• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38 
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46 
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50 
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55 
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61 
62 __initdata LIST_HEAD(huge_boot_pages);
63 
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69 
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75 
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82 
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
86 		unsigned long start, unsigned long end);
87 
subpool_is_free(struct hugepage_subpool * spool)88 static inline bool subpool_is_free(struct hugepage_subpool *spool)
89 {
90 	if (spool->count)
91 		return false;
92 	if (spool->max_hpages != -1)
93 		return spool->used_hpages == 0;
94 	if (spool->min_hpages != -1)
95 		return spool->rsv_hpages == spool->min_hpages;
96 
97 	return true;
98 }
99 
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
101 						unsigned long irq_flags)
102 {
103 	spin_unlock_irqrestore(&spool->lock, irq_flags);
104 
105 	/* If no pages are used, and no other handles to the subpool
106 	 * remain, give up any reservations based on minimum size and
107 	 * free the subpool */
108 	if (subpool_is_free(spool)) {
109 		if (spool->min_hpages != -1)
110 			hugetlb_acct_memory(spool->hstate,
111 						-spool->min_hpages);
112 		kfree(spool);
113 	}
114 }
115 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)116 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
117 						long min_hpages)
118 {
119 	struct hugepage_subpool *spool;
120 
121 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
122 	if (!spool)
123 		return NULL;
124 
125 	spin_lock_init(&spool->lock);
126 	spool->count = 1;
127 	spool->max_hpages = max_hpages;
128 	spool->hstate = h;
129 	spool->min_hpages = min_hpages;
130 
131 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
132 		kfree(spool);
133 		return NULL;
134 	}
135 	spool->rsv_hpages = min_hpages;
136 
137 	return spool;
138 }
139 
hugepage_put_subpool(struct hugepage_subpool * spool)140 void hugepage_put_subpool(struct hugepage_subpool *spool)
141 {
142 	unsigned long flags;
143 
144 	spin_lock_irqsave(&spool->lock, flags);
145 	BUG_ON(!spool->count);
146 	spool->count--;
147 	unlock_or_release_subpool(spool, flags);
148 }
149 
150 /*
151  * Subpool accounting for allocating and reserving pages.
152  * Return -ENOMEM if there are not enough resources to satisfy the
153  * request.  Otherwise, return the number of pages by which the
154  * global pools must be adjusted (upward).  The returned value may
155  * only be different than the passed value (delta) in the case where
156  * a subpool minimum size must be maintained.
157  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)158 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
159 				      long delta)
160 {
161 	long ret = delta;
162 
163 	if (!spool)
164 		return ret;
165 
166 	spin_lock_irq(&spool->lock);
167 
168 	if (spool->max_hpages != -1) {		/* maximum size accounting */
169 		if ((spool->used_hpages + delta) <= spool->max_hpages)
170 			spool->used_hpages += delta;
171 		else {
172 			ret = -ENOMEM;
173 			goto unlock_ret;
174 		}
175 	}
176 
177 	/* minimum size accounting */
178 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
179 		if (delta > spool->rsv_hpages) {
180 			/*
181 			 * Asking for more reserves than those already taken on
182 			 * behalf of subpool.  Return difference.
183 			 */
184 			ret = delta - spool->rsv_hpages;
185 			spool->rsv_hpages = 0;
186 		} else {
187 			ret = 0;	/* reserves already accounted for */
188 			spool->rsv_hpages -= delta;
189 		}
190 	}
191 
192 unlock_ret:
193 	spin_unlock_irq(&spool->lock);
194 	return ret;
195 }
196 
197 /*
198  * Subpool accounting for freeing and unreserving pages.
199  * Return the number of global page reservations that must be dropped.
200  * The return value may only be different than the passed value (delta)
201  * in the case where a subpool minimum size must be maintained.
202  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)203 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
204 				       long delta)
205 {
206 	long ret = delta;
207 	unsigned long flags;
208 
209 	if (!spool)
210 		return delta;
211 
212 	spin_lock_irqsave(&spool->lock, flags);
213 
214 	if (spool->max_hpages != -1)		/* maximum size accounting */
215 		spool->used_hpages -= delta;
216 
217 	 /* minimum size accounting */
218 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
219 		if (spool->rsv_hpages + delta <= spool->min_hpages)
220 			ret = 0;
221 		else
222 			ret = spool->rsv_hpages + delta - spool->min_hpages;
223 
224 		spool->rsv_hpages += delta;
225 		if (spool->rsv_hpages > spool->min_hpages)
226 			spool->rsv_hpages = spool->min_hpages;
227 	}
228 
229 	/*
230 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
231 	 * quota reference, free it now.
232 	 */
233 	unlock_or_release_subpool(spool, flags);
234 
235 	return ret;
236 }
237 
subpool_inode(struct inode * inode)238 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
239 {
240 	return HUGETLBFS_SB(inode->i_sb)->spool;
241 }
242 
subpool_vma(struct vm_area_struct * vma)243 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
244 {
245 	return subpool_inode(file_inode(vma->vm_file));
246 }
247 
248 /* Helper that removes a struct file_region from the resv_map cache and returns
249  * it for use.
250  */
251 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)252 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
253 {
254 	struct file_region *nrg = NULL;
255 
256 	VM_BUG_ON(resv->region_cache_count <= 0);
257 
258 	resv->region_cache_count--;
259 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
260 	list_del(&nrg->link);
261 
262 	nrg->from = from;
263 	nrg->to = to;
264 
265 	return nrg;
266 }
267 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)268 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
269 					      struct file_region *rg)
270 {
271 #ifdef CONFIG_CGROUP_HUGETLB
272 	nrg->reservation_counter = rg->reservation_counter;
273 	nrg->css = rg->css;
274 	if (rg->css)
275 		css_get(rg->css);
276 #endif
277 }
278 
279 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)280 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
281 						struct hstate *h,
282 						struct resv_map *resv,
283 						struct file_region *nrg)
284 {
285 #ifdef CONFIG_CGROUP_HUGETLB
286 	if (h_cg) {
287 		nrg->reservation_counter =
288 			&h_cg->rsvd_hugepage[hstate_index(h)];
289 		nrg->css = &h_cg->css;
290 		/*
291 		 * The caller will hold exactly one h_cg->css reference for the
292 		 * whole contiguous reservation region. But this area might be
293 		 * scattered when there are already some file_regions reside in
294 		 * it. As a result, many file_regions may share only one css
295 		 * reference. In order to ensure that one file_region must hold
296 		 * exactly one h_cg->css reference, we should do css_get for
297 		 * each file_region and leave the reference held by caller
298 		 * untouched.
299 		 */
300 		css_get(&h_cg->css);
301 		if (!resv->pages_per_hpage)
302 			resv->pages_per_hpage = pages_per_huge_page(h);
303 		/* pages_per_hpage should be the same for all entries in
304 		 * a resv_map.
305 		 */
306 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
307 	} else {
308 		nrg->reservation_counter = NULL;
309 		nrg->css = NULL;
310 	}
311 #endif
312 }
313 
put_uncharge_info(struct file_region * rg)314 static void put_uncharge_info(struct file_region *rg)
315 {
316 #ifdef CONFIG_CGROUP_HUGETLB
317 	if (rg->css)
318 		css_put(rg->css);
319 #endif
320 }
321 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)322 static bool has_same_uncharge_info(struct file_region *rg,
323 				   struct file_region *org)
324 {
325 #ifdef CONFIG_CGROUP_HUGETLB
326 	return rg && org &&
327 	       rg->reservation_counter == org->reservation_counter &&
328 	       rg->css == org->css;
329 
330 #else
331 	return true;
332 #endif
333 }
334 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)335 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
336 {
337 	struct file_region *nrg = NULL, *prg = NULL;
338 
339 	prg = list_prev_entry(rg, link);
340 	if (&prg->link != &resv->regions && prg->to == rg->from &&
341 	    has_same_uncharge_info(prg, rg)) {
342 		prg->to = rg->to;
343 
344 		list_del(&rg->link);
345 		put_uncharge_info(rg);
346 		kfree(rg);
347 
348 		rg = prg;
349 	}
350 
351 	nrg = list_next_entry(rg, link);
352 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
353 	    has_same_uncharge_info(nrg, rg)) {
354 		nrg->from = rg->from;
355 
356 		list_del(&rg->link);
357 		put_uncharge_info(rg);
358 		kfree(rg);
359 	}
360 }
361 
362 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct file_region * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)363 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
364 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
365 		     long *regions_needed)
366 {
367 	struct file_region *nrg;
368 
369 	if (!regions_needed) {
370 		nrg = get_file_region_entry_from_cache(map, from, to);
371 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
372 		list_add(&nrg->link, rg->link.prev);
373 		coalesce_file_region(map, nrg);
374 	} else
375 		*regions_needed += 1;
376 
377 	return to - from;
378 }
379 
380 /*
381  * Must be called with resv->lock held.
382  *
383  * Calling this with regions_needed != NULL will count the number of pages
384  * to be added but will not modify the linked list. And regions_needed will
385  * indicate the number of file_regions needed in the cache to carry out to add
386  * the regions for this range.
387  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)388 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
389 				     struct hugetlb_cgroup *h_cg,
390 				     struct hstate *h, long *regions_needed)
391 {
392 	long add = 0;
393 	struct list_head *head = &resv->regions;
394 	long last_accounted_offset = f;
395 	struct file_region *rg = NULL, *trg = NULL;
396 
397 	if (regions_needed)
398 		*regions_needed = 0;
399 
400 	/* In this loop, we essentially handle an entry for the range
401 	 * [last_accounted_offset, rg->from), at every iteration, with some
402 	 * bounds checking.
403 	 */
404 	list_for_each_entry_safe(rg, trg, head, link) {
405 		/* Skip irrelevant regions that start before our range. */
406 		if (rg->from < f) {
407 			/* If this region ends after the last accounted offset,
408 			 * then we need to update last_accounted_offset.
409 			 */
410 			if (rg->to > last_accounted_offset)
411 				last_accounted_offset = rg->to;
412 			continue;
413 		}
414 
415 		/* When we find a region that starts beyond our range, we've
416 		 * finished.
417 		 */
418 		if (rg->from >= t)
419 			break;
420 
421 		/* Add an entry for last_accounted_offset -> rg->from, and
422 		 * update last_accounted_offset.
423 		 */
424 		if (rg->from > last_accounted_offset)
425 			add += hugetlb_resv_map_add(resv, rg,
426 						    last_accounted_offset,
427 						    rg->from, h, h_cg,
428 						    regions_needed);
429 
430 		last_accounted_offset = rg->to;
431 	}
432 
433 	/* Handle the case where our range extends beyond
434 	 * last_accounted_offset.
435 	 */
436 	if (last_accounted_offset < t)
437 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
438 					    t, h, h_cg, regions_needed);
439 
440 	VM_BUG_ON(add < 0);
441 	return add;
442 }
443 
444 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
445  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)446 static int allocate_file_region_entries(struct resv_map *resv,
447 					int regions_needed)
448 	__must_hold(&resv->lock)
449 {
450 	struct list_head allocated_regions;
451 	int to_allocate = 0, i = 0;
452 	struct file_region *trg = NULL, *rg = NULL;
453 
454 	VM_BUG_ON(regions_needed < 0);
455 
456 	INIT_LIST_HEAD(&allocated_regions);
457 
458 	/*
459 	 * Check for sufficient descriptors in the cache to accommodate
460 	 * the number of in progress add operations plus regions_needed.
461 	 *
462 	 * This is a while loop because when we drop the lock, some other call
463 	 * to region_add or region_del may have consumed some region_entries,
464 	 * so we keep looping here until we finally have enough entries for
465 	 * (adds_in_progress + regions_needed).
466 	 */
467 	while (resv->region_cache_count <
468 	       (resv->adds_in_progress + regions_needed)) {
469 		to_allocate = resv->adds_in_progress + regions_needed -
470 			      resv->region_cache_count;
471 
472 		/* At this point, we should have enough entries in the cache
473 		 * for all the existing adds_in_progress. We should only be
474 		 * needing to allocate for regions_needed.
475 		 */
476 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
477 
478 		spin_unlock(&resv->lock);
479 		for (i = 0; i < to_allocate; i++) {
480 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
481 			if (!trg)
482 				goto out_of_memory;
483 			list_add(&trg->link, &allocated_regions);
484 		}
485 
486 		spin_lock(&resv->lock);
487 
488 		list_splice(&allocated_regions, &resv->region_cache);
489 		resv->region_cache_count += to_allocate;
490 	}
491 
492 	return 0;
493 
494 out_of_memory:
495 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
496 		list_del(&rg->link);
497 		kfree(rg);
498 	}
499 	return -ENOMEM;
500 }
501 
502 /*
503  * Add the huge page range represented by [f, t) to the reserve
504  * map.  Regions will be taken from the cache to fill in this range.
505  * Sufficient regions should exist in the cache due to the previous
506  * call to region_chg with the same range, but in some cases the cache will not
507  * have sufficient entries due to races with other code doing region_add or
508  * region_del.  The extra needed entries will be allocated.
509  *
510  * regions_needed is the out value provided by a previous call to region_chg.
511  *
512  * Return the number of new huge pages added to the map.  This number is greater
513  * than or equal to zero.  If file_region entries needed to be allocated for
514  * this operation and we were not able to allocate, it returns -ENOMEM.
515  * region_add of regions of length 1 never allocate file_regions and cannot
516  * fail; region_chg will always allocate at least 1 entry and a region_add for
517  * 1 page will only require at most 1 entry.
518  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)519 static long region_add(struct resv_map *resv, long f, long t,
520 		       long in_regions_needed, struct hstate *h,
521 		       struct hugetlb_cgroup *h_cg)
522 {
523 	long add = 0, actual_regions_needed = 0;
524 
525 	spin_lock(&resv->lock);
526 retry:
527 
528 	/* Count how many regions are actually needed to execute this add. */
529 	add_reservation_in_range(resv, f, t, NULL, NULL,
530 				 &actual_regions_needed);
531 
532 	/*
533 	 * Check for sufficient descriptors in the cache to accommodate
534 	 * this add operation. Note that actual_regions_needed may be greater
535 	 * than in_regions_needed, as the resv_map may have been modified since
536 	 * the region_chg call. In this case, we need to make sure that we
537 	 * allocate extra entries, such that we have enough for all the
538 	 * existing adds_in_progress, plus the excess needed for this
539 	 * operation.
540 	 */
541 	if (actual_regions_needed > in_regions_needed &&
542 	    resv->region_cache_count <
543 		    resv->adds_in_progress +
544 			    (actual_regions_needed - in_regions_needed)) {
545 		/* region_add operation of range 1 should never need to
546 		 * allocate file_region entries.
547 		 */
548 		VM_BUG_ON(t - f <= 1);
549 
550 		if (allocate_file_region_entries(
551 			    resv, actual_regions_needed - in_regions_needed)) {
552 			return -ENOMEM;
553 		}
554 
555 		goto retry;
556 	}
557 
558 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
559 
560 	resv->adds_in_progress -= in_regions_needed;
561 
562 	spin_unlock(&resv->lock);
563 	return add;
564 }
565 
566 /*
567  * Examine the existing reserve map and determine how many
568  * huge pages in the specified range [f, t) are NOT currently
569  * represented.  This routine is called before a subsequent
570  * call to region_add that will actually modify the reserve
571  * map to add the specified range [f, t).  region_chg does
572  * not change the number of huge pages represented by the
573  * map.  A number of new file_region structures is added to the cache as a
574  * placeholder, for the subsequent region_add call to use. At least 1
575  * file_region structure is added.
576  *
577  * out_regions_needed is the number of regions added to the
578  * resv->adds_in_progress.  This value needs to be provided to a follow up call
579  * to region_add or region_abort for proper accounting.
580  *
581  * Returns the number of huge pages that need to be added to the existing
582  * reservation map for the range [f, t).  This number is greater or equal to
583  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
584  * is needed and can not be allocated.
585  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)586 static long region_chg(struct resv_map *resv, long f, long t,
587 		       long *out_regions_needed)
588 {
589 	long chg = 0;
590 
591 	spin_lock(&resv->lock);
592 
593 	/* Count how many hugepages in this range are NOT represented. */
594 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
595 				       out_regions_needed);
596 
597 	if (*out_regions_needed == 0)
598 		*out_regions_needed = 1;
599 
600 	if (allocate_file_region_entries(resv, *out_regions_needed))
601 		return -ENOMEM;
602 
603 	resv->adds_in_progress += *out_regions_needed;
604 
605 	spin_unlock(&resv->lock);
606 	return chg;
607 }
608 
609 /*
610  * Abort the in progress add operation.  The adds_in_progress field
611  * of the resv_map keeps track of the operations in progress between
612  * calls to region_chg and region_add.  Operations are sometimes
613  * aborted after the call to region_chg.  In such cases, region_abort
614  * is called to decrement the adds_in_progress counter. regions_needed
615  * is the value returned by the region_chg call, it is used to decrement
616  * the adds_in_progress counter.
617  *
618  * NOTE: The range arguments [f, t) are not needed or used in this
619  * routine.  They are kept to make reading the calling code easier as
620  * arguments will match the associated region_chg call.
621  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)622 static void region_abort(struct resv_map *resv, long f, long t,
623 			 long regions_needed)
624 {
625 	spin_lock(&resv->lock);
626 	VM_BUG_ON(!resv->region_cache_count);
627 	resv->adds_in_progress -= regions_needed;
628 	spin_unlock(&resv->lock);
629 }
630 
631 /*
632  * Delete the specified range [f, t) from the reserve map.  If the
633  * t parameter is LONG_MAX, this indicates that ALL regions after f
634  * should be deleted.  Locate the regions which intersect [f, t)
635  * and either trim, delete or split the existing regions.
636  *
637  * Returns the number of huge pages deleted from the reserve map.
638  * In the normal case, the return value is zero or more.  In the
639  * case where a region must be split, a new region descriptor must
640  * be allocated.  If the allocation fails, -ENOMEM will be returned.
641  * NOTE: If the parameter t == LONG_MAX, then we will never split
642  * a region and possibly return -ENOMEM.  Callers specifying
643  * t == LONG_MAX do not need to check for -ENOMEM error.
644  */
region_del(struct resv_map * resv,long f,long t)645 static long region_del(struct resv_map *resv, long f, long t)
646 {
647 	struct list_head *head = &resv->regions;
648 	struct file_region *rg, *trg;
649 	struct file_region *nrg = NULL;
650 	long del = 0;
651 
652 retry:
653 	spin_lock(&resv->lock);
654 	list_for_each_entry_safe(rg, trg, head, link) {
655 		/*
656 		 * Skip regions before the range to be deleted.  file_region
657 		 * ranges are normally of the form [from, to).  However, there
658 		 * may be a "placeholder" entry in the map which is of the form
659 		 * (from, to) with from == to.  Check for placeholder entries
660 		 * at the beginning of the range to be deleted.
661 		 */
662 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
663 			continue;
664 
665 		if (rg->from >= t)
666 			break;
667 
668 		if (f > rg->from && t < rg->to) { /* Must split region */
669 			/*
670 			 * Check for an entry in the cache before dropping
671 			 * lock and attempting allocation.
672 			 */
673 			if (!nrg &&
674 			    resv->region_cache_count > resv->adds_in_progress) {
675 				nrg = list_first_entry(&resv->region_cache,
676 							struct file_region,
677 							link);
678 				list_del(&nrg->link);
679 				resv->region_cache_count--;
680 			}
681 
682 			if (!nrg) {
683 				spin_unlock(&resv->lock);
684 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
685 				if (!nrg)
686 					return -ENOMEM;
687 				goto retry;
688 			}
689 
690 			del += t - f;
691 			hugetlb_cgroup_uncharge_file_region(
692 				resv, rg, t - f, false);
693 
694 			/* New entry for end of split region */
695 			nrg->from = t;
696 			nrg->to = rg->to;
697 
698 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
699 
700 			INIT_LIST_HEAD(&nrg->link);
701 
702 			/* Original entry is trimmed */
703 			rg->to = f;
704 
705 			list_add(&nrg->link, &rg->link);
706 			nrg = NULL;
707 			break;
708 		}
709 
710 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
711 			del += rg->to - rg->from;
712 			hugetlb_cgroup_uncharge_file_region(resv, rg,
713 							    rg->to - rg->from, true);
714 			list_del(&rg->link);
715 			kfree(rg);
716 			continue;
717 		}
718 
719 		if (f <= rg->from) {	/* Trim beginning of region */
720 			hugetlb_cgroup_uncharge_file_region(resv, rg,
721 							    t - rg->from, false);
722 
723 			del += t - rg->from;
724 			rg->from = t;
725 		} else {		/* Trim end of region */
726 			hugetlb_cgroup_uncharge_file_region(resv, rg,
727 							    rg->to - f, false);
728 
729 			del += rg->to - f;
730 			rg->to = f;
731 		}
732 	}
733 
734 	spin_unlock(&resv->lock);
735 	kfree(nrg);
736 	return del;
737 }
738 
739 /*
740  * A rare out of memory error was encountered which prevented removal of
741  * the reserve map region for a page.  The huge page itself was free'ed
742  * and removed from the page cache.  This routine will adjust the subpool
743  * usage count, and the global reserve count if needed.  By incrementing
744  * these counts, the reserve map entry which could not be deleted will
745  * appear as a "reserved" entry instead of simply dangling with incorrect
746  * counts.
747  */
hugetlb_fix_reserve_counts(struct inode * inode)748 void hugetlb_fix_reserve_counts(struct inode *inode)
749 {
750 	struct hugepage_subpool *spool = subpool_inode(inode);
751 	long rsv_adjust;
752 	bool reserved = false;
753 
754 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
755 	if (rsv_adjust > 0) {
756 		struct hstate *h = hstate_inode(inode);
757 
758 		if (!hugetlb_acct_memory(h, 1))
759 			reserved = true;
760 	} else if (!rsv_adjust) {
761 		reserved = true;
762 	}
763 
764 	if (!reserved)
765 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
766 }
767 
768 /*
769  * Count and return the number of huge pages in the reserve map
770  * that intersect with the range [f, t).
771  */
region_count(struct resv_map * resv,long f,long t)772 static long region_count(struct resv_map *resv, long f, long t)
773 {
774 	struct list_head *head = &resv->regions;
775 	struct file_region *rg;
776 	long chg = 0;
777 
778 	spin_lock(&resv->lock);
779 	/* Locate each segment we overlap with, and count that overlap. */
780 	list_for_each_entry(rg, head, link) {
781 		long seg_from;
782 		long seg_to;
783 
784 		if (rg->to <= f)
785 			continue;
786 		if (rg->from >= t)
787 			break;
788 
789 		seg_from = max(rg->from, f);
790 		seg_to = min(rg->to, t);
791 
792 		chg += seg_to - seg_from;
793 	}
794 	spin_unlock(&resv->lock);
795 
796 	return chg;
797 }
798 
799 /*
800  * Convert the address within this vma to the page offset within
801  * the mapping, in pagecache page units; huge pages here.
802  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)803 static pgoff_t vma_hugecache_offset(struct hstate *h,
804 			struct vm_area_struct *vma, unsigned long address)
805 {
806 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
807 			(vma->vm_pgoff >> huge_page_order(h));
808 }
809 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)810 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
811 				     unsigned long address)
812 {
813 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
814 }
815 EXPORT_SYMBOL_GPL(linear_hugepage_index);
816 
817 /*
818  * Return the size of the pages allocated when backing a VMA. In the majority
819  * cases this will be same size as used by the page table entries.
820  */
vma_kernel_pagesize(struct vm_area_struct * vma)821 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
822 {
823 	if (vma->vm_ops && vma->vm_ops->pagesize)
824 		return vma->vm_ops->pagesize(vma);
825 	return PAGE_SIZE;
826 }
827 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
828 
829 /*
830  * Return the page size being used by the MMU to back a VMA. In the majority
831  * of cases, the page size used by the kernel matches the MMU size. On
832  * architectures where it differs, an architecture-specific 'strong'
833  * version of this symbol is required.
834  */
vma_mmu_pagesize(struct vm_area_struct * vma)835 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
836 {
837 	return vma_kernel_pagesize(vma);
838 }
839 
840 /*
841  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
842  * bits of the reservation map pointer, which are always clear due to
843  * alignment.
844  */
845 #define HPAGE_RESV_OWNER    (1UL << 0)
846 #define HPAGE_RESV_UNMAPPED (1UL << 1)
847 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
848 
849 /*
850  * These helpers are used to track how many pages are reserved for
851  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
852  * is guaranteed to have their future faults succeed.
853  *
854  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
855  * the reserve counters are updated with the hugetlb_lock held. It is safe
856  * to reset the VMA at fork() time as it is not in use yet and there is no
857  * chance of the global counters getting corrupted as a result of the values.
858  *
859  * The private mapping reservation is represented in a subtly different
860  * manner to a shared mapping.  A shared mapping has a region map associated
861  * with the underlying file, this region map represents the backing file
862  * pages which have ever had a reservation assigned which this persists even
863  * after the page is instantiated.  A private mapping has a region map
864  * associated with the original mmap which is attached to all VMAs which
865  * reference it, this region map represents those offsets which have consumed
866  * reservation ie. where pages have been instantiated.
