• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_rwsem
80  *    ->invalidate_lock		(acquired by fs in truncate path)
81  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
82  *
83  *  ->mmap_lock
84  *    ->i_mmap_rwsem
85  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
86  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
87  *
88  *  ->mmap_lock
89  *    ->invalidate_lock		(filemap_fault)
90  *      ->lock_page		(filemap_fault, access_process_vm)
91  *
92  *  ->i_rwsem			(generic_perform_write)
93  *    ->mmap_lock		(fault_in_readable->do_page_fault)
94  *
95  *  bdi->wb.list_lock
96  *    sb_lock			(fs/fs-writeback.c)
97  *    ->i_pages lock		(__sync_single_inode)
98  *
99  *  ->i_mmap_rwsem
100  *    ->anon_vma.lock		(vma_adjust)
101  *
102  *  ->anon_vma.lock
103  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
104  *
105  *  ->page_table_lock or pte_lock
106  *    ->swap_lock		(try_to_unmap_one)
107  *    ->private_lock		(try_to_unmap_one)
108  *    ->i_pages lock		(try_to_unmap_one)
109  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
110  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
111  *    ->private_lock		(page_remove_rmap->set_page_dirty)
112  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
113  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
114  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
115  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
116  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
117  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
118  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
119  *
120  * ->i_mmap_rwsem
121  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
122  */
123 
124 /* Export tracepoints that act as a bare tracehook */
125 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_filemap_delete_from_page_cache);
126 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_filemap_add_to_page_cache);
127 
page_cache_delete(struct address_space * mapping,struct page * page,void * shadow)128 static void page_cache_delete(struct address_space *mapping,
129 				   struct page *page, void *shadow)
130 {
131 	XA_STATE(xas, &mapping->i_pages, page->index);
132 	unsigned int nr = 1;
133 
134 	mapping_set_update(&xas, mapping);
135 
136 	/* hugetlb pages are represented by a single entry in the xarray */
137 	if (!PageHuge(page)) {
138 		xas_set_order(&xas, page->index, compound_order(page));
139 		nr = compound_nr(page);
140 	}
141 
142 	VM_BUG_ON_PAGE(!PageLocked(page), page);
143 	VM_BUG_ON_PAGE(PageTail(page), page);
144 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
145 
146 	xas_store(&xas, shadow);
147 	xas_init_marks(&xas);
148 
149 	page->mapping = NULL;
150 	/* Leave page->index set: truncation lookup relies upon it */
151 	mapping->nrpages -= nr;
152 }
153 
unaccount_page_cache_page(struct address_space * mapping,struct page * page)154 static void unaccount_page_cache_page(struct address_space *mapping,
155 				      struct page *page)
156 {
157 	int nr;
158 
159 	/*
160 	 * if we're uptodate, flush out into the cleancache, otherwise
161 	 * invalidate any existing cleancache entries.  We can't leave
162 	 * stale data around in the cleancache once our page is gone
163 	 */
164 	if (PageUptodate(page) && PageMappedToDisk(page))
165 		cleancache_put_page(page);
166 	else
167 		cleancache_invalidate_page(mapping, page);
168 
169 	VM_BUG_ON_PAGE(PageTail(page), page);
170 	VM_BUG_ON_PAGE(page_mapped(page), page);
171 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
172 		int mapcount;
173 
174 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
175 			 current->comm, page_to_pfn(page));
176 		dump_page(page, "still mapped when deleted");
177 		dump_stack();
178 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
179 
180 		mapcount = page_mapcount(page);
181 		if (mapping_exiting(mapping) &&
182 		    page_count(page) >= mapcount + 2) {
183 			/*
184 			 * All vmas have already been torn down, so it's
185 			 * a good bet that actually the page is unmapped,
186 			 * and we'd prefer not to leak it: if we're wrong,
187 			 * some other bad page check should catch it later.
188 			 */
189 			page_mapcount_reset(page);
190 			page_ref_sub(page, mapcount);
191 		}
192 	}
193 
194 	/* hugetlb pages do not participate in page cache accounting. */
195 	if (PageHuge(page))
196 		return;
197 
198 	nr = thp_nr_pages(page);
199 
200 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
201 	if (PageSwapBacked(page)) {
202 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
203 		if (PageTransHuge(page))
204 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
205 	} else if (PageTransHuge(page)) {
206 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
207 		filemap_nr_thps_dec(mapping);
208 	}
209 
210 	/*
211 	 * At this point page must be either written or cleaned by
212 	 * truncate.  Dirty page here signals a bug and loss of
213 	 * unwritten data.
214 	 *
215 	 * This fixes dirty accounting after removing the page entirely
216 	 * but leaves PageDirty set: it has no effect for truncated
217 	 * page and anyway will be cleared before returning page into
218 	 * buddy allocator.
219 	 */
220 	if (WARN_ON_ONCE(PageDirty(page)))
221 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
222 }
223 
224 /*
225  * Delete a page from the page cache and free it. Caller has to make
226  * sure the page is locked and that nobody else uses it - or that usage
227  * is safe.  The caller must hold the i_pages lock.
228  */
__delete_from_page_cache(struct page * page,void * shadow)229 void __delete_from_page_cache(struct page *page, void *shadow)
230 {
231 	struct address_space *mapping = page->mapping;
232 
233 	trace_mm_filemap_delete_from_page_cache(page);
234 
235 	unaccount_page_cache_page(mapping, page);
236 	page_cache_delete(mapping, page, shadow);
237 }
238 
page_cache_free_page(struct address_space * mapping,struct page * page)239 static void page_cache_free_page(struct address_space *mapping,
240 				struct page *page)
241 {
242 	void (*freepage)(struct page *);
243 
244 	freepage = mapping->a_ops->freepage;
245 	if (freepage)
246 		freepage(page);
247 
248 	if (PageTransHuge(page) && !PageHuge(page)) {
249 		page_ref_sub(page, thp_nr_pages(page));
250 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
251 	} else {
252 		put_page(page);
253 	}
254 }
255 
256 /**
257  * delete_from_page_cache - delete page from page cache
258  * @page: the page which the kernel is trying to remove from page cache
259  *
260  * This must be called only on pages that have been verified to be in the page
261  * cache and locked.  It will never put the page into the free list, the caller
262  * has a reference on the page.
263  */
delete_from_page_cache(struct page * page)264 void delete_from_page_cache(struct page *page)
265 {
266 	struct address_space *mapping = page_mapping(page);
267 
268 	BUG_ON(!PageLocked(page));
269 	xa_lock_irq(&mapping->i_pages);
270 	__delete_from_page_cache(page, NULL);
271 	xa_unlock_irq(&mapping->i_pages);
272 
273 	page_cache_free_page(mapping, page);
274 }
275 EXPORT_SYMBOL(delete_from_page_cache);
276 
277 /*
278  * page_cache_delete_batch - delete several pages from page cache
279  * @mapping: the mapping to which pages belong
280  * @pvec: pagevec with pages to delete
281  *
282  * The function walks over mapping->i_pages and removes pages passed in @pvec
283  * from the mapping. The function expects @pvec to be sorted by page index
284  * and is optimised for it to be dense.
285  * It tolerates holes in @pvec (mapping entries at those indices are not
286  * modified). The function expects only THP head pages to be present in the
287  * @pvec.
288  *
289  * The function expects the i_pages lock to be held.
290  */
page_cache_delete_batch(struct address_space * mapping,struct pagevec * pvec)291 static void page_cache_delete_batch(struct address_space *mapping,
292 			     struct pagevec *pvec)
293 {
294 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
295 	int total_pages = 0;
296 	int i = 0;
297 	struct page *page;
298 
299 	mapping_set_update(&xas, mapping);
300 	xas_for_each(&xas, page, ULONG_MAX) {
301 		if (i >= pagevec_count(pvec))
302 			break;
303 
304 		/* A swap/dax/shadow entry got inserted? Skip it. */
305 		if (xa_is_value(page))
306 			continue;
307 		/*
308 		 * A page got inserted in our range? Skip it. We have our
309 		 * pages locked so they are protected from being removed.
310 		 * If we see a page whose index is higher than ours, it
311 		 * means our page has been removed, which shouldn't be
312 		 * possible because we're holding the PageLock.
313 		 */
314 		if (page != pvec->pages[i]) {
315 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
316 					page);
317 			continue;
318 		}
319 
320 		WARN_ON_ONCE(!PageLocked(page));
321 
322 		if (page->index == xas.xa_index)
323 			page->mapping = NULL;
324 		/* Leave page->index set: truncation lookup relies on it */
325 
326 		/*
327 		 * Move to the next page in the vector if this is a regular
328 		 * page or the index is of the last sub-page of this compound
329 		 * page.
330 		 */
331 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
332 			i++;
333 		xas_store(&xas, NULL);
334 		total_pages++;
335 	}
336 	mapping->nrpages -= total_pages;
337 }
338 
delete_from_page_cache_batch(struct address_space * mapping,struct pagevec * pvec)339 void delete_from_page_cache_batch(struct address_space *mapping,
340 				  struct pagevec *pvec)
341 {
342 	int i;
343 
344 	if (!pagevec_count(pvec))
345 		return;
346 
347 	xa_lock_irq(&mapping->i_pages);
348 	for (i = 0; i < pagevec_count(pvec); i++) {
349 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
350 
351 		unaccount_page_cache_page(mapping, pvec->pages[i]);
352 	}
353 	page_cache_delete_batch(mapping, pvec);
354 	xa_unlock_irq(&mapping->i_pages);
355 
356 	for (i = 0; i < pagevec_count(pvec); i++)
357 		page_cache_free_page(mapping, pvec->pages[i]);
358 }
359 
filemap_check_errors(struct address_space * mapping)360 int filemap_check_errors(struct address_space *mapping)
361 {
362 	int ret = 0;
363 	/* Check for outstanding write errors */
364 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
365 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
366 		ret = -ENOSPC;
367 	if (test_bit(AS_EIO, &mapping->flags) &&
368 	    test_and_clear_bit(AS_EIO, &mapping->flags))
369 		ret = -EIO;
370 	return ret;
371 }
372 EXPORT_SYMBOL(filemap_check_errors);
373 
filemap_check_and_keep_errors(struct address_space * mapping)374 static int filemap_check_and_keep_errors(struct address_space *mapping)
375 {
376 	/* Check for outstanding write errors */
377 	if (test_bit(AS_EIO, &mapping->flags))
378 		return -EIO;
379 	if (test_bit(AS_ENOSPC, &mapping->flags))
380 		return -ENOSPC;
381 	return 0;
382 }
383 
384 /**
385  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
386  * @mapping:	address space structure to write
387  * @wbc:	the writeback_control controlling the writeout
388  *
389  * Call writepages on the mapping using the provided wbc to control the
390  * writeout.
391  *
392  * Return: %0 on success, negative error code otherwise.
393  */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)394 int filemap_fdatawrite_wbc(struct address_space *mapping,
395 			   struct writeback_control *wbc)
396 {
397 	int ret;
398 
399 	if (!mapping_can_writeback(mapping) ||
400 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
401 		return 0;
402 
403 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
404 	ret = do_writepages(mapping, wbc);
405 	wbc_detach_inode(wbc);
406 	return ret;
407 }
408 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
409 
410 /**
411  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
412  * @mapping:	address space structure to write
413  * @start:	offset in bytes where the range starts
414  * @end:	offset in bytes where the range ends (inclusive)
415  * @sync_mode:	enable synchronous operation
416  *
417  * Start writeback against all of a mapping's dirty pages that lie
418  * within the byte offsets <start, end> inclusive.
419  *
420  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
421  * opposed to a regular memory cleansing writeback.  The difference between
422  * these two operations is that if a dirty page/buffer is encountered, it must
423  * be waited upon, and not just skipped over.
424  *
425  * Return: %0 on success, negative error code otherwise.
426  */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)427 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
428 				loff_t end, int sync_mode)
429 {
430 	struct writeback_control wbc = {
431 		.sync_mode = sync_mode,
432 		.nr_to_write = LONG_MAX,
433 		.range_start = start,
434 		.range_end = end,
435 	};
436 
437 	return filemap_fdatawrite_wbc(mapping, &wbc);
438 }
439 
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)440 static inline int __filemap_fdatawrite(struct address_space *mapping,
441 	int sync_mode)
442 {
443 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
444 }
445 
filemap_fdatawrite(struct address_space * mapping)446 int filemap_fdatawrite(struct address_space *mapping)
447 {
448 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
449 }
450 EXPORT_SYMBOL(filemap_fdatawrite);
451 
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)452 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
453 				loff_t end)
454 {
455 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
456 }
457 EXPORT_SYMBOL(filemap_fdatawrite_range);
458 
459 /**
460  * filemap_flush - mostly a non-blocking flush
461  * @mapping:	target address_space
462  *
463  * This is a mostly non-blocking flush.  Not suitable for data-integrity
464  * purposes - I/O may not be started against all dirty pages.
465  *
466  * Return: %0 on success, negative error code otherwise.
467  */
filemap_flush(struct address_space * mapping)468 int filemap_flush(struct address_space *mapping)
469 {
470 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
471 }
472 EXPORT_SYMBOL(filemap_flush);
473 
474 /**
475  * filemap_range_has_page - check if a page exists in range.
476  * @mapping:           address space within which to check
477  * @start_byte:        offset in bytes where the range starts
478  * @end_byte:          offset in bytes where the range ends (inclusive)
479  *
480  * Find at least one page in the range supplied, usually used to check if
481  * direct writing in this range will trigger a writeback.
482  *
483  * Return: %true if at least one page exists in the specified range,
484  * %false otherwise.
485  */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)486 bool filemap_range_has_page(struct address_space *mapping,
487 			   loff_t start_byte, loff_t end_byte)
488 {
489 	struct page *page;
490 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
491 	pgoff_t max = end_byte >> PAGE_SHIFT;
492 
493 	if (end_byte < start_byte)
494 		return false;
495 
496 	rcu_read_lock();
497 	for (;;) {
498 		page = xas_find(&xas, max);
499 		if (xas_retry(&xas, page))
500 			continue;
501 		/* Shadow entries don't count */
502 		if (xa_is_value(page))
503 			continue;
504 		/*
505 		 * We don't need to try to pin this page; we're about to
506 		 * release the RCU lock anyway.  It is enough to know that
507 		 * there was a page here recently.
508 		 */
509 		break;
510 	}
511 	rcu_read_unlock();
512 
513 	return page != NULL;
514 }
515 EXPORT_SYMBOL(filemap_range_has_page);
516 
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)517 static void __filemap_fdatawait_range(struct address_space *mapping,
518 				     loff_t start_byte, loff_t end_byte)
519 {
520 	pgoff_t index = start_byte >> PAGE_SHIFT;
521 	pgoff_t end = end_byte >> PAGE_SHIFT;
522 	struct pagevec pvec;
523 	int nr_pages;
524 
525 	if (end_byte < start_byte)
526 		return;
527 
528 	pagevec_init(&pvec);
529 	while (index <= end) {
530 		unsigned i;
531 
532 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
533 				end, PAGECACHE_TAG_WRITEBACK);
534 		if (!nr_pages)
535 			break;
536 
537 		for (i = 0; i < nr_pages; i++) {
538 			struct page *page = pvec.pages[i];
539 
540 			wait_on_page_writeback(page);
541 			ClearPageError(page);
542 		}
543 		pagevec_release(&pvec);
544 		cond_resched();
545 	}
546 }
547 
548 /**
549  * filemap_fdatawait_range - wait for writeback to complete
550  * @mapping:		address space structure to wait for
551  * @start_byte:		offset in bytes where the range starts
552  * @end_byte:		offset in bytes where the range ends (inclusive)
553  *
554  * Walk the list of under-writeback pages of the given address space
555  * in the given range and wait for all of them.  Check error status of
556  * the address space and return it.
557  *
558  * Since the error status of the address space is cleared by this function,
559  * callers are responsible for checking the return value and handling and/or
560  * reporting the error.
561  *
562  * Return: error status of the address space.
563  */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)564 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
565 			    loff_t end_byte)
566 {
567 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
568 	return filemap_check_errors(mapping);
569 }
570 EXPORT_SYMBOL(filemap_fdatawait_range);
571 
572 /**
573  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
574  * @mapping:		address space structure to wait for
575  * @start_byte:		offset in bytes where the range starts
576  * @end_byte:		offset in bytes where the range ends (inclusive)
577  *
578  * Walk the list of under-writeback pages of the given address space in the
579  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
580  * this function does not clear error status of the address space.
