1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include <linux/pagewalk.h>
60 #include <linux/shmem_fs.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69
__page_handle_poison(struct page * page)70 static bool __page_handle_poison(struct page *page)
71 {
72 int ret;
73
74 zone_pcp_disable(page_zone(page));
75 ret = dissolve_free_huge_page(page);
76 if (!ret)
77 ret = take_page_off_buddy(page);
78 zone_pcp_enable(page_zone(page));
79
80 return ret > 0;
81 }
82
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)83 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
84 {
85 if (hugepage_or_freepage) {
86 /*
87 * Doing this check for free pages is also fine since dissolve_free_huge_page
88 * returns 0 for non-hugetlb pages as well.
89 */
90 if (!__page_handle_poison(page))
91 /*
92 * We could fail to take off the target page from buddy
93 * for example due to racy page allocation, but that's
94 * acceptable because soft-offlined page is not broken
95 * and if someone really want to use it, they should
96 * take it.
97 */
98 return false;
99 }
100
101 SetPageHWPoison(page);
102 if (release)
103 put_page(page);
104 page_ref_inc(page);
105 num_poisoned_pages_inc();
106
107 return true;
108 }
109
110 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
111
112 u32 hwpoison_filter_enable = 0;
113 u32 hwpoison_filter_dev_major = ~0U;
114 u32 hwpoison_filter_dev_minor = ~0U;
115 u64 hwpoison_filter_flags_mask;
116 u64 hwpoison_filter_flags_value;
117 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
118 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
122
hwpoison_filter_dev(struct page * p)123 static int hwpoison_filter_dev(struct page *p)
124 {
125 struct address_space *mapping;
126 dev_t dev;
127
128 if (hwpoison_filter_dev_major == ~0U &&
129 hwpoison_filter_dev_minor == ~0U)
130 return 0;
131
132 /*
133 * page_mapping() does not accept slab pages.
134 */
135 if (PageSlab(p))
136 return -EINVAL;
137
138 mapping = page_mapping(p);
139 if (mapping == NULL || mapping->host == NULL)
140 return -EINVAL;
141
142 dev = mapping->host->i_sb->s_dev;
143 if (hwpoison_filter_dev_major != ~0U &&
144 hwpoison_filter_dev_major != MAJOR(dev))
145 return -EINVAL;
146 if (hwpoison_filter_dev_minor != ~0U &&
147 hwpoison_filter_dev_minor != MINOR(dev))
148 return -EINVAL;
149
150 return 0;
151 }
152
hwpoison_filter_flags(struct page * p)153 static int hwpoison_filter_flags(struct page *p)
154 {
155 if (!hwpoison_filter_flags_mask)
156 return 0;
157
158 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
159 hwpoison_filter_flags_value)
160 return 0;
161 else
162 return -EINVAL;
163 }
164
165 /*
166 * This allows stress tests to limit test scope to a collection of tasks
167 * by putting them under some memcg. This prevents killing unrelated/important
168 * processes such as /sbin/init. Note that the target task may share clean
169 * pages with init (eg. libc text), which is harmless. If the target task
170 * share _dirty_ pages with another task B, the test scheme must make sure B
171 * is also included in the memcg. At last, due to race conditions this filter
172 * can only guarantee that the page either belongs to the memcg tasks, or is
173 * a freed page.
174 */
175 #ifdef CONFIG_MEMCG
176 u64 hwpoison_filter_memcg;
177 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)178 static int hwpoison_filter_task(struct page *p)
179 {
180 if (!hwpoison_filter_memcg)
181 return 0;
182
183 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
184 return -EINVAL;
185
186 return 0;
187 }
188 #else
hwpoison_filter_task(struct page * p)189 static int hwpoison_filter_task(struct page *p) { return 0; }
190 #endif
191
hwpoison_filter(struct page * p)192 int hwpoison_filter(struct page *p)
193 {
194 if (!hwpoison_filter_enable)
195 return 0;
196
197 if (hwpoison_filter_dev(p))
198 return -EINVAL;
199
200 if (hwpoison_filter_flags(p))
201 return -EINVAL;
202
203 if (hwpoison_filter_task(p))
204 return -EINVAL;
205
206 return 0;
207 }
208 #else
hwpoison_filter(struct page * p)209 int hwpoison_filter(struct page *p)
210 {
211 return 0;
212 }
213 #endif
214
215 EXPORT_SYMBOL_GPL(hwpoison_filter);
216
217 /*
218 * Kill all processes that have a poisoned page mapped and then isolate
219 * the page.
220 *
221 * General strategy:
222 * Find all processes having the page mapped and kill them.
223 * But we keep a page reference around so that the page is not
224 * actually freed yet.
225 * Then stash the page away
226 *
227 * There's no convenient way to get back to mapped processes
228 * from the VMAs. So do a brute-force search over all
229 * running processes.
230 *
231 * Remember that machine checks are not common (or rather
232 * if they are common you have other problems), so this shouldn't
233 * be a performance issue.
