• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 #include <trace/hooks/mm.h>
35 
36 #include <asm/tlb.h>
37 
38 #include "internal.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 	bool can_pageout_file;
44 };
45 
46 /*
47  * Any behaviour which results in changes to the vma->vm_flags needs to
48  * take mmap_lock for writing. Others, which simply traverse vmas, need
49  * to only take it for reading.
50  */
madvise_need_mmap_write(int behavior)51 static int madvise_need_mmap_write(int behavior)
52 {
53 	switch (behavior) {
54 	case MADV_REMOVE:
55 	case MADV_WILLNEED:
56 	case MADV_DONTNEED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 		return 0;
63 	default:
64 		/* be safe, default to 1. list exceptions explicitly */
65 		return 1;
66 	}
67 }
68 
69 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)70 struct anon_vma_name *anon_vma_name_alloc(const char *name)
71 {
72 	struct anon_vma_name *anon_name;
73 	size_t count;
74 
75 	/* Add 1 for NUL terminator at the end of the anon_name->name */
76 	count = strlen(name) + 1;
77 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
78 	if (anon_name) {
79 		kref_init(&anon_name->kref);
80 		memcpy(anon_name->name, name, count);
81 	}
82 
83 	return anon_name;
84 }
85 
anon_vma_name_free(struct kref * kref)86 void anon_vma_name_free(struct kref *kref)
87 {
88 	struct anon_vma_name *anon_name =
89 			container_of(kref, struct anon_vma_name, kref);
90 	kfree(anon_name);
91 }
92 
anon_vma_name(struct vm_area_struct * vma)93 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
94 {
95 	mmap_assert_locked(vma->vm_mm);
96 
97 	if (vma->vm_file)
98 		return NULL;
99 
100 	return vma->anon_name;
101 }
102 
103 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)104 static int replace_anon_vma_name(struct vm_area_struct *vma,
105 				 struct anon_vma_name *anon_name)
106 {
107 	struct anon_vma_name *orig_name = anon_vma_name(vma);
108 
109 	if (!anon_name) {
110 		vma->anon_name = NULL;
111 		anon_vma_name_put(orig_name);
112 		return 0;
113 	}
114 
115 	if (anon_vma_name_eq(orig_name, anon_name))
116 		return 0;
117 
118 	vma->anon_name = anon_vma_name_reuse(anon_name);
119 	anon_vma_name_put(orig_name);
120 
121 	return 0;
122 }
123 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)124 static int replace_anon_vma_name(struct vm_area_struct *vma,
125 				 struct anon_vma_name *anon_name)
126 {
127 	if (anon_name)
128 		return -EINVAL;
129 
130 	return 0;
131 }
132 #endif /* CONFIG_ANON_VMA_NAME */
133 /*
134  * Update the vm_flags on region of a vma, splitting it or merging it as
135  * necessary.  Must be called with mmap_sem held for writing;
136  * Caller should ensure anon_name stability by raising its refcount even when
137  * anon_name belongs to a valid vma because this function might free that vma.
138  */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * anon_name)139 static int madvise_update_vma(struct vm_area_struct *vma,
140 			      struct vm_area_struct **prev, unsigned long start,
141 			      unsigned long end, unsigned long new_flags,
142 			      struct anon_vma_name *anon_name)
143 {
144 	struct mm_struct *mm = vma->vm_mm;
145 	int error;
146 	pgoff_t pgoff;
147 
148 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
149 		*prev = vma;
150 		return 0;
151 	}
152 
153 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
154 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
155 			  vma->vm_file, pgoff, vma_policy(vma),
156 			  vma->vm_userfaultfd_ctx, anon_name);
157 	if (*prev) {
158 		vma = *prev;
159 		goto success;
160 	}
161 
162 	*prev = vma;
163 
164 	if (start != vma->vm_start) {
165 		if (unlikely(mm->map_count >= sysctl_max_map_count))
166 			return -ENOMEM;
167 		error = __split_vma(mm, vma, start, 1);
168 		if (error)
169 			return error;
170 	}
171 
172 	if (end != vma->vm_end) {
173 		if (unlikely(mm->map_count >= sysctl_max_map_count))
174 			return -ENOMEM;
175 		error = __split_vma(mm, vma, end, 0);
176 		if (error)
177 			return error;
178 	}
179 
180 success:
181 	/*
182 	 * vm_flags is protected by the mmap_lock held in write mode.
183 	 */
184 	vma->vm_flags = new_flags;
185 	if (!vma->vm_file) {
186 		error = replace_anon_vma_name(vma, anon_name);
187 		if (error)
188 			return error;
189 	}
190 
191 	return 0;
192 }
193 
194 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)195 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
196 	unsigned long end, struct mm_walk *walk)
197 {
198 	pte_t *orig_pte;
199 	struct vm_area_struct *vma = walk->private;
200 	unsigned long index;
201 
202 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
203 		return 0;
204 
205 	for (index = start; index != end; index += PAGE_SIZE) {
206 		pte_t pte;
207 		swp_entry_t entry;
208 		struct page *page;
209 		spinlock_t *ptl;
210 
211 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
212 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
213 		pte_unmap_unlock(orig_pte, ptl);
214 
215 		if (pte_present(pte) || pte_none(pte))
216 			continue;
217 		entry = pte_to_swp_entry(pte);
218 		if (unlikely(non_swap_entry(entry)))
219 			continue;
220 
221 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
222 							vma, index, false);
223 		if (page)
224 			put_page(page);
225 	}
226 
227 	return 0;
228 }
229 
230 static const struct mm_walk_ops swapin_walk_ops = {
231 	.pmd_entry		= swapin_walk_pmd_entry,
232 };
233 
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)234 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
235 		unsigned long start, unsigned long end,
236 		struct address_space *mapping)
237 {
238 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
239 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
240 	struct page *page;
241 
242 	rcu_read_lock();
243 	xas_for_each(&xas, page, end_index) {
244 		swp_entry_t swap;
245 
246 		if (!xa_is_value(page))
247 			continue;
248 		xas_pause(&xas);
249 		rcu_read_unlock();
250 
251 		swap = radix_to_swp_entry(page);
252 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
253 							NULL, 0, false);
254 		if (page)
255 			put_page(page);
256 
257 		rcu_read_lock();
258 	}
259 	rcu_read_unlock();
260 
261 	lru_add_drain();	/* Push any new pages onto the LRU now */
262 }
263 #endif		/* CONFIG_SWAP */
264 
265 /*
266  * Schedule all required I/O operations.  Do not wait for completion.
