pages)
1331 return get_pageblock_migratetype(page) == MIGRATE_MOVABLE;
1332
1333 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1334 if (is_migrate_movable(get_pageblock_migratetype(page)))
1335 return true;
1336
1337 /* Otherwise skip the block */
1338 return false;
1339 }
1340
1341 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1342 freelist_scan_limit(struct compact_control *cc)
1343 {
1344 unsigned short shift = BITS_PER_LONG - 1;
1345
1346 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1347 }
1348
1349 /*
1350 * Test whether the free scanner has reached the same or lower pageblock than
1351 * the migration scanner, and compaction should thus terminate.
1352 */
compact_scanners_met(struct compact_control * cc)1353 static inline bool compact_scanners_met(struct compact_control *cc)
1354 {
1355 return (cc->free_pfn >> pageblock_order)
1356 <= (cc->migrate_pfn >> pageblock_order);
1357 }
1358
1359 /*
1360 * Used when scanning for a suitable migration target which scans freelists
1361 * in reverse. Reorders the list such as the unscanned pages are scanned
1362 * first on the next iteration of the free scanner
1363 */
1364 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1365 move_freelist_head(struct list_head *freelist, struct page *freepage)
1366 {
1367 LIST_HEAD(sublist);
1368
1369 if (!list_is_last(freelist, &freepage->lru)) {
1370 list_cut_before(&sublist, freelist, &freepage->lru);
1371 list_splice_tail(&sublist, freelist);
1372 }
1373 }
1374
1375 /*
1376 * Similar to move_freelist_head except used by the migration scanner
1377 * when scanning forward. It's possible for these list operations to
1378 * move against each other if they search the free list exactly in
1379 * lockstep.
1380 */
1381 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1382 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1383 {
1384 LIST_HEAD(sublist);
1385
1386 if (!list_is_first(freelist, &freepage->lru)) {
1387 list_cut_position(&sublist, freelist, &freepage->lru);
1388 list_splice_tail(&sublist, freelist);
1389 }
1390 }
1391
1392 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1393 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1394 {
1395 unsigned long start_pfn, end_pfn;
1396 struct page *page;
1397
1398 /* Do not search around if there are enough pages already */
1399 if (cc->nr_freepages >= cc->nr_migratepages)
1400 return;
1401
1402 /* Minimise scanning during async compaction */
1403 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1404 return;
1405
1406 /* Pageblock boundaries */
1407 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1408 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1409
1410 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1411 if (!page)
1412 return;
1413
1414 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1415
1416 /* Skip this pageblock in the future as it's full or nearly full */
1417 if (cc->nr_freepages < cc->nr_migratepages)
1418 set_pageblock_skip(page);
1419
1420 return;
1421 }
1422
1423 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1424 static int next_search_order(struct compact_control *cc, int order)
1425 {
1426 order--;
1427 if (order < 0)
1428 order = cc->order - 1;
1429
1430 /* Search wrapped around? */
1431 if (order == cc->search_order) {
1432 cc->search_order--;
1433 if (cc->search_order < 0)
1434 cc->search_order = cc->order - 1;
1435 return -1;
1436 }
1437
1438 return order;
1439 }
1440
1441 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1442 fast_isolate_freepages(struct compact_control *cc)
1443 {
1444 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1445 unsigned int nr_scanned = 0;
1446 unsigned long low_pfn, min_pfn, highest = 0;
1447 unsigned long nr_isolated = 0;
1448 unsigned long distance;
1449 struct page *page = NULL;
1450 bool scan_start = false;
1451 int order;
1452
1453 /* Full compaction passes in a negative order */
1454 if (cc->order <= 0)
1455 return cc->free_pfn;
1456
1457 /*
1458 * If starting the scan, use a deeper search and use the highest
1459 * PFN found if a suitable one is not found.
1460 */
1461 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1462 limit = pageblock_nr_pages >> 1;
1463 scan_start = true;
1464 }
1465
1466 /*
1467 * Preferred point is in the top quarter of the scan space but take
1468 * a pfn from the top half if the search is problematic.
1469 */
1470 distance = (cc->free_pfn - cc->migrate_pfn);
1471 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1472 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1473
1474 if (WARN_ON_ONCE(min_pfn > low_pfn))
1475 low_pfn = min_pfn;
1476
1477 /*
1478 * Search starts from the last successful isolation order or the next
1479 * order to search after a previous failure
1480 */
1481 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1482
1483 for (order = cc->search_order;
1484 !page && order >= 0;
1485 order = next_search_order(cc, order)) {
1486 struct free_area *area = &cc->zone->free_area[order];
1487 struct list_head *freelist;
1488 struct page *freepage;
1489 unsigned long flags;
1490 unsigned int order_scanned = 0;
1491 unsigned long high_pfn = 0;
1492
1493 if (!area->nr_free)
1494 continue;
1495
1496 spin_lock_irqsave(&cc->zone->lock, flags);
1497 freelist = &area->free_list[MIGRATE_MOVABLE];
1498 list_for_each_entry_reverse(freepage, freelist, lru) {
1499 unsigned long pfn;
1500
1501 order_scanned++;
1502 nr_scanned++;
1503 pfn = page_to_pfn(freepage);
1504
1505 if (pfn >= highest)
1506 highest = max(pageblock_start_pfn(pfn),
1507 cc->zone->zone_start_pfn);
1508
1509 if (pfn >= low_pfn) {
1510 cc->fast_search_fail = 0;
1511 cc->search_order = order;
1512 page = freepage;
1513 break;
1514 }
1515
1516 if (pfn >= min_pfn && pfn > high_pfn) {
1517 high_pfn = pfn;
1518
1519 /* Shorten the scan if a candidate is found */
1520 limit >>= 1;
1521 }
1522
1523 if (order_scanned >= limit)
1524 break;
1525 }
1526
1527 /* Use a minimum pfn if a preferred one was not found */
1528 if (!page && high_pfn) {
1529 page = pfn_to_page(high_pfn);
1530
1531 /* Update freepage for the list reorder below */
1532 freepage = page;
1533 }
1534
1535 /* Reorder to so a future search skips recent pages */
1536 move_freelist_head(freelist, freepage);
1537
1538 /* Isolate the page if available */
1539 if (page) {
1540 if (__isolate_free_page(page, order)) {
1541 set_page_private(page, order);
1542 nr_isolated = 1 << order;
1543 cc->nr_freepages += nr_isolated;
1544 list_add_tail(&page->lru, &cc->freepages);
1545 count_compact_events(COMPACTISOLATED, nr_isolated);
1546 } else {
1547 /* If isolation fails, abort the search */
1548 order = cc->search_order + 1;
1549 page = NULL;
1550 }
1551 }
1552
1553 spin_unlock_irqrestore(&cc->zone->lock, flags);
1554
1555 /*
1556 * Smaller scan on next order so the total scan is related
1557 * to freelist_scan_limit.
1558 */
1559 if (order_scanned >= limit)
1560 limit = max(1U, limit >> 1);
1561 }
1562
1563 if (!page) {
1564 cc->fast_search_fail++;
1565 if (scan_start) {
1566 /*
1567 * Use the highest PFN found above min. If one was
1568 * not found, be pessimistic for direct compaction
1569 * and use the min mark.