234 *
235 * Also there are some races possible while we get from the
236 * error detection to actually handle it.
237 */
238
239 struct to_kill {
240 struct list_head nd;
241 struct task_struct *tsk;
242 unsigned long addr;
243 short size_shift;
244 };
245
246 /*
247 * Send all the processes who have the page mapped a signal.
248 * ``action optional'' if they are not immediately affected by the error
249 * ``action required'' if error happened in current execution context
250 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)251 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
252 {
253 struct task_struct *t = tk->tsk;
254 short addr_lsb = tk->size_shift;
255 int ret = 0;
256
257 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
258 pfn, t->comm, t->pid);
259
260 if (flags & MF_ACTION_REQUIRED) {
261 if (t == current)
262 ret = force_sig_mceerr(BUS_MCEERR_AR,
263 (void __user *)tk->addr, addr_lsb);
264 else
265 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
266 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
267 addr_lsb, t);
268 } else {
269 /*
270 * Don't use force here, it's convenient if the signal
271 * can be temporarily blocked.
272 * This could cause a loop when the user sets SIGBUS
273 * to SIG_IGN, but hopefully no one will do that?
274 */
275 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
276 addr_lsb, t); /* synchronous? */
277 }
278 if (ret < 0)
279 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
280 t->comm, t->pid, ret);
281 return ret;
282 }
283
284 /*
285 * Unknown page type encountered. Try to check whether it can turn PageLRU by
286 * lru_add_drain_all.
287 */
shake_page(struct page * p)288 void shake_page(struct page *p)
289 {
290 if (PageHuge(p))
291 return;
292
293 if (!PageSlab(p)) {
294 lru_add_drain_all();
295 if (PageLRU(p) || is_free_buddy_page(p))
296 return;
297 }
298
299 /*
300 * TODO: Could shrink slab caches here if a lightweight range-based
301 * shrinker will be available.
302 */
303 }
304 EXPORT_SYMBOL_GPL(shake_page);
305
dev_pagemap_mapping_shift(struct page * page,struct vm_area_struct * vma)306 static unsigned long dev_pagemap_mapping_shift(struct page *page,
307 struct vm_area_struct *vma)
308 {
309 unsigned long address = vma_address(page, vma);
310 unsigned long ret = 0;
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (pte_present(*pte) && pte_devmap(*pte))
335 ret = PAGE_SHIFT;
336 pte_unmap(pte);
337 return ret;
338 }
339
340 /*
341 * Failure handling: if we can't find or can't kill a process there's
342 * not much we can do. We just print a message and ignore otherwise.
343 */
344
345 /*
346 * Schedule a process for later kill.
347 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
348 */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill)349 static void add_to_kill(struct task_struct *tsk, struct page *p,
350 struct vm_area_struct *vma,
351 struct list_head *to_kill)
352 {
353 struct to_kill *tk;
354
355 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
356 if (!tk) {
357 pr_err("Memory failure: Out of memory while machine check handling\n");
358 return;
359 }
360
361 tk->addr = page_address_in_vma(p, vma);
362 if (is_zone_device_page(p))
363 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
364 else
365 tk->size_shift = page_shift(compound_head(p));
366
367 /*
368 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
369 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
370 * so "tk->size_shift == 0" effectively checks no mapping on
371 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
372 * to a process' address space, it's possible not all N VMAs
373 * contain mappings for the page, but at least one VMA does.
374 * Only deliver SIGBUS with payload derived from the VMA that
375 * has a mapping for the page.
376 */
377 if (tk->addr == -EFAULT) {
378 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
379 page_to_pfn(p), tsk->comm);
380 } else if (tk->size_shift == 0) {
381 kfree(tk);
382 return;
383 }
384
385 get_task_struct(tsk);
386 tk->tsk = tsk;
387 list_add_tail(&tk->nd, to_kill);
388 }
389
390 /*
391 * Kill the processes that have been collected earlier.
392 *
393 * Only do anything when FORCEKILL is set, otherwise just free the
394 * list (this is used for clean pages which do not need killing)
395 * Also when FAIL is set do a force kill because something went
396 * wrong earlier.
397 */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)398 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
399 unsigned long pfn, int flags)
400 {
401 struct to_kill *tk, *next;
402
403 list_for_each_entry_safe (tk, next, to_kill, nd) {
404 if (forcekill) {
405 /*
406 * In case something went wrong with munmapping
407 * make sure the process doesn't catch the
408 * signal and then access the memory. Just kill it.
409 */
410 if (fail || tk->addr == -EFAULT) {
411 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
412 pfn, tk->tsk->comm, tk->tsk->pid);
413 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
414 tk->tsk, PIDTYPE_PID);
415 }
416
417 /*
418 * In theory the process could have mapped
419 * something else on the address in-between. We could
420 * check for that, but we need to tell the
421 * process anyways.