267  */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)268 static long madvise_willneed(struct vm_area_struct *vma,
269 			     struct vm_area_struct **prev,
270 			     unsigned long start, unsigned long end)
271 {
272 	struct mm_struct *mm = vma->vm_mm;
273 	struct file *file = vma->vm_file;
274 	loff_t offset;
275 
276 	*prev = vma;
277 #ifdef CONFIG_SWAP
278 	if (!file) {
279 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
280 		lru_add_drain(); /* Push any new pages onto the LRU now */
281 		return 0;
282 	}
283 
284 	if (shmem_mapping(file->f_mapping)) {
285 		force_shm_swapin_readahead(vma, start, end,
286 					file->f_mapping);
287 		return 0;
288 	}
289 #else
290 	if (!file)
291 		return -EBADF;
292 #endif
293 
294 	if (IS_DAX(file_inode(file))) {
295 		/* no bad return value, but ignore advice */
296 		return 0;
297 	}
298 
299 	/*
300 	 * Filesystem's fadvise may need to take various locks.  We need to
301 	 * explicitly grab a reference because the vma (and hence the
302 	 * vma's reference to the file) can go away as soon as we drop
303 	 * mmap_lock.
304 	 */
305 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
306 	get_file(file);
307 	offset = (loff_t)(start - vma->vm_start)
308 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
309 	mmap_read_unlock(mm);
310 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
311 	fput(file);
312 	mmap_read_lock(mm);
313 	return 0;
314 }
315 
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)316 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
317 				unsigned long addr, unsigned long end,
318 				struct mm_walk *walk)
319 {
320 	struct madvise_walk_private *private = walk->private;
321 	struct mmu_gather *tlb = private->tlb;
322 	bool pageout = private->pageout;
323 	bool pageout_anon_only = pageout && !private->can_pageout_file;
324 	struct mm_struct *mm = tlb->mm;
325 	struct vm_area_struct *vma = walk->vma;
326 	pte_t *orig_pte, *pte, ptent;
327 	spinlock_t *ptl;
328 	struct page *page = NULL;
329 	LIST_HEAD(page_list);
330 	bool allow_shared = false;
331 	bool abort_madvise = false;
332 
333 	trace_android_vh_madvise_cold_or_pageout_abort(vma, &abort_madvise);
334 	if (fatal_signal_pending(current) || abort_madvise)
335 		return -EINTR;
336 
337 	trace_android_vh_madvise_cold_or_pageout(vma, &allow_shared);
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 	if (pmd_trans_huge(*pmd)) {
340 		pmd_t orig_pmd;
341 		unsigned long next = pmd_addr_end(addr, end);
342 
343 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
344 		ptl = pmd_trans_huge_lock(pmd, vma);
345 		if (!ptl)
346 			return 0;
347 
348 		orig_pmd = *pmd;
349 		if (is_huge_zero_pmd(orig_pmd))
350 			goto huge_unlock;
351 
352 		if (unlikely(!pmd_present(orig_pmd))) {
353 			VM_BUG_ON(thp_migration_supported() &&
354 					!is_pmd_migration_entry(orig_pmd));
355 			goto huge_unlock;
356 		}
357 
358 		page = pmd_page(orig_pmd);
359 
360 		/* Do not interfere with other mappings of this page */
361 		if (page_mapcount(page) != 1)
362 			goto huge_unlock;
363 
364 		if (pageout_anon_only && !PageAnon(page))
365 			goto huge_unlock;
366 
367 		if (next - addr != HPAGE_PMD_SIZE) {
368 			int err;
369 
370 			get_page(page);
371 			spin_unlock(ptl);
372 			lock_page(page);
373 			err = split_huge_page(page);
374 			unlock_page(page);
375 			put_page(page);
376 			if (!err)
377 				goto regular_page;
378 			return 0;
379 		}
380 
381 		if (pmd_young(orig_pmd)) {
382 			pmdp_invalidate(vma, addr, pmd);
383 			orig_pmd = pmd_mkold(orig_pmd);
384 
385 			set_pmd_at(mm, addr, pmd, orig_pmd);
386 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
387 		}
388 
389 		ClearPageReferenced(page);
390 		test_and_clear_page_young(page);
391 		if (pageout) {
392 			if (!isolate_lru_page(page)) {
393 				if (PageUnevictable(page))
394 					putback_lru_page(page);
395 				else
396 					list_add(&page->lru, &page_list);
397 			}
398 		} else
399 			deactivate_page(page);
400 huge_unlock:
401 		spin_unlock(ptl);
402 		if (pageout)
403 			reclaim_pages(&page_list);
404 		return 0;
405 	}
406 
407 regular_page:
408 	if (pmd_trans_unstable(pmd))
409 		return 0;
410 #endif
411 	tlb_change_page_size(tlb, PAGE_SIZE);
412 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
413 	flush_tlb_batched_pending(mm);
414 	arch_enter_lazy_mmu_mode();
415 	for (; addr < end; pte++, addr += PAGE_SIZE) {
416 		ptent = *pte;
417 
418 		if (pte_none(ptent))
419 			continue;
420 
421 		if (!pte_present(ptent))
422 			continue;
423 
424 		page = vm_normal_page(vma, addr, ptent);
425 		if (!page)
426 			continue;
427 
428 		/*
429 		 * Creating a THP page is expensive so split it only if we
430 		 * are sure it's worth. Split it if we are only owner.