1570 */
1571 if (highest) {
1572 page = pfn_to_page(highest);
1573 cc->free_pfn = highest;
1574 } else {
1575 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1576 page = pageblock_pfn_to_page(min_pfn,
1577 min(pageblock_end_pfn(min_pfn),
1578 zone_end_pfn(cc->zone)),
1579 cc->zone);
1580 cc->free_pfn = min_pfn;
1581 }
1582 }
1583 }
1584 }
1585
1586 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1587 highest -= pageblock_nr_pages;
1588 cc->zone->compact_cached_free_pfn = highest;
1589 }
1590
1591 cc->total_free_scanned += nr_scanned;
1592 if (!page)
1593 return cc->free_pfn;
1594
1595 low_pfn = page_to_pfn(page);
1596 fast_isolate_around(cc, low_pfn);
1597 return low_pfn;
1598 }
1599
1600 /*
1601 * Based on information in the current compact_control, find blocks
1602 * suitable for isolating free pages from and then isolate them.
1603 */
isolate_freepages(struct compact_control_ext * cc_ext)1604 static void isolate_freepages(struct compact_control_ext *cc_ext)
1605 {
1606 struct compact_control *cc = cc_ext->cc;
1607 struct zone *zone = cc->zone;
1608 struct page *page;
1609 unsigned long block_start_pfn; /* start of current pageblock */
1610 unsigned long isolate_start_pfn; /* exact pfn we start at */
1611 unsigned long block_end_pfn; /* end of current pageblock */
1612 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1613 struct list_head *freelist = &cc->freepages;
1614 unsigned int stride;
1615 bool bypass = false;
1616
1617 /* Try a small search of the free lists for a candidate */
1618 isolate_start_pfn = fast_isolate_freepages(cc);
1619 if (cc->nr_freepages)
1620 goto splitmap;
1621
1622 /*
1623 * Initialise the free scanner. The starting point is where we last
1624 * successfully isolated from, zone-cached value, or the end of the
1625 * zone when isolating for the first time. For looping we also need
1626 * this pfn aligned down to the pageblock boundary, because we do
1627 * block_start_pfn -= pageblock_nr_pages in the for loop.
1628 * For ending point, take care when isolating in last pageblock of a
1629 * zone which ends in the middle of a pageblock.
1630 * The low boundary is the end of the pageblock the migration scanner
1631 * is using.
1632 */
1633 isolate_start_pfn = cc->free_pfn;
1634 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1635 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1636 zone_end_pfn(zone));
1637 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1638 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1639
1640 /*
1641 * Isolate free pages until enough are available to migrate the
1642 * pages on cc->migratepages. We stop searching if the migrate
1643 * and free page scanners meet or enough free pages are isolated.
1644 */
1645 for (; block_start_pfn >= low_pfn;
1646 block_end_pfn = block_start_pfn,
1647 block_start_pfn -= pageblock_nr_pages,
1648 isolate_start_pfn = block_start_pfn) {
1649 unsigned long nr_isolated;
1650
1651 /*
1652 * This can iterate a massively long zone without finding any
1653 * suitable migration targets, so periodically check resched.
1654 */
1655 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1656 cond_resched();
1657
1658 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1659 zone);
1660 if (!page)
1661 continue;
1662
1663 /* Check the block is suitable for migration */
1664 if (!suitable_migration_target(cc_ext, page))
1665 continue;
1666
1667 /* If isolation recently failed, do not retry */
1668 if (!isolation_suitable(cc, page))
1669 continue;
1670
1671 trace_android_vh_isolate_freepages(cc, page, &bypass);
1672 if (bypass)
1673 continue;
1674
1675 /* Found a block suitable for isolating free pages from. */
1676 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1677 block_end_pfn, freelist, stride, false);
1678
1679 /* Update the skip hint if the full pageblock was scanned */
1680 if (isolate_start_pfn == block_end_pfn)
1681 update_pageblock_skip(cc, page, block_start_pfn);
1682
1683 /* Are enough freepages isolated? */
1684 if (cc->nr_freepages >= cc->nr_migratepages) {
1685 if (isolate_start_pfn >= block_end_pfn) {
1686 /*
1687 * Restart at previous pageblock if more
1688 * freepages can be isolated next time.
1689 */
1690 isolate_start_pfn =
1691 block_start_pfn - pageblock_nr_pages;
1692 }
1693 break;
1694 } else if (isolate_start_pfn < block_end_pfn) {
1695 /*
1696 * If isolation failed early, do not continue
1697 * needlessly.
1698 */
1699 break;
1700 }
1701
1702 /* Adjust stride depending on isolation */
1703 if (nr_isolated) {
1704 stride = 1;
1705 continue;
1706 }
1707 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1708 }
1709
1710 /*
1711 * Record where the free scanner will restart next time. Either we
1712 * broke from the loop and set isolate_start_pfn based on the last
1713 * call to isolate_freepages_block(), or we met the migration scanner
1714 * and the loop terminated due to isolate_start_pfn < low_pfn
1715 */
1716 cc->free_pfn = isolate_start_pfn;
1717
1718 splitmap:
1719 /* __isolate_free_page() does not map the pages */
1720 split_map_pages(freelist);
1721 }
1722
1723 /*
1724 * This is a migrate-callback that "allocates" freepages by taking pages
1725 * from the isolated freelists in the block we are migrating to.
1726 */
compaction_alloc(struct page * migratepage,unsigned long data)1727 static struct page *compaction_alloc(struct page *migratepage,
1728 unsigned long data)
1729 {
1730 struct compact_control_ext *cc_ext = (struct compact_control_ext *)data;
1731 struct compact_control *cc = cc_ext->cc;
1732 struct page *freepage;
1733
1734 if (list_empty(&cc->freepages)) {
1735 isolate_freepages(cc_ext);
1736
1737 if (list_empty(&cc->freepages))
1738 return NULL;
1739 }
1740
1741 freepage = list_entry(cc->freepages.next, struct page, lru);
1742 list_del(&freepage->lru);
1743 cc->nr_freepages--;
1744
1745 return freepage;
1746 }
1747
1748 /*
1749 * This is a migrate-callback that "frees" freepages back to the isolated
1750 * freelist. All pages on the freelist are from the same zone, so there is no
1751 * special handling needed for NUMA.
1752 */
compaction_free(struct page * page,unsigned long data)1753 static void compaction_free(struct page *page, unsigned long data)
1754 {
1755 struct compact_control_ext *cc_ext = (struct compact_control_ext *)data;
1756 struct compact_control *cc = cc_ext->cc;
1757
1758 list_add(&page->lru, &cc->freepages);
1759 cc->nr_freepages++;
1760 }
1761
1762 /* possible outcome of isolate_migratepages */
1763 typedef enum {
1764 ISOLATE_ABORT, /* Abort compaction now */
1765 ISOLATE_NONE, /* No pages isolated, continue scanning */
1766 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1767 } isolate_migrate_t;
1768
1769 /*
1770 * Allow userspace to control policy on scanning the unevictable LRU for
1771 * compactable pages.