867  */
get_vma_private_data(struct vm_area_struct * vma)868 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
869 {
870 	return (unsigned long)vma->vm_private_data;
871 }
872 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)873 static void set_vma_private_data(struct vm_area_struct *vma,
874 							unsigned long value)
875 {
876 	vma->vm_private_data = (void *)value;
877 }
878 
879 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)880 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
881 					  struct hugetlb_cgroup *h_cg,
882 					  struct hstate *h)
883 {
884 #ifdef CONFIG_CGROUP_HUGETLB
885 	if (!h_cg || !h) {
886 		resv_map->reservation_counter = NULL;
887 		resv_map->pages_per_hpage = 0;
888 		resv_map->css = NULL;
889 	} else {
890 		resv_map->reservation_counter =
891 			&h_cg->rsvd_hugepage[hstate_index(h)];
892 		resv_map->pages_per_hpage = pages_per_huge_page(h);
893 		resv_map->css = &h_cg->css;
894 	}
895 #endif
896 }
897 
resv_map_alloc(void)898 struct resv_map *resv_map_alloc(void)
899 {
900 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
901 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
902 
903 	if (!resv_map || !rg) {
904 		kfree(resv_map);
905 		kfree(rg);
906 		return NULL;
907 	}
908 
909 	kref_init(&resv_map->refs);
910 	spin_lock_init(&resv_map->lock);
911 	INIT_LIST_HEAD(&resv_map->regions);
912 
913 	resv_map->adds_in_progress = 0;
914 	/*
915 	 * Initialize these to 0. On shared mappings, 0's here indicate these
916 	 * fields don't do cgroup accounting. On private mappings, these will be
917 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
918 	 * reservations are to be un-charged from here.
919 	 */
920 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
921 
922 	INIT_LIST_HEAD(&resv_map->region_cache);
923 	list_add(&rg->link, &resv_map->region_cache);
924 	resv_map->region_cache_count = 1;
925 
926 	return resv_map;
927 }
928 
resv_map_release(struct kref * ref)929 void resv_map_release(struct kref *ref)
930 {
931 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
932 	struct list_head *head = &resv_map->region_cache;
933 	struct file_region *rg, *trg;
934 
935 	/* Clear out any active regions before we release the map. */
936 	region_del(resv_map, 0, LONG_MAX);
937 
938 	/* ... and any entries left in the cache */
939 	list_for_each_entry_safe(rg, trg, head, link) {
940 		list_del(&rg->link);
941 		kfree(rg);
942 	}
943 
944 	VM_BUG_ON(resv_map->adds_in_progress);
945 
946 	kfree(resv_map);
947 }
948 
inode_resv_map(struct inode * inode)949 static inline struct resv_map *inode_resv_map(struct inode *inode)
950 {
951 	/*
952 	 * At inode evict time, i_mapping may not point to the original
953 	 * address space within the inode.  This original address space
954 	 * contains the pointer to the resv_map.  So, always use the
955 	 * address space embedded within the inode.
956 	 * The VERY common case is inode->mapping == &inode->i_data but,
957 	 * this may not be true for device special inodes.
958 	 */
959 	return (struct resv_map *)(&inode->i_data)->private_data;
960 }
961 
vma_resv_map(struct vm_area_struct * vma)962 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
963 {
964 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965 	if (vma->vm_flags & VM_MAYSHARE) {
966 		struct address_space *mapping = vma->vm_file->f_mapping;
967 		struct inode *inode = mapping->host;
968 
969 		return inode_resv_map(inode);
970 
971 	} else {
972 		return (struct resv_map *)(get_vma_private_data(vma) &
973 							~HPAGE_RESV_MASK);
974 	}
975 }
976 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)977 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
978 {
979 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
980 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
981 
982 	set_vma_private_data(vma, (get_vma_private_data(vma) &
983 				HPAGE_RESV_MASK) | (unsigned long)map);
984 }
985 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)986 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
987 {
988 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990 
991 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
992 }
993 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)994 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
995 {
996 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
997 
998 	return (get_vma_private_data(vma) & flag) != 0;
999 }
1000 
1001 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)1002 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1003 {
1004 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005 	if (!(vma->vm_flags & VM_MAYSHARE))
1006 		vma->vm_private_data = (void *)0;
1007 }
1008 
1009 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1010 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1011 {
1012 	if (vma->vm_flags & VM_NORESERVE) {
1013 		/*
1014 		 * This address is already reserved by other process(chg == 0),
1015 		 * so, we should decrement reserved count. Without decrementing,
1016 		 * reserve count remains after releasing inode, because this
1017 		 * allocated page will go into page cache and is regarded as
1018 		 * coming from reserved pool in releasing step.  Currently, we
1019 		 * don't have any other solution to deal with this situation
1020 		 * properly, so add work-around here.
1021 		 */
1022 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1023 			return true;
1024 		else
1025 			return false;
1026 	}
1027 
1028 	/* Shared mappings always use reserves */
1029 	if (vma->vm_flags & VM_MAYSHARE) {
1030 		/*
1031 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1032 		 * be a region map for all pages.  The only situation where
1033 		 * there is no region map is if a hole was punched via
1034 		 * fallocate.  In this case, there really are no reserves to
1035 		 * use.  This situation is indicated if chg != 0.
1036 		 */
1037 		if (chg)
1038 			return false;
1039 		else
1040 			return true;
1041 	}
1042 
1043 	/*
1044 	 * Only the process that called mmap() has reserves for
1045 	 * private mappings.
1046 	 */
1047 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048 		/*
1049 		 * Like the shared case above, a hole punch or truncate
1050 		 * could have been performed on the private mapping.
1051 		 * Examine the value of chg to determine if reserves
1052 		 * actually exist or were previously consumed.
1053 		 * Very Subtle - The value of chg comes from a previous
1054 		 * call to vma_needs_reserves().  The reserve map for
1055 		 * private mappings has different (opposite) semantics
1056 		 * than that of shared mappings.  vma_needs_reserves()
1057 		 * has already taken this difference in semantics into
1058 		 * account.  Therefore, the meaning of chg is the same
1059 		 * as in the shared case above.  Code could easily be
1060 		 * combined, but keeping it separate draws attention to
1061 		 * subtle differences.
1062 		 */
1063 		if (chg)
1064 			return false;
1065 		else
1066 			return true;
1067 	}
1068 
1069 	return false;
1070 }
1071 
enqueue_huge_page(struct hstate * h,struct page * page)1072 static void enqueue_huge_page(struct hstate *h, struct page *page)
1073 {
1074 	int nid = page_to_nid(page);
1075 
1076 	lockdep_assert_held(&hugetlb_lock);
1077 	VM_BUG_ON_PAGE(page_count(page), page);
1078 
1079 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1080 	h->free_huge_pages++;
1081 	h->free_huge_pages_node[nid]++;
1082 	SetHPageFreed(page);
1083 }
1084 
dequeue_huge_page_node_exact(struct hstate * h,int nid)1085 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1086 {
1087 	struct page *page;
1088 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1089 
1090 	lockdep_assert_held(&hugetlb_lock);
1091 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1092 		if (pin && !is_pinnable_page(page))
1093 			continue;
1094 
1095 		if (PageHWPoison(page))
1096 			continue;
1097 
1098 		list_move(&page->lru, &h->hugepage_activelist);
1099 		set_page_refcounted(page);
1100 		ClearHPageFreed(page);
1101 		h->free_huge_pages--;
1102 		h->free_huge_pages_node[nid]--;
1103 		return page;
1104 	}
1105 
1106 	return NULL;
1107 }
1108 
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1109 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1110 		nodemask_t *nmask)
1111 {
1112 	unsigned int cpuset_mems_cookie;
1113 	struct zonelist *zonelist;
1114 	struct zone *zone;
1115 	struct zoneref *z;
1116 	int node = NUMA_NO_NODE;
1117 
1118 	zonelist = node_zonelist(nid, gfp_mask);
1119 
1120 retry_cpuset:
1121 	cpuset_mems_cookie = read_mems_allowed_begin();
1122 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1123 		struct page *page;
1124 
1125 		if (!cpuset_zone_allowed(zone, gfp_mask))
1126 			continue;
1127 		/*
1128 		 * no need to ask again on the same node. Pool is node rather than
1129 		 * zone aware
1130 		 */
1131 		if (zone_to_nid(zone) == node)
1132 			continue;
1133 		node = zone_to_nid(zone);
1134 
1135 		page = dequeue_huge_page_node_exact(h, node);
1136 		if (page)
1137 			return page;
1138 	}
1139 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1140 		goto retry_cpuset;
1141 
1142 	return NULL;
1143 }
1144 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1145 static struct page *dequeue_huge_page_vma(struct hstate *h,
1146 				struct vm_area_struct *vma,
1147 				unsigned long address, int avoid_reserve,
1148 				long chg)
1149 {
1150 	struct page *page = NULL;
1151 	struct mempolicy *mpol;
1152 	gfp_t gfp_mask;
1153 	nodemask_t *nodemask;
1154 	int nid;
1155 
1156 	/*
1157 	 * A child process with MAP_PRIVATE mappings created by their parent
1158 	 * have no page reserves. This check ensures that reservations are
1159 	 * not "stolen". The child may still get SIGKILLed
1160 	 */
1161 	if (!vma_has_reserves(vma, chg) &&
1162 			h->free_huge_pages - h->resv_huge_pages == 0)
1163 		goto err;
1164 
1165 	/* If reserves cannot be used, ensure enough pages are in the pool */
1166 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1167 		goto err;
1168 
1169 	gfp_mask = htlb_alloc_mask(h);
1170 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1171 
1172 	if (mpol_is_preferred_many(mpol)) {
1173 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1174 
1175 		/* Fallback to all nodes if page==NULL */
1176 		nodemask = NULL;
1177 	}
1178 
1179 	if (!page)
1180 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1181 
1182 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1183 		SetHPageRestoreReserve(page);
1184 		h->resv_huge_pages--;
1185 	}
1186 
1187 	mpol_cond_put(mpol);
1188 	return page;
1189 
1190 err:
1191 	return NULL;
1192 }
1193 
1194 /*
1195  * common helper functions for hstate_next_node_to_{alloc|free}.
1196  * We may have allocated or freed a huge page based on a different
1197  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1198  * be outside of *nodes_allowed.  Ensure that we use an allowed
1199  * node for alloc or free.
1200  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1201 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1202 {
1203 	nid = next_node_in(nid, *nodes_allowed);
1204 	VM_BUG_ON(nid >= MAX_NUMNODES);
1205 
1206 	return nid;
1207 }
1208 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1209 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1210 {
1211 	if (!node_isset(nid, *nodes_allowed))
1212 		nid = next_node_allowed(nid, nodes_allowed);
1213 	return nid;
1214 }
1215 
1216 /*
1217  * returns the previously saved node ["this node"] from which to
1218  * allocate a persistent huge page for the pool and advance the
1219  * next node from which to allocate, handling wrap at end of node
1220  * mask.
1221  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1222 static int hstate_next_node_to_alloc(struct hstate *h,
1223 					nodemask_t *nodes_allowed)
1224 {
1225 	int nid;
1226 
1227 	VM_BUG_ON(!nodes_allowed);
1228 
1229 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1230 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1231 
1232 	return nid;
1233 }
1234 
1235 /*
1236  * helper for remove_pool_huge_page() - return the previously saved
1237  * node ["this node"] from which to free a huge page.  Advance the
1238  * next node id whether or not we find a free huge page to free so
1239  * that the next attempt to free addresses the next node.
1240  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1241 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1242 {
1243 	int nid;
1244 
1245 	VM_BUG_ON(!nodes_allowed);
1246 
1247 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1248 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1249 
1250 	return nid;
1251 }
1252 
1253 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1254 	for (nr_nodes = nodes_weight(*mask);				\
1255 		nr_nodes > 0 &&						\
1256 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1257 		nr_nodes--)
1258 
1259 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1260 	for (nr_nodes = nodes_weight(*mask);				\
1261 		nr_nodes > 0 &&						\
1262 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1263 		nr_nodes--)
1264 
1265 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1266 static void destroy_compound_gigantic_page(struct page *page,
1267 					unsigned int order)
1268 {
1269 	int i;
1270 	int nr_pages = 1 << order;
1271 	struct page *p = page + 1;
1272 
1273 	atomic_set(compound_mapcount_ptr(page), 0);
1274 	atomic_set(compound_pincount_ptr(page), 0);
1275 
1276 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1277 		clear_compound_head(p);
1278 		set_page_refcounted(p);
1279 	}
1280 
1281 	set_compound_order(page, 0);
1282 	page[1].compound_nr = 0;
1283 	__ClearPageHead(page);
1284 }
1285 
free_gigantic_page(struct page * page,unsigned int order)1286 static void free_gigantic_page(struct page *page, unsigned int order)
1287 {
1288 	/*
1289 	 * If the page isn't allocated using the cma allocator,
1290 	 * cma_release() returns false.
1291 	 */
1292 #ifdef CONFIG_CMA
1293 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1294 		return;
1295 #endif
1296 
1297 	free_contig_range(page_to_pfn(page), 1 << order);
1298 }
1299 
1300 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1301 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1302 		int nid, nodemask_t *nodemask)
1303 {
1304 	unsigned long nr_pages = pages_per_huge_page(h);
1305 	if (nid == NUMA_NO_NODE)
1306 		nid = numa_mem_id();
1307 
1308 #ifdef CONFIG_CMA
1309 	{
1310 		struct page *page;
1311 		int node;
1312 
1313 		if (hugetlb_cma[nid]) {
1314 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1315 					huge_page_order(h), true);
1316 			if (page)
1317 				return page;
1318 		}
1319 
1320 		if (!(gfp_mask & __GFP_THISNODE)) {
1321 			for_each_node_mask(node, *nodemask) {
1322 				if (node == nid || !hugetlb_cma[node])
1323 					continue;
1324 
1325 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1326 						huge_page_order(h), true);
1327 				if (page)
1328 					return page;
1329 			}
1330 		}
1331 	}
1332 #endif
1333 
1334 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1335 }
1336 
1337 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1338 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1339 					int nid, nodemask_t *nodemask)
1340 {
1341 	return NULL;
1342 }
1343 #endif /* CONFIG_CONTIG_ALLOC */
1344 
1345 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1346 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1347 					int nid, nodemask_t *nodemask)
1348 {
1349 	return NULL;
1350 }
free_gigantic_page(struct page * page,unsigned int order)1351 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1352 static inline void destroy_compound_gigantic_page(struct page *page,
1353 						unsigned int order) { }
1354 #endif
1355 
1356 /*
1357  * Remove hugetlb page from lists, and update dtor so that page appears
1358  * as just a compound page.  A reference is held on the page.
1359  *
1360  * Must be called with hugetlb lock held.
1361  */
remove_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus)1362 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1363 							bool adjust_surplus)
1364 {
1365 	int nid = page_to_nid(page);
1366 
1367 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1368 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1369 
1370 	lockdep_assert_held(&hugetlb_lock);
1371 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1372 		return;
1373 
1374 	list_del(&page->lru);
1375 
1376 	if (HPageFreed(page)) {
1377 		h->free_huge_pages--;
1378 		h->free_huge_pages_node[nid]--;
1379 	}
1380 	if (adjust_surplus) {
1381 		h->surplus_huge_pages--;
1382 		h->surplus_huge_pages_node[nid]--;
1383 	}
1384 
1385 	/*
1386 	 * Very subtle
1387 	 *
1388 	 * For non-gigantic pages set the destructor to the normal compound
1389 	 * page dtor.  This is needed in case someone takes an additional
1390 	 * temporary ref to the page, and freeing is delayed until they drop
1391 	 * their reference.
1392 	 *
1393 	 * For gigantic pages set the destructor to the null dtor.  This
1394 	 * destructor will never be called.  Before freeing the gigantic
1395 	 * page destroy_compound_gigantic_page will turn the compound page
1396 	 * into a simple group of pages.  After this the destructor does not
1397 	 * apply.
1398 	 *
1399 	 * This handles the case where more than one ref is held when and
1400 	 * after update_and_free_page is called.
1401 	 */
1402 	set_page_refcounted(page);
1403 	if (hstate_is_gigantic(h))
1404 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1405 	else
1406 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1407 
1408 	h->nr_huge_pages--;
1409 	h->nr_huge_pages_node[nid]--;
1410 }
1411 
add_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus)1412 static void add_hugetlb_page(struct hstate *h, struct page *page,
1413 			     bool adjust_surplus)
1414 {
1415 	int zeroed;
1416 	int nid = page_to_nid(page);
1417 
1418 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1419 
1420 	lockdep_assert_held(&hugetlb_lock);
1421 
1422 	INIT_LIST_HEAD(&page->lru);
1423 	h->nr_huge_pages++;
1424 	h->nr_huge_pages_node[nid]++;
1425 
1426 	if (adjust_surplus) {
1427 		h->surplus_huge_pages++;
1428 		h->surplus_huge_pages_node[nid]++;
1429 	}
1430 
1431 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1432 	set_page_private(page, 0);
1433 	SetHPageVmemmapOptimized(page);
1434 
1435 	/*
1436 	 * This page is about to be managed by the hugetlb allocator and
1437 	 * should have no users.  Drop our reference, and check for others
1438 	 * just in case.
1439 	 */
1440 	zeroed = put_page_testzero(page);
1441 	if (!zeroed)
1442 		/*
1443 		 * It is VERY unlikely soneone else has taken a ref on
1444 		 * the page.  In this case, we simply return as the
1445 		 * hugetlb destructor (free_huge_page) will be called
1446 		 * when this other ref is dropped.
1447 		 */
1448 		return;
1449 
1450 	arch_clear_hugepage_flags(page);
1451 	enqueue_huge_page(h, page);
1452 }
1453 
__update_and_free_page(struct hstate * h,struct page * page)1454 static void __update_and_free_page(struct hstate *h, struct page *page)
1455 {
1456 	int i;
1457 	struct page *subpage = page;
1458 
1459 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1460 		return;
1461 
1462 	if (alloc_huge_page_vmemmap(h, page)) {
1463 		spin_lock_irq(&hugetlb_lock);
1464 		/*
1465 		 * If we cannot allocate vmemmap pages, just refuse to free the
1466 		 * page and put the page back on the hugetlb free list and treat
1467 		 * as a surplus page.
1468 		 */
1469 		add_hugetlb_page(h, page, true);
1470 		spin_unlock_irq(&hugetlb_lock);
1471 		return;
1472 	}
1473 
1474 	for (i = 0; i < pages_per_huge_page(h);
1475 	     i++, subpage = mem_map_next(subpage, page, i)) {
1476 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1477 				1 << PG_referenced | 1 << PG_dirty |
1478 				1 << PG_active | 1 << PG_private |
1479 				1 << PG_writeback);
1480 	}
1481 	if (hstate_is_gigantic(h)) {
1482 		destroy_compound_gigantic_page(page, huge_page_order(h));
1483 		free_gigantic_page(page, huge_page_order(h));
1484 	} else {
1485 		__free_pages(page, huge_page_order(h));
1486 	}
1487 }
1488 
1489 /*
1490  * As update_and_free_page() can be called under any context, so we cannot
1491  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1492  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1493  * the vmemmap pages.
1494  *
1495  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1496  * freed and frees them one-by-one. As the page->mapping pointer is going
1497  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1498  * structure of a lockless linked list of huge pages to be freed.
1499  */
1500 static LLIST_HEAD(hpage_freelist);
1501 
free_hpage_workfn(struct work_struct * work)1502 static void free_hpage_workfn(struct work_struct *work)
1503 {
1504 	struct llist_node *node;
1505 
1506 	node = llist_del_all(&hpage_freelist);
1507 
1508 	while (node) {
1509 		struct page *page;
1510 		struct hstate *h;
1511 
1512 		page = container_of((struct address_space **)node,
1513 				     struct page, mapping);
1514 		node = node->next;
1515 		page->mapping = NULL;
1516 		/*
1517 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1518 		 * is going to trigger because a previous call to
1519 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1520 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1521 		 */
1522 		h = size_to_hstate(page_size(page));
1523 
1524 		__update_and_free_page(h, page);
1525 
1526 		cond_resched();
1527 	}
1528 }
1529 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1530 
flush_free_hpage_work(struct hstate * h)1531 static inline void flush_free_hpage_work(struct hstate *h)
1532 {
1533 	if (free_vmemmap_pages_per_hpage(h))
1534 		flush_work(&free_hpage_work);
1535 }
1536 
update_and_free_page(struct hstate * h,struct page * page,bool atomic)1537 static void update_and_free_page(struct hstate *h, struct page *page,
1538 				 bool atomic)
1539 {
1540 	if (!HPageVmemmapOptimized(page) || !atomic) {
1541 		__update_and_free_page(h, page);
1542 		return;
1543 	}
1544 
1545 	/*
1546 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1547 	 *
1548 	 * Only call schedule_work() if hpage_freelist is previously
1549 	 * empty. Otherwise, schedule_work() had been called but the workfn
1550 	 * hasn't retrieved the list yet.
1551 	 */
1552 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1553 		schedule_work(&free_hpage_work);
1554 }
1555 
update_and_free_pages_bulk(struct hstate * h,struct list_head * list)1556 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1557 {
1558 	struct page *page, *t_page;
1559 
1560 	list_for_each_entry_safe(page, t_page, list, lru) {
1561 		update_and_free_page(h, page, false);
1562 		cond_resched();
1563 	}
1564 }
1565 
size_to_hstate(unsigned long size)1566 struct hstate *size_to_hstate(unsigned long size)
1567 {
1568 	struct hstate *h;
1569 
1570 	for_each_hstate(h) {
1571 		if (huge_page_size(h) == size)
1572 			return h;
1573 	}
1574 	return NULL;
1575 }
1576 
free_huge_page(struct page * page)1577 void free_huge_page(struct page *page)
1578 {
1579 	/*
1580 	 * Can't pass hstate in here because it is called from the
1581 	 * compound page destructor.
1582 	 */
1583 	struct hstate *h = page_hstate(page);
1584 	int nid = page_to_nid(page);
1585 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1586 	bool restore_reserve;
1587 	unsigned long flags;
1588 
1589 	VM_BUG_ON_PAGE(page_count(page), page);
1590 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1591 
1592 	hugetlb_set_page_subpool(page, NULL);
1593 	page->mapping = NULL;
1594 	restore_reserve = HPageRestoreReserve(page);
1595 	ClearHPageRestoreReserve(page);
1596 
1597 	/*
1598 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1599 	 * reservation.  If the page was associated with a subpool, there
1600 	 * would have been a page reserved in the subpool before allocation
1601 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1602 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1603 	 * remove the reserved page from the subpool.
1604 	 */
1605 	if (!restore_reserve) {
1606 		/*
1607 		 * A return code of zero implies that the subpool will be
1608 		 * under its minimum size if the reservation is not restored
1609 		 * after page is free.  Therefore, force restore_reserve
1610 		 * operation.
1611 		 */
1612 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1613 			restore_reserve = true;
1614 	}
1615 
1616 	spin_lock_irqsave(&hugetlb_lock, flags);
1617 	ClearHPageMigratable(page);
1618 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1619 				     pages_per_huge_page(h), page);
1620 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1621 					  pages_per_huge_page(h), page);
1622 	if (restore_reserve)
1623 		h->resv_huge_pages++;
1624 
1625 	if (HPageTemporary(page)) {
1626 		remove_hugetlb_page(h, page, false);
1627 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1628 		update_and_free_page(h, page, true);
1629 	} else if (h->surplus_huge_pages_node[nid]) {
1630 		/* remove the page from active list */
1631 		remove_hugetlb_page(h, page, true);
1632 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1633 		update_and_free_page(h, page, true);
1634 	} else {
1635 		arch_clear_hugepage_flags(page);
1636 		enqueue_huge_page(h, page);
1637 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1638 	}
1639 }
1640 
1641 /*
1642  * Must be called with the hugetlb lock held
1643  */
__prep_account_new_huge_page(struct hstate * h,int nid)1644 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1645 {
1646 	lockdep_assert_held(&hugetlb_lock);
1647 	h->nr_huge_pages++;
1648 	h->nr_huge_pages_node[nid]++;
1649 }
1650 
__prep_new_huge_page(struct hstate * h,struct page * page)1651 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1652 {
1653 	free_huge_page_vmemmap(h, page);
1654 	INIT_LIST_HEAD(&page->lru);
1655 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1656 	hugetlb_set_page_subpool(page, NULL);
1657 	set_hugetlb_cgroup(page, NULL);
1658 	set_hugetlb_cgroup_rsvd(page, NULL);
1659 }
1660 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1661 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1662 {
1663 	__prep_new_huge_page(h, page);
1664 	spin_lock_irq(&hugetlb_lock);
1665 	__prep_account_new_huge_page(h, nid);
1666 	spin_unlock_irq(&hugetlb_lock);
1667 }
1668 
prep_compound_gigantic_page(struct page * page,unsigned int order)1669 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1670 {
1671 	int i, j;
1672 	int nr_pages = 1 << order;
1673 	struct page *p = page + 1;
1674 
1675 	/* we rely on prep_new_huge_page to set the destructor */
1676 	set_compound_order(page, order);
1677 	__ClearPageReserved(page);
1678 	__SetPageHead(page);
1679 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1680 		/*
1681 		 * For gigantic hugepages allocated through bootmem at
1682 		 * boot, it's safer to be consistent with the not-gigantic
1683 		 * hugepages and clear the PG_reserved bit from all tail pages
1684 		 * too.  Otherwise drivers using get_user_pages() to access tail
1685 		 * pages may get the reference counting wrong if they see
1686 		 * PG_reserved set on a tail page (despite the head page not
1687 		 * having PG_reserved set).  Enforcing this consistency between
1688 		 * head and tail pages allows drivers to optimize away a check
1689 		 * on the head page when they need know if put_page() is needed
1690 		 * after get_user_pages().
1691 		 */
1692 		__ClearPageReserved(p);
1693 		/*
1694 		 * Subtle and very unlikely
1695 		 *
1696 		 * Gigantic 'page allocators' such as memblock or cma will
1697 		 * return a set of pages with each page ref counted.  We need
1698 		 * to turn this set of pages into a compound page with tail
1699 		 * page ref counts set to zero.  Code such as speculative page
1700 		 * cache adding could take a ref on a 'to be' tail page.
1701 		 * We need to respect any increased ref count, and only set
1702 		 * the ref count to zero if count is currently 1.  If count
1703 		 * is not 1, we return an error.  An error return indicates
1704 		 * the set of pages can not be converted to a gigantic page.
1705 		 * The caller who allocated the pages should then discard the
1706 		 * pages using the appropriate free interface.