581  *
582  * Use this function if callers don't handle errors themselves.  Expected
583  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
584  * fsfreeze(8)
585  */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)586 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
587 		loff_t start_byte, loff_t end_byte)
588 {
589 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
590 	return filemap_check_and_keep_errors(mapping);
591 }
592 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
593 
594 /**
595  * file_fdatawait_range - wait for writeback to complete
596  * @file:		file pointing to address space structure to wait for
597  * @start_byte:		offset in bytes where the range starts
598  * @end_byte:		offset in bytes where the range ends (inclusive)
599  *
600  * Walk the list of under-writeback pages of the address space that file
601  * refers to, in the given range and wait for all of them.  Check error
602  * status of the address space vs. the file->f_wb_err cursor and return it.
603  *
604  * Since the error status of the file is advanced by this function,
605  * callers are responsible for checking the return value and handling and/or
606  * reporting the error.
607  *
608  * Return: error status of the address space vs. the file->f_wb_err cursor.
609  */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)610 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
611 {
612 	struct address_space *mapping = file->f_mapping;
613 
614 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
615 	return file_check_and_advance_wb_err(file);
616 }
617 EXPORT_SYMBOL(file_fdatawait_range);
618 
619 /**
620  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
621  * @mapping: address space structure to wait for
622  *
623  * Walk the list of under-writeback pages of the given address space
624  * and wait for all of them.  Unlike filemap_fdatawait(), this function
625  * does not clear error status of the address space.
626  *
627  * Use this function if callers don't handle errors themselves.  Expected
628  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
629  * fsfreeze(8)
630  *
631  * Return: error status of the address space.
632  */
filemap_fdatawait_keep_errors(struct address_space * mapping)633 int filemap_fdatawait_keep_errors(struct address_space *mapping)
634 {
635 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
636 	return filemap_check_and_keep_errors(mapping);
637 }
638 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
639 
640 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)641 static bool mapping_needs_writeback(struct address_space *mapping)
642 {
643 	return mapping->nrpages;
644 }
645 
646 /**
647  * filemap_range_needs_writeback - check if range potentially needs writeback
648  * @mapping:           address space within which to check
649  * @start_byte:        offset in bytes where the range starts
650  * @end_byte:          offset in bytes where the range ends (inclusive)
651  *
652  * Find at least one page in the range supplied, usually used to check if
653  * direct writing in this range will trigger a writeback. Used by O_DIRECT
654  * read/write with IOCB_NOWAIT, to see if the caller needs to do
655  * filemap_write_and_wait_range() before proceeding.
656  *
657  * Return: %true if the caller should do filemap_write_and_wait_range() before
658  * doing O_DIRECT to a page in this range, %false otherwise.
659  */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)660 bool filemap_range_needs_writeback(struct address_space *mapping,
661 				   loff_t start_byte, loff_t end_byte)
662 {
663 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
664 	pgoff_t max = end_byte >> PAGE_SHIFT;
665 	struct page *page;
666 
667 	if (!mapping_needs_writeback(mapping))
668 		return false;
669 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
670 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
671 		return false;
672 	if (end_byte < start_byte)
673 		return false;
674 
675 	rcu_read_lock();
676 	xas_for_each(&xas, page, max) {
677 		if (xas_retry(&xas, page))
678 			continue;
679 		if (xa_is_value(page))
680 			continue;
681 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
682 			break;
683 	}
684 	rcu_read_unlock();
685 	return page != NULL;
686 }
687 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
688 
689 /**
690  * filemap_write_and_wait_range - write out & wait on a file range
691  * @mapping:	the address_space for the pages
692  * @lstart:	offset in bytes where the range starts
693  * @lend:	offset in bytes where the range ends (inclusive)
694  *
695  * Write out and wait upon file offsets lstart->lend, inclusive.
696  *
697  * Note that @lend is inclusive (describes the last byte to be written) so
698  * that this function can be used to write to the very end-of-file (end = -1).
699  *
700  * Return: error status of the address space.
701  */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)702 int filemap_write_and_wait_range(struct address_space *mapping,
703 				 loff_t lstart, loff_t lend)
704 {
705 	int err = 0;
706 
707 	if (mapping_needs_writeback(mapping)) {
708 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
709 						 WB_SYNC_ALL);
710 		/*
711 		 * Even if the above returned error, the pages may be
712 		 * written partially (e.g. -ENOSPC), so we wait for it.
713 		 * But the -EIO is special case, it may indicate the worst
714 		 * thing (e.g. bug) happened, so we avoid waiting for it.
715 		 */
716 		if (err != -EIO) {
717 			int err2 = filemap_fdatawait_range(mapping,
718 						lstart, lend);
719 			if (!err)
720 				err = err2;
721 		} else {
722 			/* Clear any previously stored errors */
723 			filemap_check_errors(mapping);
724 		}
725 	} else {
726 		err = filemap_check_errors(mapping);
727 	}
728 	return err;
729 }
730 EXPORT_SYMBOL(filemap_write_and_wait_range);
731 
__filemap_set_wb_err(struct address_space * mapping,int err)732 void __filemap_set_wb_err(struct address_space *mapping, int err)
733 {
734 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
735 
736 	trace_filemap_set_wb_err(mapping, eseq);
737 }
738 EXPORT_SYMBOL(__filemap_set_wb_err);
739 
740 /**
741  * file_check_and_advance_wb_err - report wb error (if any) that was previously
742  * 				   and advance wb_err to current one
743  * @file: struct file on which the error is being reported
744  *
745  * When userland calls fsync (or something like nfsd does the equivalent), we
746  * want to report any writeback errors that occurred since the last fsync (or
747  * since the file was opened if there haven't been any).
748  *
749  * Grab the wb_err from the mapping. If it matches what we have in the file,
750  * then just quickly return 0. The file is all caught up.
751  *
752  * If it doesn't match, then take the mapping value, set the "seen" flag in
753  * it and try to swap it into place. If it works, or another task beat us
754  * to it with the new value, then update the f_wb_err and return the error
755  * portion. The error at this point must be reported via proper channels
756  * (a'la fsync, or NFS COMMIT operation, etc.).
757  *
758  * While we handle mapping->wb_err with atomic operations, the f_wb_err
759  * value is protected by the f_lock since we must ensure that it reflects
760  * the latest value swapped in for this file descriptor.
761  *
762  * Return: %0 on success, negative error code otherwise.
763  */
file_check_and_advance_wb_err(struct file * file)764 int file_check_and_advance_wb_err(struct file *file)
765 {
766 	int err = 0;
767 	errseq_t old = READ_ONCE(file->f_wb_err);
768 	struct address_space *mapping = file->f_mapping;
769 
770 	/* Locklessly handle the common case where nothing has changed */
771 	if (errseq_check(&mapping->wb_err, old)) {
772 		/* Something changed, must use slow path */
773 		spin_lock(&file->f_lock);
774 		old = file->f_wb_err;
775 		err = errseq_check_and_advance(&mapping->wb_err,
776 						&file->f_wb_err);
777 		trace_file_check_and_advance_wb_err(file, old);
778 		spin_unlock(&file->f_lock);
779 	}
780 
781 	/*
782 	 * We're mostly using this function as a drop in replacement for
783 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
784 	 * that the legacy code would have had on these flags.
785 	 */
786 	clear_bit(AS_EIO, &mapping->flags);
787 	clear_bit(AS_ENOSPC, &mapping->flags);
788 	return err;
789 }
790 EXPORT_SYMBOL(file_check_and_advance_wb_err);
791 
792 /**
793  * file_write_and_wait_range - write out & wait on a file range
794  * @file:	file pointing to address_space with pages
795  * @lstart:	offset in bytes where the range starts
796  * @lend:	offset in bytes where the range ends (inclusive)
797  *
798  * Write out and wait upon file offsets lstart->lend, inclusive.
799  *
800  * Note that @lend is inclusive (describes the last byte to be written) so
801  * that this function can be used to write to the very end-of-file (end = -1).
802  *
803  * After writing out and waiting on the data, we check and advance the
804  * f_wb_err cursor to the latest value, and return any errors detected there.
805  *
806  * Return: %0 on success, negative error code otherwise.
807  */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)808 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
809 {
810 	int err = 0, err2;
811 	struct address_space *mapping = file->f_mapping;
812 
813 	if (mapping_needs_writeback(mapping)) {
814 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
815 						 WB_SYNC_ALL);
816 		/* See comment of filemap_write_and_wait() */
817 		if (err != -EIO)
818 			__filemap_fdatawait_range(mapping, lstart, lend);
819 	}
820 	err2 = file_check_and_advance_wb_err(file);
821 	if (!err)
822 		err = err2;
823 	return err;
824 }
825 EXPORT_SYMBOL(file_write_and_wait_range);
826 
827 /**
828  * replace_page_cache_page - replace a pagecache page with a new one
829  * @old:	page to be replaced
830  * @new:	page to replace with
831  *
832  * This function replaces a page in the pagecache with a new one.  On
833  * success it acquires the pagecache reference for the new page and
834  * drops it for the old page.  Both the old and new pages must be
835  * locked.  This function does not add the new page to the LRU, the
836  * caller must do that.
837  *
838  * The remove + add is atomic.  This function cannot fail.
839  */
replace_page_cache_page(struct page * old,struct page * new)840 void replace_page_cache_page(struct page *old, struct page *new)
841 {
842 	struct address_space *mapping = old->mapping;
843 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
844 	pgoff_t offset = old->index;
845 	XA_STATE(xas, &mapping->i_pages, offset);
846 
847 	VM_BUG_ON_PAGE(!PageLocked(old), old);
848 	VM_BUG_ON_PAGE(!PageLocked(new), new);
849 	VM_BUG_ON_PAGE(new->mapping, new);
850 
851 	get_page(new);
852 	new->mapping = mapping;
853 	new->index = offset;
854 
855 	mem_cgroup_migrate(old, new);
856 
857 	xas_lock_irq(&xas);
858 	xas_store(&xas, new);
859 
860 	old->mapping = NULL;
861 	/* hugetlb pages do not participate in page cache accounting. */
862 	if (!PageHuge(old))
863 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
864 	if (!PageHuge(new))
865 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
866 	if (PageSwapBacked(old))
867 		__dec_lruvec_page_state(old, NR_SHMEM);
868 	if (PageSwapBacked(new))
869 		__inc_lruvec_page_state(new, NR_SHMEM);
870 	xas_unlock_irq(&xas);
871 	if (freepage)
872 		freepage(old);
873 	put_page(old);
874 }
875 EXPORT_SYMBOL_GPL(replace_page_cache_page);
876 
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp,void ** shadowp)877 noinline int __add_to_page_cache_locked(struct page *page,
878 					struct address_space *mapping,
879 					pgoff_t offset, gfp_t gfp,
880 					void **shadowp)
881 {
882 	XA_STATE(xas, &mapping->i_pages, offset);
883 	int huge = PageHuge(page);
884 	int error;
885 	bool charged = false;
886 
887 	VM_BUG_ON_PAGE(!PageLocked(page), page);
888 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
889 	mapping_set_update(&xas, mapping);
890 
891 	get_page(page);
892 	page->mapping = mapping;
893 	page->index = offset;
894 
895 	if (!huge) {
896 		error = mem_cgroup_charge(page, NULL, gfp);
897 		if (error)
898 			goto error;
899 		charged = true;
900 	}
901 
902 	gfp &= GFP_RECLAIM_MASK;
903 
904 	do {
905 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
906 		void *entry, *old = NULL;
907 
908 		if (order > thp_order(page))
909 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
910 					order, gfp);
911 		xas_lock_irq(&xas);
912 		xas_for_each_conflict(&xas, entry) {
913 			old = entry;
914 			if (!xa_is_value(entry)) {
915 				xas_set_err(&xas, -EEXIST);
916 				goto unlock;
917 			}
918 		}
919 
920 		if (old) {
921 			if (shadowp)
922 				*shadowp = old;
923 			/* entry may have been split before we acquired lock */
924 			order = xa_get_order(xas.xa, xas.xa_index);
925 			if (order > thp_order(page)) {
926 				xas_split(&xas, old, order);
927 				xas_reset(&xas);
928 			}
929 		}
930 
931 		xas_store(&xas, page);
932 		if (xas_error(&xas))
933 			goto unlock;
934 
935 		mapping->nrpages++;
936 
937 		/* hugetlb pages do not participate in page cache accounting */
938 		if (!huge)
939 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
940 unlock:
941 		xas_unlock_irq(&xas);
942 	} while (xas_nomem(&xas, gfp));
943 
944 	if (xas_error(&xas)) {
945 		error = xas_error(&xas);
946 		if (charged)
947 			mem_cgroup_uncharge(page);
948 		goto error;
949 	}
950 
951 	trace_mm_filemap_add_to_page_cache(page);
952 	return 0;
953 error:
954 	page->mapping = NULL;
955 	/* Leave page->index set: truncation relies upon it */
956 	put_page(page);
957 	return error;
958 }
959 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
960 
961 /**
962  * add_to_page_cache_locked - add a locked page to the pagecache
963  * @page:	page to add
964  * @mapping:	the page's address_space
965  * @offset:	page index
966  * @gfp_mask:	page allocation mode
967  *
968  * This function is used to add a page to the pagecache. It must be locked.
969  * This function does not add the page to the LRU.  The caller must do that.
970  *
971  * Return: %0 on success, negative error code otherwise.
972  */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)973 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
974 		pgoff_t offset, gfp_t gfp_mask)
975 {
976 	return __add_to_page_cache_locked(page, mapping, offset,
977 					  gfp_mask, NULL);
978 }
979 EXPORT_SYMBOL(add_to_page_cache_locked);
980 
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)981 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
982 				pgoff_t offset, gfp_t gfp_mask)
983 {
984 	void *shadow = NULL;
985 	int ret;
986 
987 	__SetPageLocked(page);
988 	ret = __add_to_page_cache_locked(page, mapping, offset,
989 					 gfp_mask, &shadow);
990 	if (unlikely(ret))
991 		__ClearPageLocked(page);
992 	else {
993 		/*
994 		 * The page might have been evicted from cache only
995 		 * recently, in which case it should be activated like
996 		 * any other repeatedly accessed page.
997 		 * The exception is pages getting rewritten; evicting other
998 		 * data from the working set, only to cache data that will
999 		 * get overwritten with something else, is a waste of memory.
1000 		 */
1001 		WARN_ON_ONCE(PageActive(page));
1002 		if (!(gfp_mask & __GFP_WRITE) && shadow)
1003 			workingset_refault(page, shadow);
1004 		lru_cache_add(page);
1005 	}
1006 	return ret;
1007 }
1008 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1009 
1010 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)1011 struct page *__page_cache_alloc(gfp_t gfp)
1012 {
1013 	int n;
1014 	struct page *page;
1015 
1016 	if (cpuset_do_page_mem_spread()) {
1017 		unsigned int cpuset_mems_cookie;
1018 		do {
1019 			cpuset_mems_cookie = read_mems_allowed_begin();
1020 			n = cpuset_mem_spread_node();
1021 			page = __alloc_pages_node(n, gfp, 0);
1022 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1023 
1024 		return page;
1025 	}
1026 	return alloc_pages(gfp, 0);
1027 }
1028 EXPORT_SYMBOL(__page_cache_alloc);
1029 #endif
1030 
1031 /*
1032  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1033  *
1034  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1035  *
1036  * @mapping1: the first mapping to lock
1037  * @mapping2: the second mapping to lock
1038  */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1039 void filemap_invalidate_lock_two(struct address_space *mapping1,
1040 				 struct address_space *mapping2)
1041 {
1042 	if (mapping1 > mapping2)
1043 		swap(mapping1, mapping2);
1044 	if (mapping1)
1045 		down_write(&mapping1->invalidate_lock);
1046 	if (mapping2 && mapping1 != mapping2)
1047 		down_write_nested(&mapping2->invalidate_lock, 1);
1048 }
1049 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1050 
1051 /*
1052  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1053  *
1054  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1055  *
1056  * @mapping1: the first mapping to unlock
1057  * @mapping2: the second mapping to unlock
1058  */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1059 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1060 				   struct address_space *mapping2)
1061 {
1062 	if (mapping1)
1063 		up_write(&mapping1->invalidate_lock);
1064 	if (mapping2 && mapping1 != mapping2)
1065 		up_write(&mapping2->invalidate_lock);
1066 }
1067 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1068 
1069 /*
1070  * In order to wait for pages to become available there must be
1071  * waitqueues associated with pages. By using a hash table of
1072  * waitqueues where the bucket discipline is to maintain all
1073  * waiters on the same queue and wake all when any of the pages
1074  * become available, and for the woken contexts to check to be
1075  * sure the appropriate page became available, this saves space
1076  * at a cost of "thundering herd" phenomena during rare hash
1077  * collisions.
1078  */
1079 #define PAGE_WAIT_TABLE_BITS 8
1080 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1081 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1082 
page_waitqueue(struct page * page)1083 static wait_queue_head_t *page_waitqueue(struct page *page)
1084 {
1085 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1086 }
1087 
pagecache_init(void)1088 void __init pagecache_init(void)
1089 {
1090 	int i;
1091 
1092 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1093 		init_waitqueue_head(&page_wait_table[i]);
1094 
1095 	page_writeback_init();
1096 }
1097 
1098 /*
1099  * The page wait code treats the "wait->flags" somewhat unusually, because
1100  * we have multiple different kinds of waits, not just the usual "exclusive"
1101  * one.