1772 */
1773 #ifdef CONFIG_PREEMPT_RT
1774 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1775 #else
1776 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1777 #endif
1778
1779 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1780 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1781 {
1782 if (cc->fast_start_pfn == ULONG_MAX)
1783 return;
1784
1785 if (!cc->fast_start_pfn)
1786 cc->fast_start_pfn = pfn;
1787
1788 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1789 }
1790
1791 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1792 reinit_migrate_pfn(struct compact_control *cc)
1793 {
1794 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1795 return cc->migrate_pfn;
1796
1797 cc->migrate_pfn = cc->fast_start_pfn;
1798 cc->fast_start_pfn = ULONG_MAX;
1799
1800 return cc->migrate_pfn;
1801 }
1802
1803 /*
1804 * Briefly search the free lists for a migration source that already has
1805 * some free pages to reduce the number of pages that need migration
1806 * before a pageblock is free.
1807 */
fast_find_migrateblock(struct compact_control * cc)1808 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1809 {
1810 unsigned int limit = freelist_scan_limit(cc);
1811 unsigned int nr_scanned = 0;
1812 unsigned long distance;
1813 unsigned long pfn = cc->migrate_pfn;
1814 unsigned long high_pfn;
1815 int order;
1816 bool found_block = false;
1817
1818 /* Skip hints are relied on to avoid repeats on the fast search */
1819 if (cc->ignore_skip_hint)
1820 return pfn;
1821
1822 /*
1823 * If the migrate_pfn is not at the start of a zone or the start
1824 * of a pageblock then assume this is a continuation of a previous
1825 * scan restarted due to COMPACT_CLUSTER_MAX.
1826 */
1827 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1828 return pfn;
1829
1830 /*
1831 * For smaller orders, just linearly scan as the number of pages
1832 * to migrate should be relatively small and does not necessarily
1833 * justify freeing up a large block for a small allocation.
1834 */
1835 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1836 return pfn;
1837
1838 /*
1839 * Only allow kcompactd and direct requests for movable pages to
1840 * quickly clear out a MOVABLE pageblock for allocation. This
1841 * reduces the risk that a large movable pageblock is freed for
1842 * an unmovable/reclaimable small allocation.
1843 */
1844 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1845 return pfn;
1846
1847 /*
1848 * When starting the migration scanner, pick any pageblock within the
1849 * first half of the search space. Otherwise try and pick a pageblock
1850 * within the first eighth to reduce the chances that a migration
1851 * target later becomes a source.
1852 */
1853 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1854 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1855 distance >>= 2;
1856 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1857
1858 for (order = cc->order - 1;
1859 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1860 order--) {
1861 struct free_area *area = &cc->zone->free_area[order];
1862 struct list_head *freelist;
1863 unsigned long flags;
1864 struct page *freepage;
1865
1866 if (!area->nr_free)
1867 continue;
1868
1869 spin_lock_irqsave(&cc->zone->lock, flags);
1870 freelist = &area->free_list[MIGRATE_MOVABLE];
1871 list_for_each_entry(freepage, freelist, lru) {
1872 unsigned long free_pfn;
1873
1874 if (nr_scanned++ >= limit) {
1875 move_freelist_tail(freelist, freepage);
1876 break;
1877 }
1878
1879 free_pfn = page_to_pfn(freepage);
1880 if (free_pfn < high_pfn) {
1881 /*
1882 * Avoid if skipped recently. Ideally it would
1883 * move to the tail but even safe iteration of
1884 * the list assumes an entry is deleted, not
1885 * reordered.
1886 */
1887 if (get_pageblock_skip(freepage))
1888 continue;
1889
1890 /* Reorder to so a future search skips recent pages */
1891 move_freelist_tail(freelist, freepage);
1892
1893 update_fast_start_pfn(cc, free_pfn);
1894 pfn = pageblock_start_pfn(free_pfn);
1895 if (pfn < cc->zone->zone_start_pfn)
1896 pfn = cc->zone->zone_start_pfn;
1897 cc->fast_search_fail = 0;
1898 found_block = true;
1899 set_pageblock_skip(freepage);
1900 break;
1901 }
1902 }
1903 spin_unlock_irqrestore(&cc->zone->lock, flags);
1904 }
1905
1906 cc->total_migrate_scanned += nr_scanned;
1907
1908 /*
1909 * If fast scanning failed then use a cached entry for a page block
1910 * that had free pages as the basis for starting a linear scan.
1911 */
1912 if (!found_block) {
1913 cc->fast_search_fail++;
1914 pfn = reinit_migrate_pfn(cc);
1915 }
1916 return pfn;
1917 }
1918
1919 /*
1920 * Isolate all pages that can be migrated from the first suitable block,
1921 * starting at the block pointed to by the migrate scanner pfn within
1922 * compact_control.
1923 */
isolate_migratepages(struct compact_control_ext * cc_ext)1924 static isolate_migrate_t isolate_migratepages(struct compact_control_ext *cc_ext)
1925 {
1926 struct compact_control *cc = cc_ext->cc;
1927 unsigned long block_start_pfn;
1928 unsigned long block_end_pfn;
1929 unsigned long low_pfn;
1930 struct page *page;
1931 const isolate_mode_t isolate_mode =
1932 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1933 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1934 bool fast_find_block;
1935
1936 /*
1937 * Start at where we last stopped, or beginning of the zone as
1938 * initialized by compact_zone(). The first failure will use
1939 * the lowest PFN as the starting point for linear scanning.
1940 */
1941 low_pfn = fast_find_migrateblock(cc);
1942 block_start_pfn = pageblock_start_pfn(low_pfn);
1943 if (block_start_pfn < cc->zone->zone_start_pfn)
1944 block_start_pfn = cc->zone->zone_start_pfn;
1945
1946 /*
1947 * fast_find_migrateblock marks a pageblock skipped so to avoid
1948 * the isolation_suitable check below, check whether the fast
1949 * search was successful.
1950 */
1951 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1952
1953 /* Only scan within a pageblock boundary */
1954 block_end_pfn = pageblock_end_pfn(low_pfn);
1955
1956 /*
1957 * Iterate over whole pageblocks until we find the first suitable.
1958 * Do not cross the free scanner.
1959 */
1960 for (; block_end_pfn <= cc->free_pfn;
1961 fast_find_block = false,
1962 cc->migrate_pfn = low_pfn = block_end_pfn,
1963 block_start_pfn = block_end_pfn,
1964 block_end_pfn += pageblock_nr_pages) {
1965
1966 /*
1967 * This can potentially iterate a massively long zone with
1968 * many pageblocks unsuitable, so periodically check if we
1969 * need to schedule.
1970 */
1971 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1972 cond_resched();
1973
1974 page = pageblock_pfn_to_page(block_start_pfn,
1975 block_end_pfn, cc->zone);
1976 if (!page)
1977 continue;
1978
1979 /*
1980 * If isolation recently failed, do not retry. Only check the
1981 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1982 * to be visited multiple times. Assume skip was checked
1983 * before making it "skip" so other compaction instances do
1984 * not scan the same block.
1985 */
1986 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1987 !fast_find_block && !isolation_suitable(cc, page))
1988 continue;
1989
1990 /*
1991 * For async compaction, also only scan in MOVABLE blocks
1992 * without huge pages. Async compaction is optimistic to see
1993 * if the minimum amount of work satisfies the allocation.
1994 * The cached PFN is updated as it's possible that all
1995 * remaining blocks between source and target are unsuitable
1996 * and the compaction scanners fail to meet.