422 */
423 else if (kill_proc(tk, pfn, flags) < 0)
424 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
425 pfn, tk->tsk->comm, tk->tsk->pid);
426 }
427 put_task_struct(tk->tsk);
428 kfree(tk);
429 }
430 }
431
432 /*
433 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
434 * on behalf of the thread group. Return task_struct of the (first found)
435 * dedicated thread if found, and return NULL otherwise.
436 *
437 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
438 * have to call rcu_read_lock/unlock() in this function.
439 */
find_early_kill_thread(struct task_struct * tsk)440 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
441 {
442 struct task_struct *t;
443
444 for_each_thread(tsk, t) {
445 if (t->flags & PF_MCE_PROCESS) {
446 if (t->flags & PF_MCE_EARLY)
447 return t;
448 } else {
449 if (sysctl_memory_failure_early_kill)
450 return t;
451 }
452 }
453 return NULL;
454 }
455
456 /*
457 * Determine whether a given process is "early kill" process which expects
458 * to be signaled when some page under the process is hwpoisoned.
459 * Return task_struct of the dedicated thread (main thread unless explicitly
460 * specified) if the process is "early kill" and otherwise returns NULL.
461 *
462 * Note that the above is true for Action Optional case. For Action Required
463 * case, it's only meaningful to the current thread which need to be signaled
464 * with SIGBUS, this error is Action Optional for other non current
465 * processes sharing the same error page,if the process is "early kill", the
466 * task_struct of the dedicated thread will also be returned.
467 */
task_early_kill(struct task_struct * tsk,int force_early)468 static struct task_struct *task_early_kill(struct task_struct *tsk,
469 int force_early)
470 {
471 if (!tsk->mm)
472 return NULL;
473 /*
474 * Comparing ->mm here because current task might represent
475 * a subthread, while tsk always points to the main thread.
476 */
477 if (force_early && tsk->mm == current->mm)
478 return current;
479
480 return find_early_kill_thread(tsk);
481 }
482
483 /*
484 * Collect processes when the error hit an anonymous page.
485 */
collect_procs_anon(struct page * page,struct list_head * to_kill,int force_early)486 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
487 int force_early)
488 {
489 struct vm_area_struct *vma;
490 struct task_struct *tsk;
491 struct anon_vma *av;
492 pgoff_t pgoff;
493
494 av = page_lock_anon_vma_read(page, NULL);
495 if (av == NULL) /* Not actually mapped anymore */
496 return;
497
498 pgoff = page_to_pgoff(page);
499 read_lock(&tasklist_lock);
500 for_each_process (tsk) {
501 struct anon_vma_chain *vmac;
502 struct task_struct *t = task_early_kill(tsk, force_early);
503
504 if (!t)
505 continue;
506 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
507 pgoff, pgoff) {
508 vma = vmac->vma;
509 if (!page_mapped_in_vma(page, vma))
510 continue;
511 if (vma->vm_mm == t->mm)
512 add_to_kill(t, page, vma, to_kill);
513 }
514 }
515 read_unlock(&tasklist_lock);
516 page_unlock_anon_vma_read(av);
517 }
518
519 /*
520 * Collect processes when the error hit a file mapped page.
521 */
collect_procs_file(struct page * page,struct list_head * to_kill,int force_early)522 static void collect_procs_file(struct page *page, struct list_head *to_kill,
523 int force_early)
524 {
525 struct vm_area_struct *vma;
526 struct task_struct *tsk;
527 struct address_space *mapping = page->mapping;
528 pgoff_t pgoff;
529
530 i_mmap_lock_read(mapping);
531 read_lock(&tasklist_lock);
532 pgoff = page_to_pgoff(page);
533 for_each_process(tsk) {
534 struct task_struct *t = task_early_kill(tsk, force_early);
535
536 if (!t)
537 continue;
538 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
539 pgoff) {
540 /*
541 * Send early kill signal to tasks where a vma covers
542 * the page but the corrupted page is not necessarily
543 * mapped it in its pte.
544 * Assume applications who requested early kill want
545 * to be informed of all such data corruptions.
546 */
547 if (vma->vm_mm == t->mm)
548 add_to_kill(t, page, vma, to_kill);
549 }
550 }
551 read_unlock(&tasklist_lock);
552 i_mmap_unlock_read(mapping);
553 }
554
555 /*
556 * Collect the processes who have the corrupted page mapped to kill.