431 		 */
432 		if (PageTransCompound(page)) {
433 			if (page_mapcount(page) != 1)
434 				break;
435 			if (pageout_anon_only && !PageAnon(page))
436 				break;
437 			get_page(page);
438 			if (!trylock_page(page)) {
439 				put_page(page);
440 				break;
441 			}
442 			pte_unmap_unlock(orig_pte, ptl);
443 			if (split_huge_page(page)) {
444 				unlock_page(page);
445 				put_page(page);
446 				pte_offset_map_lock(mm, pmd, addr, &ptl);
447 				break;
448 			}
449 			unlock_page(page);
450 			put_page(page);
451 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
452 			pte--;
453 			addr -= PAGE_SIZE;
454 			continue;
455 		}
456 
457 		/*
458 		 * Do not interfere with other mappings of this page and
459 		 * non-LRU page.
460 		 */
461 		if (!allow_shared && (!PageLRU(page) || page_mapcount(page) != 1))
462 			continue;
463 
464 		if (pageout_anon_only && !PageAnon(page))
465 			continue;
466 
467 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
468 
469 		if (pte_young(ptent)) {
470 			ptent = ptep_get_and_clear_full(mm, addr, pte,
471 							tlb->fullmm);
472 			ptent = pte_mkold(ptent);
473 			set_pte_at(mm, addr, pte, ptent);
474 			tlb_remove_tlb_entry(tlb, pte, addr);
475 		}
476 
477 		/*
478 		 * We are deactivating a page for accelerating reclaiming.
479 		 * VM couldn't reclaim the page unless we clear PG_young.
480 		 * As a side effect, it makes confuse idle-page tracking
481 		 * because they will miss recent referenced history.
482 		 */
483 		ClearPageReferenced(page);
484 		test_and_clear_page_young(page);
485 		if (pageout) {
486 			if (!isolate_lru_page(page)) {
487 				if (PageUnevictable(page))
488 					putback_lru_page(page);
489 				else
490 					list_add(&page->lru, &page_list);
491 			}
492 		} else
493 			deactivate_page(page);
494 	}
495 
496 	arch_leave_lazy_mmu_mode();
497 	pte_unmap_unlock(orig_pte, ptl);
498 	if (pageout)
499 		reclaim_pages(&page_list);
500 	cond_resched();
501 
502 	return 0;
503 }
504 
505 static const struct mm_walk_ops cold_walk_ops = {
506 	.pmd_entry = madvise_cold_or_pageout_pte_range,
507 };
508 
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)509 static void madvise_cold_page_range(struct mmu_gather *tlb,
510 			     struct vm_area_struct *vma,
511 			     unsigned long addr, unsigned long end)
512 {
513 	struct madvise_walk_private walk_private = {
514 		.pageout = false,
515 		.tlb = tlb,
516 	};
517 
518 	tlb_start_vma(tlb, vma);
519 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
520 	tlb_end_vma(tlb, vma);
521 }
522 
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)523 static long madvise_cold(struct vm_area_struct *vma,
524 			struct vm_area_struct **prev,
525 			unsigned long start_addr, unsigned long end_addr)
526 {
527 	struct mm_struct *mm = vma->vm_mm;
528 	struct mmu_gather tlb;
529 
530 	*prev = vma;
531 	if (!can_madv_lru_vma(vma))
532 		return -EINVAL;
533 
534 	lru_add_drain();
535 	tlb_gather_mmu(&tlb, mm);
536 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
537 	tlb_finish_mmu(&tlb);
538 
539 	return 0;
540 }
541 
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,bool can_pageout_file)542 static void madvise_pageout_page_range(struct mmu_gather *tlb,
543 			     struct vm_area_struct *vma,
544 			     unsigned long addr, unsigned long end,
545 			     bool can_pageout_file)
546 {
547 	struct madvise_walk_private walk_private = {
548 		.pageout = true,
549 		.tlb = tlb,
550 		.can_pageout_file = can_pageout_file,
551 	};
552 
553 	tlb_start_vma(tlb, vma);
554 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
555 	tlb_end_vma(tlb, vma);
556 }
557 
can_do_file_pageout(struct vm_area_struct * vma)558 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
559 {
560 	if (!vma->vm_file)
561 		return false;
562 	/*
563 	 * paging out pagecache only for non-anonymous mappings that correspond
564 	 * to the files the calling process could (if tried) open for writing;
565 	 * otherwise we'd be including shared non-exclusive mappings, which
566 	 * opens a side channel.
567 	 */
568 	return inode_owner_or_capable(&init_user_ns,
569 				      file_inode(vma->vm_file)) ||
570 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
571 }
572 
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)573 static long madvise_pageout(struct vm_area_struct *vma,
574 			struct vm_area_struct **prev,
575 			unsigned long start_addr, unsigned long end_addr)
576 {
577 	struct mm_struct *mm = vma->vm_mm;
578 	struct mmu_gather tlb;
579 	bool can_pageout_file;
580 
581 	*prev = vma;
582 	if (!can_madv_lru_vma(vma))
583 		return -EINVAL;
584 
585 	/*
586 	 * If the VMA belongs to a private file mapping, there can be private
587 	 * dirty pages which can be paged out if even this process is neither
588 	 * owner nor write capable of the file. Cache the file access check
589 	 * here and use it later during page walk.