1997 */
1998 if (!suitable_migration_source(cc, page)) {
1999 update_cached_migrate(cc, block_end_pfn);
2000 continue;
2001 }
2002
2003 /* Perform the isolation */
2004 if (isolate_migratepages_block(cc_ext, low_pfn, block_end_pfn,
2005 isolate_mode))
2006 return ISOLATE_ABORT;
2007
2008 /*
2009 * Either we isolated something and proceed with migration. Or
2010 * we failed and compact_zone should decide if we should
2011 * continue or not.
2012 */
2013 break;
2014 }
2015
2016 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2017 }
2018
2019 /*
2020 * order == -1 is expected when compacting via
2021 * /proc/sys/vm/compact_memory
2022 */
is_via_compact_memory(int order)2023 static inline bool is_via_compact_memory(int order)
2024 {
2025 return order == -1;
2026 }
2027
kswapd_is_running(pg_data_t * pgdat)2028 static bool kswapd_is_running(pg_data_t *pgdat)
2029 {
2030 return pgdat->kswapd && task_is_running(pgdat->kswapd);
2031 }
2032
2033 /*
2034 * A zone's fragmentation score is the external fragmentation wrt to the
2035 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2036 */
fragmentation_score_zone(struct zone * zone)2037 static unsigned int fragmentation_score_zone(struct zone *zone)
2038 {
2039 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2040 }
2041
2042 /*
2043 * A weighted zone's fragmentation score is the external fragmentation
2044 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2045 * returns a value in the range [0, 100].
2046 *
2047 * The scaling factor ensures that proactive compaction focuses on larger
2048 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2049 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2050 * and thus never exceeds the high threshold for proactive compaction.
2051 */
fragmentation_score_zone_weighted(struct zone * zone)2052 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2053 {
2054 unsigned long score;
2055
2056 score = zone->present_pages * fragmentation_score_zone(zone);
2057 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2058 }
2059
2060 /*
2061 * The per-node proactive (background) compaction process is started by its
2062 * corresponding kcompactd thread when the node's fragmentation score
2063 * exceeds the high threshold. The compaction process remains active till
2064 * the node's score falls below the low threshold, or one of the back-off
2065 * conditions is met.
2066 */
fragmentation_score_node(pg_data_t * pgdat)2067 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2068 {
2069 unsigned int score = 0;
2070 int zoneid;
2071
2072 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2073 struct zone *zone;
2074
2075 zone = &pgdat->node_zones[zoneid];
2076 score += fragmentation_score_zone_weighted(zone);
2077 }
2078
2079 return score;
2080 }
2081
fragmentation_score_wmark(pg_data_t * pgdat,bool low)2082 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2083 {
2084 unsigned int wmark_low;
2085
2086 /*
2087 * Cap the low watermark to avoid excessive compaction
2088 * activity in case a user sets the proactiveness tunable
2089 * close to 100 (maximum).
2090 */
2091 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2092 return low ? wmark_low : min(wmark_low + 10, 100U);
2093 }
2094
should_proactive_compact_node(pg_data_t * pgdat)2095 static bool should_proactive_compact_node(pg_data_t *pgdat)
2096 {
2097 int wmark_high;
2098
2099 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2100 return false;
2101
2102 wmark_high = fragmentation_score_wmark(pgdat, false);
2103 return fragmentation_score_node(pgdat) > wmark_high;
2104 }
2105
__compact_finished(struct compact_control * cc)2106 static enum compact_result __compact_finished(struct compact_control *cc)
2107 {
2108 unsigned int order;
2109 const int migratetype = cc->migratetype;
2110 int ret;
2111 bool abort_compact = false;
2112
2113 /* Compaction run completes if the migrate and free scanner meet */
2114 if (compact_scanners_met(cc)) {
2115 /* Let the next compaction start anew. */
2116 reset_cached_positions(cc->zone);
2117
2118 /*
2119 * Mark that the PG_migrate_skip information should be cleared
2120 * by kswapd when it goes to sleep. kcompactd does not set the
2121 * flag itself as the decision to be clear should be directly
2122 * based on an allocation request.
2123 */
2124 if (cc->direct_compaction)
2125 cc->zone->compact_blockskip_flush = true;
2126
2127 if (cc->whole_zone)
2128 return COMPACT_COMPLETE;
2129 else
2130 return COMPACT_PARTIAL_SKIPPED;
2131 }
2132
2133 if (cc->proactive_compaction) {
2134 int score, wmark_low;
2135 pg_data_t *pgdat;
2136
2137 pgdat = cc->zone->zone_pgdat;
2138 if (kswapd_is_running(pgdat))
2139 return COMPACT_PARTIAL_SKIPPED;
2140
2141 score = fragmentation_score_zone(cc->zone);
2142 wmark_low = fragmentation_score_wmark(pgdat, true);
2143
2144 if (score > wmark_low)
2145 ret = COMPACT_CONTINUE;
2146 else
2147 ret = COMPACT_SUCCESS;
2148
2149 goto out;
2150 }
2151
2152 if (is_via_compact_memory(cc->order))
2153 return COMPACT_CONTINUE;
2154
2155 /*
2156 * Always finish scanning a pageblock to reduce the possibility of
2157 * fallbacks in the future. This is particularly important when
2158 * migration source is unmovable/reclaimable but it's not worth
2159 * special casing.
2160 */
2161 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2162 return COMPACT_CONTINUE;
2163
2164 /* Direct compactor: Is a suitable page free? */
2165 ret = COMPACT_NO_SUITABLE_PAGE;
2166 for (order = cc->order; order < MAX_ORDER; order++) {
2167 struct free_area *area = &cc->zone->free_area[order];
2168 bool can_steal;
2169
2170 /* Job done if page is free of the right migratetype */
2171 if (!free_area_empty(area, migratetype))
2172 return COMPACT_SUCCESS;
2173
2174 #ifdef CONFIG_CMA
2175 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2176 if (migratetype == MIGRATE_MOVABLE &&
2177 !free_area_empty(area, MIGRATE_CMA))
2178 return COMPACT_SUCCESS;
2179 #endif
2180 /*
2181 * Job done if allocation would steal freepages from
2182 * other migratetype buddy lists.
2183 */
2184 if (find_suitable_fallback(area, order, migratetype,
2185 true, &can_steal) != -1) {
2186
2187 /* movable pages are OK in any pageblock */
2188 if (migratetype == MIGRATE_MOVABLE)
2189 return COMPACT_SUCCESS;
2190
2191 /*
2192 * We are stealing for a non-movable allocation. Make
2193 * sure we finish compacting the current pageblock
2194 * first so it is as free as possible and we won't
2195 * have to steal another one soon. This only applies
2196 * to sync compaction, as async compaction operates
2197 * on pageblocks of the same migratetype.