1102  *
1103  * We have:
1104  *
1105  *  (a) no special bits set:
1106  *
1107  *	We're just waiting for the bit to be released, and when a waker
1108  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1109  *	and remove it from the wait queue.
1110  *
1111  *	Simple and straightforward.
1112  *
1113  *  (b) WQ_FLAG_EXCLUSIVE:
1114  *
1115  *	The waiter is waiting to get the lock, and only one waiter should
1116  *	be woken up to avoid any thundering herd behavior. We'll set the
1117  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1118  *
1119  *	This is the traditional exclusive wait.
1120  *
1121  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1122  *
1123  *	The waiter is waiting to get the bit, and additionally wants the
1124  *	lock to be transferred to it for fair lock behavior. If the lock
1125  *	cannot be taken, we stop walking the wait queue without waking
1126  *	the waiter.
1127  *
1128  *	This is the "fair lock handoff" case, and in addition to setting
1129  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1130  *	that it now has the lock.
1131  */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1132 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1133 {
1134 	unsigned int flags;
1135 	struct wait_page_key *key = arg;
1136 	struct wait_page_queue *wait_page
1137 		= container_of(wait, struct wait_page_queue, wait);
1138 
1139 	if (!wake_page_match(wait_page, key))
1140 		return 0;
1141 
1142 	/*
1143 	 * If it's a lock handoff wait, we get the bit for it, and
1144 	 * stop walking (and do not wake it up) if we can't.
1145 	 */
1146 	flags = wait->flags;
1147 	if (flags & WQ_FLAG_EXCLUSIVE) {
1148 		if (test_bit(key->bit_nr, &key->page->flags))
1149 			return -1;
1150 		if (flags & WQ_FLAG_CUSTOM) {
1151 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1152 				return -1;
1153 			flags |= WQ_FLAG_DONE;
1154 		}
1155 	}
1156 
1157 	/*
1158 	 * We are holding the wait-queue lock, but the waiter that
1159 	 * is waiting for this will be checking the flags without
1160 	 * any locking.
1161 	 *
1162 	 * So update the flags atomically, and wake up the waiter
1163 	 * afterwards to avoid any races. This store-release pairs
1164 	 * with the load-acquire in wait_on_page_bit_common().
1165 	 */
1166 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1167 	wake_up_state(wait->private, mode);
1168 
1169 	/*
1170 	 * Ok, we have successfully done what we're waiting for,
1171 	 * and we can unconditionally remove the wait entry.
1172 	 *
1173 	 * Note that this pairs with the "finish_wait()" in the
1174 	 * waiter, and has to be the absolute last thing we do.
1175 	 * After this list_del_init(&wait->entry) the wait entry
1176 	 * might be de-allocated and the process might even have
1177 	 * exited.
1178 	 */
1179 	list_del_init_careful(&wait->entry);
1180 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1181 }
1182 
wake_up_page_bit(struct page * page,int bit_nr)1183 static void wake_up_page_bit(struct page *page, int bit_nr)
1184 {
1185 	wait_queue_head_t *q = page_waitqueue(page);
1186 	struct wait_page_key key;
1187 	unsigned long flags;
1188 	wait_queue_entry_t bookmark;
1189 
1190 	key.page = page;
1191 	key.bit_nr = bit_nr;
1192 	key.page_match = 0;
1193 
1194 	bookmark.flags = 0;
1195 	bookmark.private = NULL;
1196 	bookmark.func = NULL;
1197 	INIT_LIST_HEAD(&bookmark.entry);
1198 
1199 	spin_lock_irqsave(&q->lock, flags);
1200 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1201 
1202 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1203 		/*
1204 		 * Take a breather from holding the lock,
1205 		 * allow pages that finish wake up asynchronously
1206 		 * to acquire the lock and remove themselves
1207 		 * from wait queue
1208 		 */
1209 		spin_unlock_irqrestore(&q->lock, flags);
1210 		cpu_relax();
1211 		spin_lock_irqsave(&q->lock, flags);
1212 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1213 	}
1214 
1215 	/*
1216 	 * It is possible for other pages to have collided on the waitqueue
1217 	 * hash, so in that case check for a page match. That prevents a long-
1218 	 * term waiter
1219 	 *
1220 	 * It is still possible to miss a case here, when we woke page waiters
1221 	 * and removed them from the waitqueue, but there are still other
1222 	 * page waiters.
1223 	 */
1224 	if (!waitqueue_active(q) || !key.page_match) {
1225 		ClearPageWaiters(page);
1226 		/*
1227 		 * It's possible to miss clearing Waiters here, when we woke
1228 		 * our page waiters, but the hashed waitqueue has waiters for
1229 		 * other pages on it.
1230 		 *
1231 		 * That's okay, it's a rare case. The next waker will clear it.
1232 		 */
1233 	}
1234 	spin_unlock_irqrestore(&q->lock, flags);
1235 }
1236 
wake_up_page(struct page * page,int bit)1237 static void wake_up_page(struct page *page, int bit)
1238 {
1239 	if (!PageWaiters(page))
1240 		return;
1241 	wake_up_page_bit(page, bit);
1242 }
1243 
1244 /*
1245  * A choice of three behaviors for wait_on_page_bit_common():
1246  */
1247 enum behavior {
1248 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1249 			 * __lock_page() waiting on then setting PG_locked.
1250 			 */
1251 	SHARED,		/* Hold ref to page and check the bit when woken, like
1252 			 * wait_on_page_writeback() waiting on PG_writeback.
1253 			 */
1254 	DROP,		/* Drop ref to page before wait, no check when woken,
1255 			 * like put_and_wait_on_page_locked() on PG_locked.
1256 			 */
1257 };
1258 
1259 /*
1260  * Attempt to check (or get) the page bit, and mark us done
1261  * if successful.
1262  */
trylock_page_bit_common(struct page * page,int bit_nr,struct wait_queue_entry * wait)1263 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1264 					struct wait_queue_entry *wait)
1265 {
1266 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1267 		if (test_and_set_bit(bit_nr, &page->flags))
1268 			return false;
1269 	} else if (test_bit(bit_nr, &page->flags))
1270 		return false;
1271 
1272 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1273 	return true;
1274 }
1275 
1276 /* How many times do we accept lock stealing from under a waiter? */
1277 int sysctl_page_lock_unfairness = 5;
1278 
wait_on_page_bit_common(wait_queue_head_t * q,struct page * page,int bit_nr,int state,enum behavior behavior)1279 static inline __sched int wait_on_page_bit_common(wait_queue_head_t *q,
1280 	struct page *page, int bit_nr, int state, enum behavior behavior)
1281 {
1282 	int unfairness = sysctl_page_lock_unfairness;
1283 	struct wait_page_queue wait_page;
1284 	wait_queue_entry_t *wait = &wait_page.wait;
1285 	bool thrashing = false;
1286 	bool delayacct = false;
1287 	unsigned long pflags;
1288 
1289 	if (bit_nr == PG_locked &&
1290 	    !PageUptodate(page) && PageWorkingset(page)) {
1291 		if (!PageSwapBacked(page)) {
1292 			delayacct_thrashing_start();
1293 			delayacct = true;
1294 		}
1295 		psi_memstall_enter(&pflags);
1296 		thrashing = true;
1297 	}
1298 
1299 	init_wait(wait);
1300 	wait->func = wake_page_function;
1301 	wait_page.page = page;
1302 	wait_page.bit_nr = bit_nr;
1303 
1304 repeat:
1305 	wait->flags = 0;
1306 	if (behavior == EXCLUSIVE) {
1307 		wait->flags = WQ_FLAG_EXCLUSIVE;
1308 		if (--unfairness < 0)
1309 			wait->flags |= WQ_FLAG_CUSTOM;
1310 	}
1311 
1312 	/*
1313 	 * Do one last check whether we can get the
1314 	 * page bit synchronously.
1315 	 *
1316 	 * Do the SetPageWaiters() marking before that
1317 	 * to let any waker we _just_ missed know they
1318 	 * need to wake us up (otherwise they'll never
1319 	 * even go to the slow case that looks at the
1320 	 * page queue), and add ourselves to the wait
1321 	 * queue if we need to sleep.
1322 	 *
1323 	 * This part needs to be done under the queue
1324 	 * lock to avoid races.
1325 	 */
1326 	spin_lock_irq(&q->lock);
1327 	SetPageWaiters(page);
1328 	if (!trylock_page_bit_common(page, bit_nr, wait))
1329 		__add_wait_queue_entry_tail(q, wait);
1330 	spin_unlock_irq(&q->lock);
1331 
1332 	/*
1333 	 * From now on, all the logic will be based on
1334 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1335 	 * see whether the page bit testing has already
1336 	 * been done by the wake function.
1337 	 *
1338 	 * We can drop our reference to the page.
1339 	 */
1340 	if (behavior == DROP)
1341 		put_page(page);
1342 
1343 	/*
1344 	 * Note that until the "finish_wait()", or until
1345 	 * we see the WQ_FLAG_WOKEN flag, we need to
1346 	 * be very careful with the 'wait->flags', because
1347 	 * we may race with a waker that sets them.
1348 	 */
1349 	for (;;) {
1350 		unsigned int flags;
1351 
1352 		set_current_state(state);
1353 
1354 		/* Loop until we've been woken or interrupted */
1355 		flags = smp_load_acquire(&wait->flags);
1356 		if (!(flags & WQ_FLAG_WOKEN)) {
1357 			if (signal_pending_state(state, current))
1358 				break;
1359 
1360 			io_schedule();
1361 			continue;
1362 		}
1363 
1364 		/* If we were non-exclusive, we're done */
1365 		if (behavior != EXCLUSIVE)
1366 			break;
1367 
1368 		/* If the waker got the lock for us, we're done */
1369 		if (flags & WQ_FLAG_DONE)
1370 			break;
1371 
1372 		/*
1373 		 * Otherwise, if we're getting the lock, we need to
1374 		 * try to get it ourselves.
1375 		 *
1376 		 * And if that fails, we'll have to retry this all.
1377 		 */
1378 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1379 			goto repeat;
1380 
1381 		wait->flags |= WQ_FLAG_DONE;
1382 		break;
1383 	}
1384 
1385 	/*
1386 	 * If a signal happened, this 'finish_wait()' may remove the last
1387 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1388 	 * set. That's ok. The next wakeup will take care of it, and trying
1389 	 * to do it here would be difficult and prone to races.
1390 	 */
1391 	finish_wait(q, wait);
1392 
1393 	if (thrashing) {
1394 		if (delayacct)
1395 			delayacct_thrashing_end();
1396 		psi_memstall_leave(&pflags);
1397 	}
1398 
1399 	/*
1400 	 * NOTE! The wait->flags weren't stable until we've done the
1401 	 * 'finish_wait()', and we could have exited the loop above due
1402 	 * to a signal, and had a wakeup event happen after the signal
1403 	 * test but before the 'finish_wait()'.
1404 	 *
1405 	 * So only after the finish_wait() can we reliably determine
1406 	 * if we got woken up or not, so we can now figure out the final
1407 	 * return value based on that state without races.
1408 	 *
1409 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1410 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1411 	 */
1412 	if (behavior == EXCLUSIVE)
1413 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1414 
1415 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1416 }
1417 
wait_on_page_bit(struct page * page,int bit_nr)1418 __sched void wait_on_page_bit(struct page *page, int bit_nr)
1419 {
1420 	wait_queue_head_t *q = page_waitqueue(page);
1421 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1422 }
1423 EXPORT_SYMBOL(wait_on_page_bit);
1424 
wait_on_page_bit_killable(struct page * page,int bit_nr)1425 __sched int wait_on_page_bit_killable(struct page *page, int bit_nr)
1426 {
1427 	wait_queue_head_t *q = page_waitqueue(page);
1428 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1429 }
1430 EXPORT_SYMBOL(wait_on_page_bit_killable);
1431 
1432 /**
1433  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1434  * @page: The page to wait for.
1435  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1436  *
1437  * The caller should hold a reference on @page.  They expect the page to
1438  * become unlocked relatively soon, but do not wish to hold up migration
1439  * (for example) by holding the reference while waiting for the page to
1440  * come unlocked.  After this function returns, the caller should not
1441  * dereference @page.
1442  *
1443  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1444  */
put_and_wait_on_page_locked(struct page * page,int state)1445 int put_and_wait_on_page_locked(struct page *page, int state)
1446 {
1447 	wait_queue_head_t *q;
1448 
1449 	page = compound_head(page);
1450 	q = page_waitqueue(page);
1451 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1452 }
1453 
1454 /**
1455  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1456  * @page: Page defining the wait queue of interest
1457  * @waiter: Waiter to add to the queue
1458  *
1459  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1460  */
add_page_wait_queue(struct page * page,wait_queue_entry_t * waiter)1461 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1462 {
1463 	wait_queue_head_t *q = page_waitqueue(page);
1464 	unsigned long flags;
1465 
1466 	spin_lock_irqsave(&q->lock, flags);
1467 	__add_wait_queue_entry_tail(q, waiter);
1468 	SetPageWaiters(page);
1469 	spin_unlock_irqrestore(&q->lock, flags);
1470 }
1471 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1472 
1473 #ifndef clear_bit_unlock_is_negative_byte
1474 
1475 /*
1476  * PG_waiters is the high bit in the same byte as PG_lock.
1477  *
1478  * On x86 (and on many other architectures), we can clear PG_lock and
1479  * test the sign bit at the same time. But if the architecture does
1480  * not support that special operation, we just do this all by hand
1481  * instead.
1482  *
1483  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1484  * being cleared, but a memory barrier should be unnecessary since it is
1485  * in the same byte as PG_locked.
1486  */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1487 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1488 {
1489 	clear_bit_unlock(nr, mem);
1490 	/* smp_mb__after_atomic(); */
1491 	return test_bit(PG_waiters, mem);
1492 }
1493 
1494 #endif
1495 
1496 /**
1497  * unlock_page - unlock a locked page
1498  * @page: the page
1499  *
1500  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1501  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1502  * mechanism between PageLocked pages and PageWriteback pages is shared.
1503  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1504  *
1505  * Note that this depends on PG_waiters being the sign bit in the byte
1506  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1507  * clear the PG_locked bit and test PG_waiters at the same time fairly
1508  * portably (architectures that do LL/SC can test any bit, while x86 can
1509  * test the sign bit).
1510  */
unlock_page(struct page * page)1511 void unlock_page(struct page *page)
1512 {
1513 	BUILD_BUG_ON(PG_waiters != 7);
1514 	page = compound_head(page);
1515 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1516 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1517 		wake_up_page_bit(page, PG_locked);
1518 }
1519 EXPORT_SYMBOL(unlock_page);
1520 
1521 /**
1522  * end_page_private_2 - Clear PG_private_2 and release any waiters
1523  * @page: The page
1524  *
1525  * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1526  * this.  The page ref held for PG_private_2 being set is released.
1527  *
1528  * This is, for example, used when a netfs page is being written to a local
1529  * disk cache, thereby allowing writes to the cache for the same page to be
1530  * serialised.
1531  */
end_page_private_2(struct page * page)1532 void end_page_private_2(struct page *page)
1533 {
1534 	page = compound_head(page);
1535 	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1536 	clear_bit_unlock(PG_private_2, &page->flags);
1537 	wake_up_page_bit(page, PG_private_2);
1538 	put_page(page);
1539 }
1540 EXPORT_SYMBOL(end_page_private_2);
1541 
1542 /**
1543  * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1544  * @page: The page to wait on
1545  *
1546  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1547  */
wait_on_page_private_2(struct page * page)1548 void wait_on_page_private_2(struct page *page)
1549 {
1550 	page = compound_head(page);
1551 	while (PagePrivate2(page))
1552 		wait_on_page_bit(page, PG_private_2);
1553 }
1554 EXPORT_SYMBOL(wait_on_page_private_2);
1555 
1556 /**
1557  * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1558  * @page: The page to wait on
1559  *
1560  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1561  * fatal signal is received by the calling task.
1562  *
1563  * Return:
1564  * - 0 if successful.
1565  * - -EINTR if a fatal signal was encountered.