1707 		 */
1708 		if (!page_ref_freeze(p, 1)) {
1709 			pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1710 			goto out_error;
1711 		}
1712 		set_page_count(p, 0);
1713 		set_compound_head(p, page);
1714 	}
1715 	atomic_set(compound_mapcount_ptr(page), -1);
1716 	atomic_set(compound_pincount_ptr(page), 0);
1717 	return true;
1718 
1719 out_error:
1720 	/* undo tail page modifications made above */
1721 	p = page + 1;
1722 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1723 		clear_compound_head(p);
1724 		set_page_refcounted(p);
1725 	}
1726 	/* need to clear PG_reserved on remaining tail pages  */
1727 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1728 		__ClearPageReserved(p);
1729 	set_compound_order(page, 0);
1730 	page[1].compound_nr = 0;
1731 	__ClearPageHead(page);
1732 	return false;
1733 }
1734 
1735 /*
1736  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1737  * transparent huge pages.  See the PageTransHuge() documentation for more
1738  * details.
1739  */
PageHuge(struct page * page)1740 int PageHuge(struct page *page)
1741 {
1742 	if (!PageCompound(page))
1743 		return 0;
1744 
1745 	page = compound_head(page);
1746 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1747 }
1748 EXPORT_SYMBOL_GPL(PageHuge);
1749 
1750 /*
1751  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1752  * normal or transparent huge pages.
1753  */
PageHeadHuge(struct page * page_head)1754 int PageHeadHuge(struct page *page_head)
1755 {
1756 	if (!PageHead(page_head))
1757 		return 0;
1758 
1759 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1760 }
1761 
1762 /*
1763  * Find and lock address space (mapping) in write mode.
1764  *
1765  * Upon entry, the page is locked which means that page_mapping() is
1766  * stable.  Due to locking order, we can only trylock_write.  If we can
1767  * not get the lock, simply return NULL to caller.
1768  */
hugetlb_page_mapping_lock_write(struct page * hpage)1769 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1770 {
1771 	struct address_space *mapping = page_mapping(hpage);
1772 
1773 	if (!mapping)
1774 		return mapping;
1775 
1776 	if (i_mmap_trylock_write(mapping))
1777 		return mapping;
1778 
1779 	return NULL;
1780 }
1781 
hugetlb_basepage_index(struct page * page)1782 pgoff_t hugetlb_basepage_index(struct page *page)
1783 {
1784 	struct page *page_head = compound_head(page);
1785 	pgoff_t index = page_index(page_head);
1786 	unsigned long compound_idx;
1787 
1788 	if (compound_order(page_head) >= MAX_ORDER)
1789 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1790 	else
1791 		compound_idx = page - page_head;
1792 
1793 	return (index << compound_order(page_head)) + compound_idx;
1794 }
1795 
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1796 static struct page *alloc_buddy_huge_page(struct hstate *h,
1797 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1798 		nodemask_t *node_alloc_noretry)
1799 {
1800 	int order = huge_page_order(h);
1801 	struct page *page;
1802 	bool alloc_try_hard = true;
1803 
1804 	/*
1805 	 * By default we always try hard to allocate the page with
1806 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1807 	 * a loop (to adjust global huge page counts) and previous allocation
1808 	 * failed, do not continue to try hard on the same node.  Use the
1809 	 * node_alloc_noretry bitmap to manage this state information.
1810 	 */
1811 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1812 		alloc_try_hard = false;
1813 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1814 	if (alloc_try_hard)
1815 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1816 	if (nid == NUMA_NO_NODE)
1817 		nid = numa_mem_id();
1818 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1819 	if (page)
1820 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1821 	else
1822 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1823 
1824 	/*
1825 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1826 	 * indicates an overall state change.  Clear bit so that we resume
1827 	 * normal 'try hard' allocations.
1828 	 */
1829 	if (node_alloc_noretry && page && !alloc_try_hard)
1830 		node_clear(nid, *node_alloc_noretry);
1831 
1832 	/*
1833 	 * If we tried hard to get a page but failed, set bit so that
1834 	 * subsequent attempts will not try as hard until there is an
1835 	 * overall state change.
1836 	 */
1837 	if (node_alloc_noretry && !page && alloc_try_hard)
1838 		node_set(nid, *node_alloc_noretry);
1839 
1840 	return page;
1841 }
1842 
1843 /*
1844  * Common helper to allocate a fresh hugetlb page. All specific allocators
1845  * should use this function to get new hugetlb pages
1846  */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1847 static struct page *alloc_fresh_huge_page(struct hstate *h,
1848 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1849 		nodemask_t *node_alloc_noretry)
1850 {
1851 	struct page *page;
1852 	bool retry = false;
1853 
1854 retry:
1855 	if (hstate_is_gigantic(h))
1856 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1857 	else
1858 		page = alloc_buddy_huge_page(h, gfp_mask,
1859 				nid, nmask, node_alloc_noretry);
1860 	if (!page)
1861 		return NULL;
1862 
1863 	if (hstate_is_gigantic(h)) {
1864 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1865 			/*
1866 			 * Rare failure to convert pages to compound page.
1867 			 * Free pages and try again - ONCE!
1868 			 */
1869 			free_gigantic_page(page, huge_page_order(h));
1870 			if (!retry) {
1871 				retry = true;
1872 				goto retry;
1873 			}
1874 			return NULL;
1875 		}
1876 	}
1877 	prep_new_huge_page(h, page, page_to_nid(page));
1878 
1879 	return page;
1880 }
1881 
1882 /*
1883  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1884  * manner.
1885  */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1886 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1887 				nodemask_t *node_alloc_noretry)
1888 {
1889 	struct page *page;
1890 	int nr_nodes, node;
1891 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1892 
1893 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1894 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1895 						node_alloc_noretry);
1896 		if (page)
1897 			break;
1898 	}
1899 
1900 	if (!page)
1901 		return 0;
1902 
1903 	put_page(page); /* free it into the hugepage allocator */
1904 
1905 	return 1;
1906 }
1907 
1908 /*
1909  * Remove huge page from pool from next node to free.  Attempt to keep
1910  * persistent huge pages more or less balanced over allowed nodes.
1911  * This routine only 'removes' the hugetlb page.  The caller must make
1912  * an additional call to free the page to low level allocators.
1913  * Called with hugetlb_lock locked.
1914  */
remove_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1915 static struct page *remove_pool_huge_page(struct hstate *h,
1916 						nodemask_t *nodes_allowed,
1917 						 bool acct_surplus)
1918 {
1919 	int nr_nodes, node;
1920 	struct page *page = NULL;
1921 
1922 	lockdep_assert_held(&hugetlb_lock);
1923 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1924 		/*
1925 		 * If we're returning unused surplus pages, only examine
1926 		 * nodes with surplus pages.
1927 		 */
1928 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1929 		    !list_empty(&h->hugepage_freelists[node])) {
1930 			page = list_entry(h->hugepage_freelists[node].next,
1931 					  struct page, lru);
1932 			remove_hugetlb_page(h, page, acct_surplus);
1933 			break;
1934 		}
1935 	}
1936 
1937 	return page;
1938 }
1939 
1940 /*
1941  * Dissolve a given free hugepage into free buddy pages. This function does
1942  * nothing for in-use hugepages and non-hugepages.
1943  * This function returns values like below:
1944  *
1945  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1946  *           when the system is under memory pressure and the feature of
1947  *           freeing unused vmemmap pages associated with each hugetlb page
1948  *           is enabled.
1949  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1950  *           (allocated or reserved.)
1951  *       0:  successfully dissolved free hugepages or the page is not a
1952  *           hugepage (considered as already dissolved)
1953  */
dissolve_free_huge_page(struct page * page)1954 int dissolve_free_huge_page(struct page *page)
1955 {
1956 	int rc = -EBUSY;
1957 
1958 retry:
1959 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1960 	if (!PageHuge(page))
1961 		return 0;
1962 
1963 	spin_lock_irq(&hugetlb_lock);
1964 	if (!PageHuge(page)) {
1965 		rc = 0;
1966 		goto out;
1967 	}
1968 
1969 	if (!page_count(page)) {
1970 		struct page *head = compound_head(page);
1971 		struct hstate *h = page_hstate(head);
1972 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1973 			goto out;
1974 
1975 		/*
1976 		 * We should make sure that the page is already on the free list
1977 		 * when it is dissolved.
1978 		 */
1979 		if (unlikely(!HPageFreed(head))) {
1980 			spin_unlock_irq(&hugetlb_lock);
1981 			cond_resched();
1982 
1983 			/*
1984 			 * Theoretically, we should return -EBUSY when we
1985 			 * encounter this race. In fact, we have a chance
1986 			 * to successfully dissolve the page if we do a
1987 			 * retry. Because the race window is quite small.
1988 			 * If we seize this opportunity, it is an optimization
1989 			 * for increasing the success rate of dissolving page.
1990 			 */
1991 			goto retry;
1992 		}
1993 
1994 		remove_hugetlb_page(h, head, false);
1995 		h->max_huge_pages--;
1996 		spin_unlock_irq(&hugetlb_lock);
1997 
1998 		/*
1999 		 * Normally update_and_free_page will allocate required vmemmmap
2000 		 * before freeing the page.  update_and_free_page will fail to
2001 		 * free the page if it can not allocate required vmemmap.  We
2002 		 * need to adjust max_huge_pages if the page is not freed.
2003 		 * Attempt to allocate vmemmmap here so that we can take
2004 		 * appropriate action on failure.
2005 		 */
2006 		rc = alloc_huge_page_vmemmap(h, head);
2007 		if (!rc) {
2008 			/*
2009 			 * Move PageHWPoison flag from head page to the raw
2010 			 * error page, which makes any subpages rather than
2011 			 * the error page reusable.
2012 			 */
2013 			if (PageHWPoison(head) && page != head) {
2014 				SetPageHWPoison(page);
2015 				ClearPageHWPoison(head);
2016 			}
2017 			update_and_free_page(h, head, false);
2018 		} else {
2019 			spin_lock_irq(&hugetlb_lock);
2020 			add_hugetlb_page(h, head, false);
2021 			h->max_huge_pages++;
2022 			spin_unlock_irq(&hugetlb_lock);
2023 		}
2024 
2025 		return rc;
2026 	}
2027 out:
2028 	spin_unlock_irq(&hugetlb_lock);
2029 	return rc;
2030 }
2031 
2032 /*
2033  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2034  * make specified memory blocks removable from the system.
2035  * Note that this will dissolve a free gigantic hugepage completely, if any
2036  * part of it lies within the given range.
2037  * Also note that if dissolve_free_huge_page() returns with an error, all
2038  * free hugepages that were dissolved before that error are lost.
2039  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2040 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2041 {
2042 	unsigned long pfn;
2043 	struct page *page;
2044 	int rc = 0;
2045 
2046 	if (!hugepages_supported())
2047 		return rc;
2048 
2049 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2050 		page = pfn_to_page(pfn);
2051 		rc = dissolve_free_huge_page(page);
2052 		if (rc)
2053 			break;
2054 	}
2055 
2056 	return rc;
2057 }
2058 
2059 /*
2060  * Allocates a fresh surplus page from the page allocator.
2061  */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,bool zero_ref)2062 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2063 		int nid, nodemask_t *nmask, bool zero_ref)
2064 {
2065 	struct page *page = NULL;
2066 	bool retry = false;
2067 
2068 	if (hstate_is_gigantic(h))
2069 		return NULL;
2070 
2071 	spin_lock_irq(&hugetlb_lock);
2072 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2073 		goto out_unlock;
2074 	spin_unlock_irq(&hugetlb_lock);
2075 
2076 retry:
2077 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2078 	if (!page)
2079 		return NULL;
2080 
2081 	spin_lock_irq(&hugetlb_lock);
2082 	/*
2083 	 * We could have raced with the pool size change.
2084 	 * Double check that and simply deallocate the new page
2085 	 * if we would end up overcommiting the surpluses. Abuse
2086 	 * temporary page to workaround the nasty free_huge_page
2087 	 * codeflow
2088 	 */
2089 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2090 		SetHPageTemporary(page);
2091 		spin_unlock_irq(&hugetlb_lock);
2092 		put_page(page);
2093 		return NULL;
2094 	}
2095 
2096 	if (zero_ref) {
2097 		/*
2098 		 * Caller requires a page with zero ref count.
2099 		 * We will drop ref count here.  If someone else is holding
2100 		 * a ref, the page will be freed when they drop it.  Abuse
2101 		 * temporary page flag to accomplish this.
2102 		 */
2103 		SetHPageTemporary(page);
2104 		if (!put_page_testzero(page)) {
2105 			/*
2106 			 * Unexpected inflated ref count on freshly allocated
2107 			 * huge.  Retry once.
2108 			 */
2109 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2110 			spin_unlock_irq(&hugetlb_lock);
2111 			if (retry)
2112 				return NULL;
2113 
2114 			retry = true;
2115 			goto retry;
2116 		}
2117 		ClearHPageTemporary(page);
2118 	}
2119 
2120 	h->surplus_huge_pages++;
2121 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2122 
2123 out_unlock:
2124 	spin_unlock_irq(&hugetlb_lock);
2125 
2126 	return page;
2127 }
2128 
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2129 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2130 				     int nid, nodemask_t *nmask)
2131 {
2132 	struct page *page;
2133 
2134 	if (hstate_is_gigantic(h))
2135 		return NULL;
2136 
2137 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2138 	if (!page)
2139 		return NULL;
2140 
2141 	/*
2142 	 * We do not account these pages as surplus because they are only
2143 	 * temporary and will be released properly on the last reference
2144 	 */
2145 	SetHPageTemporary(page);
2146 
2147 	return page;
2148 }
2149 
2150 /*
2151  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2152  */
2153 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2154 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2155 		struct vm_area_struct *vma, unsigned long addr)
2156 {
2157 	struct page *page = NULL;
2158 	struct mempolicy *mpol;
2159 	gfp_t gfp_mask = htlb_alloc_mask(h);
2160 	int nid;
2161 	nodemask_t *nodemask;
2162 
2163 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2164 	if (mpol_is_preferred_many(mpol)) {
2165 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2166 
2167 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2168 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2169 
2170 		/* Fallback to all nodes if page==NULL */
2171 		nodemask = NULL;
2172 	}
2173 
2174 	if (!page)
2175 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2176 	mpol_cond_put(mpol);
2177 	return page;
2178 }
2179 
2180 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2181 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2182 		nodemask_t *nmask, gfp_t gfp_mask)
2183 {
2184 	spin_lock_irq(&hugetlb_lock);
2185 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2186 		struct page *page;
2187 
2188 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2189 		if (page) {
2190 			spin_unlock_irq(&hugetlb_lock);
2191 			return page;
2192 		}
2193 	}
2194 	spin_unlock_irq(&hugetlb_lock);
2195 
2196 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2197 }
2198 
2199 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2200 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2201 		unsigned long address)
2202 {
2203 	struct mempolicy *mpol;
2204 	nodemask_t *nodemask;
2205 	struct page *page;
2206 	gfp_t gfp_mask;
2207 	int node;
2208 
2209 	gfp_mask = htlb_alloc_mask(h);
2210 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2211 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2212 	mpol_cond_put(mpol);
2213 
2214 	return page;
2215 }
2216 
2217 /*
2218  * Increase the hugetlb pool such that it can accommodate a reservation
2219  * of size 'delta'.
2220  */
gather_surplus_pages(struct hstate * h,long delta)2221 static int gather_surplus_pages(struct hstate *h, long delta)
2222 	__must_hold(&hugetlb_lock)
2223 {
2224 	struct list_head surplus_list;
2225 	struct page *page, *tmp;
2226 	int ret;
2227 	long i;
2228 	long needed, allocated;
2229 	bool alloc_ok = true;
2230 
2231 	lockdep_assert_held(&hugetlb_lock);
2232 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2233 	if (needed <= 0) {
2234 		h->resv_huge_pages += delta;
2235 		return 0;
2236 	}
2237 
2238 	allocated = 0;
2239 	INIT_LIST_HEAD(&surplus_list);
2240 
2241 	ret = -ENOMEM;
2242 retry:
2243 	spin_unlock_irq(&hugetlb_lock);
2244 	for (i = 0; i < needed; i++) {
2245 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2246 				NUMA_NO_NODE, NULL, true);
2247 		if (!page) {
2248 			alloc_ok = false;
2249 			break;
2250 		}
2251 		list_add(&page->lru, &surplus_list);
2252 		cond_resched();
2253 	}
2254 	allocated += i;
2255 
2256 	/*
2257 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2258 	 * because either resv_huge_pages or free_huge_pages may have changed.
2259 	 */
2260 	spin_lock_irq(&hugetlb_lock);
2261 	needed = (h->resv_huge_pages + delta) -
2262 			(h->free_huge_pages + allocated);
2263 	if (needed > 0) {
2264 		if (alloc_ok)
2265 			goto retry;
2266 		/*
2267 		 * We were not able to allocate enough pages to
2268 		 * satisfy the entire reservation so we free what
2269 		 * we've allocated so far.
2270 		 */
2271 		goto free;
2272 	}
2273 	/*
2274 	 * The surplus_list now contains _at_least_ the number of extra pages
2275 	 * needed to accommodate the reservation.  Add the appropriate number
2276 	 * of pages to the hugetlb pool and free the extras back to the buddy
2277 	 * allocator.  Commit the entire reservation here to prevent another
2278 	 * process from stealing the pages as they are added to the pool but
2279 	 * before they are reserved.
2280 	 */
2281 	needed += allocated;
2282 	h->resv_huge_pages += delta;
2283 	ret = 0;
2284 
2285 	/* Free the needed pages to the hugetlb pool */
2286 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2287 		if ((--needed) < 0)
2288 			break;
2289 		/* Add the page to the hugetlb allocator */
2290 		enqueue_huge_page(h, page);
2291 	}
2292 free:
2293 	spin_unlock_irq(&hugetlb_lock);
2294 
2295 	/*
2296 	 * Free unnecessary surplus pages to the buddy allocator.
2297 	 * Pages have no ref count, call free_huge_page directly.
2298 	 */
2299 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2300 		free_huge_page(page);
2301 	spin_lock_irq(&hugetlb_lock);
2302 
2303 	return ret;
2304 }
2305 
2306 /*
2307  * This routine has two main purposes:
2308  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2309  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2310  *    to the associated reservation map.
2311  * 2) Free any unused surplus pages that may have been allocated to satisfy
2312  *    the reservation.  As many as unused_resv_pages may be freed.
2313  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2314 static void return_unused_surplus_pages(struct hstate *h,
2315 					unsigned long unused_resv_pages)
2316 {
2317 	unsigned long nr_pages;
2318 	struct page *page;
2319 	LIST_HEAD(page_list);
2320 
2321 	lockdep_assert_held(&hugetlb_lock);
2322 	/* Uncommit the reservation */
2323 	h->resv_huge_pages -= unused_resv_pages;
2324 
2325 	/* Cannot return gigantic pages currently */
2326 	if (hstate_is_gigantic(h))
2327 		goto out;
2328 
2329 	/*
2330 	 * Part (or even all) of the reservation could have been backed
2331 	 * by pre-allocated pages. Only free surplus pages.
2332 	 */
2333 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2334 
2335 	/*
2336 	 * We want to release as many surplus pages as possible, spread
2337 	 * evenly across all nodes with memory. Iterate across these nodes
2338 	 * until we can no longer free unreserved surplus pages. This occurs
2339 	 * when the nodes with surplus pages have no free pages.
2340 	 * remove_pool_huge_page() will balance the freed pages across the
2341 	 * on-line nodes with memory and will handle the hstate accounting.
2342 	 */
2343 	while (nr_pages--) {
2344 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2345 		if (!page)
2346 			goto out;
2347 
2348 		list_add(&page->lru, &page_list);
2349 	}
2350 
2351 out:
2352 	spin_unlock_irq(&hugetlb_lock);
2353 	update_and_free_pages_bulk(h, &page_list);
2354 	spin_lock_irq(&hugetlb_lock);
2355 }
2356 
2357 
2358 /*
2359  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2360  * are used by the huge page allocation routines to manage reservations.
2361  *
2362  * vma_needs_reservation is called to determine if the huge page at addr
2363  * within the vma has an associated reservation.  If a reservation is
2364  * needed, the value 1 is returned.  The caller is then responsible for
2365  * managing the global reservation and subpool usage counts.  After
2366  * the huge page has been allocated, vma_commit_reservation is called
2367  * to add the page to the reservation map.  If the page allocation fails,
2368  * the reservation must be ended instead of committed.  vma_end_reservation
2369  * is called in such cases.
2370  *
2371  * In the normal case, vma_commit_reservation returns the same value
2372  * as the preceding vma_needs_reservation call.  The only time this
2373  * is not the case is if a reserve map was changed between calls.  It
2374  * is the responsibility of the caller to notice the difference and
2375  * take appropriate action.
2376  *
2377  * vma_add_reservation is used in error paths where a reservation must
2378  * be restored when a newly allocated huge page must be freed.  It is
2379  * to be called after calling vma_needs_reservation to determine if a
2380  * reservation exists.
2381  *
2382  * vma_del_reservation is used in error paths where an entry in the reserve
2383  * map was created during huge page allocation and must be removed.  It is to
2384  * be called after calling vma_needs_reservation to determine if a reservation
2385  * exists.
2386  */
2387 enum vma_resv_mode {
2388 	VMA_NEEDS_RESV,
2389 	VMA_COMMIT_RESV,
2390 	VMA_END_RESV,
2391 	VMA_ADD_RESV,
2392 	VMA_DEL_RESV,
2393 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2394 static long __vma_reservation_common(struct hstate *h,
2395 				struct vm_area_struct *vma, unsigned long addr,
2396 				enum vma_resv_mode mode)
2397 {
2398 	struct resv_map *resv;
2399 	pgoff_t idx;
2400 	long ret;
2401 	long dummy_out_regions_needed;
2402 
2403 	resv = vma_resv_map(vma);
2404 	if (!resv)
2405 		return 1;
2406 
2407 	idx = vma_hugecache_offset(h, vma, addr);
2408 	switch (mode) {
2409 	case VMA_NEEDS_RESV:
2410 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2411 		/* We assume that vma_reservation_* routines always operate on
2412 		 * 1 page, and that adding to resv map a 1 page entry can only
2413 		 * ever require 1 region.
2414 		 */
2415 		VM_BUG_ON(dummy_out_regions_needed != 1);
2416 		break;
2417 	case VMA_COMMIT_RESV:
2418 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2419 		/* region_add calls of range 1 should never fail. */
2420 		VM_BUG_ON(ret < 0);
2421 		break;
2422 	case VMA_END_RESV:
2423 		region_abort(resv, idx, idx + 1, 1);
2424 		ret = 0;
2425 		break;
2426 	case VMA_ADD_RESV:
2427 		if (vma->vm_flags & VM_MAYSHARE) {
2428 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2429 			/* region_add calls of range 1 should never fail. */
2430 			VM_BUG_ON(ret < 0);
2431 		} else {
2432 			region_abort(resv, idx, idx + 1, 1);
2433 			ret = region_del(resv, idx, idx + 1);
2434 		}
2435 		break;
2436 	case VMA_DEL_RESV:
2437 		if (vma->vm_flags & VM_MAYSHARE) {
2438 			region_abort(resv, idx, idx + 1, 1);
2439 			ret = region_del(resv, idx, idx + 1);
2440 		} else {
2441 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2442 			/* region_add calls of range 1 should never fail. */
2443 			VM_BUG_ON(ret < 0);
2444 		}
2445 		break;
2446 	default:
2447 		BUG();
2448 	}
2449 
2450 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2451 		return ret;
2452 	/*
2453 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2454 	 *
2455 	 * In most cases, reserves always exist for private mappings.
2456 	 * However, a file associated with mapping could have been
2457 	 * hole punched or truncated after reserves were consumed.
2458 	 * As subsequent fault on such a range will not use reserves.
2459 	 * Subtle - The reserve map for private mappings has the
2460 	 * opposite meaning than that of shared mappings.  If NO
2461 	 * entry is in the reserve map, it means a reservation exists.
2462 	 * If an entry exists in the reserve map, it means the
2463 	 * reservation has already been consumed.  As a result, the
2464 	 * return value of this routine is the opposite of the
2465 	 * value returned from reserve map manipulation routines above.
2466 	 */
2467 	if (ret > 0)
2468 		return 0;
2469 	if (ret == 0)
2470 		return 1;
2471 	return ret;
2472 }
2473 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2474 static long vma_needs_reservation(struct hstate *h,
2475 			struct vm_area_struct *vma, unsigned long addr)
2476 {
2477 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2478 }
2479 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2480 static long vma_commit_reservation(struct hstate *h,
2481 			struct vm_area_struct *vma, unsigned long addr)
2482 {
2483 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2484 }
2485 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2486 static void vma_end_reservation(struct hstate *h,
2487 			struct vm_area_struct *vma, unsigned long addr)
2488 {
2489 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2490 }
2491 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2492 static long vma_add_reservation(struct hstate *h,
2493 			struct vm_area_struct *vma, unsigned long addr)
2494 {
2495 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2496 }
2497 
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2498 static long vma_del_reservation(struct hstate *h,
2499 			struct vm_area_struct *vma, unsigned long addr)
2500 {
2501 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2502 }
2503 
2504 /*
2505  * This routine is called to restore reservation information on error paths.
2506  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2507  * the hugetlb mutex should remain held when calling this routine.
2508  *
2509  * It handles two specific cases:
2510  * 1) A reservation was in place and the page consumed the reservation.
2511  *    HPageRestoreReserve is set in the page.
2512  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2513  *    not set.  However, alloc_huge_page always updates the reserve map.
2514  *
2515  * In case 1, free_huge_page later in the error path will increment the
2516  * global reserve count.  But, free_huge_page does not have enough context
2517  * to adjust the reservation map.  This case deals primarily with private
2518  * mappings.  Adjust the reserve map here to be consistent with global
2519  * reserve count adjustments to be made by free_huge_page.  Make sure the
2520  * reserve map indicates there is a reservation present.
