• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
29 
30 #include "kasan.h"
31 #include "../slab.h"
32 
kasan_save_stack(gfp_t flags,bool can_alloc)33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc)
34 {
35 	unsigned long entries[KASAN_STACK_DEPTH];
36 	unsigned int nr_entries;
37 
38 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 	return __stack_depot_save(entries, nr_entries, flags, can_alloc);
40 }
41 
kasan_set_track(struct kasan_track * track,gfp_t flags)42 void kasan_set_track(struct kasan_track *track, gfp_t flags)
43 {
44 	track->pid = current->pid;
45 	track->stack = kasan_save_stack(flags, true);
46 }
47 
48 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
kasan_enable_current(void)49 void kasan_enable_current(void)
50 {
51 	current->kasan_depth++;
52 }
53 EXPORT_SYMBOL(kasan_enable_current);
54 
kasan_disable_current(void)55 void kasan_disable_current(void)
56 {
57 	current->kasan_depth--;
58 }
59 EXPORT_SYMBOL(kasan_disable_current);
60 
61 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
62 
__kasan_unpoison_range(const void * address,size_t size)63 void __kasan_unpoison_range(const void *address, size_t size)
64 {
65 	kasan_unpoison(address, size, false);
66 }
67 
68 #ifdef CONFIG_KASAN_STACK
69 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)70 void kasan_unpoison_task_stack(struct task_struct *task)
71 {
72 	void *base = task_stack_page(task);
73 
74 	kasan_unpoison(base, THREAD_SIZE, false);
75 }
76 
77 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)78 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
79 {
80 	/*
81 	 * Calculate the task stack base address.  Avoid using 'current'
82 	 * because this function is called by early resume code which hasn't
83 	 * yet set up the percpu register (%gs).
84 	 */
85 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
86 
87 	kasan_unpoison(base, watermark - base, false);
88 }
89 #endif /* CONFIG_KASAN_STACK */
90 
91 /*
92  * Only allow cache merging when stack collection is disabled and no metadata
93  * is present.
94  */
__kasan_never_merge(void)95 slab_flags_t __kasan_never_merge(void)
96 {
97 	if (kasan_stack_collection_enabled())
98 		return SLAB_KASAN;
99 	return 0;
100 }
101 
__kasan_unpoison_pages(struct page * page,unsigned int order,bool init)102 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
103 {
104 	u8 tag;
105 	unsigned long i;
106 
107 	if (unlikely(PageHighMem(page)))
108 		return;
109 
110 	tag = kasan_random_tag();
111 	for (i = 0; i < (1 << order); i++)
112 		page_kasan_tag_set(page + i, tag);
113 	kasan_unpoison(page_address(page), PAGE_SIZE << order, init);
114 }
115 
__kasan_poison_pages(struct page * page,unsigned int order,bool init)116 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
117 {
118 	if (likely(!PageHighMem(page)))
119 		kasan_poison(page_address(page), PAGE_SIZE << order,
120 			     KASAN_FREE_PAGE, init);
121 }
122 
123 /*
124  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
125  * For larger allocations larger redzones are used.
126  */
optimal_redzone(unsigned int object_size)127 static inline unsigned int optimal_redzone(unsigned int object_size)
128 {
129 	return
130 		object_size <= 64        - 16   ? 16 :
131 		object_size <= 128       - 32   ? 32 :
132 		object_size <= 512       - 64   ? 64 :
133 		object_size <= 4096      - 128  ? 128 :
134 		object_size <= (1 << 14) - 256  ? 256 :
135 		object_size <= (1 << 15) - 512  ? 512 :
136 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
137 }
138 
__kasan_cache_create(struct kmem_cache * cache,unsigned int * size,slab_flags_t * flags)139 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
140 			  slab_flags_t *flags)
141 {
142 	unsigned int ok_size;
143 	unsigned int optimal_size;
144 
145 	/*
146 	 * SLAB_KASAN is used to mark caches as ones that are sanitized by
147 	 * KASAN. Currently this flag is used in two places:
148 	 * 1. In slab_ksize() when calculating the size of the accessible
149 	 *    memory within the object.
150 	 * 2. In slab_common.c to prevent merging of sanitized caches.
151 	 */
152 	*flags |= SLAB_KASAN;
153 
154 	if (!kasan_stack_collection_enabled())
155 		return;
156 
157 	ok_size = *size;
158 
159 	/* Add alloc meta into redzone. */
160 	cache->kasan_info.alloc_meta_offset = *size;
161 	*size += sizeof(struct kasan_alloc_meta);
162 
163 	/*
164 	 * If alloc meta doesn't fit, don't add it.
165 	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
166 	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
167 	 * larger sizes.