1566  */
wait_on_page_private_2_killable(struct page * page)1567 int wait_on_page_private_2_killable(struct page *page)
1568 {
1569 	int ret = 0;
1570 
1571 	page = compound_head(page);
1572 	while (PagePrivate2(page)) {
1573 		ret = wait_on_page_bit_killable(page, PG_private_2);
1574 		if (ret < 0)
1575 			break;
1576 	}
1577 
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1581 
1582 /**
1583  * end_page_writeback - end writeback against a page
1584  * @page: the page
1585  */
end_page_writeback(struct page * page)1586 void end_page_writeback(struct page *page)
1587 {
1588 	/*
1589 	 * TestClearPageReclaim could be used here but it is an atomic
1590 	 * operation and overkill in this particular case. Failing to
1591 	 * shuffle a page marked for immediate reclaim is too mild to
1592 	 * justify taking an atomic operation penalty at the end of
1593 	 * ever page writeback.
1594 	 */
1595 	if (PageReclaim(page)) {
1596 		ClearPageReclaim(page);
1597 		rotate_reclaimable_page(page);
1598 	}
1599 
1600 	/*
1601 	 * Writeback does not hold a page reference of its own, relying
1602 	 * on truncation to wait for the clearing of PG_writeback.
1603 	 * But here we must make sure that the page is not freed and
1604 	 * reused before the wake_up_page().
1605 	 */
1606 	get_page(page);
1607 	if (!test_clear_page_writeback(page))
1608 		BUG();
1609 
1610 	smp_mb__after_atomic();
1611 	wake_up_page(page, PG_writeback);
1612 	put_page(page);
1613 }
1614 EXPORT_SYMBOL(end_page_writeback);
1615 
1616 /*
1617  * After completing I/O on a page, call this routine to update the page
1618  * flags appropriately
1619  */
page_endio(struct page * page,bool is_write,int err)1620 void page_endio(struct page *page, bool is_write, int err)
1621 {
1622 	if (!is_write) {
1623 		if (!err) {
1624 			SetPageUptodate(page);
1625 		} else {
1626 			ClearPageUptodate(page);
1627 			SetPageError(page);
1628 		}
1629 		unlock_page(page);
1630 	} else {
1631 		if (err) {
1632 			struct address_space *mapping;
1633 
1634 			SetPageError(page);
1635 			mapping = page_mapping(page);
1636 			if (mapping)
1637 				mapping_set_error(mapping, err);
1638 		}
1639 		end_page_writeback(page);
1640 	}
1641 }
1642 EXPORT_SYMBOL_GPL(page_endio);
1643 
1644 /**
1645  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1646  * @__page: the page to lock
1647  */
__lock_page(struct page * __page)1648 __sched void __lock_page(struct page *__page)
1649 {
1650 	struct page *page = compound_head(__page);
1651 	wait_queue_head_t *q = page_waitqueue(page);
1652 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1653 				EXCLUSIVE);
1654 }
1655 EXPORT_SYMBOL(__lock_page);
1656 
__lock_page_killable(struct page * __page)1657 __sched int __lock_page_killable(struct page *__page)
1658 {
1659 	struct page *page = compound_head(__page);
1660 	wait_queue_head_t *q = page_waitqueue(page);
1661 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1662 					EXCLUSIVE);
1663 }
1664 EXPORT_SYMBOL_GPL(__lock_page_killable);
1665 
__lock_page_async(struct page * page,struct wait_page_queue * wait)1666 __sched int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1667 {
1668 	struct wait_queue_head *q = page_waitqueue(page);
1669 	int ret = 0;
1670 
1671 	wait->page = page;
1672 	wait->bit_nr = PG_locked;
1673 
1674 	spin_lock_irq(&q->lock);
1675 	__add_wait_queue_entry_tail(q, &wait->wait);
1676 	SetPageWaiters(page);
1677 	ret = !trylock_page(page);
1678 	/*
1679 	 * If we were successful now, we know we're still on the
1680 	 * waitqueue as we're still under the lock. This means it's
1681 	 * safe to remove and return success, we know the callback
1682 	 * isn't going to trigger.
1683 	 */
1684 	if (!ret)
1685 		__remove_wait_queue(q, &wait->wait);
1686 	else
1687 		ret = -EIOCBQUEUED;
1688 	spin_unlock_irq(&q->lock);
1689 	return ret;
1690 }
1691 
1692 /*
1693  * Return values:
1694  * 1 - page is locked; mmap_lock is still held.
1695  * 0 - page is not locked.
1696  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1697  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1698  *     which case mmap_lock is still held.
1699  *
1700  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1701  * with the page locked and the mmap_lock unperturbed.
1702  */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)1703 __sched int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1704 			 unsigned int flags)
1705 {
1706 	if (fault_flag_allow_retry_first(flags)) {
1707 		/*
1708 		 * CAUTION! In this case, mmap_lock is not released
1709 		 * even though return 0.
1710 		 */
1711 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1712 			return 0;
1713 
1714 		mmap_read_unlock(mm);
1715 		if (flags & FAULT_FLAG_KILLABLE)
1716 			wait_on_page_locked_killable(page);
1717 		else
1718 			wait_on_page_locked(page);
1719 		return 0;
1720 	}
1721 	if (flags & FAULT_FLAG_KILLABLE) {
1722 		int ret;
1723 
1724 		ret = __lock_page_killable(page);
1725 		if (ret) {
1726 			mmap_read_unlock(mm);
1727 			return 0;
1728 		}
1729 	} else {
1730 		__lock_page(page);
1731 	}
1732 	return 1;
1733 
1734 }
1735 
1736 /**
1737  * page_cache_next_miss() - Find the next gap in the page cache.
1738  * @mapping: Mapping.
1739  * @index: Index.
1740  * @max_scan: Maximum range to search.
1741  *
1742  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1743  * gap with the lowest index.
1744  *
1745  * This function may be called under the rcu_read_lock.  However, this will
1746  * not atomically search a snapshot of the cache at a single point in time.
1747  * For example, if a gap is created at index 5, then subsequently a gap is
1748  * created at index 10, page_cache_next_miss covering both indices may
1749  * return 10 if called under the rcu_read_lock.
1750  *
1751  * Return: The index of the gap if found, otherwise an index outside the
1752  * range specified (in which case 'return - index >= max_scan' will be true).
1753  * In the rare case of index wrap-around, 0 will be returned.
1754  */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1755 pgoff_t page_cache_next_miss(struct address_space *mapping,
1756 			     pgoff_t index, unsigned long max_scan)
1757 {
1758 	XA_STATE(xas, &mapping->i_pages, index);
1759 
1760 	while (max_scan--) {
1761 		void *entry = xas_next(&xas);
1762 		if (!entry || xa_is_value(entry))
1763 			break;
1764 		if (xas.xa_index == 0)
1765 			break;
1766 	}
1767 
1768 	return xas.xa_index;
1769 }
1770 EXPORT_SYMBOL(page_cache_next_miss);
1771 
1772 /**
1773  * page_cache_prev_miss() - Find the previous gap in the page cache.
1774  * @mapping: Mapping.
1775  * @index: Index.
1776  * @max_scan: Maximum range to search.
1777  *
1778  * Search the range [max(index - max_scan + 1, 0), index] for the
1779  * gap with the highest index.
1780  *
1781  * This function may be called under the rcu_read_lock.  However, this will
1782  * not atomically search a snapshot of the cache at a single point in time.
1783  * For example, if a gap is created at index 10, then subsequently a gap is
1784  * created at index 5, page_cache_prev_miss() covering both indices may
1785  * return 5 if called under the rcu_read_lock.
1786  *
1787  * Return: The index of the gap if found, otherwise an index outside the
1788  * range specified (in which case 'index - return >= max_scan' will be true).
1789  * In the rare case of wrap-around, ULONG_MAX will be returned.
1790  */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1791 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1792 			     pgoff_t index, unsigned long max_scan)
1793 {
1794 	XA_STATE(xas, &mapping->i_pages, index);
1795 
1796 	while (max_scan--) {
1797 		void *entry = xas_prev(&xas);
1798 		if (!entry || xa_is_value(entry))
1799 			break;
1800 		if (xas.xa_index == ULONG_MAX)
1801 			break;
1802 	}
1803 
1804 	return xas.xa_index;
1805 }
1806 EXPORT_SYMBOL(page_cache_prev_miss);
1807 
1808 /*
1809  * mapping_get_entry - Get a page cache entry.
1810  * @mapping: the address_space to search
1811  * @index: The page cache index.
1812  *
1813  * Looks up the page cache slot at @mapping & @index.  If there is a
1814  * page cache page, the head page is returned with an increased refcount.
1815  *
1816  * If the slot holds a shadow entry of a previously evicted page, or a
1817  * swap entry from shmem/tmpfs, it is returned.
1818  *
1819  * Return: The head page or shadow entry, %NULL if nothing is found.
1820  */
mapping_get_entry(struct address_space * mapping,pgoff_t index)1821 static struct page *mapping_get_entry(struct address_space *mapping,
1822 		pgoff_t index)
1823 {
1824 	XA_STATE(xas, &mapping->i_pages, index);
1825 	struct page *page;
1826 
1827 	rcu_read_lock();
1828 repeat:
1829 	xas_reset(&xas);
1830 	page = xas_load(&xas);
1831 	if (xas_retry(&xas, page))
1832 		goto repeat;
1833 	/*
1834 	 * A shadow entry of a recently evicted page, or a swap entry from
1835 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1836 	 */
1837 	if (!page || xa_is_value(page))
1838 		goto out;
1839 
1840 	if (!page_cache_get_speculative(page))
1841 		goto repeat;
1842 
1843 	/*
1844 	 * Has the page moved or been split?
1845 	 * This is part of the lockless pagecache protocol. See
1846 	 * include/linux/pagemap.h for details.
1847 	 */
1848 	if (unlikely(page != xas_reload(&xas))) {
1849 		put_page(page);
1850 		goto repeat;
1851 	}
1852 out:
1853 	rcu_read_unlock();
1854 
1855 	return page;
1856 }
1857 
1858 /**
1859  * pagecache_get_page - Find and get a reference to a page.
1860  * @mapping: The address_space to search.
1861  * @index: The page index.
1862  * @fgp_flags: %FGP flags modify how the page is returned.
1863  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1864  *
1865  * Looks up the page cache entry at @mapping & @index.
1866  *
1867  * @fgp_flags can be zero or more of these flags:
1868  *
1869  * * %FGP_ACCESSED - The page will be marked accessed.
1870  * * %FGP_LOCK - The page is returned locked.
1871  * * %FGP_HEAD - If the page is present and a THP, return the head page
1872  *   rather than the exact page specified by the index.
1873  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1874  *   instead of allocating a new page to replace it.
1875  * * %FGP_CREAT - If no page is present then a new page is allocated using
1876  *   @gfp_mask and added to the page cache and the VM's LRU list.
1877  *   The page is returned locked and with an increased refcount.
1878  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1879  *   page is already in cache.  If the page was allocated, unlock it before
1880  *   returning so the caller can do the same dance.
1881  * * %FGP_WRITE - The page will be written
1882  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1883  * * %FGP_NOWAIT - Don't get blocked by page lock
1884  *
1885  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1886  * if the %GFP flags specified for %FGP_CREAT are atomic.
1887  *
1888  * If there is a page cache page, it is returned with an increased refcount.
1889  *
1890  * Return: The found page or %NULL otherwise.
1891  */
pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)1892 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1893 		int fgp_flags, gfp_t gfp_mask)
1894 {
1895 	struct page *page;
1896 
1897 repeat:
1898 	page = mapping_get_entry(mapping, index);
1899 	if (xa_is_value(page)) {
1900 		if (fgp_flags & FGP_ENTRY)
1901 			return page;
1902 		page = NULL;
1903 	}
1904 	if (!page)
1905 		goto no_page;
1906 
1907 	if (fgp_flags & FGP_LOCK) {
1908 		if (fgp_flags & FGP_NOWAIT) {
1909 			if (!trylock_page(page)) {
1910 				put_page(page);
1911 				return NULL;
1912 			}
1913 		} else {
1914 			lock_page(page);
1915 		}
1916 
1917 		/* Has the page been truncated? */
1918 		if (unlikely(page->mapping != mapping)) {
1919 			unlock_page(page);
1920 			put_page(page);
1921 			goto repeat;
1922 		}
1923 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1924 	}
1925 
1926 	if (fgp_flags & FGP_ACCESSED)
1927 		mark_page_accessed(page);
1928 	else if (fgp_flags & FGP_WRITE) {
1929 		/* Clear idle flag for buffer write */
1930 		if (page_is_idle(page))
1931 			clear_page_idle(page);
1932 	}
1933 	if (!(fgp_flags & FGP_HEAD))
1934 		page = find_subpage(page, index);
1935 
1936 no_page:
1937 	if (!page && (fgp_flags & FGP_CREAT)) {
1938 		int err;
1939 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1940 			gfp_mask |= __GFP_WRITE;
1941 		if (fgp_flags & FGP_NOFS)
1942 			gfp_mask &= ~__GFP_FS;
1943 
1944 		page = __page_cache_alloc(gfp_mask);
1945 		if (!page)
1946 			return NULL;
1947 
1948 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1949 			fgp_flags |= FGP_LOCK;
1950 
1951 		/* Init accessed so avoid atomic mark_page_accessed later */
1952 		if (fgp_flags & FGP_ACCESSED)
1953 			__SetPageReferenced(page);
1954 
1955 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1956 		if (unlikely(err)) {
1957 			put_page(page);
1958 			page = NULL;
1959 			if (err == -EEXIST)
1960 				goto repeat;
1961 		}
1962 
1963 		/*
1964 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1965 		 * an unlocked page.
1966 		 */
1967 		if (page && (fgp_flags & FGP_FOR_MMAP))
1968 			unlock_page(page);
1969 	}
1970 
1971 	return page;
1972 }
1973 EXPORT_SYMBOL(pagecache_get_page);
1974 
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)1975 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1976 		xa_mark_t mark)
1977 {
1978 	struct page *page;
1979 
1980 retry:
1981 	if (mark == XA_PRESENT)
1982 		page = xas_find(xas, max);
1983 	else
1984 		page = xas_find_marked(xas, max, mark);
1985 
1986 	if (xas_retry(xas, page))
1987 		goto retry;
1988 	/*
1989 	 * A shadow entry of a recently evicted page, a swap
1990 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1991 	 * without attempting to raise page count.
1992 	 */
1993 	if (!page || xa_is_value(page))
1994 		return page;
1995 
1996 	if (!page_cache_get_speculative(page))
1997 		goto reset;
1998 
1999 	/* Has the page moved or been split? */
2000 	if (unlikely(page != xas_reload(xas))) {
2001 		put_page(page);
2002 		goto reset;
2003 	}
2004 
2005 	return page;
2006 reset:
2007 	xas_reset(xas);
2008 	goto retry;
2009 }
2010 
2011 /**
2012  * find_get_entries - gang pagecache lookup
2013  * @mapping:	The address_space to search
2014  * @start:	The starting page cache index
2015  * @end:	The final page index (inclusive).
2016  * @pvec:	Where the resulting entries are placed.
2017  * @indices:	The cache indices corresponding to the entries in @entries
2018  *
2019  * find_get_entries() will search for and return a batch of entries in
2020  * the mapping.  The entries are placed in @pvec.  find_get_entries()
2021  * takes a reference on any actual pages it returns.
2022  *
2023  * The search returns a group of mapping-contiguous page cache entries
2024  * with ascending indexes.  There may be holes in the indices due to
2025  * not-present pages.
2026  *
2027  * Any shadow entries of evicted pages, or swap entries from
2028  * shmem/tmpfs, are included in the returned array.
2029  *
2030  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2031  * stops at that page: the caller is likely to have a better way to handle
2032  * the compound page as a whole, and then skip its extent, than repeatedly
2033  * calling find_get_entries() to return all its tails.
2034  *
2035  * Return: the number of pages and shadow entries which were found.
2036  */
find_get_entries(struct address_space * mapping,pgoff_t start,pgoff_t end,struct pagevec * pvec,pgoff_t * indices)2037 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2038 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2039 {
2040 	XA_STATE(xas, &mapping->i_pages, start);
2041 	struct page *page;
2042 	unsigned int ret = 0;
2043 	unsigned nr_entries = PAGEVEC_SIZE;
2044 
2045 	rcu_read_lock();
2046 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2047 		/*
2048 		 * Terminate early on finding a THP, to allow the caller to
2049 		 * handle it all at once; but continue if this is hugetlbfs.
2050 		 */
2051 		if (!xa_is_value(page) && PageTransHuge(page) &&
2052 				!PageHuge(page)) {
2053 			page = find_subpage(page, xas.xa_index);
2054 			nr_entries = ret + 1;
2055 		}
2056 
2057 		indices[ret] = xas.xa_index;
2058 		pvec->pages[ret] = page;
2059 		if (++ret == nr_entries)
2060 			break;
2061 	}
2062 	rcu_read_unlock();
2063 
2064 	pvec->nr = ret;
2065 	return ret;
2066 }
2067 
2068 /**
2069  * find_lock_entries - Find a batch of pagecache entries.
2070  * @mapping:	The address_space to search.
2071  * @start:	The starting page cache index.