557 */
collect_procs(struct page * page,struct list_head * tokill,int force_early)558 static void collect_procs(struct page *page, struct list_head *tokill,
559 int force_early)
560 {
561 if (!page->mapping)
562 return;
563
564 if (PageAnon(page))
565 collect_procs_anon(page, tokill, force_early);
566 else
567 collect_procs_file(page, tokill, force_early);
568 }
569
570 struct hwp_walk {
571 struct to_kill tk;
572 unsigned long pfn;
573 int flags;
574 };
575
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)576 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
577 {
578 tk->addr = addr;
579 tk->size_shift = shift;
580 }
581
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)582 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
583 unsigned long poisoned_pfn, struct to_kill *tk)
584 {
585 unsigned long pfn = 0;
586
587 if (pte_present(pte)) {
588 pfn = pte_pfn(pte);
589 } else {
590 swp_entry_t swp = pte_to_swp_entry(pte);
591
592 if (is_hwpoison_entry(swp))
593 pfn = hwpoison_entry_to_pfn(swp);
594 }
595
596 if (!pfn || pfn != poisoned_pfn)
597 return 0;
598
599 set_to_kill(tk, addr, shift);
600 return 1;
601 }
602
603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwp_walk * hwp)604 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
605 struct hwp_walk *hwp)
606 {
607 pmd_t pmd = *pmdp;
608 unsigned long pfn;
609 unsigned long hwpoison_vaddr;
610
611 if (!pmd_present(pmd))
612 return 0;
613 pfn = pmd_pfn(pmd);
614 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
615 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
616 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
617 return 1;
618 }
619 return 0;
620 }
621 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwp_walk * hwp)622 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
623 struct hwp_walk *hwp)
624 {
625 return 0;
626 }
627 #endif
628
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)629 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
630 unsigned long end, struct mm_walk *walk)
631 {
632 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
633 int ret = 0;
634 pte_t *ptep, *mapped_pte;
635 spinlock_t *ptl;
636
637 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
638 if (ptl) {
639 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
640 spin_unlock(ptl);
641 goto out;
642 }
643
644 if (pmd_trans_unstable(pmdp))
645 goto out;
646
647 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
648 addr, &ptl);
649 for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 hwp->pfn, &hwp->tk);
652 if (ret == 1)
653 break;
654 }
655 pte_unmap_unlock(mapped_pte, ptl);
656 out:
657 cond_resched();
658 return ret;
659 }
660
661 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)662 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 unsigned long addr, unsigned long end,
664 struct mm_walk *walk)
665 {
666 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 pte_t pte = huge_ptep_get(ptep);
668 struct hstate *h = hstate_vma(walk->vma);
669
670 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 hwp->pfn, &hwp->tk);
672 }
673 #else
674 #define hwpoison_hugetlb_range NULL
675 #endif
676
677 static struct mm_walk_ops hwp_walk_ops = {
678 .pmd_entry = hwpoison_pte_range,
679 .hugetlb_entry = hwpoison_hugetlb_range,
680 };
681
682 /*
683 * Sends SIGBUS to the current process with error info.
684 *
685 * This function is intended to handle "Action Required" MCEs on already
686 * hardware poisoned pages. They could happen, for example, when
687 * memory_failure() failed to unmap the error page at the first call, or
688 * when multiple local machine checks happened on different CPUs.
689 *
690 * MCE handler currently has no easy access to the error virtual address,
691 * so this function walks page table to find it. The returned virtual address
692 * is proper in most cases, but it could be wrong when the application
693 * process has multiple entries mapping the error page.
694 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)695 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 int flags)
697 {
698 int ret;
699 struct hwp_walk priv = {
700 .pfn = pfn,
701 };
702 priv.tk.tsk = p;
703
704 if (!p->mm)
705 return -EFAULT;
706
707 mmap_read_lock(p->mm);
708 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
709 (void *)&priv);
710 if (ret == 1 && priv.tk.addr)
711 kill_proc(&priv.tk, pfn, flags);
712 else
713 ret = 0;
714 mmap_read_unlock(p->mm);
715 return ret > 0 ? -EHWPOISON : -EFAULT;
716 }
717
718 static const char *action_name[] = {
719 [MF_IGNORED] = "Ignored",
720 [MF_FAILED] = "Failed",
721 [MF_DELAYED] = "Delayed",
722 [MF_RECOVERED] = "Recovered",
723 };
724
725 static const char * const action_page_types[] = {
726 [MF_MSG_KERNEL] = "reserved kernel page",
727 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
728 [MF_MSG_SLAB] = "kernel slab page",
729 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
730 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
731 [MF_MSG_HUGE] = "huge page",
732 [MF_MSG_FREE_HUGE] = "free huge page",
733 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
734 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
735 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
736 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
737 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
738 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
739 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
740 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
741 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
742 [MF_MSG_CLEAN_LRU] = "clean LRU page",
743 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
744 [MF_MSG_BUDDY] = "free buddy page",
745 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
746 [MF_MSG_DAX] = "dax page",
747 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
748 [MF_MSG_UNKNOWN] = "unknown page",
749 };
750
751 /*
752 * XXX: It is possible that a page is isolated from LRU cache,
753 * and then kept in swap cache or failed to remove from page cache.
754 * The page count will stop it from being freed by unpoison.
755 * Stress tests should be aware of this memory leak problem.
756 */
delete_from_lru_cache(struct page * p)757 static int delete_from_lru_cache(struct page *p)
758 {
759 if (!isolate_lru_page(p)) {
760 /*
761 * Clear sensible page flags, so that the buddy system won't
762 * complain when the page is unpoison-and-freed.