2521  *
2522  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2523  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2524 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2525 			unsigned long address, struct page *page)
2526 {
2527 	long rc = vma_needs_reservation(h, vma, address);
2528 
2529 	if (HPageRestoreReserve(page)) {
2530 		if (unlikely(rc < 0))
2531 			/*
2532 			 * Rare out of memory condition in reserve map
2533 			 * manipulation.  Clear HPageRestoreReserve so that
2534 			 * global reserve count will not be incremented
2535 			 * by free_huge_page.  This will make it appear
2536 			 * as though the reservation for this page was
2537 			 * consumed.  This may prevent the task from
2538 			 * faulting in the page at a later time.  This
2539 			 * is better than inconsistent global huge page
2540 			 * accounting of reserve counts.
2541 			 */
2542 			ClearHPageRestoreReserve(page);
2543 		else if (rc)
2544 			(void)vma_add_reservation(h, vma, address);
2545 		else
2546 			vma_end_reservation(h, vma, address);
2547 	} else {
2548 		if (!rc) {
2549 			/*
2550 			 * This indicates there is an entry in the reserve map
2551 			 * not added by alloc_huge_page.  We know it was added
2552 			 * before the alloc_huge_page call, otherwise
2553 			 * HPageRestoreReserve would be set on the page.
2554 			 * Remove the entry so that a subsequent allocation
2555 			 * does not consume a reservation.
2556 			 */
2557 			rc = vma_del_reservation(h, vma, address);
2558 			if (rc < 0)
2559 				/*
2560 				 * VERY rare out of memory condition.  Since
2561 				 * we can not delete the entry, set
2562 				 * HPageRestoreReserve so that the reserve
2563 				 * count will be incremented when the page
2564 				 * is freed.  This reserve will be consumed
2565 				 * on a subsequent allocation.
2566 				 */
2567 				SetHPageRestoreReserve(page);
2568 		} else if (rc < 0) {
2569 			/*
2570 			 * Rare out of memory condition from
2571 			 * vma_needs_reservation call.  Memory allocation is
2572 			 * only attempted if a new entry is needed.  Therefore,
2573 			 * this implies there is not an entry in the
2574 			 * reserve map.
2575 			 *
2576 			 * For shared mappings, no entry in the map indicates
2577 			 * no reservation.  We are done.
2578 			 */
2579 			if (!(vma->vm_flags & VM_MAYSHARE))
2580 				/*
2581 				 * For private mappings, no entry indicates
2582 				 * a reservation is present.  Since we can
2583 				 * not add an entry, set SetHPageRestoreReserve
2584 				 * on the page so reserve count will be
2585 				 * incremented when freed.  This reserve will
2586 				 * be consumed on a subsequent allocation.
2587 				 */
2588 				SetHPageRestoreReserve(page);
2589 		} else
2590 			/*
2591 			 * No reservation present, do nothing
2592 			 */
2593 			 vma_end_reservation(h, vma, address);
2594 	}
2595 }
2596 
2597 /*
2598  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2599  * @h: struct hstate old page belongs to
2600  * @old_page: Old page to dissolve
2601  * @list: List to isolate the page in case we need to
2602  * Returns 0 on success, otherwise negated error.
2603  */
alloc_and_dissolve_huge_page(struct hstate * h,struct page * old_page,struct list_head * list)2604 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2605 					struct list_head *list)
2606 {
2607 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2608 	int nid = page_to_nid(old_page);
2609 	bool alloc_retry = false;
2610 	struct page *new_page;
2611 	int ret = 0;
2612 
2613 	/*
2614 	 * Before dissolving the page, we need to allocate a new one for the
2615 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2616 	 * by doing everything but actually updating counters and adding to
2617 	 * the pool.  This simplifies and let us do most of the processing
2618 	 * under the lock.
2619 	 */
2620 alloc_retry:
2621 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2622 	if (!new_page)
2623 		return -ENOMEM;
2624 	/*
2625 	 * If all goes well, this page will be directly added to the free
2626 	 * list in the pool.  For this the ref count needs to be zero.
2627 	 * Attempt to drop now, and retry once if needed.  It is VERY
2628 	 * unlikely there is another ref on the page.
2629 	 *
2630 	 * If someone else has a reference to the page, it will be freed
2631 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2632 	 * this.  Retry once if there is an inflated ref count.
2633 	 */
2634 	SetHPageTemporary(new_page);
2635 	if (!put_page_testzero(new_page)) {
2636 		if (alloc_retry)
2637 			return -EBUSY;
2638 
2639 		alloc_retry = true;
2640 		goto alloc_retry;
2641 	}
2642 	ClearHPageTemporary(new_page);
2643 
2644 	__prep_new_huge_page(h, new_page);
2645 
2646 retry:
2647 	spin_lock_irq(&hugetlb_lock);
2648 	if (!PageHuge(old_page)) {
2649 		/*
2650 		 * Freed from under us. Drop new_page too.
2651 		 */
2652 		goto free_new;
2653 	} else if (page_count(old_page)) {
2654 		/*
2655 		 * Someone has grabbed the page, try to isolate it here.
2656 		 * Fail with -EBUSY if not possible.
2657 		 */
2658 		spin_unlock_irq(&hugetlb_lock);
2659 		ret = isolate_hugetlb(old_page, list);
2660 		spin_lock_irq(&hugetlb_lock);
2661 		goto free_new;
2662 	} else if (!HPageFreed(old_page)) {
2663 		/*
2664 		 * Page's refcount is 0 but it has not been enqueued in the
2665 		 * freelist yet. Race window is small, so we can succeed here if
2666 		 * we retry.
2667 		 */
2668 		spin_unlock_irq(&hugetlb_lock);
2669 		cond_resched();
2670 		goto retry;
2671 	} else {
2672 		/*
2673 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2674 		 * the freelist and decrease the counters. These will be
2675 		 * incremented again when calling __prep_account_new_huge_page()
2676 		 * and enqueue_huge_page() for new_page. The counters will remain
2677 		 * stable since this happens under the lock.
2678 		 */
2679 		remove_hugetlb_page(h, old_page, false);
2680 
2681 		/*
2682 		 * Ref count on new page is already zero as it was dropped
2683 		 * earlier.  It can be directly added to the pool free list.
2684 		 */
2685 		__prep_account_new_huge_page(h, nid);
2686 		enqueue_huge_page(h, new_page);
2687 
2688 		/*
2689 		 * Pages have been replaced, we can safely free the old one.
2690 		 */
2691 		spin_unlock_irq(&hugetlb_lock);
2692 		update_and_free_page(h, old_page, false);
2693 	}
2694 
2695 	return ret;
2696 
2697 free_new:
2698 	spin_unlock_irq(&hugetlb_lock);
2699 	/* Page has a zero ref count, but needs a ref to be freed */
2700 	set_page_refcounted(new_page);
2701 	update_and_free_page(h, new_page, false);
2702 
2703 	return ret;
2704 }
2705 
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2706 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2707 {
2708 	struct hstate *h;
2709 	struct page *head;
2710 	int ret = -EBUSY;
2711 
2712 	/*
2713 	 * The page might have been dissolved from under our feet, so make sure
2714 	 * to carefully check the state under the lock.
2715 	 * Return success when racing as if we dissolved the page ourselves.
2716 	 */
2717 	spin_lock_irq(&hugetlb_lock);
2718 	if (PageHuge(page)) {
2719 		head = compound_head(page);
2720 		h = page_hstate(head);
2721 	} else {
2722 		spin_unlock_irq(&hugetlb_lock);
2723 		return 0;
2724 	}
2725 	spin_unlock_irq(&hugetlb_lock);
2726 
2727 	/*
2728 	 * Fence off gigantic pages as there is a cyclic dependency between
2729 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2730 	 * of bailing out right away without further retrying.
2731 	 */
2732 	if (hstate_is_gigantic(h))
2733 		return -ENOMEM;
2734 
2735 	if (page_count(head) && !isolate_hugetlb(head, list))
2736 		ret = 0;
2737 	else if (!page_count(head))
2738 		ret = alloc_and_dissolve_huge_page(h, head, list);
2739 
2740 	return ret;
2741 }
2742 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2743 struct page *alloc_huge_page(struct vm_area_struct *vma,
2744 				    unsigned long addr, int avoid_reserve)
2745 {
2746 	struct hugepage_subpool *spool = subpool_vma(vma);
2747 	struct hstate *h = hstate_vma(vma);
2748 	struct page *page;
2749 	long map_chg, map_commit;
2750 	long gbl_chg;
2751 	int ret, idx;
2752 	struct hugetlb_cgroup *h_cg;
2753 	bool deferred_reserve;
2754 
2755 	idx = hstate_index(h);
2756 	/*
2757 	 * Examine the region/reserve map to determine if the process
2758 	 * has a reservation for the page to be allocated.  A return
2759 	 * code of zero indicates a reservation exists (no change).
2760 	 */
2761 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2762 	if (map_chg < 0)
2763 		return ERR_PTR(-ENOMEM);
2764 
2765 	/*
2766 	 * Processes that did not create the mapping will have no
2767 	 * reserves as indicated by the region/reserve map. Check
2768 	 * that the allocation will not exceed the subpool limit.
2769 	 * Allocations for MAP_NORESERVE mappings also need to be
2770 	 * checked against any subpool limit.
2771 	 */
2772 	if (map_chg || avoid_reserve) {
2773 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2774 		if (gbl_chg < 0) {
2775 			vma_end_reservation(h, vma, addr);
2776 			return ERR_PTR(-ENOSPC);
2777 		}
2778 
2779 		/*
2780 		 * Even though there was no reservation in the region/reserve
2781 		 * map, there could be reservations associated with the
2782 		 * subpool that can be used.  This would be indicated if the
2783 		 * return value of hugepage_subpool_get_pages() is zero.
2784 		 * However, if avoid_reserve is specified we still avoid even
2785 		 * the subpool reservations.
2786 		 */
2787 		if (avoid_reserve)
2788 			gbl_chg = 1;
2789 	}
2790 
2791 	/* If this allocation is not consuming a reservation, charge it now.
2792 	 */
2793 	deferred_reserve = map_chg || avoid_reserve;
2794 	if (deferred_reserve) {
2795 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2796 			idx, pages_per_huge_page(h), &h_cg);
2797 		if (ret)
2798 			goto out_subpool_put;
2799 	}
2800 
2801 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2802 	if (ret)
2803 		goto out_uncharge_cgroup_reservation;
2804 
2805 	spin_lock_irq(&hugetlb_lock);
2806 	/*
2807 	 * glb_chg is passed to indicate whether or not a page must be taken
2808 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2809 	 * a reservation exists for the allocation.
2810 	 */
2811 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2812 	if (!page) {
2813 		spin_unlock_irq(&hugetlb_lock);
2814 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2815 		if (!page)
2816 			goto out_uncharge_cgroup;
2817 		spin_lock_irq(&hugetlb_lock);
2818 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2819 			SetHPageRestoreReserve(page);
2820 			h->resv_huge_pages--;
2821 		}
2822 		list_add(&page->lru, &h->hugepage_activelist);
2823 		/* Fall through */
2824 	}
2825 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2826 	/* If allocation is not consuming a reservation, also store the
2827 	 * hugetlb_cgroup pointer on the page.
2828 	 */
2829 	if (deferred_reserve) {
2830 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2831 						  h_cg, page);
2832 	}
2833 
2834 	spin_unlock_irq(&hugetlb_lock);
2835 
2836 	hugetlb_set_page_subpool(page, spool);
2837 
2838 	map_commit = vma_commit_reservation(h, vma, addr);
2839 	if (unlikely(map_chg > map_commit)) {
2840 		/*
2841 		 * The page was added to the reservation map between
2842 		 * vma_needs_reservation and vma_commit_reservation.
2843 		 * This indicates a race with hugetlb_reserve_pages.
2844 		 * Adjust for the subpool count incremented above AND
2845 		 * in hugetlb_reserve_pages for the same page.  Also,
2846 		 * the reservation count added in hugetlb_reserve_pages
2847 		 * no longer applies.
2848 		 */
2849 		long rsv_adjust;
2850 
2851 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2852 		hugetlb_acct_memory(h, -rsv_adjust);
2853 		if (deferred_reserve)
2854 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2855 					pages_per_huge_page(h), page);
2856 	}
2857 	return page;
2858 
2859 out_uncharge_cgroup:
2860 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2861 out_uncharge_cgroup_reservation:
2862 	if (deferred_reserve)
2863 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2864 						    h_cg);
2865 out_subpool_put:
2866 	if (map_chg || avoid_reserve)
2867 		hugepage_subpool_put_pages(spool, 1);
2868 	vma_end_reservation(h, vma, addr);
2869 	return ERR_PTR(-ENOSPC);
2870 }
2871 
2872 int alloc_bootmem_huge_page(struct hstate *h)
2873 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2874 int __alloc_bootmem_huge_page(struct hstate *h)
2875 {
2876 	struct huge_bootmem_page *m;
2877 	int nr_nodes, node;
2878 
2879 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2880 		void *addr;
2881 
2882 		addr = memblock_alloc_try_nid_raw(
2883 				huge_page_size(h), huge_page_size(h),
2884 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2885 		if (addr) {
2886 			/*
2887 			 * Use the beginning of the huge page to store the
2888 			 * huge_bootmem_page struct (until gather_bootmem
2889 			 * puts them into the mem_map).
2890 			 */
2891 			m = addr;
2892 			goto found;
2893 		}
2894 	}
2895 	return 0;
2896 
2897 found:
2898 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2899 	/* Put them into a private list first because mem_map is not up yet */
2900 	INIT_LIST_HEAD(&m->list);
2901 	list_add(&m->list, &huge_boot_pages);
2902 	m->hstate = h;
2903 	return 1;
2904 }
2905 
2906 /*
2907  * Put bootmem huge pages into the standard lists after mem_map is up.
2908  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2909  */
gather_bootmem_prealloc(void)2910 static void __init gather_bootmem_prealloc(void)
2911 {
2912 	struct huge_bootmem_page *m;
2913 
2914 	list_for_each_entry(m, &huge_boot_pages, list) {
2915 		struct page *page = virt_to_page(m);
2916 		struct hstate *h = m->hstate;
2917 
2918 		VM_BUG_ON(!hstate_is_gigantic(h));
2919 		WARN_ON(page_count(page) != 1);
2920 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2921 			WARN_ON(PageReserved(page));
2922 			prep_new_huge_page(h, page, page_to_nid(page));
2923 			put_page(page); /* add to the hugepage allocator */
2924 		} else {
2925 			/* VERY unlikely inflated ref count on a tail page */
2926 			free_gigantic_page(page, huge_page_order(h));
2927 		}
2928 
2929 		/*
2930 		 * We need to restore the 'stolen' pages to totalram_pages
2931 		 * in order to fix confusing memory reports from free(1) and
2932 		 * other side-effects, like CommitLimit going negative.
2933 		 */
2934 		adjust_managed_page_count(page, pages_per_huge_page(h));
2935 		cond_resched();
2936 	}
2937 }
2938 
hugetlb_hstate_alloc_pages(struct hstate * h)2939 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2940 {
2941 	unsigned long i;
2942 	nodemask_t *node_alloc_noretry;
2943 
2944 	if (!hstate_is_gigantic(h)) {
2945 		/*
2946 		 * Bit mask controlling how hard we retry per-node allocations.
2947 		 * Ignore errors as lower level routines can deal with
2948 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2949 		 * time, we are likely in bigger trouble.
2950 		 */
2951 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2952 						GFP_KERNEL);
2953 	} else {
2954 		/* allocations done at boot time */
2955 		node_alloc_noretry = NULL;
2956 	}
2957 
2958 	/* bit mask controlling how hard we retry per-node allocations */
2959 	if (node_alloc_noretry)
2960 		nodes_clear(*node_alloc_noretry);
2961 
2962 	for (i = 0; i < h->max_huge_pages; ++i) {
2963 		if (hstate_is_gigantic(h)) {
2964 			if (hugetlb_cma_size) {
2965 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2966 				goto free;
2967 			}
2968 			if (!alloc_bootmem_huge_page(h))
2969 				break;
2970 		} else if (!alloc_pool_huge_page(h,
2971 					 &node_states[N_MEMORY],
2972 					 node_alloc_noretry))
2973 			break;
2974 		cond_resched();
2975 	}
2976 	if (i < h->max_huge_pages) {
2977 		char buf[32];
2978 
2979 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2980 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2981 			h->max_huge_pages, buf, i);
2982 		h->max_huge_pages = i;
2983 	}
2984 free:
2985 	kfree(node_alloc_noretry);
2986 }
2987 
hugetlb_init_hstates(void)2988 static void __init hugetlb_init_hstates(void)
2989 {
2990 	struct hstate *h;
2991 
2992 	for_each_hstate(h) {
2993 		if (minimum_order > huge_page_order(h))
2994 			minimum_order = huge_page_order(h);
2995 
2996 		/* oversize hugepages were init'ed in early boot */
2997 		if (!hstate_is_gigantic(h))
2998 			hugetlb_hstate_alloc_pages(h);
2999 	}
3000 	VM_BUG_ON(minimum_order == UINT_MAX);
3001 }
3002 
report_hugepages(void)3003 static void __init report_hugepages(void)
3004 {
3005 	struct hstate *h;
3006 
3007 	for_each_hstate(h) {
3008 		char buf[32];
3009 
3010 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3011 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3012 			buf, h->free_huge_pages);
3013 	}
3014 }
3015 
3016 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3017 static void try_to_free_low(struct hstate *h, unsigned long count,
3018 						nodemask_t *nodes_allowed)
3019 {
3020 	int i;
3021 	LIST_HEAD(page_list);
3022 
3023 	lockdep_assert_held(&hugetlb_lock);
3024 	if (hstate_is_gigantic(h))
3025 		return;
3026 
3027 	/*
3028 	 * Collect pages to be freed on a list, and free after dropping lock
3029 	 */
3030 	for_each_node_mask(i, *nodes_allowed) {
3031 		struct page *page, *next;
3032 		struct list_head *freel = &h->hugepage_freelists[i];
3033 		list_for_each_entry_safe(page, next, freel, lru) {
3034 			if (count >= h->nr_huge_pages)
3035 				goto out;
3036 			if (PageHighMem(page))
3037 				continue;
3038 			remove_hugetlb_page(h, page, false);
3039 			list_add(&page->lru, &page_list);
3040 		}
3041 	}
3042 
3043 out:
3044 	spin_unlock_irq(&hugetlb_lock);
3045 	update_and_free_pages_bulk(h, &page_list);
3046 	spin_lock_irq(&hugetlb_lock);
3047 }
3048 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3049 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3050 						nodemask_t *nodes_allowed)
3051 {
3052 }
3053 #endif
3054 
3055 /*
3056  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3057  * balanced by operating on them in a round-robin fashion.
3058  * Returns 1 if an adjustment was made.
3059  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3060 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3061 				int delta)
3062 {
3063 	int nr_nodes, node;
3064 
3065 	lockdep_assert_held(&hugetlb_lock);
3066 	VM_BUG_ON(delta != -1 && delta != 1);
3067 
3068 	if (delta < 0) {
3069 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3070 			if (h->surplus_huge_pages_node[node])
3071 				goto found;
3072 		}
3073 	} else {
3074 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3075 			if (h->surplus_huge_pages_node[node] <
3076 					h->nr_huge_pages_node[node])
3077 				goto found;
3078 		}
3079 	}
3080 	return 0;
3081 
3082 found:
3083 	h->surplus_huge_pages += delta;
3084 	h->surplus_huge_pages_node[node] += delta;
3085 	return 1;
3086 }
3087 
3088 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3089 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3090 			      nodemask_t *nodes_allowed)
3091 {
3092 	unsigned long min_count, ret;
3093 	struct page *page;
3094 	LIST_HEAD(page_list);
3095 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3096 
3097 	/*
3098 	 * Bit mask controlling how hard we retry per-node allocations.
3099 	 * If we can not allocate the bit mask, do not attempt to allocate
3100 	 * the requested huge pages.
3101 	 */
3102 	if (node_alloc_noretry)
3103 		nodes_clear(*node_alloc_noretry);
3104 	else
3105 		return -ENOMEM;
3106 
3107 	/*
3108 	 * resize_lock mutex prevents concurrent adjustments to number of
3109 	 * pages in hstate via the proc/sysfs interfaces.
3110 	 */
3111 	mutex_lock(&h->resize_lock);
3112 	flush_free_hpage_work(h);
3113 	spin_lock_irq(&hugetlb_lock);
3114 
3115 	/*
3116 	 * Check for a node specific request.
3117 	 * Changing node specific huge page count may require a corresponding
3118 	 * change to the global count.  In any case, the passed node mask
3119 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3120 	 */
3121 	if (nid != NUMA_NO_NODE) {
3122 		unsigned long old_count = count;
3123 
3124 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3125 		/*
3126 		 * User may have specified a large count value which caused the
3127 		 * above calculation to overflow.  In this case, they wanted
3128 		 * to allocate as many huge pages as possible.  Set count to
3129 		 * largest possible value to align with their intention.
3130 		 */
3131 		if (count < old_count)
3132 			count = ULONG_MAX;
3133 	}
3134 
3135 	/*
3136 	 * Gigantic pages runtime allocation depend on the capability for large
3137 	 * page range allocation.
3138 	 * If the system does not provide this feature, return an error when
3139 	 * the user tries to allocate gigantic pages but let the user free the
3140 	 * boottime allocated gigantic pages.
3141 	 */
3142 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3143 		if (count > persistent_huge_pages(h)) {
3144 			spin_unlock_irq(&hugetlb_lock);
3145 			mutex_unlock(&h->resize_lock);
3146 			NODEMASK_FREE(node_alloc_noretry);
3147 			return -EINVAL;
3148 		}
3149 		/* Fall through to decrease pool */
3150 	}
3151 
3152 	/*
3153 	 * Increase the pool size
3154 	 * First take pages out of surplus state.  Then make up the
3155 	 * remaining difference by allocating fresh huge pages.
3156 	 *
3157 	 * We might race with alloc_surplus_huge_page() here and be unable
3158 	 * to convert a surplus huge page to a normal huge page. That is
3159 	 * not critical, though, it just means the overall size of the
3160 	 * pool might be one hugepage larger than it needs to be, but
3161 	 * within all the constraints specified by the sysctls.
3162 	 */
3163 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3164 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3165 			break;
3166 	}
3167 
3168 	while (count > persistent_huge_pages(h)) {
3169 		/*
3170 		 * If this allocation races such that we no longer need the
3171 		 * page, free_huge_page will handle it by freeing the page
3172 		 * and reducing the surplus.
3173 		 */
3174 		spin_unlock_irq(&hugetlb_lock);
3175 
3176 		/* yield cpu to avoid soft lockup */
3177 		cond_resched();
3178 
3179 		ret = alloc_pool_huge_page(h, nodes_allowed,
3180 						node_alloc_noretry);
3181 		spin_lock_irq(&hugetlb_lock);
3182 		if (!ret)
3183 			goto out;
3184 
3185 		/* Bail for signals. Probably ctrl-c from user */
3186 		if (signal_pending(current))
3187 			goto out;
3188 	}
3189 
3190 	/*
3191 	 * Decrease the pool size
3192 	 * First return free pages to the buddy allocator (being careful
3193 	 * to keep enough around to satisfy reservations).  Then place
3194 	 * pages into surplus state as needed so the pool will shrink
3195 	 * to the desired size as pages become free.
3196 	 *
3197 	 * By placing pages into the surplus state independent of the
3198 	 * overcommit value, we are allowing the surplus pool size to
3199 	 * exceed overcommit. There are few sane options here. Since
3200 	 * alloc_surplus_huge_page() is checking the global counter,
3201 	 * though, we'll note that we're not allowed to exceed surplus
3202 	 * and won't grow the pool anywhere else. Not until one of the
3203 	 * sysctls are changed, or the surplus pages go out of use.