2072  * @end:	The final page index (inclusive).
2073  * @pvec:	Where the resulting entries are placed.
2074  * @indices:	The cache indices of the entries in @pvec.
2075  *
2076  * find_lock_entries() will return a batch of entries from @mapping.
2077  * Swap, shadow and DAX entries are included.  Pages are returned
2078  * locked and with an incremented refcount.  Pages which are locked by
2079  * somebody else or under writeback are skipped.  Only the head page of
2080  * a THP is returned.  Pages which are partially outside the range are
2081  * not returned.
2082  *
2083  * The entries have ascending indexes.  The indices may not be consecutive
2084  * due to not-present entries, THP pages, pages which could not be locked
2085  * or pages under writeback.
2086  *
2087  * Return: The number of entries which were found.
2088  */
find_lock_entries(struct address_space * mapping,pgoff_t start,pgoff_t end,struct pagevec * pvec,pgoff_t * indices)2089 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2090 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2091 {
2092 	XA_STATE(xas, &mapping->i_pages, start);
2093 	struct page *page;
2094 
2095 	rcu_read_lock();
2096 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2097 		unsigned long next_idx = xas.xa_index + 1;
2098 
2099 		if (!xa_is_value(page)) {
2100 			if (PageTransHuge(page))
2101 				next_idx = page->index + thp_nr_pages(page);
2102 			if (page->index < start)
2103 				goto put;
2104 			if (page->index + thp_nr_pages(page) - 1 > end)
2105 				goto put;
2106 			if (!trylock_page(page))
2107 				goto put;
2108 			if (page->mapping != mapping || PageWriteback(page))
2109 				goto unlock;
2110 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2111 					page);
2112 		}
2113 		indices[pvec->nr] = xas.xa_index;
2114 		if (!pagevec_add(pvec, page))
2115 			break;
2116 		goto next;
2117 unlock:
2118 		unlock_page(page);
2119 put:
2120 		put_page(page);
2121 next:
2122 		if (next_idx != xas.xa_index + 1) {
2123 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2124 			if (next_idx < xas.xa_index)
2125 				break;
2126 			xas_set(&xas, next_idx);
2127 		}
2128 	}
2129 	rcu_read_unlock();
2130 
2131 	return pagevec_count(pvec);
2132 }
2133 
2134 /**
2135  * find_get_pages_range - gang pagecache lookup
2136  * @mapping:	The address_space to search
2137  * @start:	The starting page index
2138  * @end:	The final page index (inclusive)
2139  * @nr_pages:	The maximum number of pages
2140  * @pages:	Where the resulting pages are placed
2141  *
2142  * find_get_pages_range() will search for and return a group of up to @nr_pages
2143  * pages in the mapping starting at index @start and up to index @end
2144  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2145  * a reference against the returned pages.
2146  *
2147  * The search returns a group of mapping-contiguous pages with ascending
2148  * indexes.  There may be holes in the indices due to not-present pages.
2149  * We also update @start to index the next page for the traversal.
2150  *
2151  * Return: the number of pages which were found. If this number is
2152  * smaller than @nr_pages, the end of specified range has been
2153  * reached.
2154  */
find_get_pages_range(struct address_space * mapping,pgoff_t * start,pgoff_t end,unsigned int nr_pages,struct page ** pages)2155 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2156 			      pgoff_t end, unsigned int nr_pages,
2157 			      struct page **pages)
2158 {
2159 	XA_STATE(xas, &mapping->i_pages, *start);
2160 	struct page *page;
2161 	unsigned ret = 0;
2162 
2163 	if (unlikely(!nr_pages))
2164 		return 0;
2165 
2166 	rcu_read_lock();
2167 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2168 		/* Skip over shadow, swap and DAX entries */
2169 		if (xa_is_value(page))
2170 			continue;
2171 
2172 		pages[ret] = find_subpage(page, xas.xa_index);
2173 		if (++ret == nr_pages) {
2174 			*start = xas.xa_index + 1;
2175 			goto out;
2176 		}
2177 	}
2178 
2179 	/*
2180 	 * We come here when there is no page beyond @end. We take care to not
2181 	 * overflow the index @start as it confuses some of the callers. This
2182 	 * breaks the iteration when there is a page at index -1 but that is
2183 	 * already broken anyway.
2184 	 */
2185 	if (end == (pgoff_t)-1)
2186 		*start = (pgoff_t)-1;
2187 	else
2188 		*start = end + 1;
2189 out:
2190 	rcu_read_unlock();
2191 
2192 	return ret;
2193 }
2194 
2195 /**
2196  * find_get_pages_contig - gang contiguous pagecache lookup
2197  * @mapping:	The address_space to search
2198  * @index:	The starting page index
2199  * @nr_pages:	The maximum number of pages
2200  * @pages:	Where the resulting pages are placed
2201  *
2202  * find_get_pages_contig() works exactly like find_get_pages(), except
2203  * that the returned number of pages are guaranteed to be contiguous.
2204  *
2205  * Return: the number of pages which were found.
2206  */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)2207 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2208 			       unsigned int nr_pages, struct page **pages)
2209 {
2210 	XA_STATE(xas, &mapping->i_pages, index);
2211 	struct page *page;
2212 	unsigned int ret = 0;
2213 
2214 	if (unlikely(!nr_pages))
2215 		return 0;
2216 
2217 	rcu_read_lock();
2218 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2219 		if (xas_retry(&xas, page))
2220 			continue;
2221 		/*
2222 		 * If the entry has been swapped out, we can stop looking.
2223 		 * No current caller is looking for DAX entries.
2224 		 */
2225 		if (xa_is_value(page))
2226 			break;
2227 
2228 		if (!page_cache_get_speculative(page))
2229 			goto retry;
2230 
2231 		/* Has the page moved or been split? */
2232 		if (unlikely(page != xas_reload(&xas)))
2233 			goto put_page;
2234 
2235 		pages[ret] = find_subpage(page, xas.xa_index);
2236 		if (++ret == nr_pages)
2237 			break;
2238 		continue;
2239 put_page:
2240 		put_page(page);
2241 retry:
2242 		xas_reset(&xas);
2243 	}
2244 	rcu_read_unlock();
2245 	return ret;
2246 }
2247 EXPORT_SYMBOL(find_get_pages_contig);
2248 
2249 /**
2250  * find_get_pages_range_tag - Find and return head pages matching @tag.
2251  * @mapping:	the address_space to search
2252  * @index:	the starting page index
2253  * @end:	The final page index (inclusive)
2254  * @tag:	the tag index
2255  * @nr_pages:	the maximum number of pages
2256  * @pages:	where the resulting pages are placed
2257  *
2258  * Like find_get_pages(), except we only return head pages which are tagged
2259  * with @tag.  @index is updated to the index immediately after the last
2260  * page we return, ready for the next iteration.
2261  *
2262  * Return: the number of pages which were found.
2263  */
find_get_pages_range_tag(struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)2264 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2265 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2266 			struct page **pages)
2267 {
2268 	XA_STATE(xas, &mapping->i_pages, *index);
2269 	struct page *page;
2270 	unsigned ret = 0;
2271 
2272 	if (unlikely(!nr_pages))
2273 		return 0;
2274 
2275 	rcu_read_lock();
2276 	while ((page = find_get_entry(&xas, end, tag))) {
2277 		/*
2278 		 * Shadow entries should never be tagged, but this iteration
2279 		 * is lockless so there is a window for page reclaim to evict
2280 		 * a page we saw tagged.  Skip over it.
2281 		 */
2282 		if (xa_is_value(page))
2283 			continue;
2284 
2285 		pages[ret] = page;
2286 		if (++ret == nr_pages) {
2287 			*index = page->index + thp_nr_pages(page);
2288 			goto out;
2289 		}
2290 	}
2291 
2292 	/*
2293 	 * We come here when we got to @end. We take care to not overflow the
2294 	 * index @index as it confuses some of the callers. This breaks the
2295 	 * iteration when there is a page at index -1 but that is already
2296 	 * broken anyway.
2297 	 */
2298 	if (end == (pgoff_t)-1)
2299 		*index = (pgoff_t)-1;
2300 	else
2301 		*index = end + 1;
2302 out:
2303 	rcu_read_unlock();
2304 
2305 	return ret;
2306 }
2307 EXPORT_SYMBOL(find_get_pages_range_tag);
2308 
2309 /*
2310  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2311  * a _large_ part of the i/o request. Imagine the worst scenario:
2312  *
2313  *      ---R__________________________________________B__________
2314  *         ^ reading here                             ^ bad block(assume 4k)
2315  *
2316  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2317  * => failing the whole request => read(R) => read(R+1) =>
2318  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2319  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2320  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2321  *
2322  * It is going insane. Fix it by quickly scaling down the readahead size.
2323  */
shrink_readahead_size_eio(struct file_ra_state * ra)2324 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2325 {
2326 	ra->ra_pages /= 4;
2327 }
2328 
2329 /*
2330  * filemap_get_read_batch - Get a batch of pages for read
2331  *
2332  * Get a batch of pages which represent a contiguous range of bytes
2333  * in the file.  No tail pages will be returned.  If @index is in the
2334  * middle of a THP, the entire THP will be returned.  The last page in
2335  * the batch may have Readahead set or be not Uptodate so that the
2336  * caller can take the appropriate action.
2337  */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct pagevec * pvec)2338 static void filemap_get_read_batch(struct address_space *mapping,
2339 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2340 {
2341 	XA_STATE(xas, &mapping->i_pages, index);
2342 	struct page *head;
2343 
2344 	rcu_read_lock();
2345 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2346 		if (xas_retry(&xas, head))
2347 			continue;
2348 		if (xas.xa_index > max || xa_is_value(head))
2349 			break;
2350 		if (!page_cache_get_speculative(head))
2351 			goto retry;
2352 
2353 		/* Has the page moved or been split? */
2354 		if (unlikely(head != xas_reload(&xas)))
2355 			goto put_page;
2356 
2357 		if (!pagevec_add(pvec, head))
2358 			break;
2359 		if (!PageUptodate(head))
2360 			break;
2361 		if (PageReadahead(head))
2362 			break;
2363 		if (PageHead(head)) {
2364 			xas_set(&xas, head->index + thp_nr_pages(head));
2365 			/* Handle wrap correctly */
2366 			if (xas.xa_index - 1 >= max)
2367 				break;
2368 		}
2369 		continue;
2370 put_page:
2371 		put_page(head);
2372 retry:
2373 		xas_reset(&xas);
2374 	}
2375 	rcu_read_unlock();
2376 }
2377 
filemap_read_page(struct file * file,struct address_space * mapping,struct page * page)2378 static int filemap_read_page(struct file *file, struct address_space *mapping,
2379 		struct page *page)
2380 {
2381 	int error;
2382 
2383 	/*
2384 	 * A previous I/O error may have been due to temporary failures,
2385 	 * eg. multipath errors.  PG_error will be set again if readpage
2386 	 * fails.
2387 	 */
2388 	ClearPageError(page);
2389 	/* Start the actual read. The read will unlock the page. */
2390 	error = mapping->a_ops->readpage(file, page);
2391 	if (error)
2392 		return error;
2393 
2394 	error = wait_on_page_locked_killable(page);
2395 	if (error)
2396 		return error;
2397 	if (PageUptodate(page))
2398 		return 0;
2399 	shrink_readahead_size_eio(&file->f_ra);
2400 	return -EIO;
2401 }
2402 
filemap_range_uptodate(struct address_space * mapping,loff_t pos,struct iov_iter * iter,struct page * page)2403 static bool filemap_range_uptodate(struct address_space *mapping,
2404 		loff_t pos, struct iov_iter *iter, struct page *page)
2405 {
2406 	int count;
2407 
2408 	if (PageUptodate(page))
2409 		return true;
2410 	/* pipes can't handle partially uptodate pages */
2411 	if (iov_iter_is_pipe(iter))
2412 		return false;
2413 	if (!mapping->a_ops->is_partially_uptodate)
2414 		return false;
2415 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2416 		return false;
2417 
2418 	count = iter->count;
2419 	if (page_offset(page) > pos) {
2420 		count -= page_offset(page) - pos;
2421 		pos = 0;
2422 	} else {
2423 		pos -= page_offset(page);
2424 	}
2425 
2426 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2427 }
2428 
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * iter,struct page * page)2429 static int filemap_update_page(struct kiocb *iocb,
2430 		struct address_space *mapping, struct iov_iter *iter,
2431 		struct page *page)
2432 {
2433 	int error;
2434 
2435 	if (iocb->ki_flags & IOCB_NOWAIT) {
2436 		if (!filemap_invalidate_trylock_shared(mapping))
2437 			return -EAGAIN;
2438 	} else {
2439 		filemap_invalidate_lock_shared(mapping);
2440 	}
2441 
2442 	if (!trylock_page(page)) {
2443 		error = -EAGAIN;
2444 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2445 			goto unlock_mapping;
2446 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2447 			filemap_invalidate_unlock_shared(mapping);
2448 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2449 			return AOP_TRUNCATED_PAGE;
2450 		}
2451 		error = __lock_page_async(page, iocb->ki_waitq);
2452 		if (error)
2453 			goto unlock_mapping;
2454 	}
2455 
2456 	error = AOP_TRUNCATED_PAGE;
2457 	if (!page->mapping)
2458 		goto unlock;
2459 
2460 	error = 0;
2461 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2462 		goto unlock;
2463 
2464 	error = -EAGAIN;
2465 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2466 		goto unlock;
2467 
2468 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2469 	goto unlock_mapping;
2470 unlock:
2471 	unlock_page(page);
2472 unlock_mapping:
2473 	filemap_invalidate_unlock_shared(mapping);
2474 	if (error == AOP_TRUNCATED_PAGE)
2475 		put_page(page);
2476 	return error;
2477 }
2478 
filemap_create_page(struct file * file,struct address_space * mapping,pgoff_t index,struct pagevec * pvec)2479 static int filemap_create_page(struct file *file,
2480 		struct address_space *mapping, pgoff_t index,
2481 		struct pagevec *pvec)
2482 {
2483 	struct page *page;
2484 	int error;
2485 
2486 	page = page_cache_alloc(mapping);
2487 	if (!page)
2488 		return -ENOMEM;
2489 
2490 	/*
2491 	 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2492 	 * assures we cannot instantiate and bring uptodate new pagecache pages
2493 	 * after evicting page cache during truncate and before actually
2494 	 * freeing blocks.  Note that we could release invalidate_lock after
2495 	 * inserting the page into page cache as the locked page would then be
2496 	 * enough to synchronize with hole punching. But there are code paths
2497 	 * such as filemap_update_page() filling in partially uptodate pages or
2498 	 * ->readpages() that need to hold invalidate_lock while mapping blocks
2499 	 * for IO so let's hold the lock here as well to keep locking rules
2500 	 * simple.
2501 	 */
2502 	filemap_invalidate_lock_shared(mapping);
2503 	error = add_to_page_cache_lru(page, mapping, index,
2504 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2505 	if (error == -EEXIST)
2506 		error = AOP_TRUNCATED_PAGE;
2507 	if (error)
2508 		goto error;
2509 
2510 	error = filemap_read_page(file, mapping, page);
2511 	if (error)
2512 		goto error;
2513 
2514 	filemap_invalidate_unlock_shared(mapping);
2515 	pagevec_add(pvec, page);
2516 	return 0;
2517 error:
2518 	filemap_invalidate_unlock_shared(mapping);
2519 	put_page(page);
2520 	return error;
2521 }
2522 
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct page * page,pgoff_t last_index)2523 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2524 		struct address_space *mapping, struct page *page,
2525 		pgoff_t last_index)
2526 {
2527 	if (iocb->ki_flags & IOCB_NOIO)
2528 		return -EAGAIN;
2529 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2530 			page->index, last_index - page->index);
2531 	return 0;
2532 }
2533 
filemap_get_pages(struct kiocb * iocb,struct iov_iter * iter,struct pagevec * pvec)2534 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2535 		struct pagevec *pvec)
2536 {
2537 	struct file *filp = iocb->ki_filp;
2538 	struct address_space *mapping = filp->f_mapping;
2539 	struct file_ra_state *ra = &filp->f_ra;
2540 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2541 	pgoff_t last_index;
2542 	struct page *page;
2543 	int err = 0;
2544 
2545 	/* "last_index" is the index of the page beyond the end of the read */
2546 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2547 retry:
2548 	if (fatal_signal_pending(current))
2549 		return -EINTR;
2550 
2551 	filemap_get_read_batch(mapping, index, last_index - 1, pvec);
2552 	if (!pagevec_count(pvec)) {
2553 		if (iocb->ki_flags & IOCB_NOIO)
2554 			return -EAGAIN;
2555 		page_cache_sync_readahead(mapping, ra, filp, index,
2556 				last_index - index);
2557 		filemap_get_read_batch(mapping, index, last_index - 1, pvec);
2558 	}
2559 	if (!pagevec_count(pvec)) {
2560 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2561 			return -EAGAIN;
2562 		err = filemap_create_page(filp, mapping,
2563 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2564 		if (err == AOP_TRUNCATED_PAGE)
2565 			goto retry;
2566 		return err;
2567 	}
2568 
2569 	page = pvec->pages[pagevec_count(pvec) - 1];
2570 	if (PageReadahead(page)) {
2571 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2572 		if (err)
2573 			goto err;
2574 	}
2575 	if (!PageUptodate(page)) {
2576 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2577 			iocb->ki_flags |= IOCB_NOWAIT;
2578 		err = filemap_update_page(iocb, mapping, iter, page);
2579 		if (err)
2580 			goto err;
2581 	}
2582 
2583 	return 0;
2584 err:
2585 	if (err < 0)
2586 		put_page(page);
2587 	if (likely(--pvec->nr))
2588 		return 0;
2589 	if (err == AOP_TRUNCATED_PAGE)
2590 		goto retry;
2591 	return err;
2592 }
2593 
2594 /**
2595  * filemap_read - Read data from the page cache.