763 */
764 ClearPageActive(p);
765 ClearPageUnevictable(p);
766
767 /*
768 * Poisoned page might never drop its ref count to 0 so we have
769 * to uncharge it manually from its memcg.
770 */
771 mem_cgroup_uncharge(p);
772
773 /*
774 * drop the page count elevated by isolate_lru_page()
775 */
776 put_page(p);
777 return 0;
778 }
779 return -EIO;
780 }
781
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)782 static int truncate_error_page(struct page *p, unsigned long pfn,
783 struct address_space *mapping)
784 {
785 int ret = MF_FAILED;
786
787 if (mapping->a_ops->error_remove_page) {
788 int err = mapping->a_ops->error_remove_page(mapping, p);
789
790 if (err != 0) {
791 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
792 pfn, err);
793 } else if (page_has_private(p) &&
794 !try_to_release_page(p, GFP_NOIO)) {
795 pr_info("Memory failure: %#lx: failed to release buffers\n",
796 pfn);
797 } else {
798 ret = MF_RECOVERED;
799 }
800 } else {
801 /*
802 * If the file system doesn't support it just invalidate
803 * This fails on dirty or anything with private pages
804 */
805 if (invalidate_inode_page(p))
806 ret = MF_RECOVERED;
807 else
808 pr_info("Memory failure: %#lx: Failed to invalidate\n",
809 pfn);
810 }
811
812 return ret;
813 }
814
815 struct page_state {
816 unsigned long mask;
817 unsigned long res;
818 enum mf_action_page_type type;
819
820 /* Callback ->action() has to unlock the relevant page inside it. */
821 int (*action)(struct page_state *ps, struct page *p);
822 };
823
824 /*
825 * Return true if page is still referenced by others, otherwise return
826 * false.
827 *
828 * The extra_pins is true when one extra refcount is expected.
829 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)830 static bool has_extra_refcount(struct page_state *ps, struct page *p,
831 bool extra_pins)
832 {
833 int count = page_count(p) - 1;
834
835 if (extra_pins)
836 count -= 1;
837
838 if (count > 0) {
839 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
840 page_to_pfn(p), action_page_types[ps->type], count);
841 return true;
842 }
843
844 return false;
845 }
846
847 /*
848 * Error hit kernel page.
849 * Do nothing, try to be lucky and not touch this instead. For a few cases we
850 * could be more sophisticated.
851 */
me_kernel(struct page_state * ps,struct page * p)852 static int me_kernel(struct page_state *ps, struct page *p)
853 {
854 unlock_page(p);
855 return MF_IGNORED;
856 }
857
858 /*
859 * Page in unknown state. Do nothing.
860 */
me_unknown(struct page_state * ps,struct page * p)861 static int me_unknown(struct page_state *ps, struct page *p)
862 {
863 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
864 unlock_page(p);
865 return MF_FAILED;
866 }
867
868 /*
869 * Clean (or cleaned) page cache page.
870 */
me_pagecache_clean(struct page_state * ps,struct page * p)871 static int me_pagecache_clean(struct page_state *ps, struct page *p)
872 {
873 int ret;
874 struct address_space *mapping;
875 bool extra_pins;
876
877 delete_from_lru_cache(p);
878
879 /*
880 * For anonymous pages we're done the only reference left
881 * should be the one m_f() holds.
882 */
883 if (PageAnon(p)) {
884 ret = MF_RECOVERED;
885 goto out;
886 }
887
888 /*
889 * Now truncate the page in the page cache. This is really
890 * more like a "temporary hole punch"
891 * Don't do this for block devices when someone else
892 * has a reference, because it could be file system metadata
893 * and that's not safe to truncate.
894 */
895 mapping = page_mapping(p);
896 if (!mapping) {
897 /*
898 * Page has been teared down in the meanwhile
899 */
900 ret = MF_FAILED;
901 goto out;
902 }
903
904 /*
905 * The shmem page is kept in page cache instead of truncating
906 * so is expected to have an extra refcount after error-handling.
907 */
908 extra_pins = shmem_mapping(mapping);
909
910 /*
911 * Truncation is a bit tricky. Enable it per file system for now.
912 *
913 * Open: to take i_rwsem or not for this? Right now we don't.
914 */
915 ret = truncate_error_page(p, page_to_pfn(p), mapping);
916 if (has_extra_refcount(ps, p, extra_pins))
917 ret = MF_FAILED;
918
919 out:
920 unlock_page(p);
921
922 return ret;
923 }
924
925 /*
926 * Dirty pagecache page
927 * Issues: when the error hit a hole page the error is not properly
928 * propagated.
929 */
me_pagecache_dirty(struct page_state * ps,struct page * p)930 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
931 {
932 struct address_space *mapping = page_mapping(p);
933
934 SetPageError(p);
935 /* TBD: print more information about the file. */
936 if (mapping) {
937 /*
938 * IO error will be reported by write(), fsync(), etc.
939 * who check the mapping.