3204 	 */
3205 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3206 	min_count = max(count, min_count);
3207 	try_to_free_low(h, min_count, nodes_allowed);
3208 
3209 	/*
3210 	 * Collect pages to be removed on list without dropping lock
3211 	 */
3212 	while (min_count < persistent_huge_pages(h)) {
3213 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3214 		if (!page)
3215 			break;
3216 
3217 		list_add(&page->lru, &page_list);
3218 	}
3219 	/* free the pages after dropping lock */
3220 	spin_unlock_irq(&hugetlb_lock);
3221 	update_and_free_pages_bulk(h, &page_list);
3222 	flush_free_hpage_work(h);
3223 	spin_lock_irq(&hugetlb_lock);
3224 
3225 	while (count < persistent_huge_pages(h)) {
3226 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3227 			break;
3228 	}
3229 out:
3230 	h->max_huge_pages = persistent_huge_pages(h);
3231 	spin_unlock_irq(&hugetlb_lock);
3232 	mutex_unlock(&h->resize_lock);
3233 
3234 	NODEMASK_FREE(node_alloc_noretry);
3235 
3236 	return 0;
3237 }
3238 
3239 #define HSTATE_ATTR_RO(_name) \
3240 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3241 
3242 #define HSTATE_ATTR(_name) \
3243 	static struct kobj_attribute _name##_attr = \
3244 		__ATTR(_name, 0644, _name##_show, _name##_store)
3245 
3246 static struct kobject *hugepages_kobj;
3247 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3248 
3249 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3250 
kobj_to_hstate(struct kobject * kobj,int * nidp)3251 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3252 {
3253 	int i;
3254 
3255 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3256 		if (hstate_kobjs[i] == kobj) {
3257 			if (nidp)
3258 				*nidp = NUMA_NO_NODE;
3259 			return &hstates[i];
3260 		}
3261 
3262 	return kobj_to_node_hstate(kobj, nidp);
3263 }
3264 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3265 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3266 					struct kobj_attribute *attr, char *buf)
3267 {
3268 	struct hstate *h;
3269 	unsigned long nr_huge_pages;
3270 	int nid;
3271 
3272 	h = kobj_to_hstate(kobj, &nid);
3273 	if (nid == NUMA_NO_NODE)
3274 		nr_huge_pages = h->nr_huge_pages;
3275 	else
3276 		nr_huge_pages = h->nr_huge_pages_node[nid];
3277 
3278 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3279 }
3280 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3281 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3282 					   struct hstate *h, int nid,
3283 					   unsigned long count, size_t len)
3284 {
3285 	int err;
3286 	nodemask_t nodes_allowed, *n_mask;
3287 
3288 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3289 		return -EINVAL;
3290 
3291 	if (nid == NUMA_NO_NODE) {
3292 		/*
3293 		 * global hstate attribute
3294 		 */
3295 		if (!(obey_mempolicy &&
3296 				init_nodemask_of_mempolicy(&nodes_allowed)))
3297 			n_mask = &node_states[N_MEMORY];
3298 		else
3299 			n_mask = &nodes_allowed;
3300 	} else {
3301 		/*
3302 		 * Node specific request.  count adjustment happens in
3303 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3304 		 */
3305 		init_nodemask_of_node(&nodes_allowed, nid);
3306 		n_mask = &nodes_allowed;
3307 	}
3308 
3309 	err = set_max_huge_pages(h, count, nid, n_mask);
3310 
3311 	return err ? err : len;
3312 }
3313 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3314 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3315 					 struct kobject *kobj, const char *buf,
3316 					 size_t len)
3317 {
3318 	struct hstate *h;
3319 	unsigned long count;
3320 	int nid;
3321 	int err;
3322 
3323 	err = kstrtoul(buf, 10, &count);
3324 	if (err)
3325 		return err;
3326 
3327 	h = kobj_to_hstate(kobj, &nid);
3328 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3329 }
3330 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3331 static ssize_t nr_hugepages_show(struct kobject *kobj,
3332 				       struct kobj_attribute *attr, char *buf)
3333 {
3334 	return nr_hugepages_show_common(kobj, attr, buf);
3335 }
3336 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3337 static ssize_t nr_hugepages_store(struct kobject *kobj,
3338 	       struct kobj_attribute *attr, const char *buf, size_t len)
3339 {
3340 	return nr_hugepages_store_common(false, kobj, buf, len);
3341 }
3342 HSTATE_ATTR(nr_hugepages);
3343 
3344 #ifdef CONFIG_NUMA
3345 
3346 /*
3347  * hstate attribute for optionally mempolicy-based constraint on persistent
3348  * huge page alloc/free.
3349  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3350 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3351 					   struct kobj_attribute *attr,
3352 					   char *buf)
3353 {
3354 	return nr_hugepages_show_common(kobj, attr, buf);
3355 }
3356 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3357 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3358 	       struct kobj_attribute *attr, const char *buf, size_t len)
3359 {
3360 	return nr_hugepages_store_common(true, kobj, buf, len);
3361 }
3362 HSTATE_ATTR(nr_hugepages_mempolicy);
3363 #endif
3364 
3365 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3366 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3367 					struct kobj_attribute *attr, char *buf)
3368 {
3369 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3370 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3371 }
3372 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3373 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3374 		struct kobj_attribute *attr, const char *buf, size_t count)
3375 {
3376 	int err;
3377 	unsigned long input;
3378 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3379 
3380 	if (hstate_is_gigantic(h))
3381 		return -EINVAL;
3382 
3383 	err = kstrtoul(buf, 10, &input);
3384 	if (err)
3385 		return err;
3386 
3387 	spin_lock_irq(&hugetlb_lock);
3388 	h->nr_overcommit_huge_pages = input;
3389 	spin_unlock_irq(&hugetlb_lock);
3390 
3391 	return count;
3392 }
3393 HSTATE_ATTR(nr_overcommit_hugepages);
3394 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3395 static ssize_t free_hugepages_show(struct kobject *kobj,
3396 					struct kobj_attribute *attr, char *buf)
3397 {
3398 	struct hstate *h;
3399 	unsigned long free_huge_pages;
3400 	int nid;
3401 
3402 	h = kobj_to_hstate(kobj, &nid);
3403 	if (nid == NUMA_NO_NODE)
3404 		free_huge_pages = h->free_huge_pages;
3405 	else
3406 		free_huge_pages = h->free_huge_pages_node[nid];
3407 
3408 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3409 }
3410 HSTATE_ATTR_RO(free_hugepages);
3411 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3412 static ssize_t resv_hugepages_show(struct kobject *kobj,
3413 					struct kobj_attribute *attr, char *buf)
3414 {
3415 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3416 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3417 }
3418 HSTATE_ATTR_RO(resv_hugepages);
3419 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3420 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3421 					struct kobj_attribute *attr, char *buf)
3422 {
3423 	struct hstate *h;
3424 	unsigned long surplus_huge_pages;
3425 	int nid;
3426 
3427 	h = kobj_to_hstate(kobj, &nid);
3428 	if (nid == NUMA_NO_NODE)
3429 		surplus_huge_pages = h->surplus_huge_pages;
3430 	else
3431 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3432 
3433 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3434 }
3435 HSTATE_ATTR_RO(surplus_hugepages);
3436 
3437 static struct attribute *hstate_attrs[] = {
3438 	&nr_hugepages_attr.attr,
3439 	&nr_overcommit_hugepages_attr.attr,
3440 	&free_hugepages_attr.attr,
3441 	&resv_hugepages_attr.attr,
3442 	&surplus_hugepages_attr.attr,
3443 #ifdef CONFIG_NUMA
3444 	&nr_hugepages_mempolicy_attr.attr,
3445 #endif
3446 	NULL,
3447 };
3448 
3449 static const struct attribute_group hstate_attr_group = {
3450 	.attrs = hstate_attrs,
3451 };
3452 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)3453 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3454 				    struct kobject **hstate_kobjs,
3455 				    const struct attribute_group *hstate_attr_group)
3456 {
3457 	int retval;
3458 	int hi = hstate_index(h);
3459 
3460 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3461 	if (!hstate_kobjs[hi])
3462 		return -ENOMEM;
3463 
3464 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3465 	if (retval) {
3466 		kobject_put(hstate_kobjs[hi]);
3467 		hstate_kobjs[hi] = NULL;
3468 	}
3469 
3470 	return retval;
3471 }
3472 
hugetlb_sysfs_init(void)3473 static void __init hugetlb_sysfs_init(void)
3474 {
3475 	struct hstate *h;
3476 	int err;
3477 
3478 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3479 	if (!hugepages_kobj)
3480 		return;
3481 
3482 	for_each_hstate(h) {
3483 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3484 					 hstate_kobjs, &hstate_attr_group);
3485 		if (err)
3486 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3487 	}
3488 }
3489 
3490 #ifdef CONFIG_NUMA
3491 
3492 /*
3493  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3494  * with node devices in node_devices[] using a parallel array.  The array
3495  * index of a node device or _hstate == node id.
3496  * This is here to avoid any static dependency of the node device driver, in
3497  * the base kernel, on the hugetlb module.
3498  */
3499 struct node_hstate {
3500 	struct kobject		*hugepages_kobj;
3501 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3502 };
3503 static struct node_hstate node_hstates[MAX_NUMNODES];
3504 
3505 /*
3506  * A subset of global hstate attributes for node devices
3507  */
3508 static struct attribute *per_node_hstate_attrs[] = {
3509 	&nr_hugepages_attr.attr,
3510 	&free_hugepages_attr.attr,
3511 	&surplus_hugepages_attr.attr,
3512 	NULL,
3513 };
3514 
3515 static const struct attribute_group per_node_hstate_attr_group = {
3516 	.attrs = per_node_hstate_attrs,
3517 };
3518 
3519 /*
3520  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3521  * Returns node id via non-NULL nidp.
3522  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3523 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3524 {
3525 	int nid;
3526 
3527 	for (nid = 0; nid < nr_node_ids; nid++) {
3528 		struct node_hstate *nhs = &node_hstates[nid];
3529 		int i;
3530 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3531 			if (nhs->hstate_kobjs[i] == kobj) {
3532 				if (nidp)
3533 					*nidp = nid;
3534 				return &hstates[i];
3535 			}
3536 	}
3537 
3538 	BUG();
3539 	return NULL;
3540 }
3541 
3542 /*
3543  * Unregister hstate attributes from a single node device.
3544  * No-op if no hstate attributes attached.
3545  */
hugetlb_unregister_node(struct node * node)3546 static void hugetlb_unregister_node(struct node *node)
3547 {
3548 	struct hstate *h;
3549 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3550 
3551 	if (!nhs->hugepages_kobj)
3552 		return;		/* no hstate attributes */
3553 
3554 	for_each_hstate(h) {
3555 		int idx = hstate_index(h);
3556 		if (nhs->hstate_kobjs[idx]) {
3557 			kobject_put(nhs->hstate_kobjs[idx]);
3558 			nhs->hstate_kobjs[idx] = NULL;
3559 		}
3560 	}
3561 
3562 	kobject_put(nhs->hugepages_kobj);
3563 	nhs->hugepages_kobj = NULL;
3564 }
3565 
3566 
3567 /*
3568  * Register hstate attributes for a single node device.
3569  * No-op if attributes already registered.
3570  */
hugetlb_register_node(struct node * node)3571 static void hugetlb_register_node(struct node *node)
3572 {
3573 	struct hstate *h;
3574 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3575 	int err;
3576 
3577 	if (nhs->hugepages_kobj)
3578 		return;		/* already allocated */
3579 
3580 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3581 							&node->dev.kobj);
3582 	if (!nhs->hugepages_kobj)
3583 		return;
3584 
3585 	for_each_hstate(h) {
3586 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3587 						nhs->hstate_kobjs,
3588 						&per_node_hstate_attr_group);
3589 		if (err) {
3590 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3591 				h->name, node->dev.id);
3592 			hugetlb_unregister_node(node);
3593 			break;
3594 		}
3595 	}
3596 }
3597 
3598 /*
3599  * hugetlb init time:  register hstate attributes for all registered node
3600  * devices of nodes that have memory.  All on-line nodes should have
3601  * registered their associated device by this time.
3602  */
hugetlb_register_all_nodes(void)3603 static void __init hugetlb_register_all_nodes(void)
3604 {
3605 	int nid;
3606 
3607 	for_each_node_state(nid, N_MEMORY) {
3608 		struct node *node = node_devices[nid];
3609 		if (node->dev.id == nid)
3610 			hugetlb_register_node(node);
3611 	}
3612 
3613 	/*
3614 	 * Let the node device driver know we're here so it can
3615 	 * [un]register hstate attributes on node hotplug.
3616 	 */
3617 	register_hugetlbfs_with_node(hugetlb_register_node,
3618 				     hugetlb_unregister_node);
3619 }
3620 #else	/* !CONFIG_NUMA */
3621 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3622 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3623 {
3624 	BUG();
3625 	if (nidp)
3626 		*nidp = -1;
3627 	return NULL;
3628 }
3629 
hugetlb_register_all_nodes(void)3630 static void hugetlb_register_all_nodes(void) { }
3631 
3632 #endif
3633 
hugetlb_init(void)3634 static int __init hugetlb_init(void)
3635 {
3636 	int i;
3637 
3638 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3639 			__NR_HPAGEFLAGS);
3640 
3641 	if (!hugepages_supported()) {
3642 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3643 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3644 		return 0;
3645 	}
3646 
3647 	/*
3648 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3649 	 * architectures depend on setup being done here.
3650 	 */
3651 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3652 	if (!parsed_default_hugepagesz) {
3653 		/*
3654 		 * If we did not parse a default huge page size, set
3655 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3656 		 * number of huge pages for this default size was implicitly
3657 		 * specified, set that here as well.
3658 		 * Note that the implicit setting will overwrite an explicit
3659 		 * setting.  A warning will be printed in this case.
3660 		 */
3661 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3662 		if (default_hstate_max_huge_pages) {
3663 			if (default_hstate.max_huge_pages) {
3664 				char buf[32];
3665 
3666 				string_get_size(huge_page_size(&default_hstate),
3667 					1, STRING_UNITS_2, buf, 32);
3668 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3669 					default_hstate.max_huge_pages, buf);
3670 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3671 					default_hstate_max_huge_pages);
3672 			}
3673 			default_hstate.max_huge_pages =
3674 				default_hstate_max_huge_pages;
3675 		}
3676 	}
3677 
3678 	hugetlb_cma_check();
3679 	hugetlb_init_hstates();
3680 	gather_bootmem_prealloc();
3681 	report_hugepages();
3682 
3683 	hugetlb_sysfs_init();
3684 	hugetlb_register_all_nodes();
3685 	hugetlb_cgroup_file_init();
3686 
3687 #ifdef CONFIG_SMP
3688 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3689 #else
3690 	num_fault_mutexes = 1;
3691 #endif
3692 	hugetlb_fault_mutex_table =
3693 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3694 			      GFP_KERNEL);
3695 	BUG_ON(!hugetlb_fault_mutex_table);
3696 
3697 	for (i = 0; i < num_fault_mutexes; i++)
3698 		mutex_init(&hugetlb_fault_mutex_table[i]);
3699 	return 0;
3700 }
3701 subsys_initcall(hugetlb_init);
3702 
3703 /* Overwritten by architectures with more huge page sizes */
__init(weak)3704 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3705 {
3706 	return size == HPAGE_SIZE;
3707 }
3708 
hugetlb_add_hstate(unsigned int order)3709 void __init hugetlb_add_hstate(unsigned int order)
3710 {
3711 	struct hstate *h;
3712 	unsigned long i;
3713 
3714 	if (size_to_hstate(PAGE_SIZE << order)) {
3715 		return;
3716 	}
3717 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3718 	BUG_ON(order == 0);
3719 	h = &hstates[hugetlb_max_hstate++];
3720 	mutex_init(&h->resize_lock);
3721 	h->order = order;
3722 	h->mask = ~(huge_page_size(h) - 1);
3723 	for (i = 0; i < MAX_NUMNODES; ++i)
3724 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3725 	INIT_LIST_HEAD(&h->hugepage_activelist);
3726 	h->next_nid_to_alloc = first_memory_node;
3727 	h->next_nid_to_free = first_memory_node;
3728 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3729 					huge_page_size(h)/1024);
3730 	hugetlb_vmemmap_init(h);
3731 
3732 	parsed_hstate = h;
3733 }
3734 
3735 /*
3736  * hugepages command line processing
3737  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3738  * specification.  If not, ignore the hugepages value.  hugepages can also
3739  * be the first huge page command line  option in which case it implicitly
3740  * specifies the number of huge pages for the default size.
3741  */
hugepages_setup(char * s)3742 static int __init hugepages_setup(char *s)
3743 {
3744 	unsigned long *mhp;
3745 	static unsigned long *last_mhp;
3746 
3747 	if (!parsed_valid_hugepagesz) {
3748 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3749 		parsed_valid_hugepagesz = true;
3750 		return 0;
3751 	}
3752 
3753 	/*
3754 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3755 	 * yet, so this hugepages= parameter goes to the "default hstate".
3756 	 * Otherwise, it goes with the previously parsed hugepagesz or
3757 	 * default_hugepagesz.
3758 	 */
3759 	else if (!hugetlb_max_hstate)
3760 		mhp = &default_hstate_max_huge_pages;
3761 	else
3762 		mhp = &parsed_hstate->max_huge_pages;
3763 
3764 	if (mhp == last_mhp) {
3765 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3766 		return 0;
3767 	}
3768 
3769 	if (sscanf(s, "%lu", mhp) <= 0)
3770 		*mhp = 0;
3771 
3772 	/*
3773 	 * Global state is always initialized later in hugetlb_init.
3774 	 * But we need to allocate gigantic hstates here early to still
3775 	 * use the bootmem allocator.
3776 	 */
3777 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3778 		hugetlb_hstate_alloc_pages(parsed_hstate);
3779 
3780 	last_mhp = mhp;
3781 
3782 	return 1;
3783 }
3784 __setup("hugepages=", hugepages_setup);
3785 
3786 /*
3787  * hugepagesz command line processing
3788  * A specific huge page size can only be specified once with hugepagesz.
3789  * hugepagesz is followed by hugepages on the command line.  The global
3790  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3791  * hugepagesz argument was valid.
3792  */
hugepagesz_setup(char * s)3793 static int __init hugepagesz_setup(char *s)
3794 {
3795 	unsigned long size;
3796 	struct hstate *h;
3797 
3798 	parsed_valid_hugepagesz = false;
3799 	size = (unsigned long)memparse(s, NULL);
3800 
3801 	if (!arch_hugetlb_valid_size(size)) {
3802 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3803 		return 0;
3804 	}
3805 
3806 	h = size_to_hstate(size);
3807 	if (h) {
3808 		/*
3809 		 * hstate for this size already exists.  This is normally
3810 		 * an error, but is allowed if the existing hstate is the
3811 		 * default hstate.  More specifically, it is only allowed if
3812 		 * the number of huge pages for the default hstate was not
3813 		 * previously specified.
3814 		 */
3815 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3816 		    default_hstate.max_huge_pages) {
3817 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3818 			return 0;
3819 		}
3820 
3821 		/*
3822 		 * No need to call hugetlb_add_hstate() as hstate already
3823 		 * exists.  But, do set parsed_hstate so that a following
3824 		 * hugepages= parameter will be applied to this hstate.
3825 		 */
3826 		parsed_hstate = h;
3827 		parsed_valid_hugepagesz = true;
3828 		return 1;
3829 	}
3830 
3831 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3832 	parsed_valid_hugepagesz = true;
3833 	return 1;
3834 }
3835 __setup("hugepagesz=", hugepagesz_setup);
3836 
3837 /*
3838  * default_hugepagesz command line input
3839  * Only one instance of default_hugepagesz allowed on command line.
3840  */
default_hugepagesz_setup(char * s)3841 static int __init default_hugepagesz_setup(char *s)
3842 {
3843 	unsigned long size;
3844 
3845 	parsed_valid_hugepagesz = false;
3846 	if (parsed_default_hugepagesz) {
3847 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3848 		return 0;
3849 	}
3850 
3851 	size = (unsigned long)memparse(s, NULL);
3852 
3853 	if (!arch_hugetlb_valid_size(size)) {
3854 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3855 		return 0;
3856 	}
3857 
3858 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3859 	parsed_valid_hugepagesz = true;
3860 	parsed_default_hugepagesz = true;
3861 	default_hstate_idx = hstate_index(size_to_hstate(size));
3862 
3863 	/*
3864 	 * The number of default huge pages (for this size) could have been
3865 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3866 	 * then default_hstate_max_huge_pages is set.  If the default huge
3867 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3868 	 * allocated here from bootmem allocator.
3869 	 */
3870 	if (default_hstate_max_huge_pages) {
3871 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3872 		if (hstate_is_gigantic(&default_hstate))
3873 			hugetlb_hstate_alloc_pages(&default_hstate);
3874 		default_hstate_max_huge_pages = 0;
3875 	}
3876 
3877 	return 1;
3878 }
3879 __setup("default_hugepagesz=", default_hugepagesz_setup);
3880 
allowed_mems_nr(struct hstate * h)3881 static unsigned int allowed_mems_nr(struct hstate *h)
3882 {
3883 	int node;
3884 	unsigned int nr = 0;
3885 	nodemask_t *mpol_allowed;
3886 	unsigned int *array = h->free_huge_pages_node;
3887 	gfp_t gfp_mask = htlb_alloc_mask(h);
3888 
3889 	mpol_allowed = policy_nodemask_current(gfp_mask);
3890 
3891 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3892 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3893 			nr += array[node];
3894 	}
3895 
3896 	return nr;
3897 }
3898 
3899 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)3900 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3901 					  void *buffer, size_t *length,
3902 					  loff_t *ppos, unsigned long *out)
3903 {
3904 	struct ctl_table dup_table;
3905 
3906 	/*
3907 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3908 	 * can duplicate the @table and alter the duplicate of it.
3909 	 */
3910 	dup_table = *table;
3911 	dup_table.data = out;
3912 
3913 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3914 }
3915 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3916 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3917 			 struct ctl_table *table, int write,
3918 			 void *buffer, size_t *length, loff_t *ppos)
3919 {
3920 	struct hstate *h = &default_hstate;
3921 	unsigned long tmp = h->max_huge_pages;
3922 	int ret;
3923 
3924 	if (!hugepages_supported())
3925 		return -EOPNOTSUPP;
3926 
3927 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3928 					     &tmp);
3929 	if (ret)
3930 		goto out;
3931 
3932 	if (write)
3933 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3934 						  NUMA_NO_NODE, tmp, *length);
3935 out:
3936 	return ret;
3937 }
3938 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3939 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3940 			  void *buffer, size_t *length, loff_t *ppos)
3941 {
3942 
3943 	return hugetlb_sysctl_handler_common(false, table, write,
3944 							buffer, length, ppos);
3945 }
3946 
3947 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3948 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3949 			  void *buffer, size_t *length, loff_t *ppos)
3950 {
3951 	return hugetlb_sysctl_handler_common(true, table, write,
3952 							buffer, length, ppos);
3953 }
3954 #endif /* CONFIG_NUMA */
3955 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3956 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3957 		void *buffer, size_t *length, loff_t *ppos)
3958 {
3959 	struct hstate *h = &default_hstate;
3960 	unsigned long tmp;
3961 	int ret;
3962 
3963 	if (!hugepages_supported())
3964 		return -EOPNOTSUPP;
3965 
3966 	tmp = h->nr_overcommit_huge_pages;
3967 
3968 	if (write && hstate_is_gigantic(h))
3969 		return -EINVAL;
3970 
3971 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3972 					     &tmp);
3973 	if (ret)
3974 		goto out;
3975 
3976 	if (write) {
3977 		spin_lock_irq(&hugetlb_lock);
3978 		h->nr_overcommit_huge_pages = tmp;
3979 		spin_unlock_irq(&hugetlb_lock);
3980 	}
3981 out:
3982 	return ret;
3983 }
3984 
3985 #endif /* CONFIG_SYSCTL */
3986 
hugetlb_report_meminfo(struct seq_file * m)3987 void hugetlb_report_meminfo(struct seq_file *m)
3988 {
3989 	struct hstate *h;
3990 	unsigned long total = 0;
3991 
3992 	if (!hugepages_supported())
3993 		return;
3994 
3995 	for_each_hstate(h) {
3996 		unsigned long count = h->nr_huge_pages;
3997 
3998 		total += huge_page_size(h) * count;
3999 
4000 		if (h == &default_hstate)
4001 			seq_printf(m,
4002 				   "HugePages_Total:   %5lu\n"
4003 				   "HugePages_Free:    %5lu\n"
4004 				   "HugePages_Rsvd:    %5lu\n"
4005 				   "HugePages_Surp:    %5lu\n"
4006 				   "Hugepagesize:   %8lu kB\n",
4007 				   count,
4008 				   h->free_huge_pages,
4009 				   h->resv_huge_pages,
4010 				   h->surplus_huge_pages,
4011 				   huge_page_size(h) / SZ_1K);
4012 	}
4013 
4014 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4015 }
4016 
hugetlb_report_node_meminfo(char * buf,int len,int nid)4017 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4018 {
4019 	struct hstate *h = &default_hstate;
4020 
4021 	if (!hugepages_supported())
4022 		return 0;
4023 
4024 	return sysfs_emit_at(buf, len,
4025 			     "Node %d HugePages_Total: %5u\n"
4026 			     "Node %d HugePages_Free:  %5u\n"
4027 			     "Node %d HugePages_Surp:  %5u\n",
4028 			     nid, h->nr_huge_pages_node[nid],
4029 			     nid, h->free_huge_pages_node[nid],
4030 			     nid, h->surplus_huge_pages_node[nid]);
4031 }
4032 
hugetlb_show_meminfo(void)4033 void hugetlb_show_meminfo(void)
4034 {
4035 	struct hstate *h;
4036 	int nid;
4037 
4038 	if (!hugepages_supported())
4039 		return;
4040 
4041 	for_each_node_state(nid, N_MEMORY)
4042 		for_each_hstate(h)
4043 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4044 				nid,
4045 				h->nr_huge_pages_node[nid],
4046 				h->free_huge_pages_node[nid],
4047 				h->surplus_huge_pages_node[nid],
4048 				huge_page_size(h) / SZ_1K);
4049 }
4050 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4051 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4052 {
4053 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4054 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4055 }
4056 
4057 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4058 unsigned long hugetlb_total_pages(void)
4059 {
4060 	struct hstate *h;
4061 	unsigned long nr_total_pages = 0;
4062 
4063 	for_each_hstate(h)
4064 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4065 	return nr_total_pages;
4066 }
4067 
hugetlb_acct_memory(struct hstate * h,long delta)4068 static int hugetlb_acct_memory(struct hstate *h, long delta)
4069 {
4070 	int ret = -ENOMEM;
4071 
4072 	if (!delta)
4073 		return 0;
4074 
4075 	spin_lock_irq(&hugetlb_lock);
4076 	/*
4077 	 * When cpuset is configured, it breaks the strict hugetlb page
4078 	 * reservation as the accounting is done on a global variable. Such
4079 	 * reservation is completely rubbish in the presence of cpuset because
4080 	 * the reservation is not checked against page availability for the
4081 	 * current cpuset. Application can still potentially OOM'ed by kernel
4082 	 * with lack of free htlb page in cpuset that the task is in.
4083 	 * Attempt to enforce strict accounting with cpuset is almost
4084 	 * impossible (or too ugly) because cpuset is too fluid that
4085 	 * task or memory node can be dynamically moved between cpusets.
4086 	 *
4087 	 * The change of semantics for shared hugetlb mapping with cpuset is
4088 	 * undesirable. However, in order to preserve some of the semantics,
4089 	 * we fall back to check against current free page availability as
4090 	 * a best attempt and hopefully to minimize the impact of changing
4091 	 * semantics that cpuset has.