2198 */
2199 if (cc->mode == MIGRATE_ASYNC ||
2200 IS_ALIGNED(cc->migrate_pfn,
2201 pageblock_nr_pages)) {
2202 return COMPACT_SUCCESS;
2203 }
2204
2205 ret = COMPACT_CONTINUE;
2206 break;
2207 }
2208 }
2209
2210 out:
2211 trace_android_vh_compact_finished(&abort_compact);
2212 if (cc->contended || fatal_signal_pending(current) || abort_compact)
2213 ret = COMPACT_CONTENDED;
2214
2215 return ret;
2216 }
2217
compact_finished(struct compact_control * cc)2218 static enum compact_result compact_finished(struct compact_control *cc)
2219 {
2220 int ret;
2221
2222 ret = __compact_finished(cc);
2223 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2224 if (ret == COMPACT_NO_SUITABLE_PAGE)
2225 ret = COMPACT_CONTINUE;
2226
2227 return ret;
2228 }
2229
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx,unsigned long wmark_target)2230 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2231 unsigned int alloc_flags,
2232 int highest_zoneidx,
2233 unsigned long wmark_target)
2234 {
2235 unsigned long watermark;
2236
2237 if (is_via_compact_memory(order))
2238 return COMPACT_CONTINUE;
2239
2240 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2241 /*
2242 * If watermarks for high-order allocation are already met, there
2243 * should be no need for compaction at all.
2244 */
2245 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2246 alloc_flags))
2247 return COMPACT_SUCCESS;
2248
2249 /*
2250 * Watermarks for order-0 must be met for compaction to be able to
2251 * isolate free pages for migration targets. This means that the
2252 * watermark and alloc_flags have to match, or be more pessimistic than
2253 * the check in __isolate_free_page(). We don't use the direct
2254 * compactor's alloc_flags, as they are not relevant for freepage
2255 * isolation. We however do use the direct compactor's highest_zoneidx
2256 * to skip over zones where lowmem reserves would prevent allocation
2257 * even if compaction succeeds.
2258 * For costly orders, we require low watermark instead of min for
2259 * compaction to proceed to increase its chances.
2260 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2261 * suitable migration targets
2262 */
2263 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2264 low_wmark_pages(zone) : min_wmark_pages(zone);
2265 watermark += compact_gap(order);
2266 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2267 ALLOC_CMA, wmark_target))
2268 return COMPACT_SKIPPED;
2269
2270 return COMPACT_CONTINUE;
2271 }
2272
2273 /*
2274 * compaction_suitable: Is this suitable to run compaction on this zone now?
2275 * Returns
2276 * COMPACT_SKIPPED - If there are too few free pages for compaction
2277 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2278 * COMPACT_CONTINUE - If compaction should run now
2279 */
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx)2280 enum compact_result compaction_suitable(struct zone *zone, int order,
2281 unsigned int alloc_flags,
2282 int highest_zoneidx)
2283 {
2284 enum compact_result ret;
2285 int fragindex;
2286
2287 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2288 zone_page_state(zone, NR_FREE_PAGES));
2289 /*
2290 * fragmentation index determines if allocation failures are due to
2291 * low memory or external fragmentation
2292 *
2293 * index of -1000 would imply allocations might succeed depending on
2294 * watermarks, but we already failed the high-order watermark check
2295 * index towards 0 implies failure is due to lack of memory
2296 * index towards 1000 implies failure is due to fragmentation
2297 *
2298 * Only compact if a failure would be due to fragmentation. Also
2299 * ignore fragindex for non-costly orders where the alternative to
2300 * a successful reclaim/compaction is OOM. Fragindex and the
2301 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2302 * excessive compaction for costly orders, but it should not be at the
2303 * expense of system stability.
2304 */
2305 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2306 fragindex = fragmentation_index(zone, order);
2307 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2308 ret = COMPACT_NOT_SUITABLE_ZONE;
2309 }
2310
2311 trace_mm_compaction_suitable(zone, order, ret);
2312 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2313 ret = COMPACT_SKIPPED;
2314
2315 return ret;
2316 }
2317
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2318 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2319 int alloc_flags)
2320 {
2321 struct zone *zone;
2322 struct zoneref *z;
2323
2324 /*
2325 * Make sure at least one zone would pass __compaction_suitable if we continue
2326 * retrying the reclaim.
2327 */
2328 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2329 ac->highest_zoneidx, ac->nodemask) {
2330 unsigned long available;
2331 enum compact_result compact_result;
2332
2333 /*
2334 * Do not consider all the reclaimable memory because we do not
2335 * want to trash just for a single high order allocation which
2336 * is even not guaranteed to appear even if __compaction_suitable
2337 * is happy about the watermark check.
2338 */
2339 available = zone_reclaimable_pages(zone) / order;
2340 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2341 compact_result = __compaction_suitable(zone, order, alloc_flags,
2342 ac->highest_zoneidx, available);
2343 if (compact_result != COMPACT_SKIPPED)
2344 return true;
2345 }
2346
2347 return false;
2348 }
2349
2350 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2351 compact_zone(struct compact_control *cc, struct capture_control *capc)
2352 {
2353 enum compact_result ret;
2354 unsigned long start_pfn = cc->zone->zone_start_pfn;
2355 unsigned long end_pfn = zone_end_pfn(cc->zone);
2356 unsigned long last_migrated_pfn;
2357 const bool sync = cc->mode != MIGRATE_ASYNC;
2358 bool update_cached;
2359 struct compact_control_ext cc_ext = {
2360 .cc = cc,
2361 .nr_migrate_file_pages = 0,
2362 };
2363
2364 /*
2365 * These counters track activities during zone compaction. Initialize
2366 * them before compacting a new zone.
2367 */
2368 cc->total_migrate_scanned = 0;
2369 cc->total_free_scanned = 0;
2370 cc->nr_migratepages = 0;
2371 cc->nr_freepages = 0;
2372 INIT_LIST_HEAD(&cc->freepages);
2373 INIT_LIST_HEAD(&cc->migratepages);
2374
2375 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2376 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2377 cc->highest_zoneidx);
2378 /* Compaction is likely to fail */
2379 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2380 return ret;
2381
2382 /* huh, compaction_suitable is returning something unexpected */
2383 VM_BUG_ON(ret != COMPACT_CONTINUE);
2384
2385 /*
2386 * Clear pageblock skip if there were failures recently and compaction
2387 * is about to be retried after being deferred.
2388 */
2389 if (compaction_restarting(cc->zone, cc->order))
2390 __reset_isolation_suitable(cc->zone);
2391
2392 /*
2393 * Setup to move all movable pages to the end of the zone. Used cached
2394 * information on where the scanners should start (unless we explicitly
2395 * want to compact the whole zone), but check that it is initialised
2396 * by ensuring the values are within zone boundaries.
2397 */
2398 cc->fast_start_pfn = 0;
2399 if (cc->whole_zone) {
2400 cc->migrate_pfn = start_pfn;
2401 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2402 } else {
2403 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2404 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2405 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2406 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2407 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2408 }
2409 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2410 cc->migrate_pfn = start_pfn;
2411 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2412 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2413 }
2414
2415 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2416 cc->whole_zone = true;
2417 }
2418
2419 last_migrated_pfn = 0;
2420
2421 /*
2422 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2423 * the basis that some migrations will fail in ASYNC mode. However,
2424 * if the cached PFNs match and pageblocks are skipped due to having
2425 * no isolation candidates, then the sync state does not matter.
2426 * Until a pageblock with isolation candidates is found, keep the
2427 * cached PFNs in sync to avoid revisiting the same blocks.
2428 */
2429 update_cached = !sync &&
2430 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2431
2432 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2433 cc->free_pfn, end_pfn, sync);
2434
2435 /* lru_add_drain_all could be expensive with involving other CPUs */
2436 lru_add_drain();
2437
2438 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2439 int err;
2440 unsigned long iteration_start_pfn = cc->migrate_pfn;
2441
2442 /*
2443 * Avoid multiple rescans which can happen if a page cannot be
2444 * isolated (dirty/writeback in async mode) or if the migrated
2445 * pages are being allocated before the pageblock is cleared.