940 * This way the application knows that something went
941 * wrong with its dirty file data.
942 *
943 * There's one open issue:
944 *
945 * The EIO will be only reported on the next IO
946 * operation and then cleared through the IO map.
947 * Normally Linux has two mechanisms to pass IO error
948 * first through the AS_EIO flag in the address space
949 * and then through the PageError flag in the page.
950 * Since we drop pages on memory failure handling the
951 * only mechanism open to use is through AS_AIO.
952 *
953 * This has the disadvantage that it gets cleared on
954 * the first operation that returns an error, while
955 * the PageError bit is more sticky and only cleared
956 * when the page is reread or dropped. If an
957 * application assumes it will always get error on
958 * fsync, but does other operations on the fd before
959 * and the page is dropped between then the error
960 * will not be properly reported.
961 *
962 * This can already happen even without hwpoisoned
963 * pages: first on metadata IO errors (which only
964 * report through AS_EIO) or when the page is dropped
965 * at the wrong time.
966 *
967 * So right now we assume that the application DTRT on
968 * the first EIO, but we're not worse than other parts
969 * of the kernel.
970 */
971 mapping_set_error(mapping, -EIO);
972 }
973
974 return me_pagecache_clean(ps, p);
975 }
976
977 /*
978 * Clean and dirty swap cache.
979 *
980 * Dirty swap cache page is tricky to handle. The page could live both in page
981 * cache and swap cache(ie. page is freshly swapped in). So it could be
982 * referenced concurrently by 2 types of PTEs:
983 * normal PTEs and swap PTEs. We try to handle them consistently by calling
984 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
985 * and then
986 * - clear dirty bit to prevent IO
987 * - remove from LRU
988 * - but keep in the swap cache, so that when we return to it on
989 * a later page fault, we know the application is accessing
990 * corrupted data and shall be killed (we installed simple
991 * interception code in do_swap_page to catch it).
992 *
993 * Clean swap cache pages can be directly isolated. A later page fault will
994 * bring in the known good data from disk.
995 */
me_swapcache_dirty(struct page_state * ps,struct page * p)996 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
997 {
998 int ret;
999 bool extra_pins = false;
1000
1001 ClearPageDirty(p);
1002 /* Trigger EIO in shmem: */
1003 ClearPageUptodate(p);
1004
1005 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1006 unlock_page(p);
1007
1008 if (ret == MF_DELAYED)
1009 extra_pins = true;
1010
1011 if (has_extra_refcount(ps, p, extra_pins))
1012 ret = MF_FAILED;
1013
1014 return ret;
1015 }
1016
me_swapcache_clean(struct page_state * ps,struct page * p)1017 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1018 {
1019 int ret;
1020
1021 delete_from_swap_cache(p);
1022
1023 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1024 unlock_page(p);
1025
1026 if (has_extra_refcount(ps, p, false))
1027 ret = MF_FAILED;
1028
1029 return ret;
1030 }
1031
1032 /*
1033 * Huge pages. Needs work.
1034 * Issues:
1035 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1036 * To narrow down kill region to one page, we need to break up pmd.
1037 */
me_huge_page(struct page_state * ps,struct page * p)1038 static int me_huge_page(struct page_state *ps, struct page *p)
1039 {
1040 int res;
1041 struct page *hpage = compound_head(p);
1042 struct address_space *mapping;
1043 bool extra_pins = false;
1044
1045 if (!PageHuge(hpage))
1046 return MF_DELAYED;
1047
1048 mapping = page_mapping(hpage);
1049 if (mapping) {
1050 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1051 /* The page is kept in page cache. */
1052 extra_pins = true;
1053 unlock_page(hpage);
1054 } else {
1055 res = MF_FAILED;
1056 unlock_page(hpage);
1057 /*
1058 * migration entry prevents later access on error anonymous
1059 * hugepage, so we can free and dissolve it into buddy to
1060 * save healthy subpages.
1061 */
1062 if (PageAnon(hpage))
1063 put_page(hpage);
1064 if (__page_handle_poison(p)) {
1065 page_ref_inc(p);
1066 res = MF_RECOVERED;
1067 }
1068 }
1069
1070 if (has_extra_refcount(ps, p, extra_pins))
1071 res = MF_FAILED;
1072
1073 return res;
1074 }
1075
1076 /*
1077 * Various page states we can handle.
1078 *
1079 * A page state is defined by its current page->flags bits.
1080 * The table matches them in order and calls the right handler.
1081 *
1082 * This is quite tricky because we can access page at any time
1083 * in its live cycle, so all accesses have to be extremely careful.
1084 *
1085 * This is not complete. More states could be added.
1086 * For any missing state don't attempt recovery.
1087 */
1088
1089 #define dirty (1UL << PG_dirty)
1090 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1091 #define unevict (1UL << PG_unevictable)
1092 #define mlock (1UL << PG_mlocked)
1093 #define lru (1UL << PG_lru)
1094 #define head (1UL << PG_head)
1095 #define slab (1UL << PG_slab)
1096 #define reserved (1UL << PG_reserved)
1097
1098 static struct page_state error_states[] = {
1099 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1100 /*
1101 * free pages are specially detected outside this table:
1102 * PG_buddy pages only make a small fraction of all free pages.