590 	 */
591 	can_pageout_file = can_do_file_pageout(vma);
592 
593 	lru_add_drain();
594 	tlb_gather_mmu(&tlb, mm);
595 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr, can_pageout_file);
596 	tlb_finish_mmu(&tlb);
597 
598 	return 0;
599 }
600 
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)601 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
602 				unsigned long end, struct mm_walk *walk)
603 
604 {
605 	struct mmu_gather *tlb = walk->private;
606 	struct mm_struct *mm = tlb->mm;
607 	struct vm_area_struct *vma = walk->vma;
608 	spinlock_t *ptl;
609 	pte_t *orig_pte, *pte, ptent;
610 	struct page *page;
611 	int nr_swap = 0;
612 	unsigned long next;
613 
614 	next = pmd_addr_end(addr, end);
615 	if (pmd_trans_huge(*pmd))
616 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
617 			goto next;
618 
619 	if (pmd_trans_unstable(pmd))
620 		return 0;
621 
622 	tlb_change_page_size(tlb, PAGE_SIZE);
623 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
624 	flush_tlb_batched_pending(mm);
625 	arch_enter_lazy_mmu_mode();
626 	for (; addr != end; pte++, addr += PAGE_SIZE) {
627 		ptent = *pte;
628 
629 		if (pte_none(ptent))
630 			continue;
631 		/*
632 		 * If the pte has swp_entry, just clear page table to
633 		 * prevent swap-in which is more expensive rather than
634 		 * (page allocation + zeroing).
635 		 */
636 		if (!pte_present(ptent)) {
637 			swp_entry_t entry;
638 
639 			entry = pte_to_swp_entry(ptent);
640 			if (non_swap_entry(entry))
641 				continue;
642 			nr_swap--;
643 			free_swap_and_cache(entry);
644 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
645 			continue;
646 		}
647 
648 		page = vm_normal_page(vma, addr, ptent);
649 		if (!page)
650 			continue;
651 
652 		/*
653 		 * If pmd isn't transhuge but the page is THP and
654 		 * is owned by only this process, split it and
655 		 * deactivate all pages.
656 		 */
657 		if (PageTransCompound(page)) {
658 			if (page_mapcount(page) != 1)
659 				goto out;
660 			get_page(page);
661 			if (!trylock_page(page)) {
662 				put_page(page);
663 				goto out;
664 			}
665 			pte_unmap_unlock(orig_pte, ptl);
666 			if (split_huge_page(page)) {
667 				unlock_page(page);
668 				put_page(page);
669 				pte_offset_map_lock(mm, pmd, addr, &ptl);
670 				goto out;
671 			}
672 			unlock_page(page);
673 			put_page(page);
674 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675 			pte--;
676 			addr -= PAGE_SIZE;
677 			continue;
678 		}
679 
680 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
681 
682 		if (PageSwapCache(page) || PageDirty(page)) {
683 			if (!trylock_page(page))
684 				continue;
685 			/*
686 			 * If page is shared with others, we couldn't clear
687 			 * PG_dirty of the page.
688 			 */
689 			if (page_mapcount(page) != 1) {
690 				unlock_page(page);
691 				continue;
692 			}
693 
694 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
695 				unlock_page(page);
696 				continue;
697 			}
698 
699 			ClearPageDirty(page);
700 			unlock_page(page);
701 		}
702 
703 		if (pte_young(ptent) || pte_dirty(ptent)) {
704 			/*
705 			 * Some of architecture(ex, PPC) don't update TLB
706 			 * with set_pte_at and tlb_remove_tlb_entry so for
707 			 * the portability, remap the pte with old|clean
708 			 * after pte clearing.
709 			 */
710 			ptent = ptep_get_and_clear_full(mm, addr, pte,
711 							tlb->fullmm);
712 
713 			ptent = pte_mkold(ptent);
714 			ptent = pte_mkclean(ptent);
715 			set_pte_at(mm, addr, pte, ptent);
716 			tlb_remove_tlb_entry(tlb, pte, addr);
717 		}
718 		mark_page_lazyfree(page);
719 	}
720 out:
721 	if (nr_swap) {
722 		if (current->mm == mm)
723 			sync_mm_rss(mm);
724 
725 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
726 	}
727 	arch_leave_lazy_mmu_mode();
728 	pte_unmap_unlock(orig_pte, ptl);
729 	cond_resched();
730 next:
731 	return 0;
732 }
733 
734 static const struct mm_walk_ops madvise_free_walk_ops = {
735 	.pmd_entry		= madvise_free_pte_range,
736 };
737 
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)738 static int madvise_free_single_vma(struct vm_area_struct *vma,
739 			unsigned long start_addr, unsigned long end_addr)
740 {
741 	struct mm_struct *mm = vma->vm_mm;
742 	struct mmu_notifier_range range;
743 	struct mmu_gather tlb;
744 
745 	/* MADV_FREE works for only anon vma at the moment */
746 	if (!vma_is_anonymous(vma))
747 		return -EINVAL;
748 
749 	range.start = max(vma->vm_start, start_addr);
750 	if (range.start >= vma->vm_end)
751 		return -EINVAL;
752 	range.end = min(vma->vm_end, end_addr);
753 	if (range.end <= vma->vm_start)
754 		return -EINVAL;
755 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
756 				range.start, range.end);
757 
758 	lru_add_drain();
759 	tlb_gather_mmu(&tlb, mm);
760 	update_hiwater_rss(mm);
761 
762 	mmu_notifier_invalidate_range_start(&range);
763 	tlb_start_vma(&tlb, vma);
764 	walk_page_range(vma->vm_mm, range.start, range.end,
765 			&madvise_free_walk_ops, &tlb);
766 	tlb_end_vma(&tlb, vma);
767 	mmu_notifier_invalidate_range_end(&range);
768 	tlb_finish_mmu(&tlb);
769 
770 	return 0;
771 }
772 
773 /*
774  * Application no longer needs these pages.  If the pages are dirty,
775  * it's OK to just throw them away.  The app will be more careful about
776  * data it wants to keep.  Be sure to free swap resources too.  The
777  * zap_page_range call sets things up for shrink_active_list to actually free
778  * these pages later if no one else has touched them in the meantime,
779  * although we could add these pages to a global reuse list for
780  * shrink_active_list to pick up before reclaiming other pages.