2596  * @iocb: The iocb to read.
2597  * @iter: Destination for the data.
2598  * @already_read: Number of bytes already read by the caller.
2599  *
2600  * Copies data from the page cache.  If the data is not currently present,
2601  * uses the readahead and readpage address_space operations to fetch it.
2602  *
2603  * Return: Total number of bytes copied, including those already read by
2604  * the caller.  If an error happens before any bytes are copied, returns
2605  * a negative error number.
2606  */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2607 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2608 		ssize_t already_read)
2609 {
2610 	struct file *filp = iocb->ki_filp;
2611 	struct file_ra_state *ra = &filp->f_ra;
2612 	struct address_space *mapping = filp->f_mapping;
2613 	struct inode *inode = mapping->host;
2614 	struct pagevec pvec;
2615 	int i, error = 0;
2616 	bool writably_mapped;
2617 	loff_t isize, end_offset;
2618 	loff_t last_pos = ra->prev_pos;
2619 
2620 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2621 		return 0;
2622 	if (unlikely(!iov_iter_count(iter)))
2623 		return 0;
2624 
2625 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2626 	pagevec_init(&pvec);
2627 
2628 	do {
2629 		cond_resched();
2630 
2631 		/*
2632 		 * If we've already successfully copied some data, then we
2633 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2634 		 * an async read NOWAIT at that point.
2635 		 */
2636 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2637 			iocb->ki_flags |= IOCB_NOWAIT;
2638 
2639 		error = filemap_get_pages(iocb, iter, &pvec);
2640 		if (error < 0)
2641 			break;
2642 
2643 		/*
2644 		 * i_size must be checked after we know the pages are Uptodate.
2645 		 *
2646 		 * Checking i_size after the check allows us to calculate
2647 		 * the correct value for "nr", which means the zero-filled
2648 		 * part of the page is not copied back to userspace (unless
2649 		 * another truncate extends the file - this is desired though).
2650 		 */
2651 		isize = i_size_read(inode);
2652 		if (unlikely(iocb->ki_pos >= isize))
2653 			goto put_pages;
2654 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2655 
2656 		/*
2657 		 * Pairs with a barrier in
2658 		 * block_write_end()->mark_buffer_dirty() or other page
2659 		 * dirtying routines like iomap_write_end() to ensure
2660 		 * changes to page contents are visible before we see
2661 		 * increased inode size.
2662 		 */
2663 		smp_rmb();
2664 
2665 		/*
2666 		 * Once we start copying data, we don't want to be touching any
2667 		 * cachelines that might be contended:
2668 		 */
2669 		writably_mapped = mapping_writably_mapped(mapping);
2670 
2671 		/*
2672 		 * When a sequential read accesses a page several times, only
2673 		 * mark it as accessed the first time.
2674 		 */
2675 		if (iocb->ki_pos >> PAGE_SHIFT !=
2676 		    last_pos >> PAGE_SHIFT)
2677 			mark_page_accessed(pvec.pages[0]);
2678 
2679 		for (i = 0; i < pagevec_count(&pvec); i++) {
2680 			struct page *page = pvec.pages[i];
2681 			size_t page_size = thp_size(page);
2682 			size_t offset = iocb->ki_pos & (page_size - 1);
2683 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2684 					     page_size - offset);
2685 			size_t copied;
2686 
2687 			if (end_offset < page_offset(page))
2688 				break;
2689 			if (i > 0)
2690 				mark_page_accessed(page);
2691 			/*
2692 			 * If users can be writing to this page using arbitrary
2693 			 * virtual addresses, take care about potential aliasing
2694 			 * before reading the page on the kernel side.
2695 			 */
2696 			if (writably_mapped) {
2697 				int j;
2698 
2699 				for (j = 0; j < thp_nr_pages(page); j++)
2700 					flush_dcache_page(page + j);
2701 			}
2702 
2703 			copied = copy_page_to_iter(page, offset, bytes, iter);
2704 
2705 			already_read += copied;
2706 			iocb->ki_pos += copied;
2707 			last_pos = iocb->ki_pos;
2708 
2709 			if (copied < bytes) {
2710 				error = -EFAULT;
2711 				break;
2712 			}
2713 		}
2714 put_pages:
2715 		for (i = 0; i < pagevec_count(&pvec); i++)
2716 			put_page(pvec.pages[i]);
2717 		pagevec_reinit(&pvec);
2718 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2719 
2720 	file_accessed(filp);
2721 	ra->prev_pos = last_pos;
2722 	return already_read ? already_read : error;
2723 }
2724 EXPORT_SYMBOL_GPL(filemap_read);
2725 
2726 /**
2727  * generic_file_read_iter - generic filesystem read routine
2728  * @iocb:	kernel I/O control block
2729  * @iter:	destination for the data read
2730  *
2731  * This is the "read_iter()" routine for all filesystems
2732  * that can use the page cache directly.
2733  *
2734  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2735  * be returned when no data can be read without waiting for I/O requests
2736  * to complete; it doesn't prevent readahead.
2737  *
2738  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2739  * requests shall be made for the read or for readahead.  When no data
2740  * can be read, -EAGAIN shall be returned.  When readahead would be
2741  * triggered, a partial, possibly empty read shall be returned.
2742  *
2743  * Return:
2744  * * number of bytes copied, even for partial reads
2745  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2746  */
2747 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2748 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2749 {
2750 	size_t count = iov_iter_count(iter);
2751 	ssize_t retval = 0;
2752 
2753 	if (!count)
2754 		return 0; /* skip atime */
2755 
2756 	if (iocb->ki_flags & IOCB_DIRECT) {
2757 		struct file *file = iocb->ki_filp;
2758 		struct address_space *mapping = file->f_mapping;
2759 		struct inode *inode = mapping->host;
2760 		loff_t size;
2761 
2762 		size = i_size_read(inode);
2763 		if (iocb->ki_flags & IOCB_NOWAIT) {
2764 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2765 						iocb->ki_pos + count - 1))
2766 				return -EAGAIN;
2767 		} else {
2768 			retval = filemap_write_and_wait_range(mapping,
2769 						iocb->ki_pos,
2770 					        iocb->ki_pos + count - 1);
2771 			if (retval < 0)
2772 				return retval;
2773 		}
2774 
2775 		file_accessed(file);
2776 
2777 		retval = mapping->a_ops->direct_IO(iocb, iter);
2778 		if (retval >= 0) {
2779 			iocb->ki_pos += retval;
2780 			count -= retval;
2781 		}
2782 		if (retval != -EIOCBQUEUED)
2783 			iov_iter_revert(iter, count - iov_iter_count(iter));
2784 
2785 		/*
2786 		 * Btrfs can have a short DIO read if we encounter
2787 		 * compressed extents, so if there was an error, or if
2788 		 * we've already read everything we wanted to, or if
2789 		 * there was a short read because we hit EOF, go ahead
2790 		 * and return.  Otherwise fallthrough to buffered io for
2791 		 * the rest of the read.  Buffered reads will not work for
2792 		 * DAX files, so don't bother trying.
2793 		 */
2794 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2795 		    IS_DAX(inode))
2796 			return retval;
2797 	}
2798 
2799 	return filemap_read(iocb, iter, retval);
2800 }
2801 EXPORT_SYMBOL(generic_file_read_iter);
2802 
page_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct page * page,loff_t start,loff_t end,bool seek_data)2803 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2804 		struct address_space *mapping, struct page *page,
2805 		loff_t start, loff_t end, bool seek_data)
2806 {
2807 	const struct address_space_operations *ops = mapping->a_ops;
2808 	size_t offset, bsz = i_blocksize(mapping->host);
2809 
2810 	if (xa_is_value(page) || PageUptodate(page))
2811 		return seek_data ? start : end;
2812 	if (!ops->is_partially_uptodate)
2813 		return seek_data ? end : start;
2814 
2815 	xas_pause(xas);
2816 	rcu_read_unlock();
2817 	lock_page(page);
2818 	if (unlikely(page->mapping != mapping))
2819 		goto unlock;
2820 
2821 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2822 
2823 	do {
2824 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2825 			break;
2826 		start = (start + bsz) & ~(bsz - 1);
2827 		offset += bsz;
2828 	} while (offset < thp_size(page));
2829 unlock:
2830 	unlock_page(page);
2831 	rcu_read_lock();
2832 	return start;
2833 }
2834 
2835 static inline
seek_page_size(struct xa_state * xas,struct page * page)2836 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2837 {
2838 	if (xa_is_value(page))
2839 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2840 	return thp_size(page);
2841 }
2842 
2843 /**
2844  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2845  * @mapping: Address space to search.
2846  * @start: First byte to consider.
2847  * @end: Limit of search (exclusive).
2848  * @whence: Either SEEK_HOLE or SEEK_DATA.
2849  *
2850  * If the page cache knows which blocks contain holes and which blocks
2851  * contain data, your filesystem can use this function to implement
2852  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2853  * entirely memory-based such as tmpfs, and filesystems which support
2854  * unwritten extents.
2855  *
2856  * Return: The requested offset on success, or -ENXIO if @whence specifies
2857  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2858  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2859  * and @end contain data.
2860  */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)2861 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2862 		loff_t end, int whence)
2863 {
2864 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2865 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2866 	bool seek_data = (whence == SEEK_DATA);
2867 	struct page *page;
2868 
2869 	if (end <= start)
2870 		return -ENXIO;
2871 
2872 	rcu_read_lock();
2873 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2874 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2875 		unsigned int seek_size;
2876 
2877 		if (start < pos) {
2878 			if (!seek_data)
2879 				goto unlock;
2880 			start = pos;
2881 		}
2882 
2883 		seek_size = seek_page_size(&xas, page);
2884 		pos = round_up(pos + 1, seek_size);
2885 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2886 				seek_data);
2887 		if (start < pos)
2888 			goto unlock;
2889 		if (start >= end)
2890 			break;
2891 		if (seek_size > PAGE_SIZE)
2892 			xas_set(&xas, pos >> PAGE_SHIFT);
2893 		if (!xa_is_value(page))
2894 			put_page(page);
2895 	}
2896 	if (seek_data)
2897 		start = -ENXIO;
2898 unlock:
2899 	rcu_read_unlock();
2900 	if (page && !xa_is_value(page))
2901 		put_page(page);
2902 	if (start > end)
2903 		return end;
2904 	return start;
2905 }
2906 
2907 #ifdef CONFIG_MMU
2908 #define MMAP_LOTSAMISS  (100)
2909 /*
2910  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2911  * @vmf - the vm_fault for this fault.
2912  * @page - the page to lock.
2913  * @fpin - the pointer to the file we may pin (or is already pinned).
2914  *
2915  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2916  * It differs in that it actually returns the page locked if it returns 1 and 0
2917  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2918  * will point to the pinned file and needs to be fput()'ed at a later point.
2919  */
lock_page_maybe_drop_mmap(struct vm_fault * vmf,struct page * page,struct file ** fpin)2920 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2921 				     struct file **fpin)
2922 {
2923 	if (trylock_page(page))
2924 		return 1;
2925 
2926 	/*
2927 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2928 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2929 	 * is supposed to work. We have way too many special cases..
2930 	 */
2931 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2932 		return 0;
2933 
2934 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2935 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2936 		if (__lock_page_killable(page)) {
2937 			/*
2938 			 * We didn't have the right flags to drop the mmap_lock,
2939 			 * but all fault_handlers only check for fatal signals
2940 			 * if we return VM_FAULT_RETRY, so we need to drop the
2941 			 * mmap_lock here and return 0 if we don't have a fpin.
2942 			 */
2943 			if (*fpin == NULL)
2944 				mmap_read_unlock(vmf->vma->vm_mm);
2945 			return 0;
2946 		}
2947 	} else
2948 		__lock_page(page);
2949 	return 1;
2950 }
2951 
2952 
2953 /*
2954  * Synchronous readahead happens when we don't even find a page in the page
2955  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2956  * to drop the mmap sem we return the file that was pinned in order for us to do
2957  * that.  If we didn't pin a file then we return NULL.  The file that is
2958  * returned needs to be fput()'ed when we're done with it.
2959  */
do_sync_mmap_readahead(struct vm_fault * vmf)2960 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2961 {
2962 	struct file *file = vmf->vma->vm_file;
2963 	struct file_ra_state *ra = &file->f_ra;
2964 	struct address_space *mapping = file->f_mapping;
2965 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2966 	struct file *fpin = NULL;
2967 	unsigned int mmap_miss;
2968 
2969 	/* If we don't want any read-ahead, don't bother */
2970 	if (vmf->vma->vm_flags & VM_RAND_READ)
2971 		return fpin;
2972 	if (!ra->ra_pages)
2973 		return fpin;
2974 
2975 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2976 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2977 		page_cache_sync_ra(&ractl, ra->ra_pages);
2978 		return fpin;
2979 	}
2980 
2981 	/* Avoid banging the cache line if not needed */
2982 	mmap_miss = READ_ONCE(ra->mmap_miss);
2983 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2984 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2985 
2986 	/*
2987 	 * Do we miss much more than hit in this file? If so,
2988 	 * stop bothering with read-ahead. It will only hurt.
2989 	 */
2990 	if (mmap_miss > MMAP_LOTSAMISS)
2991 		return fpin;
2992 
2993 	/*
2994 	 * mmap read-around
2995 	 */
2996 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2997 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2998 	ra->size = ra->ra_pages;
2999 	ra->async_size = ra->ra_pages / 4;
3000 	trace_android_vh_tune_mmap_readaround(ra->ra_pages, vmf->pgoff,
3001 			&ra->start, &ra->size, &ra->async_size);
3002 	ractl._index = ra->start;
3003 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
3004 	return fpin;
3005 }
3006 
3007 /*
3008  * Asynchronous readahead happens when we find the page and PG_readahead,
3009  * so we want to possibly extend the readahead further.  We return the file that
3010  * was pinned if we have to drop the mmap_lock in order to do IO.
3011  */
do_async_mmap_readahead(struct vm_fault * vmf,struct page * page)3012 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3013 					    struct page *page)
3014 {
3015 	struct file *file = vmf->vma->vm_file;
3016 	struct file_ra_state *ra = &file->f_ra;
3017 	struct address_space *mapping = file->f_mapping;
3018 	struct file *fpin = NULL;
3019 	unsigned int mmap_miss;
3020 	pgoff_t offset = vmf->pgoff;
3021 
3022 	/* If we don't want any read-ahead, don't bother */
3023 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3024 		return fpin;
3025 	mmap_miss = READ_ONCE(ra->mmap_miss);
3026 	if (mmap_miss)
3027 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3028 	if (PageReadahead(page)) {
3029 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3030 		page_cache_async_readahead(mapping, ra, file,
3031 					   page, offset, ra->ra_pages);
3032 	}
3033 	return fpin;
3034 }
3035 
3036 /**
3037  * filemap_fault - read in file data for page fault handling
3038  * @vmf:	struct vm_fault containing details of the fault
3039  *
3040  * filemap_fault() is invoked via the vma operations vector for a
3041  * mapped memory region to read in file data during a page fault.
3042  *
3043  * The goto's are kind of ugly, but this streamlines the normal case of having
3044  * it in the page cache, and handles the special cases reasonably without
3045  * having a lot of duplicated code.
3046  *
3047  * If FAULT_FLAG_SPECULATIVE is set, this function runs within an rcu
3048  * read locked section and with mmap lock not held.
3049  * Otherwise, vma->vm_mm->mmap_lock must be held on entry.
3050  *
3051  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3052  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
3053  *
3054  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3055  * has not been released.
3056  *
3057  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3058  *
3059  * Return: bitwise-OR of %VM_FAULT_ codes.