2446 * The first rescan will capture the entire pageblock for
2447 * migration. If it fails, it'll be marked skip and scanning
2448 * will proceed as normal.
2449 */
2450 cc->rescan = false;
2451 if (pageblock_start_pfn(last_migrated_pfn) ==
2452 pageblock_start_pfn(iteration_start_pfn)) {
2453 cc->rescan = true;
2454 }
2455
2456 switch (isolate_migratepages(&cc_ext)) {
2457 case ISOLATE_ABORT:
2458 ret = COMPACT_CONTENDED;
2459 putback_movable_pages(&cc->migratepages);
2460 cc->nr_migratepages = 0;
2461 cc_ext.nr_migrate_file_pages = 0;
2462 goto out;
2463 case ISOLATE_NONE:
2464 if (update_cached) {
2465 cc->zone->compact_cached_migrate_pfn[1] =
2466 cc->zone->compact_cached_migrate_pfn[0];
2467 }
2468
2469 /*
2470 * We haven't isolated and migrated anything, but
2471 * there might still be unflushed migrations from
2472 * previous cc->order aligned block.
2473 */
2474 goto check_drain;
2475 case ISOLATE_SUCCESS:
2476 update_cached = false;
2477 last_migrated_pfn = iteration_start_pfn;
2478 }
2479
2480 err = migrate_pages(&cc->migratepages, compaction_alloc,
2481 compaction_free, (unsigned long)&cc_ext, cc->mode,
2482 MR_COMPACTION, NULL);
2483
2484 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2485 &cc->migratepages);
2486
2487 /* All pages were either migrated or will be released */
2488 cc->nr_migratepages = 0;
2489 cc_ext.nr_migrate_file_pages = 0;
2490 if (err) {
2491 putback_movable_pages(&cc->migratepages);
2492 /*
2493 * migrate_pages() may return -ENOMEM when scanners meet
2494 * and we want compact_finished() to detect it
2495 */
2496 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2497 ret = COMPACT_CONTENDED;
2498 goto out;
2499 }
2500 /*
2501 * We failed to migrate at least one page in the current
2502 * order-aligned block, so skip the rest of it.
2503 */
2504 if (cc->direct_compaction &&
2505 (cc->mode == MIGRATE_ASYNC)) {
2506 cc->migrate_pfn = block_end_pfn(
2507 cc->migrate_pfn - 1, cc->order);
2508 /* Draining pcplists is useless in this case */
2509 last_migrated_pfn = 0;
2510 }
2511 }
2512
2513 check_drain:
2514 /*
2515 * Has the migration scanner moved away from the previous
2516 * cc->order aligned block where we migrated from? If yes,
2517 * flush the pages that were freed, so that they can merge and
2518 * compact_finished() can detect immediately if allocation
2519 * would succeed.
2520 */
2521 if (cc->order > 0 && last_migrated_pfn) {
2522 unsigned long current_block_start =
2523 block_start_pfn(cc->migrate_pfn, cc->order);
2524
2525 if (last_migrated_pfn < current_block_start) {
2526 lru_add_drain_cpu_zone(cc->zone);
2527 /* No more flushing until we migrate again */
2528 last_migrated_pfn = 0;
2529 }
2530 }
2531
2532 /* Stop if a page has been captured */
2533 if (capc && capc->page) {
2534 ret = COMPACT_SUCCESS;
2535 break;
2536 }
2537 }
2538
2539 out:
2540 /*
2541 * Release free pages and update where the free scanner should restart,
2542 * so we don't leave any returned pages behind in the next attempt.
2543 */
2544 if (cc->nr_freepages > 0) {
2545 unsigned long free_pfn = release_freepages(&cc->freepages);
2546
2547 cc->nr_freepages = 0;
2548 VM_BUG_ON(free_pfn == 0);
2549 /* The cached pfn is always the first in a pageblock */
2550 free_pfn = pageblock_start_pfn(free_pfn);
2551 /*
2552 * Only go back, not forward. The cached pfn might have been
2553 * already reset to zone end in compact_finished()
2554 */
2555 if (free_pfn > cc->zone->compact_cached_free_pfn)
2556 cc->zone->compact_cached_free_pfn = free_pfn;
2557 }
2558
2559 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2560 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2561
2562 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2563 cc->free_pfn, end_pfn, sync, ret);
2564
2565 return ret;
2566 }
2567
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2568 static enum compact_result compact_zone_order(struct zone *zone, int order,
2569 gfp_t gfp_mask, enum compact_priority prio,
2570 unsigned int alloc_flags, int highest_zoneidx,
2571 struct page **capture)
2572 {
2573 enum compact_result ret;
2574 struct compact_control cc = {
2575 .order = order,
2576 .search_order = order,
2577 .gfp_mask = gfp_mask,
2578 .zone = zone,
2579 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2580 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2581 .alloc_flags = alloc_flags,
2582 .highest_zoneidx = highest_zoneidx,
2583 .direct_compaction = true,
2584 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2585 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2586 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2587 };
2588 struct capture_control capc = {
2589 .cc = &cc,
2590 .page = NULL,
2591 };
2592
2593 /*
2594 * Make sure the structs are really initialized before we expose the
2595 * capture control, in case we are interrupted and the interrupt handler
2596 * frees a page.
2597 */
2598 barrier();
2599 WRITE_ONCE(current->capture_control, &capc);
2600
2601 ret = compact_zone(&cc, &capc);
2602
2603 VM_BUG_ON(!list_empty(&cc.freepages));
2604 VM_BUG_ON(!list_empty(&cc.migratepages));
2605
2606 /*
2607 * Make sure we hide capture control first before we read the captured
2608 * page pointer, otherwise an interrupt could free and capture a page
2609 * and we would leak it.
2610 */
2611 WRITE_ONCE(current->capture_control, NULL);
2612 *capture = READ_ONCE(capc.page);
2613 /*
2614 * Technically, it is also possible that compaction is skipped but
2615 * the page is still captured out of luck(IRQ came and freed the page).
2616 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2617 * the COMPACT[STALL|FAIL] when compaction is skipped.
2618 */
2619 if (*capture)
2620 ret = COMPACT_SUCCESS;
2621
2622 return ret;
2623 }
2624
2625 int sysctl_extfrag_threshold = 500;
2626
2627 /**
2628 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2629 * @gfp_mask: The GFP mask of the current allocation
2630 * @order: The order of the current allocation
2631 * @alloc_flags: The allocation flags of the current allocation
2632 * @ac: The context of current allocation
2633 * @prio: Determines how hard direct compaction should try to succeed
2634 * @capture: Pointer to free page created by compaction will be stored here
2635 *
2636 * This is the main entry point for direct page compaction.