1103 */
1104
1105 /*
1106 * Could in theory check if slab page is free or if we can drop
1107 * currently unused objects without touching them. But just
1108 * treat it as standard kernel for now.
1109 */
1110 { slab, slab, MF_MSG_SLAB, me_kernel },
1111
1112 { head, head, MF_MSG_HUGE, me_huge_page },
1113
1114 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1115 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1116
1117 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1118 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1119
1120 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1121 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1122
1123 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1124 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1125
1126 /*
1127 * Catchall entry: must be at end.
1128 */
1129 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1130 };
1131
1132 #undef dirty
1133 #undef sc
1134 #undef unevict
1135 #undef mlock
1136 #undef lru
1137 #undef head
1138 #undef slab
1139 #undef reserved
1140
1141 /*
1142 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1143 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1144 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1145 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1146 enum mf_result result)
1147 {
1148 trace_memory_failure_event(pfn, type, result);
1149
1150 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1151 pfn, action_page_types[type], action_name[result]);
1152 }
1153
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1154 static int page_action(struct page_state *ps, struct page *p,
1155 unsigned long pfn)
1156 {
1157 int result;
1158
1159 /* page p should be unlocked after returning from ps->action(). */
1160 result = ps->action(ps, p);
1161
1162 action_result(pfn, ps->type, result);
1163
1164 /* Could do more checks here if page looks ok */
1165 /*
1166 * Could adjust zone counters here to correct for the missing page.
1167 */
1168
1169 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1170 }
1171
1172 /*
1173 * Return true if a page type of a given page is supported by hwpoison
1174 * mechanism (while handling could fail), otherwise false. This function
1175 * does not return true for hugetlb or device memory pages, so it's assumed
1176 * to be called only in the context where we never have such pages.
1177 */
HWPoisonHandlable(struct page * page)1178 static inline bool HWPoisonHandlable(struct page *page)
1179 {
1180 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1181 }
1182
__get_hwpoison_page(struct page * page)1183 static int __get_hwpoison_page(struct page *page)
1184 {
1185 struct page *head = compound_head(page);
1186 int ret = 0;
1187 bool hugetlb = false;
1188
1189 ret = get_hwpoison_huge_page(head, &hugetlb);
1190 if (hugetlb)
1191 return ret;
1192
1193 /*
1194 * This check prevents from calling get_hwpoison_unless_zero()
1195 * for any unsupported type of page in order to reduce the risk of
1196 * unexpected races caused by taking a page refcount.
1197 */
1198 if (!HWPoisonHandlable(head))
1199 return -EBUSY;
1200
1201 if (get_page_unless_zero(head)) {
1202 if (head == compound_head(page))
1203 return 1;
1204
1205 pr_info("Memory failure: %#lx cannot catch tail\n",
1206 page_to_pfn(page));
1207 put_page(head);
1208 }
1209
1210 return 0;
1211 }
1212
get_any_page(struct page * p,unsigned long flags)1213 static int get_any_page(struct page *p, unsigned long flags)
1214 {
1215 int ret = 0, pass = 0;
1216 bool count_increased = false;
1217
1218 if (flags & MF_COUNT_INCREASED)
1219 count_increased = true;
1220
1221 try_again:
1222 if (!count_increased) {
1223 ret = __get_hwpoison_page(p);
1224 if (!ret) {
1225 if (page_count(p)) {
1226 /* We raced with an allocation, retry. */
1227 if (pass++ < 3)
1228 goto try_again;
1229 ret = -EBUSY;
1230 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1231 /* We raced with put_page, retry. */
1232 if (pass++ < 3)
1233 goto try_again;
1234 ret = -EIO;
1235 }
1236 goto out;
1237 } else if (ret == -EBUSY) {
1238 /*
1239 * We raced with (possibly temporary) unhandlable
1240 * page, retry.
1241 */
1242 if (pass++ < 3) {
1243 shake_page(p);
1244 goto try_again;
1245 }
1246 ret = -EIO;
1247 goto out;
1248 }
1249 }
1250
1251 if (PageHuge(p) || HWPoisonHandlable(p)) {
1252 ret = 1;
1253 } else {
1254 /*
1255 * A page we cannot handle. Check whether we can turn
1256 * it into something we can handle.
1257 */
1258 if (pass++ < 3) {
1259 put_page(p);
1260 shake_page(p);
1261 count_increased = false;
1262 goto try_again;
1263 }
1264 put_page(p);
1265 ret = -EIO;
1266 }
1267 out:
1268 if (ret == -EIO)
1269 pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
1270
1271 return ret;
1272 }
1273
1274 /**
1275 * get_hwpoison_page() - Get refcount for memory error handling
1276 * @p: Raw error page (hit by memory error)
1277 * @flags: Flags controlling behavior of error handling
1278 *
1279 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1280 * error on it, after checking that the error page is in a well-defined state
1281 * (defined as a page-type we can successfully handle the memor error on it,
1282 * such as LRU page and hugetlb page).