781  *
782  * NB: This interface discards data rather than pushes it out to swap,
783  * as some implementations do.  This has performance implications for
784  * applications like large transactional databases which want to discard
785  * pages in anonymous maps after committing to backing store the data
786  * that was kept in them.  There is no reason to write this data out to
787  * the swap area if the application is discarding it.
788  *
789  * An interface that causes the system to free clean pages and flush
790  * dirty pages is already available as msync(MS_INVALIDATE).
791  */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)792 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
793 					unsigned long start, unsigned long end)
794 {
795 	zap_page_range(vma, start, end - start);
796 	return 0;
797 }
798 
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)799 static long madvise_dontneed_free(struct vm_area_struct *vma,
800 				  struct vm_area_struct **prev,
801 				  unsigned long start, unsigned long end,
802 				  int behavior)
803 {
804 	struct mm_struct *mm = vma->vm_mm;
805 
806 	*prev = vma;
807 	if (!can_madv_lru_vma(vma))
808 		return -EINVAL;
809 
810 	if (!userfaultfd_remove(vma, start, end)) {
811 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
812 
813 		mmap_read_lock(mm);
814 		vma = find_vma(mm, start);
815 		if (!vma)
816 			return -ENOMEM;
817 		if (start < vma->vm_start) {
818 			/*
819 			 * This "vma" under revalidation is the one
820 			 * with the lowest vma->vm_start where start
821 			 * is also < vma->vm_end. If start <
822 			 * vma->vm_start it means an hole materialized
823 			 * in the user address space within the
824 			 * virtual range passed to MADV_DONTNEED
825 			 * or MADV_FREE.
826 			 */
827 			return -ENOMEM;
828 		}
829 		if (!can_madv_lru_vma(vma))
830 			return -EINVAL;
831 		if (end > vma->vm_end) {
832 			/*
833 			 * Don't fail if end > vma->vm_end. If the old
834 			 * vma was split while the mmap_lock was
835 			 * released the effect of the concurrent
836 			 * operation may not cause madvise() to
837 			 * have an undefined result. There may be an
838 			 * adjacent next vma that we'll walk
839 			 * next. userfaultfd_remove() will generate an
840 			 * UFFD_EVENT_REMOVE repetition on the
841 			 * end-vma->vm_end range, but the manager can
842 			 * handle a repetition fine.
843 			 */
844 			end = vma->vm_end;
845 		}
846 		VM_WARN_ON(start >= end);
847 	}
848 
849 	if (behavior == MADV_DONTNEED)
850 		return madvise_dontneed_single_vma(vma, start, end);
851 	else if (behavior == MADV_FREE)
852 		return madvise_free_single_vma(vma, start, end);
853 	else
854 		return -EINVAL;
855 }
856 
madvise_populate(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)857 static long madvise_populate(struct vm_area_struct *vma,
858 			     struct vm_area_struct **prev,
859 			     unsigned long start, unsigned long end,
860 			     int behavior)
861 {
862 	const bool write = behavior == MADV_POPULATE_WRITE;
863 	struct mm_struct *mm = vma->vm_mm;
864 	unsigned long tmp_end;
865 	int locked = 1;
866 	long pages;
867 
868 	*prev = vma;
869 
870 	while (start < end) {
871 		/*
872 		 * We might have temporarily dropped the lock. For example,
873 		 * our VMA might have been split.
874 		 */
875 		if (!vma || start >= vma->vm_end) {
876 			vma = find_vma(mm, start);
877 			if (!vma || start < vma->vm_start)
878 				return -ENOMEM;
879 		}
880 
881 		tmp_end = min_t(unsigned long, end, vma->vm_end);
882 		/* Populate (prefault) page tables readable/writable. */
883 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
884 					       &locked);
885 		if (!locked) {
886 			mmap_read_lock(mm);
887 			locked = 1;
888 			*prev = NULL;
889 			vma = NULL;
890 		}
891 		if (pages < 0) {
892 			switch (pages) {
893 			case -EINTR:
894 				return -EINTR;
895 			case -EINVAL: /* Incompatible mappings / permissions. */
896 				return -EINVAL;
897 			case -EHWPOISON:
898 				return -EHWPOISON;
899 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
900 				return -EFAULT;
901 			default:
902 				pr_warn_once("%s: unhandled return value: %ld\n",
903 					     __func__, pages);
904 				fallthrough;
905 			case -ENOMEM:
906 				return -ENOMEM;
907 			}
908 		}
909 		start += pages * PAGE_SIZE;
910 	}
911 	return 0;
912 }
913 
914 /*
915  * Application wants to free up the pages and associated backing store.
916  * This is effectively punching a hole into the middle of a file.
917  */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)918 static long madvise_remove(struct vm_area_struct *vma,
919 				struct vm_area_struct **prev,
920 				unsigned long start, unsigned long end)
921 {
922 	loff_t offset;
923 	int error;
924 	struct file *f;
925 	struct mm_struct *mm = vma->vm_mm;
926 
927 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
928 
929 	if (vma->vm_flags & VM_LOCKED)
930 		return -EINVAL;
931 
932 	f = vma->vm_file;
933 
934 	if (!f || !f->f_mapping || !f->f_mapping->host) {
935 			return -EINVAL;
936 	}
937 
938 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
939 		return -EACCES;
940 
941 	offset = (loff_t)(start - vma->vm_start)
942 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
943 
944 	/*
945 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
946 	 * explicitly grab a reference because the vma (and hence the
947 	 * vma's reference to the file) can go away as soon as we drop
948 	 * mmap_lock.