2637 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2638 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2639 unsigned int alloc_flags, const struct alloc_context *ac,
2640 enum compact_priority prio, struct page **capture)
2641 {
2642 int may_perform_io = gfp_mask & __GFP_IO;
2643 struct zoneref *z;
2644 struct zone *zone;
2645 enum compact_result rc = COMPACT_SKIPPED;
2646
2647 /*
2648 * Check if the GFP flags allow compaction - GFP_NOIO is really
2649 * tricky context because the migration might require IO
2650 */
2651 if (!may_perform_io)
2652 return COMPACT_SKIPPED;
2653
2654 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2655
2656 /* Compact each zone in the list */
2657 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2658 ac->highest_zoneidx, ac->nodemask) {
2659 enum compact_result status;
2660
2661 if (prio > MIN_COMPACT_PRIORITY
2662 && compaction_deferred(zone, order)) {
2663 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2664 continue;
2665 }
2666
2667 status = compact_zone_order(zone, order, gfp_mask, prio,
2668 alloc_flags, ac->highest_zoneidx, capture);
2669 rc = max(status, rc);
2670
2671 /* The allocation should succeed, stop compacting */
2672 if (status == COMPACT_SUCCESS) {
2673 /*
2674 * We think the allocation will succeed in this zone,
2675 * but it is not certain, hence the false. The caller
2676 * will repeat this with true if allocation indeed
2677 * succeeds in this zone.
2678 */
2679 compaction_defer_reset(zone, order, false);
2680
2681 break;
2682 }
2683
2684 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2685 status == COMPACT_PARTIAL_SKIPPED))
2686 /*
2687 * We think that allocation won't succeed in this zone
2688 * so we defer compaction there. If it ends up
2689 * succeeding after all, it will be reset.
2690 */
2691 defer_compaction(zone, order);
2692
2693 /*
2694 * We might have stopped compacting due to need_resched() in
2695 * async compaction, or due to a fatal signal detected. In that
2696 * case do not try further zones
2697 */
2698 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2699 || fatal_signal_pending(current))
2700 break;
2701 }
2702
2703 return rc;
2704 }
2705
2706 /*
2707 * Compact all zones within a node till each zone's fragmentation score
2708 * reaches within proactive compaction thresholds (as determined by the
2709 * proactiveness tunable).
2710 *
2711 * It is possible that the function returns before reaching score targets
2712 * due to various back-off conditions, such as, contention on per-node or
2713 * per-zone locks.
2714 */
proactive_compact_node(pg_data_t * pgdat)2715 static void proactive_compact_node(pg_data_t *pgdat)
2716 {
2717 int zoneid;
2718 struct zone *zone;
2719 struct compact_control cc = {
2720 .order = -1,
2721 .mode = MIGRATE_SYNC_LIGHT,
2722 .ignore_skip_hint = true,
2723 .whole_zone = true,
2724 .gfp_mask = GFP_KERNEL,
2725 .proactive_compaction = true,
2726 };
2727
2728 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2729 zone = &pgdat->node_zones[zoneid];
2730 if (!populated_zone(zone))
2731 continue;
2732
2733 cc.zone = zone;
2734
2735 compact_zone(&cc, NULL);
2736
2737 VM_BUG_ON(!list_empty(&cc.freepages));
2738 VM_BUG_ON(!list_empty(&cc.migratepages));
2739 }
2740 }
2741
2742 /* Compact all zones within a node */
compact_node(int nid)2743 static void compact_node(int nid)
2744 {
2745 pg_data_t *pgdat = NODE_DATA(nid);
2746 int zoneid;
2747 struct zone *zone;
2748 struct compact_control cc = {
2749 .order = -1,
2750 .mode = MIGRATE_SYNC,
2751 .ignore_skip_hint = true,
2752 .whole_zone = true,
2753 .gfp_mask = GFP_KERNEL,
2754 };
2755
2756
2757 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2758
2759 zone = &pgdat->node_zones[zoneid];
2760 if (!populated_zone(zone))
2761 continue;
2762
2763 cc.zone = zone;
2764
2765 compact_zone(&cc, NULL);
2766
2767 VM_BUG_ON(!list_empty(&cc.freepages));
2768 VM_BUG_ON(!list_empty(&cc.migratepages));
2769 }
2770 }
2771
2772 /* Compact all nodes in the system */
compact_nodes(void)2773 static void compact_nodes(void)
2774 {
2775 int nid;
2776
2777 /* Flush pending updates to the LRU lists */
2778 lru_add_drain_all();
2779
2780 for_each_online_node(nid)
2781 compact_node(nid);
2782 }
2783
2784 /*
2785 * Tunable for proactive compaction. It determines how
2786 * aggressively the kernel should compact memory in the
2787 * background. It takes values in the range [0, 100].
2788 */
2789 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2790
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2791 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2792 void *buffer, size_t *length, loff_t *ppos)
2793 {
2794 int rc, nid;
2795
2796 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2797 if (rc)
2798 return rc;
2799
2800 if (write && sysctl_compaction_proactiveness) {
2801 for_each_online_node(nid) {
2802 pg_data_t *pgdat = NODE_DATA(nid);
2803
2804 if (pgdat->proactive_compact_trigger)
2805 continue;
2806
2807 pgdat->proactive_compact_trigger = true;
2808 wake_up_interruptible(&pgdat->kcompactd_wait);
2809 }
2810 }
2811
2812 return 0;
2813 }
2814
2815 /*
2816 * This is the entry point for compacting all nodes via
2817 * /proc/sys/vm/compact_memory
2818 */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2819 int sysctl_compaction_handler(struct ctl_table *table, int write,
2820 void *buffer, size_t *length, loff_t *ppos)
2821 {
2822 if (write)
2823 compact_nodes();
2824
2825 return 0;
2826 }
2827
2828 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2829 static ssize_t compact_store(struct device *dev,
2830 struct device_attribute *attr,
2831 const char *buf, size_t count)
2832 {
2833 int nid = dev->id;
2834
2835 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2836 /* Flush pending updates to the LRU lists */
2837 lru_add_drain_all();
2838
2839 compact_node(nid);
2840 }
2841
2842 return count;
2843 }
2844 static DEVICE_ATTR_WO(compact);
2845
compaction_register_node(struct node * node)2846 int compaction_register_node(struct node *node)
2847 {
2848 return device_create_file(&node->dev, &dev_attr_compact);
2849 }
2850
compaction_unregister_node(struct node * node)2851 void compaction_unregister_node(struct node *node)
2852 {
2853 return device_remove_file(&node->dev, &dev_attr_compact);
2854 }
2855 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2856
kcompactd_work_requested(pg_data_t * pgdat)2857 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2858 {
2859 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2860 pgdat->proactive_compact_trigger;
2861 }
2862
kcompactd_node_suitable(pg_data_t * pgdat)2863 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2864 {
2865 int zoneid;
2866 struct zone *zone;
2867 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2868
2869 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2870 zone = &pgdat->node_zones[zoneid];
2871
2872 if (!populated_zone(zone))
2873 continue;
2874
2875 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2876 highest_zoneidx) == COMPACT_CONTINUE)
2877 return true;
2878 }
2879
2880 return false;
2881 }
2882
kcompactd_do_work(pg_data_t * pgdat)2883 static void kcompactd_do_work(pg_data_t *pgdat)
2884 {
2885 /*
2886 * With no special task, compact all zones so that a page of requested
2887 * order is allocatable.