168 	 */
169 	if (*size > KMALLOC_MAX_SIZE) {
170 		cache->kasan_info.alloc_meta_offset = 0;
171 		*size = ok_size;
172 		/* Continue, since free meta might still fit. */
173 	}
174 
175 	/* Only the generic mode uses free meta or flexible redzones. */
176 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
177 		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
178 		return;
179 	}
180 
181 	/*
182 	 * Add free meta into redzone when it's not possible to store
183 	 * it in the object. This is the case when:
184 	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
185 	 *    be touched after it was freed, or
186 	 * 2. Object has a constructor, which means it's expected to
187 	 *    retain its content until the next allocation, or
188 	 * 3. Object is too small.
189 	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
190 	 */
191 	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
192 	    cache->object_size < sizeof(struct kasan_free_meta)) {
193 		ok_size = *size;
194 
195 		cache->kasan_info.free_meta_offset = *size;
196 		*size += sizeof(struct kasan_free_meta);
197 
198 		/* If free meta doesn't fit, don't add it. */
199 		if (*size > KMALLOC_MAX_SIZE) {
200 			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
201 			*size = ok_size;
202 		}
203 	}
204 
205 	/* Calculate size with optimal redzone. */
206 	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
207 	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
208 	if (optimal_size > KMALLOC_MAX_SIZE)
209 		optimal_size = KMALLOC_MAX_SIZE;
210 	/* Use optimal size if the size with added metas is not large enough. */
211 	if (*size < optimal_size)
212 		*size = optimal_size;
213 }
214 
__kasan_cache_create_kmalloc(struct kmem_cache * cache)215 void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
216 {
217 	cache->kasan_info.is_kmalloc = true;
218 }
219 
__kasan_metadata_size(struct kmem_cache * cache)220 size_t __kasan_metadata_size(struct kmem_cache *cache)
221 {
222 	if (!kasan_stack_collection_enabled())
223 		return 0;
224 	return (cache->kasan_info.alloc_meta_offset ?
225 		sizeof(struct kasan_alloc_meta) : 0) +
226 		(cache->kasan_info.free_meta_offset ?
227 		sizeof(struct kasan_free_meta) : 0);
228 }
229 
kasan_get_alloc_meta(struct kmem_cache * cache,const void * object)230 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
231 					      const void *object)
232 {
233 	if (!cache->kasan_info.alloc_meta_offset)
234 		return NULL;
235 	return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
236 }
237 
238 #ifdef CONFIG_KASAN_GENERIC
kasan_get_free_meta(struct kmem_cache * cache,const void * object)239 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
240 					    const void *object)
241 {
242 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
243 	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
244 		return NULL;
245 	return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
246 }
247 #endif
248 
__kasan_poison_slab(struct page * page)249 void __kasan_poison_slab(struct page *page)
250 {
251 	unsigned long i;
252 
253 	for (i = 0; i < compound_nr(page); i++)
254 		page_kasan_tag_reset(page + i);
255 	kasan_poison(page_address(page), page_size(page),
256 		     KASAN_KMALLOC_REDZONE, false);
257 }
258 
__kasan_unpoison_object_data(struct kmem_cache * cache,void * object)259 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
260 {
261 	kasan_unpoison(object, cache->object_size, false);
262 }
263 
__kasan_poison_object_data(struct kmem_cache * cache,void * object)264 void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
265 {
266 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
267 			KASAN_KMALLOC_REDZONE, false);
268 }
269 
270 /*
271  * This function assigns a tag to an object considering the following:
272  * 1. A cache might have a constructor, which might save a pointer to a slab
273  *    object somewhere (e.g. in the object itself). We preassign a tag for
274  *    each object in caches with constructors during slab creation and reuse
275  *    the same tag each time a particular object is allocated.
276  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
277  *    accessed after being freed. We preassign tags for objects in these
278  *    caches as well.
279  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
280  *    is stored as an array of indexes instead of a linked list. Assign tags
281  *    based on objects indexes, so that objects that are next to each other
282  *    get different tags.
283  */
assign_tag(struct kmem_cache * cache,const void * object,bool init)284 static inline u8 assign_tag(struct kmem_cache *cache,
285 					const void *object, bool init)
286 {
287 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
288 		return 0xff;
289 
290 	/*
291 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
292 	 * set, assign a tag when the object is being allocated (init == false).
293 	 */
294 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
295 		return init ? KASAN_TAG_KERNEL : kasan_random_tag();
296 
297 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
298 #ifdef CONFIG_SLAB
299 	/* For SLAB assign tags based on the object index in the freelist. */
300 	return (u8)obj_to_index(cache, virt_to_head_page(object), (void *)object);
301 #else
302 	/*
303 	 * For SLUB assign a random tag during slab creation, otherwise reuse
304 	 * the already assigned tag.