4092 	 *
4093 	 * Apart from cpuset, we also have memory policy mechanism that
4094 	 * also determines from which node the kernel will allocate memory
4095 	 * in a NUMA system. So similar to cpuset, we also should consider
4096 	 * the memory policy of the current task. Similar to the description
4097 	 * above.
4098 	 */
4099 	if (delta > 0) {
4100 		if (gather_surplus_pages(h, delta) < 0)
4101 			goto out;
4102 
4103 		if (delta > allowed_mems_nr(h)) {
4104 			return_unused_surplus_pages(h, delta);
4105 			goto out;
4106 		}
4107 	}
4108 
4109 	ret = 0;
4110 	if (delta < 0)
4111 		return_unused_surplus_pages(h, (unsigned long) -delta);
4112 
4113 out:
4114 	spin_unlock_irq(&hugetlb_lock);
4115 	return ret;
4116 }
4117 
hugetlb_vm_op_open(struct vm_area_struct * vma)4118 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4119 {
4120 	struct resv_map *resv = vma_resv_map(vma);
4121 
4122 	/*
4123 	 * This new VMA should share its siblings reservation map if present.
4124 	 * The VMA will only ever have a valid reservation map pointer where
4125 	 * it is being copied for another still existing VMA.  As that VMA
4126 	 * has a reference to the reservation map it cannot disappear until
4127 	 * after this open call completes.  It is therefore safe to take a
4128 	 * new reference here without additional locking.
4129 	 */
4130 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4131 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4132 		kref_get(&resv->refs);
4133 	}
4134 }
4135 
hugetlb_vm_op_close(struct vm_area_struct * vma)4136 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4137 {
4138 	struct hstate *h = hstate_vma(vma);
4139 	struct resv_map *resv = vma_resv_map(vma);
4140 	struct hugepage_subpool *spool = subpool_vma(vma);
4141 	unsigned long reserve, start, end;
4142 	long gbl_reserve;
4143 
4144 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4145 		return;
4146 
4147 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4148 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4149 
4150 	reserve = (end - start) - region_count(resv, start, end);
4151 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4152 	if (reserve) {
4153 		/*
4154 		 * Decrement reserve counts.  The global reserve count may be
4155 		 * adjusted if the subpool has a minimum size.
4156 		 */
4157 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4158 		hugetlb_acct_memory(h, -gbl_reserve);
4159 	}
4160 
4161 	kref_put(&resv->refs, resv_map_release);
4162 }
4163 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4164 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4165 {
4166 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4167 		return -EINVAL;
4168 
4169 	/*
4170 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4171 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4172 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4173 	 */
4174 	if (addr & ~PUD_MASK) {
4175 		/*
4176 		 * hugetlb_vm_op_split is called right before we attempt to
4177 		 * split the VMA. We will need to unshare PMDs in the old and
4178 		 * new VMAs, so let's unshare before we split.
4179 		 */
4180 		unsigned long floor = addr & PUD_MASK;
4181 		unsigned long ceil = floor + PUD_SIZE;
4182 
4183 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4184 			hugetlb_unshare_pmds(vma, floor, ceil);
4185 	}
4186 
4187 	return 0;
4188 }
4189 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4190 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4191 {
4192 	return huge_page_size(hstate_vma(vma));
4193 }
4194 
4195 /*
4196  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4197  * handle_mm_fault() to try to instantiate regular-sized pages in the
4198  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4199  * this far.
4200  */
hugetlb_vm_op_fault(struct vm_fault * vmf)4201 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4202 {
4203 	BUG();
4204 	return 0;
4205 }
4206 
4207 /*
4208  * When a new function is introduced to vm_operations_struct and added
4209  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4210  * This is because under System V memory model, mappings created via
4211  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4212  * their original vm_ops are overwritten with shm_vm_ops.
4213  */
4214 const struct vm_operations_struct hugetlb_vm_ops = {
4215 	.fault = hugetlb_vm_op_fault,
4216 	.open = hugetlb_vm_op_open,
4217 	.close = hugetlb_vm_op_close,
4218 	.may_split = hugetlb_vm_op_split,
4219 	.pagesize = hugetlb_vm_op_pagesize,
4220 };
4221 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)4222 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4223 				int writable)
4224 {
4225 	pte_t entry;
4226 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4227 
4228 	if (writable) {
4229 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4230 					 vma->vm_page_prot)));
4231 	} else {
4232 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4233 					   vma->vm_page_prot));
4234 	}
4235 	entry = pte_mkyoung(entry);
4236 	entry = pte_mkhuge(entry);
4237 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4238 
4239 	return entry;
4240 }
4241 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4242 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4243 				   unsigned long address, pte_t *ptep)
4244 {
4245 	pte_t entry;
4246 
4247 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4248 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4249 		update_mmu_cache(vma, address, ptep);
4250 }
4251 
is_hugetlb_entry_migration(pte_t pte)4252 bool is_hugetlb_entry_migration(pte_t pte)
4253 {
4254 	swp_entry_t swp;
4255 
4256 	if (huge_pte_none(pte) || pte_present(pte))
4257 		return false;
4258 	swp = pte_to_swp_entry(pte);
4259 	if (is_migration_entry(swp))
4260 		return true;
4261 	else
4262 		return false;
4263 }
4264 
is_hugetlb_entry_hwpoisoned(pte_t pte)4265 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4266 {
4267 	swp_entry_t swp;
4268 
4269 	if (huge_pte_none(pte) || pte_present(pte))
4270 		return false;
4271 	swp = pte_to_swp_entry(pte);
4272 	if (is_hwpoison_entry(swp))
4273 		return true;
4274 	else
4275 		return false;
4276 }
4277 
4278 static void
hugetlb_install_page(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct page * new_page)4279 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4280 		     struct page *new_page)
4281 {
4282 	__SetPageUptodate(new_page);
4283 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4284 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4285 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4286 	ClearHPageRestoreReserve(new_page);
4287 	SetHPageMigratable(new_page);
4288 }
4289 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)4290 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4291 			    struct vm_area_struct *vma)
4292 {
4293 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4294 	struct page *ptepage;
4295 	unsigned long addr;
4296 	bool cow = is_cow_mapping(vma->vm_flags);
4297 	struct hstate *h = hstate_vma(vma);
4298 	unsigned long sz = huge_page_size(h);
4299 	unsigned long npages = pages_per_huge_page(h);
4300 	struct address_space *mapping = vma->vm_file->f_mapping;
4301 	struct mmu_notifier_range range;
4302 	int ret = 0;
4303 
4304 	if (cow) {
4305 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4306 					vma->vm_start,
4307 					vma->vm_end);
4308 		mmu_notifier_invalidate_range_start(&range);
4309 	} else {
4310 		/*
4311 		 * For shared mappings i_mmap_rwsem must be held to call
4312 		 * huge_pte_alloc, otherwise the returned ptep could go
4313 		 * away if part of a shared pmd and another thread calls
4314 		 * huge_pmd_unshare.
4315 		 */
4316 		i_mmap_lock_read(mapping);
4317 	}
4318 
4319 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4320 		spinlock_t *src_ptl, *dst_ptl;
4321 		src_pte = huge_pte_offset(src, addr, sz);
4322 		if (!src_pte)
4323 			continue;
4324 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4325 		if (!dst_pte) {
4326 			ret = -ENOMEM;
4327 			break;
4328 		}
4329 
4330 		/*
4331 		 * If the pagetables are shared don't copy or take references.
4332 		 * dst_pte == src_pte is the common case of src/dest sharing.
4333 		 *
4334 		 * However, src could have 'unshared' and dst shares with
4335 		 * another vma.  If dst_pte !none, this implies sharing.
4336 		 * Check here before taking page table lock, and once again
4337 		 * after taking the lock below.
4338 		 */
4339 		dst_entry = huge_ptep_get(dst_pte);
4340 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4341 			continue;
4342 
4343 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4344 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4345 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4346 		entry = huge_ptep_get(src_pte);
4347 		dst_entry = huge_ptep_get(dst_pte);
4348 again:
4349 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4350 			/*
4351 			 * Skip if src entry none.  Also, skip in the
4352 			 * unlikely case dst entry !none as this implies
4353 			 * sharing with another vma.
4354 			 */
4355 			;
4356 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4357 				    is_hugetlb_entry_hwpoisoned(entry))) {
4358 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4359 
4360 			if (is_writable_migration_entry(swp_entry) && cow) {
4361 				/*
4362 				 * COW mappings require pages in both
4363 				 * parent and child to be set to read.
4364 				 */
4365 				swp_entry = make_readable_migration_entry(
4366 							swp_offset(swp_entry));
4367 				entry = swp_entry_to_pte(swp_entry);
4368 				set_huge_swap_pte_at(src, addr, src_pte,
4369 						     entry, sz);
4370 			}
4371 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4372 		} else {
4373 			entry = huge_ptep_get(src_pte);
4374 			ptepage = pte_page(entry);
4375 			get_page(ptepage);
4376 
4377 			/*
4378 			 * This is a rare case where we see pinned hugetlb
4379 			 * pages while they're prone to COW.  We need to do the
4380 			 * COW earlier during fork.
4381 			 *
4382 			 * When pre-allocating the page or copying data, we
4383 			 * need to be without the pgtable locks since we could
4384 			 * sleep during the process.
4385 			 */
4386 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4387 				pte_t src_pte_old = entry;
4388 				struct page *new;
4389 
4390 				spin_unlock(src_ptl);
4391 				spin_unlock(dst_ptl);
4392 				/* Do not use reserve as it's private owned */
4393 				new = alloc_huge_page(vma, addr, 1);
4394 				if (IS_ERR(new)) {
4395 					put_page(ptepage);
4396 					ret = PTR_ERR(new);
4397 					break;
4398 				}
4399 				copy_user_huge_page(new, ptepage, addr, vma,
4400 						    npages);
4401 				put_page(ptepage);
4402 
4403 				/* Install the new huge page if src pte stable */
4404 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4405 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4406 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4407 				entry = huge_ptep_get(src_pte);
4408 				if (!pte_same(src_pte_old, entry)) {
4409 					restore_reserve_on_error(h, vma, addr,
4410 								new);
4411 					put_page(new);
4412 					/* dst_entry won't change as in child */
4413 					goto again;
4414 				}
4415 				hugetlb_install_page(vma, dst_pte, addr, new);
4416 				spin_unlock(src_ptl);
4417 				spin_unlock(dst_ptl);
4418 				continue;
4419 			}
4420 
4421 			if (cow) {
4422 				/*
4423 				 * No need to notify as we are downgrading page
4424 				 * table protection not changing it to point
4425 				 * to a new page.
4426 				 *
4427 				 * See Documentation/vm/mmu_notifier.rst
4428 				 */
4429 				huge_ptep_set_wrprotect(src, addr, src_pte);
4430 				entry = huge_pte_wrprotect(entry);
4431 			}
4432 
4433 			page_dup_rmap(ptepage, true);
4434 			set_huge_pte_at(dst, addr, dst_pte, entry);
4435 			hugetlb_count_add(npages, dst);
4436 		}
4437 		spin_unlock(src_ptl);
4438 		spin_unlock(dst_ptl);
4439 	}
4440 
4441 	if (cow)
4442 		mmu_notifier_invalidate_range_end(&range);
4443 	else
4444 		i_mmap_unlock_read(mapping);
4445 
4446 	return ret;
4447 }
4448 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4449 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4450 			    unsigned long start, unsigned long end,
4451 			    struct page *ref_page)
4452 {
4453 	struct mm_struct *mm = vma->vm_mm;
4454 	unsigned long address;
4455 	pte_t *ptep;
4456 	pte_t pte;
4457 	spinlock_t *ptl;
4458 	struct page *page;
4459 	struct hstate *h = hstate_vma(vma);
4460 	unsigned long sz = huge_page_size(h);
4461 	struct mmu_notifier_range range;
4462 	bool force_flush = false;
4463 
4464 	WARN_ON(!is_vm_hugetlb_page(vma));
4465 	BUG_ON(start & ~huge_page_mask(h));
4466 	BUG_ON(end & ~huge_page_mask(h));
4467 
4468 	/*
4469 	 * This is a hugetlb vma, all the pte entries should point
4470 	 * to huge page.
4471 	 */
4472 	tlb_change_page_size(tlb, sz);
4473 	tlb_start_vma(tlb, vma);
4474 
4475 	/*
4476 	 * If sharing possible, alert mmu notifiers of worst case.
4477 	 */
4478 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4479 				end);
4480 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4481 	mmu_notifier_invalidate_range_start(&range);
4482 	address = start;
4483 	for (; address < end; address += sz) {
4484 		ptep = huge_pte_offset(mm, address, sz);
4485 		if (!ptep)
4486 			continue;
4487 
4488 		ptl = huge_pte_lock(h, mm, ptep);
4489 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4490 			spin_unlock(ptl);
4491 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4492 			force_flush = true;
4493 			continue;
4494 		}
4495 
4496 		pte = huge_ptep_get(ptep);
4497 		if (huge_pte_none(pte)) {
4498 			spin_unlock(ptl);
4499 			continue;
4500 		}
4501 
4502 		/*
4503 		 * Migrating hugepage or HWPoisoned hugepage is already
4504 		 * unmapped and its refcount is dropped, so just clear pte here.
4505 		 */
4506 		if (unlikely(!pte_present(pte))) {
4507 			huge_pte_clear(mm, address, ptep, sz);
4508 			spin_unlock(ptl);
4509 			continue;
4510 		}
4511 
4512 		page = pte_page(pte);
4513 		/*
4514 		 * If a reference page is supplied, it is because a specific
4515 		 * page is being unmapped, not a range. Ensure the page we
4516 		 * are about to unmap is the actual page of interest.
4517 		 */
4518 		if (ref_page) {
4519 			if (page != ref_page) {
4520 				spin_unlock(ptl);
4521 				continue;
4522 			}
4523 			/*
4524 			 * Mark the VMA as having unmapped its page so that
4525 			 * future faults in this VMA will fail rather than
4526 			 * looking like data was lost
4527 			 */
4528 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4529 		}
4530 
4531 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4532 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4533 		if (huge_pte_dirty(pte))
4534 			set_page_dirty(page);
4535 
4536 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4537 		page_remove_rmap(page, true);
4538 
4539 		spin_unlock(ptl);
4540 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4541 		/*
4542 		 * Bail out after unmapping reference page if supplied
4543 		 */
4544 		if (ref_page)
4545 			break;
4546 	}
4547 	mmu_notifier_invalidate_range_end(&range);
4548 	tlb_end_vma(tlb, vma);
4549 
4550 	/*
4551 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4552 	 * could defer the flush until now, since by holding i_mmap_rwsem we
4553 	 * guaranteed that the last refernece would not be dropped. But we must
4554 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4555 	 * dropped and the last reference to the shared PMDs page might be
4556 	 * dropped as well.
4557 	 *
4558 	 * In theory we could defer the freeing of the PMD pages as well, but
4559 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4560 	 * detect sharing, so we cannot defer the release of the page either.
4561 	 * Instead, do flush now.
4562 	 */
4563 	if (force_flush)
4564 		tlb_flush_mmu_tlbonly(tlb);
4565 }
4566 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4567 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4568 			  struct vm_area_struct *vma, unsigned long start,
4569 			  unsigned long end, struct page *ref_page)
4570 {
4571 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4572 
4573 	/*
4574 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4575 	 * test will fail on a vma being torn down, and not grab a page table
4576 	 * on its way out.  We're lucky that the flag has such an appropriate
4577 	 * name, and can in fact be safely cleared here. We could clear it
4578 	 * before the __unmap_hugepage_range above, but all that's necessary
4579 	 * is to clear it before releasing the i_mmap_rwsem. This works
4580 	 * because in the context this is called, the VMA is about to be
4581 	 * destroyed and the i_mmap_rwsem is held.
4582 	 */
4583 	vma->vm_flags &= ~VM_MAYSHARE;
4584 }
4585 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4586 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4587 			  unsigned long end, struct page *ref_page)
4588 {
4589 	struct mmu_gather tlb;
4590 
4591 	tlb_gather_mmu(&tlb, vma->vm_mm);
4592 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4593 	tlb_finish_mmu(&tlb);
4594 }
4595 
4596 /*
4597  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4598  * mapping it owns the reserve page for. The intention is to unmap the page
4599  * from other VMAs and let the children be SIGKILLed if they are faulting the
4600  * same region.
4601  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)4602 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4603 			      struct page *page, unsigned long address)
4604 {
4605 	struct hstate *h = hstate_vma(vma);
4606 	struct vm_area_struct *iter_vma;
4607 	struct address_space *mapping;
4608 	pgoff_t pgoff;
4609 
4610 	/*
4611 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4612 	 * from page cache lookup which is in HPAGE_SIZE units.
4613 	 */
4614 	address = address & huge_page_mask(h);
4615 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4616 			vma->vm_pgoff;
4617 	mapping = vma->vm_file->f_mapping;
4618 
4619 	/*
4620 	 * Take the mapping lock for the duration of the table walk. As
4621 	 * this mapping should be shared between all the VMAs,
4622 	 * __unmap_hugepage_range() is called as the lock is already held
4623 	 */
4624 	i_mmap_lock_write(mapping);
4625 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4626 		/* Do not unmap the current VMA */
4627 		if (iter_vma == vma)
4628 			continue;
4629 
4630 		/*
4631 		 * Shared VMAs have their own reserves and do not affect
4632 		 * MAP_PRIVATE accounting but it is possible that a shared
4633 		 * VMA is using the same page so check and skip such VMAs.
4634 		 */
4635 		if (iter_vma->vm_flags & VM_MAYSHARE)
4636 			continue;
4637 
4638 		/*
4639 		 * Unmap the page from other VMAs without their own reserves.
4640 		 * They get marked to be SIGKILLed if they fault in these
4641 		 * areas. This is because a future no-page fault on this VMA
4642 		 * could insert a zeroed page instead of the data existing
4643 		 * from the time of fork. This would look like data corruption
4644 		 */
4645 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4646 			unmap_hugepage_range(iter_vma, address,
4647 					     address + huge_page_size(h), page);
4648 	}
4649 	i_mmap_unlock_write(mapping);
4650 }
4651 
4652 /*
4653  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4654  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4655  * cannot race with other handlers or page migration.
4656  * Keep the pte_same checks anyway to make transition from the mutex easier.
4657  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)4658 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4659 		       unsigned long address, pte_t *ptep,
4660 		       struct page *pagecache_page, spinlock_t *ptl)
4661 {
4662 	pte_t pte;
4663 	struct hstate *h = hstate_vma(vma);
4664 	struct page *old_page, *new_page;
4665 	int outside_reserve = 0;
4666 	vm_fault_t ret = 0;
4667 	unsigned long haddr = address & huge_page_mask(h);
4668 	struct mmu_notifier_range range;
4669 
4670 	pte = huge_ptep_get(ptep);
4671 	old_page = pte_page(pte);
4672 
4673 retry_avoidcopy:
4674 	/* If no-one else is actually using this page, avoid the copy
4675 	 * and just make the page writable */
4676 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4677 		page_move_anon_rmap(old_page, vma);
4678 		set_huge_ptep_writable(vma, haddr, ptep);
4679 		return 0;
4680 	}
4681 
4682 	/*
4683 	 * If the process that created a MAP_PRIVATE mapping is about to
4684 	 * perform a COW due to a shared page count, attempt to satisfy
4685 	 * the allocation without using the existing reserves. The pagecache
4686 	 * page is used to determine if the reserve at this address was
4687 	 * consumed or not. If reserves were used, a partial faulted mapping
4688 	 * at the time of fork() could consume its reserves on COW instead
4689 	 * of the full address range.
4690 	 */
4691 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4692 			old_page != pagecache_page)
4693 		outside_reserve = 1;
4694 
4695 	get_page(old_page);
4696 
4697 	/*
4698 	 * Drop page table lock as buddy allocator may be called. It will
4699 	 * be acquired again before returning to the caller, as expected.
4700 	 */
4701 	spin_unlock(ptl);
4702 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4703 
4704 	if (IS_ERR(new_page)) {
4705 		/*
4706 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4707 		 * it is due to references held by a child and an insufficient
4708 		 * huge page pool. To guarantee the original mappers
4709 		 * reliability, unmap the page from child processes. The child
4710 		 * may get SIGKILLed if it later faults.
4711 		 */
4712 		if (outside_reserve) {
4713 			struct address_space *mapping = vma->vm_file->f_mapping;
4714 			pgoff_t idx;
4715 			u32 hash;
4716 
4717 			put_page(old_page);
4718 			BUG_ON(huge_pte_none(pte));
4719 			/*
4720 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4721 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4722 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4723 			 * here is OK as COW mappings do not interact with
4724 			 * PMD sharing.
4725 			 *
4726 			 * Reacquire both after unmap operation.
4727 			 */
4728 			idx = vma_hugecache_offset(h, vma, haddr);
4729 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4730 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4731 			i_mmap_unlock_read(mapping);
4732 
4733 			unmap_ref_private(mm, vma, old_page, haddr);
4734 
4735 			i_mmap_lock_read(mapping);
4736 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4737 			spin_lock(ptl);
4738 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4739 			if (likely(ptep &&
4740 				   pte_same(huge_ptep_get(ptep), pte)))
4741 				goto retry_avoidcopy;
4742 			/*
4743 			 * race occurs while re-acquiring page table
4744 			 * lock, and our job is done.
4745 			 */
4746 			return 0;
4747 		}
4748 
4749 		ret = vmf_error(PTR_ERR(new_page));
4750 		goto out_release_old;
4751 	}
4752 
4753 	/*
4754 	 * When the original hugepage is shared one, it does not have
4755 	 * anon_vma prepared.
4756 	 */
4757 	if (unlikely(anon_vma_prepare(vma))) {
4758 		ret = VM_FAULT_OOM;
4759 		goto out_release_all;
4760 	}
4761 
4762 	copy_user_huge_page(new_page, old_page, address, vma,
4763 			    pages_per_huge_page(h));
4764 	__SetPageUptodate(new_page);
4765 
4766 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4767 				haddr + huge_page_size(h));
4768 	mmu_notifier_invalidate_range_start(&range);
4769 
4770 	/*
4771 	 * Retake the page table lock to check for racing updates
4772 	 * before the page tables are altered
4773 	 */
4774 	spin_lock(ptl);
4775 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4776 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4777 		ClearHPageRestoreReserve(new_page);
4778 
4779 		/* Break COW */
4780 		huge_ptep_clear_flush(vma, haddr, ptep);
4781 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4782 		set_huge_pte_at(mm, haddr, ptep,
4783 				make_huge_pte(vma, new_page, 1));
4784 		page_remove_rmap(old_page, true);
4785 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4786 		SetHPageMigratable(new_page);
4787 		/* Make the old page be freed below */
4788 		new_page = old_page;
4789 	}
4790 	spin_unlock(ptl);
4791 	mmu_notifier_invalidate_range_end(&range);
4792 out_release_all:
4793 	/* No restore in case of successful pagetable update (Break COW) */
4794 	if (new_page != old_page)
4795 		restore_reserve_on_error(h, vma, haddr, new_page);
4796 	put_page(new_page);
4797 out_release_old:
4798 	put_page(old_page);
4799 
4800 	spin_lock(ptl); /* Caller expects lock to be held */
4801 	return ret;
4802 }
4803 
4804 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4805 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4806 			struct vm_area_struct *vma, unsigned long address)
4807 {
4808 	struct address_space *mapping;
4809 	pgoff_t idx;
4810 
4811 	mapping = vma->vm_file->f_mapping;
4812 	idx = vma_hugecache_offset(h, vma, address);
4813 
4814 	return find_lock_page(mapping, idx);
4815 }
4816 
4817 /*
4818  * Return whether there is a pagecache page to back given address within VMA.
4819  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4820  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4821 static bool hugetlbfs_pagecache_present(struct hstate *h,
4822 			struct vm_area_struct *vma, unsigned long address)
4823 {
4824 	struct address_space *mapping;
4825 	pgoff_t idx;
4826 	struct page *page;
4827 
4828 	mapping = vma->vm_file->f_mapping;
4829 	idx = vma_hugecache_offset(h, vma, address);
4830 
4831 	page = find_get_page(mapping, idx);
4832 	if (page)
4833 		put_page(page);
4834 	return page != NULL;
4835 }
4836 
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)4837 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4838 			   pgoff_t idx)
4839 {
4840 	struct inode *inode = mapping->host;
4841 	struct hstate *h = hstate_inode(inode);
4842 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4843 
4844 	if (err)
4845 		return err;
4846 	ClearHPageRestoreReserve(page);
4847 
4848 	/*
4849 	 * set page dirty so that it will not be removed from cache/file
4850 	 * by non-hugetlbfs specific code paths.
4851 	 */
4852 	set_page_dirty(page);
4853 
4854 	spin_lock(&inode->i_lock);
4855 	inode->i_blocks += blocks_per_huge_page(h);
4856 	spin_unlock(&inode->i_lock);
4857 	return 0;
4858 }
4859 
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long reason)4860 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4861 						  struct address_space *mapping,
4862 						  pgoff_t idx,
4863 						  unsigned int flags,
4864 						  unsigned long haddr,
4865 						  unsigned long reason)
4866 {
4867 	u32 hash;
4868 	struct vm_fault vmf = {
4869 		.vma = vma,
4870 		.address = haddr,
4871 		.flags = flags,
4872 
4873 		/*
4874 		 * Hard to debug if it ends up being
4875 		 * used by a callee that assumes
4876 		 * something about the other
4877 		 * uninitialized fields... same as in
4878 		 * memory.c
4879 		 */
4880 	};
4881 
4882 	/*
4883 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
4884 	 * userfault. Also mmap_lock will be dropped during handling
4885 	 * userfault, any vma operation should be careful from here.