3060  */
filemap_fault(struct vm_fault * vmf)3061 vm_fault_t filemap_fault(struct vm_fault *vmf)
3062 {
3063 	int error;
3064 	struct file *file = vmf->vma->vm_file;
3065 	struct file *fpin = NULL;
3066 	struct address_space *mapping = file->f_mapping;
3067 	struct file_ra_state *ra = &file->f_ra;
3068 	struct inode *inode = mapping->host;
3069 	pgoff_t offset = vmf->pgoff;
3070 	pgoff_t max_off;
3071 	struct page *page;
3072 	vm_fault_t ret = 0;
3073 	bool mapping_locked = false;
3074 
3075 	if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3076 		page = find_get_page(mapping, offset);
3077 		if (unlikely(!page))
3078 			return VM_FAULT_RETRY;
3079 
3080 		if (unlikely(PageReadahead(page)))
3081 			goto page_put;
3082 
3083 		if (!trylock_page(page))
3084 			goto page_put;
3085 
3086 		if (unlikely(compound_head(page)->mapping != mapping))
3087 			goto page_unlock;
3088 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3089 		if (unlikely(!PageUptodate(page)))
3090 			goto page_unlock;
3091 
3092 		max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3093 		if (unlikely(offset >= max_off))
3094 			goto page_unlock;
3095 
3096 		/*
3097 		 * Update readahead mmap_miss statistic.
3098 		 *
3099 		 * Note that we are not sure if finish_fault() will
3100 		 * manage to complete the transaction. If it fails,
3101 		 * we'll come back to filemap_fault() non-speculative
3102 		 * case which will update mmap_miss a second time.
3103 		 * This is not ideal, we would prefer to guarantee the
3104 		 * update will happen exactly once.
3105 		 */
3106 		if (!(vmf->vma->vm_flags & VM_RAND_READ) && ra->ra_pages) {
3107 			unsigned int mmap_miss = READ_ONCE(ra->mmap_miss);
3108 			if (mmap_miss)
3109 				WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3110 		}
3111 
3112 		vmf->page = page;
3113 		return VM_FAULT_LOCKED;
3114 page_unlock:
3115 		unlock_page(page);
3116 page_put:
3117 		put_page(page);
3118 		return VM_FAULT_RETRY;
3119 	}
3120 
3121 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3122 	if (unlikely(offset >= max_off))
3123 		return VM_FAULT_SIGBUS;
3124 
3125 	/*
3126 	 * Do we have something in the page cache already?
3127 	 */
3128 	page = find_get_page(mapping, offset);
3129 	if (likely(page)) {
3130 		/*
3131 		 * We found the page, so try async readahead before waiting for
3132 		 * the lock.
3133 		 */
3134 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3135 			fpin = do_async_mmap_readahead(vmf, page);
3136 		if (unlikely(!PageUptodate(page))) {
3137 			filemap_invalidate_lock_shared(mapping);
3138 			mapping_locked = true;
3139 		}
3140 	} else {
3141 		/* No page in the page cache at all */
3142 		count_vm_event(PGMAJFAULT);
3143 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3144 		ret = VM_FAULT_MAJOR;
3145 		fpin = do_sync_mmap_readahead(vmf);
3146 retry_find:
3147 		/*
3148 		 * See comment in filemap_create_page() why we need
3149 		 * invalidate_lock
3150 		 */
3151 		if (!mapping_locked) {
3152 			filemap_invalidate_lock_shared(mapping);
3153 			mapping_locked = true;
3154 		}
3155 		page = pagecache_get_page(mapping, offset,
3156 					  FGP_CREAT|FGP_FOR_MMAP,
3157 					  vmf->gfp_mask);
3158 		if (!page) {
3159 			if (fpin)
3160 				goto out_retry;
3161 			filemap_invalidate_unlock_shared(mapping);
3162 			return VM_FAULT_OOM;
3163 		}
3164 	}
3165 
3166 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3167 		goto out_retry;
3168 
3169 	/* Did it get truncated? */
3170 	if (unlikely(compound_head(page)->mapping != mapping)) {
3171 		unlock_page(page);
3172 		put_page(page);
3173 		goto retry_find;
3174 	}
3175 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3176 
3177 	/*
3178 	 * We have a locked page in the page cache, now we need to check
3179 	 * that it's up-to-date. If not, it is going to be due to an error.
3180 	 */
3181 	if (unlikely(!PageUptodate(page))) {
3182 		/*
3183 		 * The page was in cache and uptodate and now it is not.
3184 		 * Strange but possible since we didn't hold the page lock all
3185 		 * the time. Let's drop everything get the invalidate lock and
3186 		 * try again.
3187 		 */
3188 		if (!mapping_locked) {
3189 			unlock_page(page);
3190 			put_page(page);
3191 			goto retry_find;
3192 		}
3193 		goto page_not_uptodate;
3194 	}
3195 
3196 	/*
3197 	 * We've made it this far and we had to drop our mmap_lock, now is the
3198 	 * time to return to the upper layer and have it re-find the vma and
3199 	 * redo the fault.
3200 	 */
3201 	if (fpin) {
3202 		unlock_page(page);
3203 		goto out_retry;
3204 	}
3205 	if (mapping_locked)
3206 		filemap_invalidate_unlock_shared(mapping);
3207 
3208 	/*
3209 	 * Found the page and have a reference on it.
3210 	 * We must recheck i_size under page lock.
3211 	 */
3212 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3213 	if (unlikely(offset >= max_off)) {
3214 		unlock_page(page);
3215 		put_page(page);
3216 		return VM_FAULT_SIGBUS;
3217 	}
3218 
3219 	vmf->page = page;
3220 	return ret | VM_FAULT_LOCKED;
3221 
3222 page_not_uptodate:
3223 	/*
3224 	 * Umm, take care of errors if the page isn't up-to-date.
3225 	 * Try to re-read it _once_. We do this synchronously,
3226 	 * because there really aren't any performance issues here
3227 	 * and we need to check for errors.
3228 	 */
3229 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3230 	error = filemap_read_page(file, mapping, page);
3231 	if (fpin)
3232 		goto out_retry;
3233 	put_page(page);
3234 
3235 	if (!error || error == AOP_TRUNCATED_PAGE)
3236 		goto retry_find;
3237 	filemap_invalidate_unlock_shared(mapping);
3238 
3239 	return VM_FAULT_SIGBUS;
3240 
3241 out_retry:
3242 	/*
3243 	 * We dropped the mmap_lock, we need to return to the fault handler to
3244 	 * re-find the vma and come back and find our hopefully still populated
3245 	 * page.
3246 	 */
3247 	if (page)
3248 		put_page(page);
3249 	if (mapping_locked)
3250 		filemap_invalidate_unlock_shared(mapping);
3251 	if (fpin)
3252 		fput(fpin);
3253 	return ret | VM_FAULT_RETRY;
3254 }
3255 EXPORT_SYMBOL(filemap_fault);
3256 
filemap_map_pmd(struct vm_fault * vmf,struct page * page)3257 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3258 {
3259 	struct mm_struct *mm = vmf->vma->vm_mm;
3260 
3261 	/* Huge page is mapped? No need to proceed. */
3262 	if (pmd_trans_huge(*vmf->pmd)) {
3263 		unlock_page(page);
3264 		put_page(page);
3265 		return true;
3266 	}
3267 
3268 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3269 	    vm_fault_t ret = do_set_pmd(vmf, page);
3270 	    if (!ret) {
3271 		    /* The page is mapped successfully, reference consumed. */
3272 		    unlock_page(page);
3273 		    return true;
3274 	    }
3275 	}
3276 
3277 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) {
3278 		vmf->ptl = pmd_lock(mm, vmf->pmd);
3279 		if (likely(pmd_none(*vmf->pmd))) {
3280 			mm_inc_nr_ptes(mm);
3281 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3282 			vmf->prealloc_pte = NULL;
3283 		}
3284 		spin_unlock(vmf->ptl);
3285 	}
3286 
3287 	/* See comment in handle_pte_fault() */
3288 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3289 		unlock_page(page);
3290 		put_page(page);
3291 		return true;
3292 	}
3293 
3294 	return false;
3295 }
3296 
next_uptodate_page(struct page * page,struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3297 static struct page *next_uptodate_page(struct page *page,
3298 				       struct address_space *mapping,
3299 				       struct xa_state *xas, pgoff_t end_pgoff)
3300 {
3301 	unsigned long max_idx;
3302 
3303 	do {
3304 		if (!page)
3305 			return NULL;
3306 		if (xas_retry(xas, page))
3307 			continue;
3308 		if (xa_is_value(page))
3309 			continue;
3310 		if (PageLocked(page))
3311 			continue;
3312 		if (!page_cache_get_speculative(page))
3313 			continue;
3314 		/* Has the page moved or been split? */
3315 		if (unlikely(page != xas_reload(xas)))
3316 			goto skip;
3317 		if (!PageUptodate(page) || PageReadahead(page))
3318 			goto skip;
3319 		if (PageHWPoison(page))
3320 			goto skip;
3321 		if (!trylock_page(page))
3322 			goto skip;
3323 		if (page->mapping != mapping)
3324 			goto unlock;
3325 		if (!PageUptodate(page))
3326 			goto unlock;
3327 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3328 		if (xas->xa_index >= max_idx)
3329 			goto unlock;
3330 		return page;
3331 unlock:
3332 		unlock_page(page);
3333 skip:
3334 		put_page(page);
3335 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3336 
3337 	return NULL;
3338 }
3339 
first_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3340 static inline struct page *first_map_page(struct address_space *mapping,
3341 					  struct xa_state *xas,
3342 					  pgoff_t end_pgoff)
3343 {
3344 	return next_uptodate_page(xas_find(xas, end_pgoff),
3345 				  mapping, xas, end_pgoff);
3346 }
3347 
next_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3348 static inline struct page *next_map_page(struct address_space *mapping,
3349 					 struct xa_state *xas,
3350 					 pgoff_t end_pgoff)
3351 {
3352 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3353 				  mapping, xas, end_pgoff);
3354 }
3355 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3356 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3357 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3358 {
3359 	struct vm_area_struct *vma = vmf->vma;
3360 	struct file *file = vma->vm_file;
3361 	struct address_space *mapping = file->f_mapping;
3362 	pgoff_t last_pgoff;
3363 	unsigned long addr;
3364 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3365 	struct page *head, *page;
3366 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3367 	vm_fault_t ret = (vmf->flags & FAULT_FLAG_SPECULATIVE) ?
3368 		VM_FAULT_RETRY : 0;
3369 
3370 	/* filemap_map_pages() is called within an rcu read lock already. */
3371 	head = first_map_page(mapping, &xas, end_pgoff);
3372 	if (!head)
3373 		return ret;
3374 
3375 	if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
3376 	    filemap_map_pmd(vmf, head))
3377 		return VM_FAULT_NOPAGE;
3378 
3379 	if (!pte_map_lock(vmf)) {
3380 		unlock_page(head);
3381 		put_page(head);
3382 		return VM_FAULT_RETRY;
3383 	}
3384 	addr = vmf->address;
3385 	last_pgoff = vmf->pgoff;
3386 
3387 	do {
3388 		page = find_subpage(head, xas.xa_index);
3389 		if (PageHWPoison(page))
3390 			goto unlock;
3391 
3392 		if (mmap_miss > 0)
3393 			mmap_miss--;
3394 
3395 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3396 		vmf->pte += xas.xa_index - last_pgoff;
3397 		last_pgoff = xas.xa_index;
3398 
3399 		if (!pte_none(*vmf->pte))
3400 			goto unlock;
3401 
3402 		/* We're about to handle the fault */
3403 		if (vmf->address == addr)
3404 			ret = VM_FAULT_NOPAGE;
3405 
3406 		do_set_pte(vmf, page, addr);
3407 		/* no need to invalidate: a not-present page won't be cached */
3408 		update_mmu_cache(vma, addr, vmf->pte);
3409 		unlock_page(head);
3410 		continue;
3411 unlock:
3412 		unlock_page(head);
3413 		put_page(head);
3414 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3415 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3416 	vmf->pte = NULL;
3417 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3418 	return ret;
3419 }
3420 EXPORT_SYMBOL(filemap_map_pages);
3421 
filemap_page_mkwrite(struct vm_fault * vmf)3422 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3423 {
3424 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3425 	struct page *page = vmf->page;
3426 	vm_fault_t ret = VM_FAULT_LOCKED;
3427 
3428 	sb_start_pagefault(mapping->host->i_sb);
3429 	file_update_time(vmf->vma->vm_file);
3430 	lock_page(page);
3431 	if (page->mapping != mapping) {
3432 		unlock_page(page);
3433 		ret = VM_FAULT_NOPAGE;
3434 		goto out;
3435 	}
3436 	/*
3437 	 * We mark the page dirty already here so that when freeze is in
3438 	 * progress, we are guaranteed that writeback during freezing will
3439 	 * see the dirty page and writeprotect it again.
3440 	 */
3441 	set_page_dirty(page);
3442 	wait_for_stable_page(page);
3443 out:
3444 	sb_end_pagefault(mapping->host->i_sb);
3445 	return ret;
3446 }
3447 
3448 const struct vm_operations_struct generic_file_vm_ops = {
3449 	.fault		= filemap_fault,
3450 	.map_pages	= filemap_map_pages,
3451 	.page_mkwrite	= filemap_page_mkwrite,
3452 	.speculative	= true,
3453 };
3454 
3455 /* This is used for a general mmap of a disk file */
3456 
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3457 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3458 {
3459 	struct address_space *mapping = file->f_mapping;
3460 
3461 	if (!mapping->a_ops->readpage)
3462 		return -ENOEXEC;
3463 	file_accessed(file);
3464 	vma->vm_ops = &generic_file_vm_ops;
3465 	return 0;
3466 }
3467 
3468 /*
3469  * This is for filesystems which do not implement ->writepage.
3470  */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3471 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3472 {
3473 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3474 		return -EINVAL;
3475 	return generic_file_mmap(file, vma);
3476 }
3477 #else
filemap_page_mkwrite(struct vm_fault * vmf)3478 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3479 {
3480 	return VM_FAULT_SIGBUS;
3481 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3482 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3483 {
3484 	return -ENOSYS;
3485 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3486 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3487 {
3488 	return -ENOSYS;
3489 }
3490 #endif /* CONFIG_MMU */
3491 
3492 EXPORT_SYMBOL(filemap_page_mkwrite);
3493 EXPORT_SYMBOL(generic_file_mmap);
3494 EXPORT_SYMBOL(generic_file_readonly_mmap);
3495 
wait_on_page_read(struct page * page)3496 static struct page *wait_on_page_read(struct page *page)
3497 {
3498 	if (!IS_ERR(page)) {
3499 		wait_on_page_locked(page);
3500 		if (!PageUptodate(page)) {
3501 			put_page(page);
3502 			page = ERR_PTR(-EIO);
3503 		}
3504 	}
3505 	return page;
3506 }
3507 
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)3508 static struct page *do_read_cache_page(struct address_space *mapping,
3509 				pgoff_t index,
3510 				int (*filler)(void *, struct page *),
3511 				void *data,
3512 				gfp_t gfp)
3513 {
3514 	struct page *page;
3515 	int err;
3516 repeat:
3517 	page = find_get_page(mapping, index);
3518 	if (!page) {
3519 		page = __page_cache_alloc(gfp);
3520 		if (!page)
3521 			return ERR_PTR(-ENOMEM);
3522 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3523 		if (unlikely(err)) {
3524 			put_page(page);
3525 			if (err == -EEXIST)
3526 				goto repeat;
3527 			/* Presumably ENOMEM for xarray node */
3528 			return ERR_PTR(err);
3529 		}
3530 
3531 filler:
3532 		if (filler)
3533 			err = filler(data, page);
3534 		else
3535 			err = mapping->a_ops->readpage(data, page);
3536 
3537 		if (err < 0) {
3538 			put_page(page);
3539 			return ERR_PTR(err);
3540 		}
3541 
3542 		page = wait_on_page_read(page);
3543 		if (IS_ERR(page))
3544 			return page;
3545 		goto out;
3546 	}
3547 	if (PageUptodate(page))
3548 		goto out;
3549 
3550 	/*
3551 	 * Page is not up to date and may be locked due to one of the following
3552 	 * case a: Page is being filled and the page lock is held
3553 	 * case b: Read/write error clearing the page uptodate status
3554 	 * case c: Truncation in progress (page locked)
3555 	 * case d: Reclaim in progress
3556 	 *
3557 	 * Case a, the page will be up to date when the page is unlocked.
3558 	 *    There is no need to serialise on the page lock here as the page
3559 	 *    is pinned so the lock gives no additional protection. Even if the
3560 	 *    page is truncated, the data is still valid if PageUptodate as
3561 	 *    it's a race vs truncate race.