949 	 */
950 	get_file(f);
951 	if (userfaultfd_remove(vma, start, end)) {
952 		/* mmap_lock was not released by userfaultfd_remove() */
953 		mmap_read_unlock(mm);
954 	}
955 	error = vfs_fallocate(f,
956 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
957 				offset, end - start);
958 	fput(f);
959 	mmap_read_lock(mm);
960 	return error;
961 }
962 
963 /*
964  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
965  * will handle splitting a vm area into separate areas, each area with its own
966  * behavior.
967  */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long behavior)968 static int madvise_vma_behavior(struct vm_area_struct *vma,
969 				struct vm_area_struct **prev,
970 				unsigned long start, unsigned long end,
971 				unsigned long behavior)
972 {
973 	int error;
974 	struct anon_vma_name *anon_name;
975 	unsigned long new_flags = vma->vm_flags;
976 
977 	switch (behavior) {
978 	case MADV_REMOVE:
979 		return madvise_remove(vma, prev, start, end);
980 	case MADV_WILLNEED:
981 		return madvise_willneed(vma, prev, start, end);
982 	case MADV_COLD:
983 		return madvise_cold(vma, prev, start, end);
984 	case MADV_PAGEOUT:
985 		return madvise_pageout(vma, prev, start, end);
986 	case MADV_FREE:
987 	case MADV_DONTNEED:
988 		return madvise_dontneed_free(vma, prev, start, end, behavior);
989 	case MADV_POPULATE_READ:
990 	case MADV_POPULATE_WRITE:
991 		return madvise_populate(vma, prev, start, end, behavior);
992 	case MADV_NORMAL:
993 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
994 		break;
995 	case MADV_SEQUENTIAL:
996 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
997 		break;
998 	case MADV_RANDOM:
999 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1000 		break;
1001 	case MADV_DONTFORK:
1002 		new_flags |= VM_DONTCOPY;
1003 		break;
1004 	case MADV_DOFORK:
1005 		if (vma->vm_flags & VM_IO)
1006 			return -EINVAL;
1007 		new_flags &= ~VM_DONTCOPY;
1008 		break;
1009 	case MADV_WIPEONFORK:
1010 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1011 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1012 			return -EINVAL;
1013 		new_flags |= VM_WIPEONFORK;
1014 		break;
1015 	case MADV_KEEPONFORK:
1016 		new_flags &= ~VM_WIPEONFORK;
1017 		break;
1018 	case MADV_DONTDUMP:
1019 		new_flags |= VM_DONTDUMP;
1020 		break;
1021 	case MADV_DODUMP:
1022 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1023 			return -EINVAL;
1024 		new_flags &= ~VM_DONTDUMP;
1025 		break;
1026 	case MADV_MERGEABLE:
1027 	case MADV_UNMERGEABLE:
1028 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1029 		if (error)
1030 			goto out;
1031 		break;
1032 	case MADV_HUGEPAGE:
1033 	case MADV_NOHUGEPAGE:
1034 		error = hugepage_madvise(vma, &new_flags, behavior);
1035 		if (error)
1036 			goto out;
1037 		break;
1038 	}
1039 
1040 	anon_name = anon_vma_name(vma);
1041 	anon_vma_name_get(anon_name);
1042 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1043 				   anon_name);
1044 	anon_vma_name_put(anon_name);
1045 
1046 out:
1047 	/*
1048 	 * madvise() returns EAGAIN if kernel resources, such as
1049 	 * slab, are temporarily unavailable.
1050 	 */
1051 	if (error == -ENOMEM)
1052 		error = -EAGAIN;
1053 	return error;
1054 }
1055 
1056 #ifdef CONFIG_MEMORY_FAILURE
1057 /*
1058  * Error injection support for memory error handling.
1059  */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1060 static int madvise_inject_error(int behavior,
1061 		unsigned long start, unsigned long end)
1062 {
1063 	unsigned long size;
1064 
1065 	if (!capable(CAP_SYS_ADMIN))
1066 		return -EPERM;
1067 
1068 
1069 	for (; start < end; start += size) {
1070 		unsigned long pfn;
1071 		struct page *page;
1072 		int ret;
1073 
1074 		ret = get_user_pages_fast(start, 1, 0, &page);
1075 		if (ret != 1)
1076 			return ret;
1077 		pfn = page_to_pfn(page);
1078 
1079 		/*
1080 		 * When soft offlining hugepages, after migrating the page
1081 		 * we dissolve it, therefore in the second loop "page" will
1082 		 * no longer be a compound page.
1083 		 */
1084 		size = page_size(compound_head(page));
1085 
1086 		if (behavior == MADV_SOFT_OFFLINE) {
1087 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1088 				 pfn, start);
1089 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1090 		} else {
1091 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1092 				 pfn, start);
1093 			ret = memory_failure(pfn, MF_COUNT_INCREASED);
1094 			if (ret == -EOPNOTSUPP)
1095 				ret = 0;
1096 		}
1097 
1098 		if (ret)
1099 			return ret;
1100 	}
1101 
1102 	return 0;
1103 }
1104 #endif
1105 
1106 static bool
madvise_behavior_valid(int behavior)1107 madvise_behavior_valid(int behavior)
1108 {
1109 	switch (behavior) {
1110 	case MADV_DOFORK:
1111 	case MADV_DONTFORK:
1112 	case MADV_NORMAL:
1113 	case MADV_SEQUENTIAL:
1114 	case MADV_RANDOM:
1115 	case MADV_REMOVE:
1116 	case MADV_WILLNEED:
1117 	case MADV_DONTNEED:
1118 	case MADV_FREE:
1119 	case MADV_COLD:
1120 	case MADV_PAGEOUT:
1121 	case MADV_POPULATE_READ:
1122 	case MADV_POPULATE_WRITE:
1123 #ifdef CONFIG_KSM
1124 	case MADV_MERGEABLE:
1125 	case MADV_UNMERGEABLE:
1126 #endif
1127 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1128 	case MADV_HUGEPAGE:
1129 	case MADV_NOHUGEPAGE:
1130 #endif
1131 	case MADV_DONTDUMP:
1132 	case MADV_DODUMP:
1133 	case MADV_WIPEONFORK:
1134 	case MADV_KEEPONFORK:
1135 #ifdef CONFIG_MEMORY_FAILURE
1136 	case MADV_SOFT_OFFLINE:
1137 	case MADV_HWPOISON:
1138 #endif
1139 		return true;
1140 
1141 	default:
1142 		return false;
1143 	}
1144 }
1145 
1146 static bool
process_madvise_behavior_valid(int behavior)1147 process_madvise_behavior_valid(int behavior)
1148 {
1149 	switch (behavior) {
1150 	case MADV_COLD:
1151 	case MADV_PAGEOUT:
1152 	case MADV_WILLNEED:
1153 		return true;
1154 	default:
1155 		return false;
1156 	}
1157 }
1158 
1159 /*
1160  * Walk the vmas in range [start,end), and call the visit function on each one.