4886 	 */
4887 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4888 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4889 	i_mmap_unlock_read(mapping);
4890 	return handle_userfault(&vmf, reason);
4891 }
4892 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)4893 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4894 			struct vm_area_struct *vma,
4895 			struct address_space *mapping, pgoff_t idx,
4896 			unsigned long address, pte_t *ptep, unsigned int flags)
4897 {
4898 	struct hstate *h = hstate_vma(vma);
4899 	vm_fault_t ret = VM_FAULT_SIGBUS;
4900 	int anon_rmap = 0;
4901 	unsigned long size;
4902 	struct page *page;
4903 	pte_t new_pte;
4904 	spinlock_t *ptl;
4905 	unsigned long haddr = address & huge_page_mask(h);
4906 	bool new_page, new_pagecache_page = false;
4907 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4908 
4909 	/*
4910 	 * Currently, we are forced to kill the process in the event the
4911 	 * original mapper has unmapped pages from the child due to a failed
4912 	 * COW. Warn that such a situation has occurred as it may not be obvious
4913 	 */
4914 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4915 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4916 			   current->pid);
4917 		goto out;
4918 	}
4919 
4920 	/*
4921 	 * We can not race with truncation due to holding i_mmap_rwsem.
4922 	 * i_size is modified when holding i_mmap_rwsem, so check here
4923 	 * once for faults beyond end of file.
4924 	 */
4925 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4926 	if (idx >= size)
4927 		goto out;
4928 
4929 retry:
4930 	new_page = false;
4931 	page = find_lock_page(mapping, idx);
4932 	if (!page) {
4933 		/* Check for page in userfault range */
4934 		if (userfaultfd_missing(vma))
4935 			return hugetlb_handle_userfault(vma, mapping, idx,
4936 						       flags, haddr,
4937 						       VM_UFFD_MISSING);
4938 
4939 		page = alloc_huge_page(vma, haddr, 0);
4940 		if (IS_ERR(page)) {
4941 			/*
4942 			 * Returning error will result in faulting task being
4943 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4944 			 * tasks from racing to fault in the same page which
4945 			 * could result in false unable to allocate errors.
4946 			 * Page migration does not take the fault mutex, but
4947 			 * does a clear then write of pte's under page table
4948 			 * lock.  Page fault code could race with migration,
4949 			 * notice the clear pte and try to allocate a page
4950 			 * here.  Before returning error, get ptl and make
4951 			 * sure there really is no pte entry.
4952 			 */
4953 			ptl = huge_pte_lock(h, mm, ptep);
4954 			ret = 0;
4955 			if (huge_pte_none(huge_ptep_get(ptep)))
4956 				ret = vmf_error(PTR_ERR(page));
4957 			spin_unlock(ptl);
4958 			goto out;
4959 		}
4960 		clear_huge_page(page, address, pages_per_huge_page(h));
4961 		__SetPageUptodate(page);
4962 		new_page = true;
4963 
4964 		if (vma->vm_flags & VM_MAYSHARE) {
4965 			int err = huge_add_to_page_cache(page, mapping, idx);
4966 			if (err) {
4967 				put_page(page);
4968 				if (err == -EEXIST)
4969 					goto retry;
4970 				goto out;
4971 			}
4972 			new_pagecache_page = true;
4973 		} else {
4974 			lock_page(page);
4975 			if (unlikely(anon_vma_prepare(vma))) {
4976 				ret = VM_FAULT_OOM;
4977 				goto backout_unlocked;
4978 			}
4979 			anon_rmap = 1;
4980 		}
4981 	} else {
4982 		/*
4983 		 * If memory error occurs between mmap() and fault, some process
4984 		 * don't have hwpoisoned swap entry for errored virtual address.
4985 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4986 		 */
4987 		if (unlikely(PageHWPoison(page))) {
4988 			ret = VM_FAULT_HWPOISON_LARGE |
4989 				VM_FAULT_SET_HINDEX(hstate_index(h));
4990 			goto backout_unlocked;
4991 		}
4992 
4993 		/* Check for page in userfault range. */
4994 		if (userfaultfd_minor(vma)) {
4995 			unlock_page(page);
4996 			put_page(page);
4997 			return hugetlb_handle_userfault(vma, mapping, idx,
4998 						       flags, haddr,
4999 						       VM_UFFD_MINOR);
5000 		}
5001 	}
5002 
5003 	/*
5004 	 * If we are going to COW a private mapping later, we examine the
5005 	 * pending reservations for this page now. This will ensure that
5006 	 * any allocations necessary to record that reservation occur outside
5007 	 * the spinlock.
5008 	 */
5009 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5010 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5011 			ret = VM_FAULT_OOM;
5012 			goto backout_unlocked;
5013 		}
5014 		/* Just decrements count, does not deallocate */
5015 		vma_end_reservation(h, vma, haddr);
5016 	}
5017 
5018 	ptl = huge_pte_lock(h, mm, ptep);
5019 	ret = 0;
5020 	if (!huge_pte_none(huge_ptep_get(ptep)))
5021 		goto backout;
5022 
5023 	if (anon_rmap) {
5024 		ClearHPageRestoreReserve(page);
5025 		hugepage_add_new_anon_rmap(page, vma, haddr);
5026 	} else
5027 		page_dup_rmap(page, true);
5028 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5029 				&& (vma->vm_flags & VM_SHARED)));
5030 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5031 
5032 	hugetlb_count_add(pages_per_huge_page(h), mm);
5033 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5034 		/* Optimization, do the COW without a second fault */
5035 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5036 	}
5037 
5038 	spin_unlock(ptl);
5039 
5040 	/*
5041 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5042 	 * found in the pagecache may not have HPageMigratableset if they have
5043 	 * been isolated for migration.
5044 	 */
5045 	if (new_page)
5046 		SetHPageMigratable(page);
5047 
5048 	unlock_page(page);
5049 out:
5050 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5051 	i_mmap_unlock_read(mapping);
5052 	return ret;
5053 
5054 backout:
5055 	spin_unlock(ptl);
5056 backout_unlocked:
5057 	unlock_page(page);
5058 	/* restore reserve for newly allocated pages not in page cache */
5059 	if (new_page && !new_pagecache_page)
5060 		restore_reserve_on_error(h, vma, haddr, page);
5061 	put_page(page);
5062 	goto out;
5063 }
5064 
5065 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5066 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5067 {
5068 	unsigned long key[2];
5069 	u32 hash;
5070 
5071 	key[0] = (unsigned long) mapping;
5072 	key[1] = idx;
5073 
5074 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5075 
5076 	return hash & (num_fault_mutexes - 1);
5077 }
5078 #else
5079 /*
5080  * For uniprocessor systems we always use a single mutex, so just
5081  * return 0 and avoid the hashing overhead.
5082  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5083 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5084 {
5085 	return 0;
5086 }
5087 #endif
5088 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)5089 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5090 			unsigned long address, unsigned int flags)
5091 {
5092 	pte_t *ptep, entry;
5093 	spinlock_t *ptl;
5094 	vm_fault_t ret;
5095 	u32 hash;
5096 	pgoff_t idx;
5097 	struct page *page = NULL;
5098 	struct page *pagecache_page = NULL;
5099 	struct hstate *h = hstate_vma(vma);
5100 	struct address_space *mapping;
5101 	int need_wait_lock = 0;
5102 	unsigned long haddr = address & huge_page_mask(h);
5103 
5104 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5105 	if (ptep) {
5106 		/*
5107 		 * Since we hold no locks, ptep could be stale.  That is
5108 		 * OK as we are only making decisions based on content and
5109 		 * not actually modifying content here.
5110 		 */
5111 		entry = huge_ptep_get(ptep);
5112 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5113 			migration_entry_wait_huge(vma, mm, ptep);
5114 			return 0;
5115 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5116 			return VM_FAULT_HWPOISON_LARGE |
5117 				VM_FAULT_SET_HINDEX(hstate_index(h));
5118 	}
5119 
5120 	/*
5121 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5122 	 * until finished with ptep.  This serves two purposes:
5123 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5124 	 *    and making the ptep no longer valid.
5125 	 * 2) It synchronizes us with i_size modifications during truncation.
5126 	 *
5127 	 * ptep could have already be assigned via huge_pte_offset.  That
5128 	 * is OK, as huge_pte_alloc will return the same value unless
5129 	 * something has changed.
5130 	 */
5131 	mapping = vma->vm_file->f_mapping;
5132 	i_mmap_lock_read(mapping);
5133 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5134 	if (!ptep) {
5135 		i_mmap_unlock_read(mapping);
5136 		return VM_FAULT_OOM;
5137 	}
5138 
5139 	/*
5140 	 * Serialize hugepage allocation and instantiation, so that we don't
5141 	 * get spurious allocation failures if two CPUs race to instantiate
5142 	 * the same page in the page cache.
5143 	 */
5144 	idx = vma_hugecache_offset(h, vma, haddr);
5145 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5146 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5147 
5148 	entry = huge_ptep_get(ptep);
5149 	if (huge_pte_none(entry))
5150 		/*
5151 		 * hugetlb_no_page will drop vma lock and hugetlb fault
5152 		 * mutex internally, which make us return immediately.
5153 		 */
5154 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5155 
5156 	ret = 0;
5157 
5158 	/*
5159 	 * entry could be a migration/hwpoison entry at this point, so this
5160 	 * check prevents the kernel from going below assuming that we have
5161 	 * an active hugepage in pagecache. This goto expects the 2nd page
5162 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5163 	 * properly handle it.
5164 	 */
5165 	if (!pte_present(entry))
5166 		goto out_mutex;
5167 
5168 	/*
5169 	 * If we are going to COW the mapping later, we examine the pending
5170 	 * reservations for this page now. This will ensure that any
5171 	 * allocations necessary to record that reservation occur outside the
5172 	 * spinlock. For private mappings, we also lookup the pagecache
5173 	 * page now as it is used to determine if a reservation has been
5174 	 * consumed.
5175 	 */
5176 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5177 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5178 			ret = VM_FAULT_OOM;
5179 			goto out_mutex;
5180 		}
5181 		/* Just decrements count, does not deallocate */
5182 		vma_end_reservation(h, vma, haddr);
5183 
5184 		if (!(vma->vm_flags & VM_MAYSHARE))
5185 			pagecache_page = hugetlbfs_pagecache_page(h,
5186 								vma, haddr);
5187 	}
5188 
5189 	ptl = huge_pte_lock(h, mm, ptep);
5190 
5191 	/* Check for a racing update before calling hugetlb_cow */
5192 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5193 		goto out_ptl;
5194 
5195 	/*
5196 	 * hugetlb_cow() requires page locks of pte_page(entry) and
5197 	 * pagecache_page, so here we need take the former one
5198 	 * when page != pagecache_page or !pagecache_page.
5199 	 */
5200 	page = pte_page(entry);
5201 	if (page != pagecache_page)
5202 		if (!trylock_page(page)) {
5203 			need_wait_lock = 1;
5204 			goto out_ptl;
5205 		}
5206 
5207 	get_page(page);
5208 
5209 	if (flags & FAULT_FLAG_WRITE) {
5210 		if (!huge_pte_write(entry)) {
5211 			ret = hugetlb_cow(mm, vma, address, ptep,
5212 					  pagecache_page, ptl);
5213 			goto out_put_page;
5214 		}
5215 		entry = huge_pte_mkdirty(entry);
5216 	}
5217 	entry = pte_mkyoung(entry);
5218 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5219 						flags & FAULT_FLAG_WRITE))
5220 		update_mmu_cache(vma, haddr, ptep);
5221 out_put_page:
5222 	if (page != pagecache_page)
5223 		unlock_page(page);
5224 	put_page(page);
5225 out_ptl:
5226 	spin_unlock(ptl);
5227 
5228 	if (pagecache_page) {
5229 		unlock_page(pagecache_page);
5230 		put_page(pagecache_page);
5231 	}
5232 out_mutex:
5233 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5234 	i_mmap_unlock_read(mapping);
5235 	/*
5236 	 * Generally it's safe to hold refcount during waiting page lock. But
5237 	 * here we just wait to defer the next page fault to avoid busy loop and
5238 	 * the page is not used after unlocked before returning from the current
5239 	 * page fault. So we are safe from accessing freed page, even if we wait
5240 	 * here without taking refcount.
5241 	 */
5242 	if (need_wait_lock)
5243 		wait_on_page_locked(page);
5244 	return ret;
5245 }
5246 
5247 #ifdef CONFIG_USERFAULTFD
5248 /*
5249  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5250  * modifications for huge pages.
5251  */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,enum mcopy_atomic_mode mode,struct page ** pagep)5252 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5253 			    pte_t *dst_pte,
5254 			    struct vm_area_struct *dst_vma,
5255 			    unsigned long dst_addr,
5256 			    unsigned long src_addr,
5257 			    enum mcopy_atomic_mode mode,
5258 			    struct page **pagep)
5259 {
5260 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5261 	struct hstate *h = hstate_vma(dst_vma);
5262 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5263 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5264 	unsigned long size;
5265 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5266 	pte_t _dst_pte;
5267 	spinlock_t *ptl;
5268 	int ret = -ENOMEM;
5269 	struct page *page;
5270 	int writable;
5271 	bool page_in_pagecache = false;
5272 
5273 	if (is_continue) {
5274 		ret = -EFAULT;
5275 		page = find_lock_page(mapping, idx);
5276 		if (!page)
5277 			goto out;
5278 		page_in_pagecache = true;
5279 	} else if (!*pagep) {
5280 		/* If a page already exists, then it's UFFDIO_COPY for
5281 		 * a non-missing case. Return -EEXIST.
5282 		 */
5283 		if (vm_shared &&
5284 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5285 			ret = -EEXIST;
5286 			goto out;
5287 		}
5288 
5289 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5290 		if (IS_ERR(page)) {
5291 			ret = -ENOMEM;
5292 			goto out;
5293 		}
5294 
5295 		ret = copy_huge_page_from_user(page,
5296 						(const void __user *) src_addr,
5297 						pages_per_huge_page(h), false);
5298 
5299 		/* fallback to copy_from_user outside mmap_lock */
5300 		if (unlikely(ret)) {
5301 			ret = -ENOENT;
5302 			/* Free the allocated page which may have
5303 			 * consumed a reservation.
5304 			 */
5305 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5306 			put_page(page);
5307 
5308 			/* Allocate a temporary page to hold the copied
5309 			 * contents.
5310 			 */
5311 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5312 			if (!page) {
5313 				ret = -ENOMEM;
5314 				goto out;
5315 			}
5316 			*pagep = page;
5317 			/* Set the outparam pagep and return to the caller to
5318 			 * copy the contents outside the lock. Don't free the
5319 			 * page.
5320 			 */
5321 			goto out;
5322 		}
5323 	} else {
5324 		if (vm_shared &&
5325 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5326 			put_page(*pagep);
5327 			ret = -EEXIST;
5328 			*pagep = NULL;
5329 			goto out;
5330 		}
5331 
5332 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5333 		if (IS_ERR(page)) {
5334 			put_page(*pagep);
5335 			ret = -ENOMEM;
5336 			*pagep = NULL;
5337 			goto out;
5338 		}
5339 		copy_huge_page(page, *pagep);
5340 		put_page(*pagep);
5341 		*pagep = NULL;
5342 	}
5343 
5344 	/*
5345 	 * The memory barrier inside __SetPageUptodate makes sure that
5346 	 * preceding stores to the page contents become visible before
5347 	 * the set_pte_at() write.
5348 	 */
5349 	__SetPageUptodate(page);
5350 
5351 	/* Add shared, newly allocated pages to the page cache. */
5352 	if (vm_shared && !is_continue) {
5353 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5354 		ret = -EFAULT;
5355 		if (idx >= size)
5356 			goto out_release_nounlock;
5357 
5358 		/*
5359 		 * Serialization between remove_inode_hugepages() and
5360 		 * huge_add_to_page_cache() below happens through the
5361 		 * hugetlb_fault_mutex_table that here must be hold by
5362 		 * the caller.
5363 		 */
5364 		ret = huge_add_to_page_cache(page, mapping, idx);
5365 		if (ret)
5366 			goto out_release_nounlock;
5367 		page_in_pagecache = true;
5368 	}
5369 
5370 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5371 	spin_lock(ptl);
5372 
5373 	ret = -EIO;
5374 	if (PageHWPoison(page))
5375 		goto out_release_unlock;
5376 
5377 	/*
5378 	 * Recheck the i_size after holding PT lock to make sure not
5379 	 * to leave any page mapped (as page_mapped()) beyond the end
5380 	 * of the i_size (remove_inode_hugepages() is strict about
5381 	 * enforcing that). If we bail out here, we'll also leave a
5382 	 * page in the radix tree in the vm_shared case beyond the end
5383 	 * of the i_size, but remove_inode_hugepages() will take care
5384 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5385 	 */
5386 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5387 	ret = -EFAULT;
5388 	if (idx >= size)
5389 		goto out_release_unlock;
5390 
5391 	ret = -EEXIST;
5392 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5393 		goto out_release_unlock;
5394 
5395 	if (page_in_pagecache) {
5396 		page_dup_rmap(page, true);
5397 	} else {
5398 		ClearHPageRestoreReserve(page);
5399 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5400 	}
5401 
5402 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5403 	if (is_continue && !vm_shared)
5404 		writable = 0;
5405 	else
5406 		writable = dst_vma->vm_flags & VM_WRITE;
5407 
5408 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5409 	if (writable)
5410 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5411 	_dst_pte = pte_mkyoung(_dst_pte);
5412 
5413 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5414 
5415 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5416 					dst_vma->vm_flags & VM_WRITE);
5417 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5418 
5419 	/* No need to invalidate - it was non-present before */
5420 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5421 
5422 	spin_unlock(ptl);
5423 	if (!is_continue)
5424 		SetHPageMigratable(page);
5425 	if (vm_shared || is_continue)
5426 		unlock_page(page);
5427 	ret = 0;
5428 out:
5429 	return ret;
5430 out_release_unlock:
5431 	spin_unlock(ptl);
5432 	if (vm_shared || is_continue)
5433 		unlock_page(page);
5434 out_release_nounlock:
5435 	if (!page_in_pagecache)
5436 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5437 	put_page(page);
5438 	goto out;
5439 }
5440 #endif /* CONFIG_USERFAULTFD */
5441 
record_subpages_vmas(struct page * page,struct vm_area_struct * vma,int refs,struct page ** pages,struct vm_area_struct ** vmas)5442 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5443 				 int refs, struct page **pages,
5444 				 struct vm_area_struct **vmas)
5445 {
5446 	int nr;
5447 
5448 	for (nr = 0; nr < refs; nr++) {
5449 		if (likely(pages))
5450 			pages[nr] = mem_map_offset(page, nr);
5451 		if (vmas)
5452 			vmas[nr] = vma;
5453 	}
5454 }
5455 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)5456 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5457 			 struct page **pages, struct vm_area_struct **vmas,
5458 			 unsigned long *position, unsigned long *nr_pages,
5459 			 long i, unsigned int flags, int *locked)
5460 {
5461 	unsigned long pfn_offset;
5462 	unsigned long vaddr = *position;
5463 	unsigned long remainder = *nr_pages;
5464 	struct hstate *h = hstate_vma(vma);
5465 	int err = -EFAULT, refs;
5466 
5467 	while (vaddr < vma->vm_end && remainder) {
5468 		pte_t *pte;
5469 		spinlock_t *ptl = NULL;
5470 		int absent;
5471 		struct page *page;
5472 
5473 		/*
5474 		 * If we have a pending SIGKILL, don't keep faulting pages and
5475 		 * potentially allocating memory.
5476 		 */
5477 		if (fatal_signal_pending(current)) {
5478 			remainder = 0;
5479 			break;
5480 		}
5481 
5482 		/*
5483 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5484 		 * each hugepage.  We have to make sure we get the
5485 		 * first, for the page indexing below to work.
5486 		 *
5487 		 * Note that page table lock is not held when pte is null.
5488 		 */
5489 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5490 				      huge_page_size(h));
5491 		if (pte)
5492 			ptl = huge_pte_lock(h, mm, pte);
5493 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5494 
5495 		/*
5496 		 * When coredumping, it suits get_dump_page if we just return
5497 		 * an error where there's an empty slot with no huge pagecache
5498 		 * to back it.  This way, we avoid allocating a hugepage, and
5499 		 * the sparse dumpfile avoids allocating disk blocks, but its
5500 		 * huge holes still show up with zeroes where they need to be.
5501 		 */
5502 		if (absent && (flags & FOLL_DUMP) &&
5503 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5504 			if (pte)
5505 				spin_unlock(ptl);
5506 			remainder = 0;
5507 			break;
5508 		}
5509 
5510 		/*
5511 		 * We need call hugetlb_fault for both hugepages under migration
5512 		 * (in which case hugetlb_fault waits for the migration,) and
5513 		 * hwpoisoned hugepages (in which case we need to prevent the
5514 		 * caller from accessing to them.) In order to do this, we use
5515 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5516 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5517 		 * both cases, and because we can't follow correct pages
5518 		 * directly from any kind of swap entries.
5519 		 */
5520 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5521 		    ((flags & FOLL_WRITE) &&
5522 		      !huge_pte_write(huge_ptep_get(pte)))) {
5523 			vm_fault_t ret;
5524 			unsigned int fault_flags = 0;
5525 
5526 			if (pte)
5527 				spin_unlock(ptl);
5528 			if (flags & FOLL_WRITE)
5529 				fault_flags |= FAULT_FLAG_WRITE;
5530 			if (locked)
5531 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5532 					FAULT_FLAG_KILLABLE;
5533 			if (flags & FOLL_NOWAIT)
5534 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5535 					FAULT_FLAG_RETRY_NOWAIT;
5536 			if (flags & FOLL_TRIED) {
5537 				/*
5538 				 * Note: FAULT_FLAG_ALLOW_RETRY and
5539 				 * FAULT_FLAG_TRIED can co-exist
5540 				 */
5541 				fault_flags |= FAULT_FLAG_TRIED;
5542 			}
5543 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5544 			if (ret & VM_FAULT_ERROR) {
5545 				err = vm_fault_to_errno(ret, flags);
5546 				remainder = 0;
5547 				break;
5548 			}
5549 			if (ret & VM_FAULT_RETRY) {
5550 				if (locked &&
5551 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5552 					*locked = 0;
5553 				*nr_pages = 0;
5554 				/*
5555 				 * VM_FAULT_RETRY must not return an
5556 				 * error, it will return zero
5557 				 * instead.
5558 				 *
5559 				 * No need to update "position" as the
5560 				 * caller will not check it after
5561 				 * *nr_pages is set to 0.
5562 				 */
5563 				return i;
5564 			}
5565 			continue;
5566 		}
5567 
5568 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5569 		page = pte_page(huge_ptep_get(pte));
5570 
5571 		/*
5572 		 * If subpage information not requested, update counters
5573 		 * and skip the same_page loop below.
5574 		 */
5575 		if (!pages && !vmas && !pfn_offset &&
5576 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5577 		    (remainder >= pages_per_huge_page(h))) {
5578 			vaddr += huge_page_size(h);
5579 			remainder -= pages_per_huge_page(h);
5580 			i += pages_per_huge_page(h);
5581 			spin_unlock(ptl);
5582 			continue;
5583 		}
5584 
5585 		/* vaddr may not be aligned to PAGE_SIZE */
5586 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5587 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5588 
5589 		if (pages || vmas)
5590 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
5591 					     vma, refs,
5592 					     likely(pages) ? pages + i : NULL,
5593 					     vmas ? vmas + i : NULL);
5594 
5595 		if (pages) {
5596 			/*
5597 			 * try_grab_compound_head() should always succeed here,
5598 			 * because: a) we hold the ptl lock, and b) we've just
5599 			 * checked that the huge page is present in the page
5600 			 * tables. If the huge page is present, then the tail
5601 			 * pages must also be present. The ptl prevents the
5602 			 * head page and tail pages from being rearranged in
5603 			 * any way. So this page must be available at this
5604 			 * point, unless the page refcount overflowed:
5605 			 */
5606 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5607 								 refs,
5608 								 flags))) {
5609 				spin_unlock(ptl);
5610 				remainder = 0;
5611 				err = -ENOMEM;
5612 				break;
5613 			}
5614 		}
5615 
5616 		vaddr += (refs << PAGE_SHIFT);
5617 		remainder -= refs;
5618 		i += refs;
5619 
5620 		spin_unlock(ptl);
5621 	}
5622 	*nr_pages = remainder;
5623 	/*
5624 	 * setting position is actually required only if remainder is
5625 	 * not zero but it's faster not to add a "if (remainder)"
5626 	 * branch.
5627 	 */
5628 	*position = vaddr;
5629 
5630 	return i ? i : err;
5631 }
5632 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)5633 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5634 		unsigned long address, unsigned long end, pgprot_t newprot)
5635 {
5636 	struct mm_struct *mm = vma->vm_mm;
5637 	unsigned long start = address;
5638 	pte_t *ptep;
5639 	pte_t pte;
5640 	struct hstate *h = hstate_vma(vma);
5641 	unsigned long pages = 0;
5642 	bool shared_pmd = false;
5643 	struct mmu_notifier_range range;
5644 
5645 	/*
5646 	 * In the case of shared PMDs, the area to flush could be beyond
5647 	 * start/end.  Set range.start/range.end to cover the maximum possible
5648 	 * range if PMD sharing is possible.