305 	 */
306 	return init ? kasan_random_tag() : get_tag(object);
307 #endif
308 }
309 
__kasan_init_slab_obj(struct kmem_cache * cache,const void * object)310 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
311 						const void *object)
312 {
313 	struct kasan_alloc_meta *alloc_meta;
314 
315 	if (kasan_stack_collection_enabled()) {
316 		alloc_meta = kasan_get_alloc_meta(cache, object);
317 		if (alloc_meta)
318 			__memset(alloc_meta, 0, sizeof(*alloc_meta));
319 	}
320 
321 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
322 	object = set_tag(object, assign_tag(cache, object, true));
323 
324 	return (void *)object;
325 }
326 
____kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip,bool quarantine,bool init)327 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
328 				unsigned long ip, bool quarantine, bool init)
329 {
330 	u8 tag;
331 	void *tagged_object;
332 
333 	if (!kasan_arch_is_ready())
334 		return false;
335 
336 	tag = get_tag(object);
337 	tagged_object = object;
338 	object = kasan_reset_tag(object);
339 
340 	if (is_kfence_address(object))
341 		return false;
342 
343 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
344 	    object)) {
345 		kasan_report_invalid_free(tagged_object, ip);
346 		return true;
347 	}
348 
349 	/* RCU slabs could be legally used after free within the RCU period */
350 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
351 		return false;
352 
353 	if (!kasan_byte_accessible(tagged_object)) {
354 		kasan_report_invalid_free(tagged_object, ip);
355 		return true;
356 	}
357 
358 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
359 			KASAN_KMALLOC_FREE, init);
360 
361 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
362 		return false;
363 
364 	if (kasan_stack_collection_enabled())
365 		kasan_set_free_info(cache, object, tag);
366 
367 	return kasan_quarantine_put(cache, object);
368 }
369 
__kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip,bool init)370 bool __kasan_slab_free(struct kmem_cache *cache, void *object,
371 				unsigned long ip, bool init)
372 {
373 	return ____kasan_slab_free(cache, object, ip, true, init);
374 }
375 
____kasan_kfree_large(void * ptr,unsigned long ip)376 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
377 {
378 	if (ptr != page_address(virt_to_head_page(ptr))) {
379 		kasan_report_invalid_free(ptr, ip);
380 		return true;
381 	}
382 
383 	if (!kasan_byte_accessible(ptr)) {
384 		kasan_report_invalid_free(ptr, ip);
385 		return true;
386 	}
387 
388 	/*
389 	 * The object will be poisoned by kasan_poison_pages() or
390 	 * kasan_slab_free_mempool().
391 	 */
392 
393 	return false;
394 }
395 
__kasan_kfree_large(void * ptr,unsigned long ip)396 void __kasan_kfree_large(void *ptr, unsigned long ip)
397 {
398 	____kasan_kfree_large(ptr, ip);
399 }
400 
__kasan_slab_free_mempool(void * ptr,unsigned long ip)401 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
402 {
403 	struct page *page;
404 
405 	page = virt_to_head_page(ptr);
406 
407 	/*
408 	 * Even though this function is only called for kmem_cache_alloc and
409 	 * kmalloc backed mempool allocations, those allocations can still be
410 	 * !PageSlab() when the size provided to kmalloc is larger than
411 	 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
412 	 */
413 	if (unlikely(!PageSlab(page))) {
414 		if (____kasan_kfree_large(ptr, ip))
415 			return;
416 		kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false);
417 	} else {
418 		____kasan_slab_free(page->slab_cache, ptr, ip, false, false);
419 	}
420 }
421 
set_alloc_info(struct kmem_cache * cache,void * object,gfp_t flags,bool is_kmalloc)422 static void set_alloc_info(struct kmem_cache *cache, void *object,
423 				gfp_t flags, bool is_kmalloc)
424 {
425 	struct kasan_alloc_meta *alloc_meta;
426 
427 	/* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
428 	if (cache->kasan_info.is_kmalloc && !is_kmalloc)
429 		return;
430 
431 	alloc_meta = kasan_get_alloc_meta(cache, object);
432 	if (alloc_meta)
433 		kasan_set_track(&alloc_meta->alloc_track, flags);
434 }
435 
__kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags,bool init)436 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
437 					void *object, gfp_t flags, bool init)
438 {
439 	u8 tag;
440 	void *tagged_object;
441 
442 	if (gfpflags_allow_blocking(flags))
443 		kasan_quarantine_reduce();
444 
445 	if (unlikely(object == NULL))
446 		return NULL;
447 
448 	if (is_kfence_address(object))
449 		return (void *)object;
450 
451 	/*
452 	 * Generate and assign random tag for tag-based modes.