1161  * The visit function will get start and end parameters that cover the overlap
1162  * between the current vma and the original range.  Any unmapped regions in the
1163  * original range will result in this function returning -ENOMEM while still
1164  * calling the visit function on all of the existing vmas in the range.
1165  * Must be called with the mmap_lock held for reading or writing.
1166  */
1167 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long arg))1168 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1169 		      unsigned long end, unsigned long arg,
1170 		      int (*visit)(struct vm_area_struct *vma,
1171 				   struct vm_area_struct **prev, unsigned long start,
1172 				   unsigned long end, unsigned long arg))
1173 {
1174 	struct vm_area_struct *vma;
1175 	struct vm_area_struct *prev;
1176 	unsigned long tmp;
1177 	int unmapped_error = 0;
1178 
1179 	/*
1180 	 * If the interval [start,end) covers some unmapped address
1181 	 * ranges, just ignore them, but return -ENOMEM at the end.
1182 	 * - different from the way of handling in mlock etc.
1183 	 */
1184 	vma = find_vma_prev(mm, start, &prev);
1185 	if (vma && start > vma->vm_start)
1186 		prev = vma;
1187 
1188 	for (;;) {
1189 		int error;
1190 
1191 		/* Still start < end. */
1192 		if (!vma)
1193 			return -ENOMEM;
1194 
1195 		/* Here start < (end|vma->vm_end). */
1196 		if (start < vma->vm_start) {
1197 			unmapped_error = -ENOMEM;
1198 			start = vma->vm_start;
1199 			if (start >= end)
1200 				break;
1201 		}
1202 
1203 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1204 		tmp = vma->vm_end;
1205 		if (end < tmp)
1206 			tmp = end;
1207 
1208 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1209 		error = visit(vma, &prev, start, tmp, arg);
1210 		if (error)
1211 			return error;
1212 		start = tmp;
1213 		if (prev && start < prev->vm_end)
1214 			start = prev->vm_end;
1215 		if (start >= end)
1216 			break;
1217 		if (prev)
1218 			vma = prev->vm_next;
1219 		else	/* madvise_remove dropped mmap_lock */
1220 			vma = find_vma(mm, start);
1221 	}
1222 
1223 	return unmapped_error;
1224 }
1225 
1226 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long anon_name)1227 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1228 				 struct vm_area_struct **prev,
1229 				 unsigned long start, unsigned long end,
1230 				 unsigned long anon_name)
1231 {
1232 	int error;
1233 
1234 	/* Only anonymous mappings can be named */
1235 	if (vma->vm_file)
1236 		return -EBADF;
1237 
1238 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1239 				   (struct anon_vma_name *)anon_name);
1240 
1241 	/*
1242 	 * madvise() returns EAGAIN if kernel resources, such as
1243 	 * slab, are temporarily unavailable.
1244 	 */
1245 	if (error == -ENOMEM)
1246 		error = -EAGAIN;
1247 	return error;
1248 }
1249 
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)1250 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1251 			  unsigned long len_in, struct anon_vma_name *anon_name)
1252 {
1253 	unsigned long end;
1254 	unsigned long len;
1255 
1256 	if (start & ~PAGE_MASK)
1257 		return -EINVAL;
1258 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1259 
1260 	/* Check to see whether len was rounded up from small -ve to zero */
1261 	if (len_in && !len)
1262 		return -EINVAL;
1263 
1264 	end = start + len;
1265 	if (end < start)
1266 		return -EINVAL;
1267 
1268 	if (end == start)
1269 		return 0;
1270 
1271 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1272 				 madvise_vma_anon_name);
1273 }
1274 #endif /* CONFIG_ANON_VMA_NAME */
1275 /*
1276  * The madvise(2) system call.
1277  *
1278  * Applications can use madvise() to advise the kernel how it should
1279  * handle paging I/O in this VM area.  The idea is to help the kernel
1280  * use appropriate read-ahead and caching techniques.  The information
1281  * provided is advisory only, and can be safely disregarded by the
1282  * kernel without affecting the correct operation of the application.
1283  *
1284  * behavior values:
1285  *  MADV_NORMAL - the default behavior is to read clusters.  This
1286  *		results in some read-ahead and read-behind.
1287  *  MADV_RANDOM - the system should read the minimum amount of data
1288  *		on any access, since it is unlikely that the appli-
1289  *		cation will need more than what it asks for.
1290  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1291  *		once, so they can be aggressively read ahead, and
1292  *		can be freed soon after they are accessed.
1293  *  MADV_WILLNEED - the application is notifying the system to read
1294  *		some pages ahead.
1295  *  MADV_DONTNEED - the application is finished with the given range,
1296  *		so the kernel can free resources associated with it.
1297  *  MADV_FREE - the application marks pages in the given range as lazy free,
1298  *		where actual purges are postponed until memory pressure happens.