2888 */
2889 int zoneid;
2890 struct zone *zone;
2891 struct compact_control cc = {
2892 .order = pgdat->kcompactd_max_order,
2893 .search_order = pgdat->kcompactd_max_order,
2894 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2895 .mode = MIGRATE_SYNC_LIGHT,
2896 .ignore_skip_hint = false,
2897 .gfp_mask = GFP_KERNEL,
2898 };
2899 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2900 cc.highest_zoneidx);
2901 count_compact_event(KCOMPACTD_WAKE);
2902
2903 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2904 int status;
2905
2906 zone = &pgdat->node_zones[zoneid];
2907 if (!populated_zone(zone))
2908 continue;
2909
2910 if (compaction_deferred(zone, cc.order))
2911 continue;
2912
2913 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2914 COMPACT_CONTINUE)
2915 continue;
2916
2917 if (kthread_should_stop())
2918 return;
2919
2920 cc.zone = zone;
2921 status = compact_zone(&cc, NULL);
2922
2923 if (status == COMPACT_SUCCESS) {
2924 compaction_defer_reset(zone, cc.order, false);
2925 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2926 /*
2927 * Buddy pages may become stranded on pcps that could
2928 * otherwise coalesce on the zone's free area for
2929 * order >= cc.order. This is ratelimited by the
2930 * upcoming deferral.
2931 */
2932 drain_all_pages(zone);
2933
2934 /*
2935 * We use sync migration mode here, so we defer like
2936 * sync direct compaction does.
2937 */
2938 defer_compaction(zone, cc.order);
2939 }
2940
2941 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2942 cc.total_migrate_scanned);
2943 count_compact_events(KCOMPACTD_FREE_SCANNED,
2944 cc.total_free_scanned);
2945
2946 VM_BUG_ON(!list_empty(&cc.freepages));
2947 VM_BUG_ON(!list_empty(&cc.migratepages));
2948 }
2949
2950 /*
2951 * Regardless of success, we are done until woken up next. But remember
2952 * the requested order/highest_zoneidx in case it was higher/tighter
2953 * than our current ones
2954 */
2955 if (pgdat->kcompactd_max_order <= cc.order)
2956 pgdat->kcompactd_max_order = 0;
2957 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2958 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2959 }
2960
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)2961 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2962 {
2963 if (!order)
2964 return;
2965
2966 if (pgdat->kcompactd_max_order < order)
2967 pgdat->kcompactd_max_order = order;
2968
2969 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2970 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2971
2972 /*
2973 * Pairs with implicit barrier in wait_event_freezable()
2974 * such that wakeups are not missed.
2975 */
2976 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2977 return;
2978
2979 if (!kcompactd_node_suitable(pgdat))
2980 return;
2981
2982 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2983 highest_zoneidx);
2984 wake_up_interruptible(&pgdat->kcompactd_wait);
2985 }
2986
2987 /*
2988 * The background compaction daemon, started as a kernel thread
2989 * from the init process.
2990 */
kcompactd(void * p)2991 static int kcompactd(void *p)
2992 {
2993 pg_data_t *pgdat = (pg_data_t *)p;
2994 struct task_struct *tsk = current;
2995 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2996 long timeout = default_timeout;
2997
2998 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2999
3000 if (!cpumask_empty(cpumask))
3001 set_cpus_allowed_ptr(tsk, cpumask);
3002
3003 set_freezable();
3004
3005 pgdat->kcompactd_max_order = 0;
3006 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3007
3008 while (!kthread_should_stop()) {
3009 unsigned long pflags;
3010
3011 /*
3012 * Avoid the unnecessary wakeup for proactive compaction
3013 * when it is disabled.
3014 */
3015 if (!sysctl_compaction_proactiveness)
3016 timeout = MAX_SCHEDULE_TIMEOUT;
3017 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3018 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3019 kcompactd_work_requested(pgdat), timeout) &&
3020 !pgdat->proactive_compact_trigger) {
3021
3022 psi_memstall_enter(&pflags);
3023 kcompactd_do_work(pgdat);
3024 psi_memstall_leave(&pflags);
3025 /*
3026 * Reset the timeout value. The defer timeout from
3027 * proactive compaction is lost here but that is fine
3028 * as the condition of the zone changing substantionally
3029 * then carrying on with the previous defer interval is
3030 * not useful.
3031 */
3032 timeout = default_timeout;
3033 continue;
3034 }
3035
3036 /*
3037 * Start the proactive work with default timeout. Based
3038 * on the fragmentation score, this timeout is updated.
3039 */
3040 timeout = default_timeout;
3041 if (should_proactive_compact_node(pgdat)) {
3042 unsigned int prev_score, score;
3043
3044 prev_score = fragmentation_score_node(pgdat);
3045 proactive_compact_node(pgdat);
3046 score = fragmentation_score_node(pgdat);
3047 /*
3048 * Defer proactive compaction if the fragmentation
3049 * score did not go down i.e. no progress made.
3050 */
3051 if (unlikely(score >= prev_score))
3052 timeout =
3053 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3054 }
3055 if (unlikely(pgdat->proactive_compact_trigger))
3056 pgdat->proactive_compact_trigger = false;
3057 }
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * This kcompactd start function will be called by init and node-hot-add.
3064 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3065 */
kcompactd_run(int nid)3066 int kcompactd_run(int nid)
3067 {
3068 pg_data_t *pgdat = NODE_DATA(nid);
3069 int ret = 0;
3070
3071 if (pgdat->kcompactd)
3072 return 0;
3073
3074 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3075 if (IS_ERR(pgdat->kcompactd)) {
3076 pr_err("Failed to start kcompactd on node %d\n", nid);
3077 ret = PTR_ERR(pgdat->kcompactd);
3078 pgdat->kcompactd = NULL;
3079 }
3080 return ret;
3081 }
3082
3083 /*
3084 * Called by memory hotplug when all memory in a node is offlined. Caller must
3085 * hold mem_hotplug_begin/end().
3086 */
kcompactd_stop(int nid)3087 void kcompactd_stop(int nid)
3088 {
3089 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3090
3091 if (kcompactd) {
3092 kthread_stop(kcompactd);
3093 NODE_DATA(nid)->kcompactd = NULL;
3094 }
3095 }
3096
3097 /*
3098 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3099 * not required for correctness. So if the last cpu in a node goes
3100 * away, we get changed to run anywhere: as the first one comes back,
3101 * restore their cpu bindings.
3102 */
kcompactd_cpu_online(unsigned int cpu)3103 static int kcompactd_cpu_online(unsigned int cpu)
3104 {
3105 int nid;
3106
3107 for_each_node_state(nid, N_MEMORY) {
3108 pg_data_t *pgdat = NODE_DATA(nid);
3109 const struct cpumask *mask;
3110
3111 mask = cpumask_of_node(pgdat->node_id);
3112
3113 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3114 /* One of our CPUs online: restore mask */
3115 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3116 }
3117 return 0;
3118 }
3119
kcompactd_init(void)3120 static int __init kcompactd_init(void)
3121 {
3122 int nid;
3123 int ret;
3124
3125 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3126 "mm/compaction:online",
3127 kcompactd_cpu_online, NULL);
3128 if (ret < 0) {
3129 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3130 return ret;
3131 }
3132
3133 for_each_node_state(nid, N_MEMORY)
3134 kcompactd_run(nid);
3135 return 0;
3136 }
3137 subsys_initcall(kcompactd_init)
3138
3139 #endif /* CONFIG_COMPACTION */
3140