5649 	 */
5650 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5651 				0, vma, mm, start, end);
5652 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5653 
5654 	BUG_ON(address >= end);
5655 	flush_cache_range(vma, range.start, range.end);
5656 
5657 	mmu_notifier_invalidate_range_start(&range);
5658 	i_mmap_lock_write(vma->vm_file->f_mapping);
5659 	for (; address < end; address += huge_page_size(h)) {
5660 		spinlock_t *ptl;
5661 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5662 		if (!ptep)
5663 			continue;
5664 		ptl = huge_pte_lock(h, mm, ptep);
5665 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5666 			pages++;
5667 			spin_unlock(ptl);
5668 			shared_pmd = true;
5669 			continue;
5670 		}
5671 		pte = huge_ptep_get(ptep);
5672 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5673 			spin_unlock(ptl);
5674 			continue;
5675 		}
5676 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5677 			swp_entry_t entry = pte_to_swp_entry(pte);
5678 
5679 			if (is_writable_migration_entry(entry)) {
5680 				pte_t newpte;
5681 
5682 				entry = make_readable_migration_entry(
5683 							swp_offset(entry));
5684 				newpte = swp_entry_to_pte(entry);
5685 				set_huge_swap_pte_at(mm, address, ptep,
5686 						     newpte, huge_page_size(h));
5687 				pages++;
5688 			}
5689 			spin_unlock(ptl);
5690 			continue;
5691 		}
5692 		if (!huge_pte_none(pte)) {
5693 			pte_t old_pte;
5694 			unsigned int shift = huge_page_shift(hstate_vma(vma));
5695 
5696 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5697 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5698 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5699 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5700 			pages++;
5701 		}
5702 		spin_unlock(ptl);
5703 	}
5704 	/*
5705 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5706 	 * may have cleared our pud entry and done put_page on the page table:
5707 	 * once we release i_mmap_rwsem, another task can do the final put_page
5708 	 * and that page table be reused and filled with junk.  If we actually
5709 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5710 	 */
5711 	if (shared_pmd)
5712 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5713 	else
5714 		flush_hugetlb_tlb_range(vma, start, end);
5715 	/*
5716 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5717 	 * page table protection not changing it to point to a new page.
5718 	 *
5719 	 * See Documentation/vm/mmu_notifier.rst
5720 	 */
5721 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5722 	mmu_notifier_invalidate_range_end(&range);
5723 
5724 	return pages << h->order;
5725 }
5726 
5727 /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)5728 bool hugetlb_reserve_pages(struct inode *inode,
5729 					long from, long to,
5730 					struct vm_area_struct *vma,
5731 					vm_flags_t vm_flags)
5732 {
5733 	long chg, add = -1;
5734 	struct hstate *h = hstate_inode(inode);
5735 	struct hugepage_subpool *spool = subpool_inode(inode);
5736 	struct resv_map *resv_map;
5737 	struct hugetlb_cgroup *h_cg = NULL;
5738 	long gbl_reserve, regions_needed = 0;
5739 
5740 	/* This should never happen */
5741 	if (from > to) {
5742 		VM_WARN(1, "%s called with a negative range\n", __func__);
5743 		return false;
5744 	}
5745 
5746 	/*
5747 	 * Only apply hugepage reservation if asked. At fault time, an
5748 	 * attempt will be made for VM_NORESERVE to allocate a page
5749 	 * without using reserves
5750 	 */
5751 	if (vm_flags & VM_NORESERVE)
5752 		return true;
5753 
5754 	/*
5755 	 * Shared mappings base their reservation on the number of pages that
5756 	 * are already allocated on behalf of the file. Private mappings need
5757 	 * to reserve the full area even if read-only as mprotect() may be
5758 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5759 	 */
5760 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5761 		/*
5762 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5763 		 * called for inodes for which resv_maps were created (see
5764 		 * hugetlbfs_get_inode).
5765 		 */
5766 		resv_map = inode_resv_map(inode);
5767 
5768 		chg = region_chg(resv_map, from, to, &regions_needed);
5769 
5770 	} else {
5771 		/* Private mapping. */
5772 		resv_map = resv_map_alloc();
5773 		if (!resv_map)
5774 			return false;
5775 
5776 		chg = to - from;
5777 
5778 		set_vma_resv_map(vma, resv_map);
5779 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5780 	}
5781 
5782 	if (chg < 0)
5783 		goto out_err;
5784 
5785 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5786 				chg * pages_per_huge_page(h), &h_cg) < 0)
5787 		goto out_err;
5788 
5789 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5790 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5791 		 * of the resv_map.
5792 		 */
5793 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5794 	}
5795 
5796 	/*
5797 	 * There must be enough pages in the subpool for the mapping. If
5798 	 * the subpool has a minimum size, there may be some global
5799 	 * reservations already in place (gbl_reserve).
5800 	 */
5801 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5802 	if (gbl_reserve < 0)
5803 		goto out_uncharge_cgroup;
5804 
5805 	/*
5806 	 * Check enough hugepages are available for the reservation.
5807 	 * Hand the pages back to the subpool if there are not
5808 	 */
5809 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5810 		goto out_put_pages;
5811 
5812 	/*
5813 	 * Account for the reservations made. Shared mappings record regions
5814 	 * that have reservations as they are shared by multiple VMAs.
5815 	 * When the last VMA disappears, the region map says how much
5816 	 * the reservation was and the page cache tells how much of
5817 	 * the reservation was consumed. Private mappings are per-VMA and
5818 	 * only the consumed reservations are tracked. When the VMA
5819 	 * disappears, the original reservation is the VMA size and the
5820 	 * consumed reservations are stored in the map. Hence, nothing
5821 	 * else has to be done for private mappings here
5822 	 */
5823 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5824 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5825 
5826 		if (unlikely(add < 0)) {
5827 			hugetlb_acct_memory(h, -gbl_reserve);
5828 			goto out_put_pages;
5829 		} else if (unlikely(chg > add)) {
5830 			/*
5831 			 * pages in this range were added to the reserve
5832 			 * map between region_chg and region_add.  This
5833 			 * indicates a race with alloc_huge_page.  Adjust
5834 			 * the subpool and reserve counts modified above
5835 			 * based on the difference.
5836 			 */
5837 			long rsv_adjust;
5838 
5839 			/*
5840 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5841 			 * reference to h_cg->css. See comment below for detail.
5842 			 */
5843 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5844 				hstate_index(h),
5845 				(chg - add) * pages_per_huge_page(h), h_cg);
5846 
5847 			rsv_adjust = hugepage_subpool_put_pages(spool,
5848 								chg - add);
5849 			hugetlb_acct_memory(h, -rsv_adjust);
5850 		} else if (h_cg) {
5851 			/*
5852 			 * The file_regions will hold their own reference to
5853 			 * h_cg->css. So we should release the reference held
5854 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5855 			 * done.
5856 			 */
5857 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5858 		}
5859 	}
5860 	return true;
5861 
5862 out_put_pages:
5863 	/* put back original number of pages, chg */
5864 	(void)hugepage_subpool_put_pages(spool, chg);
5865 out_uncharge_cgroup:
5866 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5867 					    chg * pages_per_huge_page(h), h_cg);
5868 out_err:
5869 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5870 		/* Only call region_abort if the region_chg succeeded but the
5871 		 * region_add failed or didn't run.
5872 		 */
5873 		if (chg >= 0 && add < 0)
5874 			region_abort(resv_map, from, to, regions_needed);
5875 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5876 		kref_put(&resv_map->refs, resv_map_release);
5877 	return false;
5878 }
5879 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)5880 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5881 								long freed)
5882 {
5883 	struct hstate *h = hstate_inode(inode);
5884 	struct resv_map *resv_map = inode_resv_map(inode);
5885 	long chg = 0;
5886 	struct hugepage_subpool *spool = subpool_inode(inode);
5887 	long gbl_reserve;
5888 
5889 	/*
5890 	 * Since this routine can be called in the evict inode path for all
5891 	 * hugetlbfs inodes, resv_map could be NULL.
5892 	 */
5893 	if (resv_map) {
5894 		chg = region_del(resv_map, start, end);
5895 		/*
5896 		 * region_del() can fail in the rare case where a region
5897 		 * must be split and another region descriptor can not be
5898 		 * allocated.  If end == LONG_MAX, it will not fail.
5899 		 */
5900 		if (chg < 0)
5901 			return chg;
5902 	}
5903 
5904 	spin_lock(&inode->i_lock);
5905 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5906 	spin_unlock(&inode->i_lock);
5907 
5908 	/*
5909 	 * If the subpool has a minimum size, the number of global
5910 	 * reservations to be released may be adjusted.
5911 	 *
5912 	 * Note that !resv_map implies freed == 0. So (chg - freed)
5913 	 * won't go negative.
5914 	 */
5915 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5916 	hugetlb_acct_memory(h, -gbl_reserve);
5917 
5918 	return 0;
5919 }
5920 
5921 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)5922 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5923 				struct vm_area_struct *vma,
5924 				unsigned long addr, pgoff_t idx)
5925 {
5926 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5927 				svma->vm_start;
5928 	unsigned long sbase = saddr & PUD_MASK;
5929 	unsigned long s_end = sbase + PUD_SIZE;
5930 
5931 	/* Allow segments to share if only one is marked locked */
5932 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5933 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5934 
5935 	/*
5936 	 * match the virtual addresses, permission and the alignment of the
5937 	 * page table page.
5938 	 */
5939 	if (pmd_index(addr) != pmd_index(saddr) ||
5940 	    vm_flags != svm_flags ||
5941 	    !range_in_vma(svma, sbase, s_end))
5942 		return 0;
5943 
5944 	return saddr;
5945 }
5946 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)5947 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5948 {
5949 	unsigned long base = addr & PUD_MASK;
5950 	unsigned long end = base + PUD_SIZE;
5951 
5952 	/*
5953 	 * check on proper vm_flags and page table alignment
5954 	 */
5955 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5956 		return true;
5957 	return false;
5958 }
5959 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)5960 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5961 {
5962 #ifdef CONFIG_USERFAULTFD
5963 	if (uffd_disable_huge_pmd_share(vma))
5964 		return false;
5965 #endif
5966 	return vma_shareable(vma, addr);
5967 }
5968 
5969 /*
5970  * Determine if start,end range within vma could be mapped by shared pmd.
5971  * If yes, adjust start and end to cover range associated with possible
5972  * shared pmd mappings.
5973  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5974 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5975 				unsigned long *start, unsigned long *end)
5976 {
5977 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5978 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5979 
5980 	/*
5981 	 * vma needs to span at least one aligned PUD size, and the range
5982 	 * must be at least partially within in.
5983 	 */
5984 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5985 		(*end <= v_start) || (*start >= v_end))
5986 		return;
5987 
5988 	/* Extend the range to be PUD aligned for a worst case scenario */
5989 	if (*start > v_start)
5990 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5991 
5992 	if (*end < v_end)
5993 		*end = ALIGN(*end, PUD_SIZE);
5994 }
5995 
5996 /*
5997  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5998  * and returns the corresponding pte. While this is not necessary for the
5999  * !shared pmd case because we can allocate the pmd later as well, it makes the
6000  * code much cleaner.
6001  *
6002  * This routine must be called with i_mmap_rwsem held in at least read mode if
6003  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6004  * table entries associated with the address space.  This is important as we
6005  * are setting up sharing based on existing page table entries (mappings).
6006  *
6007  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
6008  * huge_pte_alloc know that sharing is not possible and do not take
6009  * i_mmap_rwsem as a performance optimization.  This is handled by the
6010  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
6011  * only required for subsequent processing.
6012  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6013 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6014 		      unsigned long addr, pud_t *pud)
6015 {
6016 	struct address_space *mapping = vma->vm_file->f_mapping;
6017 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6018 			vma->vm_pgoff;
6019 	struct vm_area_struct *svma;
6020 	unsigned long saddr;
6021 	pte_t *spte = NULL;
6022 	pte_t *pte;
6023 	spinlock_t *ptl;
6024 
6025 	i_mmap_assert_locked(mapping);
6026 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6027 		if (svma == vma)
6028 			continue;
6029 
6030 		saddr = page_table_shareable(svma, vma, addr, idx);
6031 		if (saddr) {
6032 			spte = huge_pte_offset(svma->vm_mm, saddr,
6033 					       vma_mmu_pagesize(svma));
6034 			if (spte) {
6035 				get_page(virt_to_page(spte));
6036 				break;
6037 			}
6038 		}
6039 	}
6040 
6041 	if (!spte)
6042 		goto out;
6043 
6044 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6045 	if (pud_none(*pud)) {
6046 		pud_populate(mm, pud,
6047 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6048 		mm_inc_nr_pmds(mm);
6049 	} else {
6050 		put_page(virt_to_page(spte));
6051 	}
6052 	spin_unlock(ptl);
6053 out:
6054 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6055 	return pte;
6056 }
6057 
6058 /*
6059  * unmap huge page backed by shared pte.
6060  *
6061  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6062  * indicated by page_count > 1, unmap is achieved by clearing pud and
6063  * decrementing the ref count. If count == 1, the pte page is not shared.
6064  *
6065  * Called with page table lock held and i_mmap_rwsem held in write mode.
6066  *
6067  * returns: 1 successfully unmapped a shared pte page
6068  *	    0 the underlying pte page is not shared, or it is the last user
6069  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)6070 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6071 					unsigned long *addr, pte_t *ptep)
6072 {
6073 	pgd_t *pgd = pgd_offset(mm, *addr);
6074 	p4d_t *p4d = p4d_offset(pgd, *addr);
6075 	pud_t *pud = pud_offset(p4d, *addr);
6076 
6077 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6078 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6079 	if (page_count(virt_to_page(ptep)) == 1)
6080 		return 0;
6081 
6082 	pud_clear(pud);
6083 	put_page(virt_to_page(ptep));
6084 	mm_dec_nr_pmds(mm);
6085 	/*
6086 	 * This update of passed address optimizes loops sequentially
6087 	 * processing addresses in increments of huge page size (PMD_SIZE
6088 	 * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
6089 	 * Update address to the 'last page' in the cleared area so that
6090 	 * calling loop can move to first page past this area.
6091 	 */
6092 	*addr |= PUD_SIZE - PMD_SIZE;
6093 	return 1;
6094 }
6095 
6096 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6097 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6098 		      unsigned long addr, pud_t *pud)
6099 {
6100 	return NULL;
6101 }
6102 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)6103 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6104 				unsigned long *addr, pte_t *ptep)
6105 {
6106 	return 0;
6107 }
6108 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6109 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6110 				unsigned long *start, unsigned long *end)
6111 {
6112 }
6113 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6114 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6115 {
6116 	return false;
6117 }
6118 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6119 
6120 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)6121 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6122 			unsigned long addr, unsigned long sz)
6123 {
6124 	pgd_t *pgd;
6125 	p4d_t *p4d;
6126 	pud_t *pud;
6127 	pte_t *pte = NULL;
6128 
6129 	pgd = pgd_offset(mm, addr);
6130 	p4d = p4d_alloc(mm, pgd, addr);
6131 	if (!p4d)
6132 		return NULL;
6133 	pud = pud_alloc(mm, p4d, addr);
6134 	if (pud) {
6135 		if (sz == PUD_SIZE) {
6136 			pte = (pte_t *)pud;
6137 		} else {
6138 			BUG_ON(sz != PMD_SIZE);
6139 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6140 				pte = huge_pmd_share(mm, vma, addr, pud);
6141 			else
6142 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6143 		}
6144 	}
6145 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6146 
6147 	return pte;
6148 }
6149 
6150 /*
6151  * huge_pte_offset() - Walk the page table to resolve the hugepage
6152  * entry at address @addr
6153  *
6154  * Return: Pointer to page table entry (PUD or PMD) for
6155  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6156  * size @sz doesn't match the hugepage size at this level of the page
6157  * table.
6158  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)6159 pte_t *huge_pte_offset(struct mm_struct *mm,
6160 		       unsigned long addr, unsigned long sz)
6161 {
6162 	pgd_t *pgd;
6163 	p4d_t *p4d;
6164 	pud_t *pud;
6165 	pmd_t *pmd;
6166 
6167 	pgd = pgd_offset(mm, addr);
6168 	if (!pgd_present(*pgd))
6169 		return NULL;
6170 	p4d = p4d_offset(pgd, addr);
6171 	if (!p4d_present(*p4d))
6172 		return NULL;
6173 
6174 	pud = pud_offset(p4d, addr);
6175 	if (sz == PUD_SIZE)
6176 		/* must be pud huge, non-present or none */
6177 		return (pte_t *)pud;
6178 	if (!pud_present(*pud))
6179 		return NULL;
6180 	/* must have a valid entry and size to go further */
6181 
6182 	pmd = pmd_offset(pud, addr);
6183 	/* must be pmd huge, non-present or none */
6184 	return (pte_t *)pmd;
6185 }
6186 
6187 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6188 
6189 /*
6190  * These functions are overwritable if your architecture needs its own
6191  * behavior.
6192  */
6193 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)6194 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6195 			      int write)
6196 {
6197 	return ERR_PTR(-EINVAL);
6198 }
6199 
6200 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)6201 follow_huge_pd(struct vm_area_struct *vma,
6202 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6203 {
6204 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6205 	return NULL;
6206 }
6207 
6208 struct page * __weak
follow_huge_pmd_pte(struct vm_area_struct * vma,unsigned long address,int flags)6209 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
6210 {
6211 	struct hstate *h = hstate_vma(vma);
6212 	struct mm_struct *mm = vma->vm_mm;
6213 	struct page *page = NULL;
6214 	spinlock_t *ptl;
6215 	pte_t *ptep, pte;
6216 
6217 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
6218 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6219 			 (FOLL_PIN | FOLL_GET)))
6220 		return NULL;
6221 
6222 retry:
6223 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
6224 	if (!ptep)
6225 		return NULL;
6226 
6227 	ptl = huge_pte_lock(h, mm, ptep);
6228 	pte = huge_ptep_get(ptep);
6229 	if (pte_present(pte)) {
6230 		page = pte_page(pte) +
6231 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6232 		/*
6233 		 * try_grab_page() should always succeed here, because: a) we
6234 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6235 		 * huge pmd (head) page is present in the page tables. The ptl
6236 		 * prevents the head page and tail pages from being rearranged
6237 		 * in any way. So this page must be available at this point,
6238 		 * unless the page refcount overflowed:
6239 		 */
6240 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6241 			page = NULL;
6242 			goto out;
6243 		}
6244 	} else {
6245 		if (is_hugetlb_entry_migration(pte)) {
6246 			spin_unlock(ptl);
6247 			__migration_entry_wait(mm, ptep, ptl);
6248 			goto retry;
6249 		}
6250 		/*
6251 		 * hwpoisoned entry is treated as no_page_table in
6252 		 * follow_page_mask().
6253 		 */
6254 	}
6255 out:
6256 	spin_unlock(ptl);
6257 	return page;
6258 }
6259 
6260 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)6261 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6262 		pud_t *pud, int flags)
6263 {
6264 	if (flags & (FOLL_GET | FOLL_PIN))
6265 		return NULL;
6266 
6267 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6268 }
6269 
6270 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)6271 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6272 {
6273 	if (flags & (FOLL_GET | FOLL_PIN))
6274 		return NULL;
6275 
6276 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6277 }
6278 
isolate_hugetlb(struct page * page,struct list_head * list)6279 int isolate_hugetlb(struct page *page, struct list_head *list)
6280 {
6281 	int ret = 0;
6282 
6283 	spin_lock_irq(&hugetlb_lock);
6284 	if (!PageHeadHuge(page) ||
6285 	    !HPageMigratable(page) ||
6286 	    !get_page_unless_zero(page)) {
6287 		ret = -EBUSY;
6288 		goto unlock;
6289 	}
6290 	ClearHPageMigratable(page);
6291 	list_move_tail(&page->lru, list);
6292 unlock:
6293 	spin_unlock_irq(&hugetlb_lock);
6294 	return ret;
6295 }
6296 
get_hwpoison_huge_page(struct page * page,bool * hugetlb)6297 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6298 {
6299 	int ret = 0;
6300 
6301 	*hugetlb = false;
6302 	spin_lock_irq(&hugetlb_lock);
6303 	if (PageHeadHuge(page)) {
6304 		*hugetlb = true;
6305 		if (HPageFreed(page) || HPageMigratable(page))
6306 			ret = get_page_unless_zero(page);
6307 		else
6308 			ret = -EBUSY;
6309 	}
6310 	spin_unlock_irq(&hugetlb_lock);
6311 	return ret;
6312 }
6313 
get_huge_page_for_hwpoison(unsigned long pfn,int flags)6314 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6315 {
6316 	int ret;
6317 
6318 	spin_lock_irq(&hugetlb_lock);
6319 	ret = __get_huge_page_for_hwpoison(pfn, flags);
6320 	spin_unlock_irq(&hugetlb_lock);
6321 	return ret;
6322 }
6323 
putback_active_hugepage(struct page * page)6324 void putback_active_hugepage(struct page *page)
6325 {
6326 	spin_lock_irq(&hugetlb_lock);
6327 	SetHPageMigratable(page);
6328 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6329 	spin_unlock_irq(&hugetlb_lock);
6330 	put_page(page);
6331 }
6332 
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)6333 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6334 {
6335 	struct hstate *h = page_hstate(oldpage);
6336 
6337 	hugetlb_cgroup_migrate(oldpage, newpage);
6338 	set_page_owner_migrate_reason(newpage, reason);
6339 
6340 	/*
6341 	 * transfer temporary state of the new huge page. This is
6342 	 * reverse to other transitions because the newpage is going to
6343 	 * be final while the old one will be freed so it takes over
6344 	 * the temporary status.
6345 	 *
6346 	 * Also note that we have to transfer the per-node surplus state
6347 	 * here as well otherwise the global surplus count will not match
6348 	 * the per-node's.
6349 	 */
6350 	if (HPageTemporary(newpage)) {
6351 		int old_nid = page_to_nid(oldpage);
6352 		int new_nid = page_to_nid(newpage);
6353 
6354 		SetHPageTemporary(oldpage);
6355 		ClearHPageTemporary(newpage);
6356 
6357 		/*
6358 		 * There is no need to transfer the per-node surplus state
6359 		 * when we do not cross the node.
6360 		 */
6361 		if (new_nid == old_nid)
6362 			return;
6363 		spin_lock_irq(&hugetlb_lock);
6364 		if (h->surplus_huge_pages_node[old_nid]) {
6365 			h->surplus_huge_pages_node[old_nid]--;
6366 			h->surplus_huge_pages_node[new_nid]++;
6367 		}
6368 		spin_unlock_irq(&hugetlb_lock);
6369 	}
6370 }
6371 
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)6372 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
6373 				   unsigned long start,
6374 				   unsigned long end)
6375 {
6376 	struct hstate *h = hstate_vma(vma);
6377 	unsigned long sz = huge_page_size(h);
6378 	struct mm_struct *mm = vma->vm_mm;
6379 	struct mmu_notifier_range range;
6380 	unsigned long address;
6381 	spinlock_t *ptl;
6382 	pte_t *ptep;
6383 
6384 	if (!(vma->vm_flags & VM_MAYSHARE))
6385 		return;
6386 
6387 	if (start >= end)
6388 		return;
6389 
6390 	/*
6391 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6392 	 * we have already done the PUD_SIZE alignment.
6393 	 */
6394 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6395 				start, end);
6396 	mmu_notifier_invalidate_range_start(&range);
6397 	i_mmap_lock_write(vma->vm_file->f_mapping);
6398 	for (address = start; address < end; address += PUD_SIZE) {
6399 		unsigned long tmp = address;
6400 
6401 		ptep = huge_pte_offset(mm, address, sz);
6402 		if (!ptep)
6403 			continue;
6404 		ptl = huge_pte_lock(h, mm, ptep);
6405 		/* We don't want 'address' to be changed */
6406 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6407 		spin_unlock(ptl);
6408 	}
6409 	flush_hugetlb_tlb_range(vma, start, end);
6410 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6411 	/*
6412 	 * No need to call mmu_notifier_invalidate_range(), see
6413 	 * Documentation/vm/mmu_notifier.rst.
6414 	 */
6415 	mmu_notifier_invalidate_range_end(&range);
6416 }
6417 
6418 /*
6419  * This function will unconditionally remove all the shared pmd pgtable entries
6420  * within the specific vma for a hugetlbfs memory range.
6421  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)6422 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6423 {
6424 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
6425 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
6426 }
6427 
6428 #ifdef CONFIG_CMA
6429 static bool cma_reserve_called __initdata;
6430 
cmdline_parse_hugetlb_cma(char * p)6431 static int __init cmdline_parse_hugetlb_cma(char *p)
6432 {
6433 	hugetlb_cma_size = memparse(p, &p);
6434 	return 0;
6435 }
6436 
6437 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6438 
hugetlb_cma_reserve(int order)6439 void __init hugetlb_cma_reserve(int order)
6440 {
6441 	unsigned long size, reserved, per_node;
6442 	int nid;
6443 
6444 	cma_reserve_called = true;
6445 
6446 	if (!hugetlb_cma_size)
6447 		return;
6448 
6449 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6450 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6451 			(PAGE_SIZE << order) / SZ_1M);
6452 		return;
6453 	}
6454 
6455 	/*
6456 	 * If 3 GB area is requested on a machine with 4 numa nodes,
6457 	 * let's allocate 1 GB on first three nodes and ignore the last one.
6458 	 */
6459 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6460 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6461 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6462 
6463 	reserved = 0;
6464 	for_each_node_state(nid, N_ONLINE) {
6465 		int res;
6466 		char name[CMA_MAX_NAME];
6467 
6468 		size = min(per_node, hugetlb_cma_size - reserved);
6469 		size = round_up(size, PAGE_SIZE << order);
6470 
6471 		snprintf(name, sizeof(name), "hugetlb%d", nid);
6472 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6473 						 0, false, name,
6474 						 &hugetlb_cma[nid], nid);
6475 		if (res) {
6476 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6477 				res, nid);
6478 			continue;
6479 		}
6480 
6481 		reserved += size;
6482 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6483 			size / SZ_1M, nid);
6484 
6485 		if (reserved >= hugetlb_cma_size)
6486 			break;
6487 	}
6488 }
6489 
hugetlb_cma_check(void)6490 void __init hugetlb_cma_check(void)
6491 {
6492 	if (!hugetlb_cma_size || cma_reserve_called)
6493 		return;
6494 
6495 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6496 }
6497 
6498 #endif /* CONFIG_CMA */
6499