1299  *  MADV_REMOVE - the application wants to free up the given range of
1300  *		pages and associated backing store.
1301  *  MADV_DONTFORK - omit this area from child's address space when forking:
1302  *		typically, to avoid COWing pages pinned by get_user_pages().
1303  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1304  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1305  *              range after a fork.
1306  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1307  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1308  *		were corrupted by unrecoverable hardware memory failure.
1309  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1310  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1311  *		this area with pages of identical content from other such areas.
1312  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1313  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1314  *		huge pages in the future. Existing pages might be coalesced and
1315  *		new pages might be allocated as THP.
1316  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1317  *		transparent huge pages so the existing pages will not be
1318  *		coalesced into THP and new pages will not be allocated as THP.
1319  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1320  *		from being included in its core dump.
1321  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1322  *  MADV_COLD - the application is not expected to use this memory soon,
1323  *		deactivate pages in this range so that they can be reclaimed
1324  *		easily if memory pressure happens.
1325  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1326  *		page out the pages in this range immediately.
1327  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1328  *		triggering read faults if required
1329  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1330  *		triggering write faults if required
1331  *
1332  * return values:
1333  *  zero    - success
1334  *  -EINVAL - start + len < 0, start is not page-aligned,
1335  *		"behavior" is not a valid value, or application
1336  *		is attempting to release locked or shared pages,
1337  *		or the specified address range includes file, Huge TLB,
1338  *		MAP_SHARED or VMPFNMAP range.
1339  *  -ENOMEM - addresses in the specified range are not currently
1340  *		mapped, or are outside the AS of the process.
1341  *  -EIO    - an I/O error occurred while paging in data.
1342  *  -EBADF  - map exists, but area maps something that isn't a file.
1343  *  -EAGAIN - a kernel resource was temporarily unavailable.
1344  */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1345 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1346 {
1347 	unsigned long end;
1348 	int error;
1349 	int write;
1350 	size_t len;
1351 	struct blk_plug plug;
1352 
1353 	start = untagged_addr(start);
1354 
1355 	if (!madvise_behavior_valid(behavior))
1356 		return -EINVAL;
1357 
1358 	if (!PAGE_ALIGNED(start))
1359 		return -EINVAL;
1360 	len = PAGE_ALIGN(len_in);
1361 
1362 	/* Check to see whether len was rounded up from small -ve to zero */
1363 	if (len_in && !len)
1364 		return -EINVAL;
1365 
1366 	end = start + len;
1367 	if (end < start)
1368 		return -EINVAL;
1369 
1370 	if (end == start)
1371 		return 0;
1372 
1373 #ifdef CONFIG_MEMORY_FAILURE
1374 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1375 		return madvise_inject_error(behavior, start, start + len_in);
1376 #endif
1377 
1378 	write = madvise_need_mmap_write(behavior);
1379 	if (write) {
1380 		if (mmap_write_lock_killable(mm))
1381 			return -EINTR;
1382 	} else {
1383 		mmap_read_lock(mm);
1384 	}
1385 
1386 	blk_start_plug(&plug);
1387 	error = madvise_walk_vmas(mm, start, end, behavior,
1388 			madvise_vma_behavior);
1389 	blk_finish_plug(&plug);
1390 	if (write)
1391 		mmap_write_unlock(mm);
1392 	else
1393 		mmap_read_unlock(mm);
1394 
1395 	return error;
1396 }
1397 
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1398 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1399 {
1400 	return do_madvise(current->mm, start, len_in, behavior);
1401 }
1402 
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1403 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1404 		size_t, vlen, int, behavior, unsigned int, flags)
1405 {
1406 	ssize_t ret;
1407 	struct iovec iovstack[UIO_FASTIOV], iovec;
1408 	struct iovec *iov = iovstack;
1409 	struct iov_iter iter;
1410 	struct pid *pid;
1411 	struct task_struct *task;
1412 	struct mm_struct *mm;
1413 	size_t total_len;
1414 	unsigned int f_flags;
1415 
1416 	if (flags != 0) {
1417 		ret = -EINVAL;
1418 		goto out;
1419 	}
1420 
1421 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1422 	if (ret < 0)
1423 		goto out;
1424 
1425 	pid = pidfd_get_pid(pidfd, &f_flags);
1426 	if (IS_ERR(pid)) {
1427 		ret = PTR_ERR(pid);
1428 		goto free_iov;
1429 	}
1430 
1431 	task = get_pid_task(pid, PIDTYPE_PID);
1432 	if (!task) {
1433 		ret = -ESRCH;
1434 		goto put_pid;
1435 	}
1436 
1437 	if (!process_madvise_behavior_valid(behavior)) {
1438 		ret = -EINVAL;
1439 		goto release_task;
1440 	}
1441 
1442 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1443 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1444 	if (IS_ERR_OR_NULL(mm)) {
1445 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1446 		goto release_task;
1447 	}
1448 
1449 	/*
1450 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1451 	 * only non-destructive hints are currently supported.
1452 	 */
1453 	if (!capable(CAP_SYS_NICE)) {
1454 		ret = -EPERM;
1455 		goto release_mm;
1456 	}
1457 
1458 	total_len = iov_iter_count(&iter);
1459 
1460 	while (iov_iter_count(&iter)) {
1461 		iovec = iov_iter_iovec(&iter);
1462 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1463 					iovec.iov_len, behavior);
1464 		if (ret < 0)
1465 			break;
1466 		iov_iter_advance(&iter, iovec.iov_len);
1467 	}
1468 
1469 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1470 
1471 release_mm:
1472 	mmput(mm);
1473 release_task:
1474 	put_task_struct(task);
1475 put_pid:
1476 	put_pid(pid);
1477 free_iov:
1478 	kfree(iov);
1479 out:
1480 	return ret;
1481 }
1482