3562 	 * Case b, the page will not be up to date
3563 	 * Case c, the page may be truncated but in itself, the data may still
3564 	 *    be valid after IO completes as it's a read vs truncate race. The
3565 	 *    operation must restart if the page is not uptodate on unlock but
3566 	 *    otherwise serialising on page lock to stabilise the mapping gives
3567 	 *    no additional guarantees to the caller as the page lock is
3568 	 *    released before return.
3569 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3570 	 *    will be a race with remove_mapping that determines if the mapping
3571 	 *    is valid on unlock but otherwise the data is valid and there is
3572 	 *    no need to serialise with page lock.
3573 	 *
3574 	 * As the page lock gives no additional guarantee, we optimistically
3575 	 * wait on the page to be unlocked and check if it's up to date and
3576 	 * use the page if it is. Otherwise, the page lock is required to
3577 	 * distinguish between the different cases. The motivation is that we
3578 	 * avoid spurious serialisations and wakeups when multiple processes
3579 	 * wait on the same page for IO to complete.
3580 	 */
3581 	wait_on_page_locked(page);
3582 	if (PageUptodate(page))
3583 		goto out;
3584 
3585 	/* Distinguish between all the cases under the safety of the lock */
3586 	lock_page(page);
3587 
3588 	/* Case c or d, restart the operation */
3589 	if (!page->mapping) {
3590 		unlock_page(page);
3591 		put_page(page);
3592 		goto repeat;
3593 	}
3594 
3595 	/* Someone else locked and filled the page in a very small window */
3596 	if (PageUptodate(page)) {
3597 		unlock_page(page);
3598 		goto out;
3599 	}
3600 
3601 	/*
3602 	 * A previous I/O error may have been due to temporary
3603 	 * failures.
3604 	 * Clear page error before actual read, PG_error will be
3605 	 * set again if read page fails.
3606 	 */
3607 	ClearPageError(page);
3608 	goto filler;
3609 
3610 out:
3611 	mark_page_accessed(page);
3612 	return page;
3613 }
3614 
3615 /**
3616  * read_cache_page - read into page cache, fill it if needed
3617  * @mapping:	the page's address_space
3618  * @index:	the page index
3619  * @filler:	function to perform the read
3620  * @data:	first arg to filler(data, page) function, often left as NULL
3621  *
3622  * Read into the page cache. If a page already exists, and PageUptodate() is
3623  * not set, try to fill the page and wait for it to become unlocked.
3624  *
3625  * If the page does not get brought uptodate, return -EIO.
3626  *
3627  * The function expects mapping->invalidate_lock to be already held.
3628  *
3629  * Return: up to date page on success, ERR_PTR() on failure.
3630  */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)3631 struct page *read_cache_page(struct address_space *mapping,
3632 				pgoff_t index,
3633 				int (*filler)(void *, struct page *),
3634 				void *data)
3635 {
3636 	return do_read_cache_page(mapping, index, filler, data,
3637 			mapping_gfp_mask(mapping));
3638 }
3639 EXPORT_SYMBOL(read_cache_page);
3640 
3641 /**
3642  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3643  * @mapping:	the page's address_space
3644  * @index:	the page index
3645  * @gfp:	the page allocator flags to use if allocating
3646  *
3647  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3648  * any new page allocations done using the specified allocation flags.
3649  *
3650  * If the page does not get brought uptodate, return -EIO.
3651  *
3652  * The function expects mapping->invalidate_lock to be already held.
3653  *
3654  * Return: up to date page on success, ERR_PTR() on failure.
3655  */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3656 struct page *read_cache_page_gfp(struct address_space *mapping,
3657 				pgoff_t index,
3658 				gfp_t gfp)
3659 {
3660 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3661 }
3662 EXPORT_SYMBOL(read_cache_page_gfp);
3663 
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3664 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3665 				loff_t pos, unsigned len, unsigned flags,
3666 				struct page **pagep, void **fsdata)
3667 {
3668 	const struct address_space_operations *aops = mapping->a_ops;
3669 
3670 	return aops->write_begin(file, mapping, pos, len, flags,
3671 							pagep, fsdata);
3672 }
3673 EXPORT_SYMBOL(pagecache_write_begin);
3674 
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3675 int pagecache_write_end(struct file *file, struct address_space *mapping,
3676 				loff_t pos, unsigned len, unsigned copied,
3677 				struct page *page, void *fsdata)
3678 {
3679 	const struct address_space_operations *aops = mapping->a_ops;
3680 
3681 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3682 }
3683 EXPORT_SYMBOL(pagecache_write_end);
3684 
3685 /*
3686  * Warn about a page cache invalidation failure during a direct I/O write.
3687  */
dio_warn_stale_pagecache(struct file * filp)3688 void dio_warn_stale_pagecache(struct file *filp)
3689 {
3690 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3691 	char pathname[128];
3692 	char *path;
3693 
3694 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3695 	if (__ratelimit(&_rs)) {
3696 		path = file_path(filp, pathname, sizeof(pathname));
3697 		if (IS_ERR(path))
3698 			path = "(unknown)";
3699 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3700 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3701 			current->comm);
3702 	}
3703 }
3704 
3705 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3706 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3707 {
3708 	struct file	*file = iocb->ki_filp;
3709 	struct address_space *mapping = file->f_mapping;
3710 	struct inode	*inode = mapping->host;
3711 	loff_t		pos = iocb->ki_pos;
3712 	ssize_t		written;
3713 	size_t		write_len;
3714 	pgoff_t		end;
3715 
3716 	write_len = iov_iter_count(from);
3717 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3718 
3719 	if (iocb->ki_flags & IOCB_NOWAIT) {
3720 		/* If there are pages to writeback, return */
3721 		if (filemap_range_has_page(file->f_mapping, pos,
3722 					   pos + write_len - 1))
3723 			return -EAGAIN;
3724 	} else {
3725 		written = filemap_write_and_wait_range(mapping, pos,
3726 							pos + write_len - 1);
3727 		if (written)
3728 			goto out;
3729 	}
3730 
3731 	/*
3732 	 * After a write we want buffered reads to be sure to go to disk to get
3733 	 * the new data.  We invalidate clean cached page from the region we're
3734 	 * about to write.  We do this *before* the write so that we can return
3735 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3736 	 */
3737 	written = invalidate_inode_pages2_range(mapping,
3738 					pos >> PAGE_SHIFT, end);
3739 	/*
3740 	 * If a page can not be invalidated, return 0 to fall back
3741 	 * to buffered write.
3742 	 */
3743 	if (written) {
3744 		if (written == -EBUSY)
3745 			return 0;
3746 		goto out;
3747 	}
3748 
3749 	written = mapping->a_ops->direct_IO(iocb, from);
3750 
3751 	/*
3752 	 * Finally, try again to invalidate clean pages which might have been
3753 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3754 	 * if the source of the write was an mmap'ed region of the file
3755 	 * we're writing.  Either one is a pretty crazy thing to do,
3756 	 * so we don't support it 100%.  If this invalidation
3757 	 * fails, tough, the write still worked...
3758 	 *
3759 	 * Most of the time we do not need this since dio_complete() will do
3760 	 * the invalidation for us. However there are some file systems that
3761 	 * do not end up with dio_complete() being called, so let's not break
3762 	 * them by removing it completely.
3763 	 *
3764 	 * Noticeable example is a blkdev_direct_IO().
3765 	 *
3766 	 * Skip invalidation for async writes or if mapping has no pages.
3767 	 */
3768 	if (written > 0 && mapping->nrpages &&
3769 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3770 		dio_warn_stale_pagecache(file);
3771 
3772 	if (written > 0) {
3773 		pos += written;
3774 		write_len -= written;
3775 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3776 			i_size_write(inode, pos);
3777 			mark_inode_dirty(inode);
3778 		}
3779 		iocb->ki_pos = pos;
3780 	}
3781 	if (written != -EIOCBQUEUED)
3782 		iov_iter_revert(from, write_len - iov_iter_count(from));
3783 out:
3784 	return written;
3785 }
3786 EXPORT_SYMBOL(generic_file_direct_write);
3787 
3788 /*
3789  * Find or create a page at the given pagecache position. Return the locked
3790  * page. This function is specifically for buffered writes.
3791  */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)3792 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3793 					pgoff_t index, unsigned flags)
3794 {
3795 	struct page *page;
3796 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3797 
3798 	if (flags & AOP_FLAG_NOFS)
3799 		fgp_flags |= FGP_NOFS;
3800 
3801 	page = pagecache_get_page(mapping, index, fgp_flags,
3802 			mapping_gfp_mask(mapping));
3803 	if (page)
3804 		wait_for_stable_page(page);
3805 
3806 	return page;
3807 }
3808 EXPORT_SYMBOL(grab_cache_page_write_begin);
3809 
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)3810 ssize_t generic_perform_write(struct file *file,
3811 				struct iov_iter *i, loff_t pos)
3812 {
3813 	struct address_space *mapping = file->f_mapping;
3814 	const struct address_space_operations *a_ops = mapping->a_ops;
3815 	long status = 0;
3816 	ssize_t written = 0;
3817 	unsigned int flags = 0;
3818 
3819 	do {
3820 		struct page *page;
3821 		unsigned long offset;	/* Offset into pagecache page */
3822 		unsigned long bytes;	/* Bytes to write to page */
3823 		size_t copied;		/* Bytes copied from user */
3824 		void *fsdata = NULL;
3825 
3826 		offset = (pos & (PAGE_SIZE - 1));
3827 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3828 						iov_iter_count(i));
3829 
3830 again:
3831 		/*
3832 		 * Bring in the user page that we will copy from _first_.
3833 		 * Otherwise there's a nasty deadlock on copying from the
3834 		 * same page as we're writing to, without it being marked
3835 		 * up-to-date.
3836 		 */
3837 		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3838 			status = -EFAULT;
3839 			break;
3840 		}
3841 
3842 		if (fatal_signal_pending(current)) {
3843 			status = -EINTR;
3844 			break;
3845 		}
3846 
3847 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3848 						&page, &fsdata);
3849 		if (unlikely(status < 0))
3850 			break;
3851 
3852 		if (mapping_writably_mapped(mapping))
3853 			flush_dcache_page(page);
3854 
3855 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3856 		flush_dcache_page(page);
3857 
3858 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3859 						page, fsdata);
3860 		if (unlikely(status != copied)) {
3861 			iov_iter_revert(i, copied - max(status, 0L));
3862 			if (unlikely(status < 0))
3863 				break;
3864 		}
3865 		cond_resched();
3866 
3867 		if (unlikely(status == 0)) {
3868 			/*
3869 			 * A short copy made ->write_end() reject the
3870 			 * thing entirely.  Might be memory poisoning
3871 			 * halfway through, might be a race with munmap,
3872 			 * might be severe memory pressure.
3873 			 */
3874 			if (copied)
3875 				bytes = copied;
3876 			goto again;
3877 		}
3878 		pos += status;
3879 		written += status;
3880 
3881 		balance_dirty_pages_ratelimited(mapping);
3882 	} while (iov_iter_count(i));
3883 
3884 	return written ? written : status;
3885 }
3886 EXPORT_SYMBOL(generic_perform_write);
3887 
3888 /**
3889  * __generic_file_write_iter - write data to a file
3890  * @iocb:	IO state structure (file, offset, etc.)
3891  * @from:	iov_iter with data to write
3892  *
3893  * This function does all the work needed for actually writing data to a
3894  * file. It does all basic checks, removes SUID from the file, updates
3895  * modification times and calls proper subroutines depending on whether we
3896  * do direct IO or a standard buffered write.
3897  *
3898  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3899  * object which does not need locking at all.
3900  *
3901  * This function does *not* take care of syncing data in case of O_SYNC write.
3902  * A caller has to handle it. This is mainly due to the fact that we want to
3903  * avoid syncing under i_rwsem.
3904  *
3905  * Return:
3906  * * number of bytes written, even for truncated writes
3907  * * negative error code if no data has been written at all
3908  */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3909 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3910 {
3911 	struct file *file = iocb->ki_filp;
3912 	struct address_space *mapping = file->f_mapping;
3913 	struct inode 	*inode = mapping->host;
3914 	ssize_t		written = 0;
3915 	ssize_t		err;
3916 	ssize_t		status;
3917 
3918 	/* We can write back this queue in page reclaim */
3919 	current->backing_dev_info = inode_to_bdi(inode);
3920 	err = file_remove_privs(file);
3921 	if (err)
3922 		goto out;
3923 
3924 	err = file_update_time(file);
3925 	if (err)
3926 		goto out;
3927 
3928 	if (iocb->ki_flags & IOCB_DIRECT) {
3929 		loff_t pos, endbyte;
3930 
3931 		written = generic_file_direct_write(iocb, from);
3932 		/*
3933 		 * If the write stopped short of completing, fall back to
3934 		 * buffered writes.  Some filesystems do this for writes to
3935 		 * holes, for example.  For DAX files, a buffered write will
3936 		 * not succeed (even if it did, DAX does not handle dirty
3937 		 * page-cache pages correctly).
3938 		 */
3939 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3940 			goto out;
3941 
3942 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3943 		/*
3944 		 * If generic_perform_write() returned a synchronous error
3945 		 * then we want to return the number of bytes which were
3946 		 * direct-written, or the error code if that was zero.  Note
3947 		 * that this differs from normal direct-io semantics, which
3948 		 * will return -EFOO even if some bytes were written.
3949 		 */
3950 		if (unlikely(status < 0)) {
3951 			err = status;
3952 			goto out;
3953 		}
3954 		/*
3955 		 * We need to ensure that the page cache pages are written to
3956 		 * disk and invalidated to preserve the expected O_DIRECT
3957 		 * semantics.
3958 		 */
3959 		endbyte = pos + status - 1;
3960 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3961 		if (err == 0) {
3962 			iocb->ki_pos = endbyte + 1;
3963 			written += status;
3964 			invalidate_mapping_pages(mapping,
3965 						 pos >> PAGE_SHIFT,
3966 						 endbyte >> PAGE_SHIFT);
3967 		} else {
3968 			/*
3969 			 * We don't know how much we wrote, so just return
3970 			 * the number of bytes which were direct-written
3971 			 */
3972 		}
3973 	} else {
3974 		written = generic_perform_write(file, from, iocb->ki_pos);
3975 		if (likely(written > 0))
3976 			iocb->ki_pos += written;
3977 	}
3978 out:
3979 	current->backing_dev_info = NULL;
3980 	return written ? written : err;
3981 }
3982 EXPORT_SYMBOL(__generic_file_write_iter);
3983 
3984 /**
3985  * generic_file_write_iter - write data to a file
3986  * @iocb:	IO state structure
3987  * @from:	iov_iter with data to write
3988  *
3989  * This is a wrapper around __generic_file_write_iter() to be used by most
3990  * filesystems. It takes care of syncing the file in case of O_SYNC file
3991  * and acquires i_rwsem as needed.
3992  * Return:
3993  * * negative error code if no data has been written at all of
3994  *   vfs_fsync_range() failed for a synchronous write
3995  * * number of bytes written, even for truncated writes
3996  */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3997 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3998 {
3999 	struct file *file = iocb->ki_filp;
4000 	struct inode *inode = file->f_mapping->host;
4001 	ssize_t ret;
4002 
4003 	inode_lock(inode);
4004 	ret = generic_write_checks(iocb, from);
4005 	if (ret > 0)
4006 		ret = __generic_file_write_iter(iocb, from);
4007 	inode_unlock(inode);
4008 
4009 	if (ret > 0)
4010 		ret = generic_write_sync(iocb, ret);
4011 	return ret;
4012 }
4013 EXPORT_SYMBOL(generic_file_write_iter);
4014 
4015 /**
4016  * try_to_release_page() - release old fs-specific metadata on a page
4017  *
4018  * @page: the page which the kernel is trying to free
4019  * @gfp_mask: memory allocation flags (and I/O mode)
4020  *
4021  * The address_space is to try to release any data against the page
4022  * (presumably at page->private).
4023  *
4024  * This may also be called if PG_fscache is set on a page, indicating that the
4025  * page is known to the local caching routines.
4026  *
4027  * The @gfp_mask argument specifies whether I/O may be performed to release
4028  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
4029  *
4030  * Return: %1 if the release was successful, otherwise return zero.
4031  */
try_to_release_page(struct page * page,gfp_t gfp_mask)4032 int try_to_release_page(struct page *page, gfp_t gfp_mask)
4033 {
4034 	struct address_space * const mapping = page->mapping;
4035 
4036 	BUG_ON(!PageLocked(page));
4037 	if (PageWriteback(page))
4038 		return 0;
4039 
4040 	if (mapping && mapping->a_ops->releasepage)
4041 		return mapping->a_ops->releasepage(page, gfp_mask);
4042 	return try_to_free_buffers(page);
4043 }
4044 
4045 EXPORT_SYMBOL(try_to_release_page);
4046