453 	 * Tag is ignored in set_tag() for the generic mode.
454 	 */
455 	tag = assign_tag(cache, object, false);
456 	tagged_object = set_tag(object, tag);
457 
458 	/*
459 	 * Unpoison the whole object.
460 	 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
461 	 */
462 	kasan_unpoison(tagged_object, cache->object_size, init);
463 
464 	/* Save alloc info (if possible) for non-kmalloc() allocations. */
465 	if (kasan_stack_collection_enabled())
466 		set_alloc_info(cache, (void *)object, flags, false);
467 
468 	return tagged_object;
469 }
470 
____kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)471 static inline void *____kasan_kmalloc(struct kmem_cache *cache,
472 				const void *object, size_t size, gfp_t flags)
473 {
474 	unsigned long redzone_start;
475 	unsigned long redzone_end;
476 
477 	if (gfpflags_allow_blocking(flags))
478 		kasan_quarantine_reduce();
479 
480 	if (unlikely(object == NULL))
481 		return NULL;
482 
483 	if (is_kfence_address(kasan_reset_tag(object)))
484 		return (void *)object;
485 
486 	/*
487 	 * The object has already been unpoisoned by kasan_slab_alloc() for
488 	 * kmalloc() or by kasan_krealloc() for krealloc().
489 	 */
490 
491 	/*
492 	 * The redzone has byte-level precision for the generic mode.
493 	 * Partially poison the last object granule to cover the unaligned
494 	 * part of the redzone.
495 	 */
496 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
497 		kasan_poison_last_granule((void *)object, size);
498 
499 	/* Poison the aligned part of the redzone. */
500 	redzone_start = round_up((unsigned long)(object + size),
501 				KASAN_GRANULE_SIZE);
502 	redzone_end = round_up((unsigned long)(object + cache->object_size),
503 				KASAN_GRANULE_SIZE);
504 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
505 			   KASAN_KMALLOC_REDZONE, false);
506 
507 	/*
508 	 * Save alloc info (if possible) for kmalloc() allocations.
509 	 * This also rewrites the alloc info when called from kasan_krealloc().
510 	 */
511 	if (kasan_stack_collection_enabled())
512 		set_alloc_info(cache, (void *)object, flags, true);
513 
514 	/* Keep the tag that was set by kasan_slab_alloc(). */
515 	return (void *)object;
516 }
517 
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)518 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
519 					size_t size, gfp_t flags)
520 {
521 	return ____kasan_kmalloc(cache, object, size, flags);
522 }
523 EXPORT_SYMBOL(__kasan_kmalloc);
524 
__kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)525 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
526 						gfp_t flags)
527 {
528 	unsigned long redzone_start;
529 	unsigned long redzone_end;
530 
531 	if (gfpflags_allow_blocking(flags))
532 		kasan_quarantine_reduce();
533 
534 	if (unlikely(ptr == NULL))
535 		return NULL;
536 
537 	/*
538 	 * The object has already been unpoisoned by kasan_unpoison_pages() for
539 	 * alloc_pages() or by kasan_krealloc() for krealloc().
540 	 */
541 
542 	/*
543 	 * The redzone has byte-level precision for the generic mode.
544 	 * Partially poison the last object granule to cover the unaligned
545 	 * part of the redzone.
546 	 */
547 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
548 		kasan_poison_last_granule(ptr, size);
549 
550 	/* Poison the aligned part of the redzone. */
551 	redzone_start = round_up((unsigned long)(ptr + size),
552 				KASAN_GRANULE_SIZE);
553 	redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
554 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
555 		     KASAN_PAGE_REDZONE, false);
556 
557 	return (void *)ptr;
558 }
559 
__kasan_krealloc(const void * object,size_t size,gfp_t flags)560 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
561 {
562 	struct page *page;
563 
564 	if (unlikely(object == ZERO_SIZE_PTR))
565 		return (void *)object;
566 
567 	/*
568 	 * Unpoison the object's data.
569 	 * Part of it might already have been unpoisoned, but it's unknown
570 	 * how big that part is.
571 	 */
572 	kasan_unpoison(object, size, false);
573 
574 	page = virt_to_head_page(object);
575 
576 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
577 	if (unlikely(!PageSlab(page)))
578 		return __kasan_kmalloc_large(object, size, flags);
579 	else
580 		return ____kasan_kmalloc(page->slab_cache, object, size, flags);
581 }
582 
__kasan_check_byte(const void * address,unsigned long ip)583 bool __kasan_check_byte(const void *address, unsigned long ip)
584 {
585 	if (!kasan_byte_accessible(address)) {
586 		kasan_report((unsigned long)address, 1, false, ip);
587 		return false;
588 	}
589 	return true;
590 }
591