1283 *
1284 * Memory error handling could be triggered at any time on any type of page,
1285 * so it's prone to race with typical memory management lifecycle (like
1286 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1287 * extra care for the error page's state (as done in __get_hwpoison_page()),
1288 * and has some retry logic in get_any_page().
1289 *
1290 * Return: 0 on failure,
1291 * 1 on success for in-use pages in a well-defined state,
1292 * -EIO for pages on which we can not handle memory errors,
1293 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1294 * operations like allocation and free.
1295 */
get_hwpoison_page(struct page * p,unsigned long flags)1296 static int get_hwpoison_page(struct page *p, unsigned long flags)
1297 {
1298 int ret;
1299
1300 zone_pcp_disable(page_zone(p));
1301 ret = get_any_page(p, flags);
1302 zone_pcp_enable(page_zone(p));
1303
1304 return ret;
1305 }
1306
1307 /*
1308 * Do all that is necessary to remove user space mappings. Unmap
1309 * the pages and send SIGBUS to the processes if the data was dirty.
1310 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page * hpage)1311 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1312 int flags, struct page *hpage)
1313 {
1314 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1315 struct address_space *mapping;
1316 LIST_HEAD(tokill);
1317 bool unmap_success;
1318 int kill = 1, forcekill;
1319 bool mlocked = PageMlocked(hpage);
1320
1321 /*
1322 * Here we are interested only in user-mapped pages, so skip any
1323 * other types of pages.
1324 */
1325 if (PageReserved(p) || PageSlab(p))
1326 return true;
1327 if (!(PageLRU(hpage) || PageHuge(p)))
1328 return true;
1329
1330 /*
1331 * This check implies we don't kill processes if their pages
1332 * are in the swap cache early. Those are always late kills.
1333 */
1334 if (!page_mapped(p))
1335 return true;
1336
1337 if (PageKsm(p)) {
1338 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1339 return false;
1340 }
1341
1342 if (PageSwapCache(p)) {
1343 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1344 pfn);
1345 ttu |= TTU_IGNORE_HWPOISON;
1346 }
1347
1348 /*
1349 * Propagate the dirty bit from PTEs to struct page first, because we
1350 * need this to decide if we should kill or just drop the page.
1351 * XXX: the dirty test could be racy: set_page_dirty() may not always
1352 * be called inside page lock (it's recommended but not enforced).
1353 */
1354 mapping = page_mapping(hpage);
1355 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1356 mapping_can_writeback(mapping)) {
1357 if (page_mkclean(hpage)) {
1358 SetPageDirty(hpage);
1359 } else {
1360 kill = 0;
1361 ttu |= TTU_IGNORE_HWPOISON;
1362 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1363 pfn);
1364 }
1365 }
1366
1367 /*
1368 * First collect all the processes that have the page
1369 * mapped in dirty form. This has to be done before try_to_unmap,
1370 * because ttu takes the rmap data structures down.
1371 *
1372 * Error handling: We ignore errors here because
1373 * there's nothing that can be done.
1374 */
1375 if (kill)
1376 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1377
1378 if (!PageHuge(hpage)) {
1379 try_to_unmap(hpage, ttu);
1380 } else {
1381 if (!PageAnon(hpage)) {
1382 /*
1383 * For hugetlb pages in shared mappings, try_to_unmap
1384 * could potentially call huge_pmd_unshare. Because of
1385 * this, take semaphore in write mode here and set
1386 * TTU_RMAP_LOCKED to indicate we have taken the lock
1387 * at this higher level.
1388 */
1389 mapping = hugetlb_page_mapping_lock_write(hpage);
1390 if (mapping) {
1391 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1392 i_mmap_unlock_write(mapping);
1393 } else
1394 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1395 } else {
1396 try_to_unmap(hpage, ttu);
1397 }
1398 }
1399
1400 unmap_success = !page_mapped(p);
1401 if (!unmap_success)
1402 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1403 pfn, page_mapcount(p));
1404
1405 /*
1406 * try_to_unmap() might put mlocked page in lru cache, so call
1407 * shake_page() again to ensure that it's flushed.
1408 */
1409 if (mlocked)
1410 shake_page(hpage);
1411
1412 /*
1413 * Now that the dirty bit has been propagated to the
1414 * struct page and all unmaps done we can decide if
1415 * killing is needed or not. Only kill when the page
1416 * was dirty or the process is not restartable,
1417 * otherwise the tokill list is merely
1418 * freed. When there was a problem unmapping earlier
1419 * use a more force-full uncatchable kill to prevent
1420 * any accesses to the poisoned memory.
1421 */
1422 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1423 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1424
1425 return unmap_success;
1426 }
1427
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1428 static int identify_page_state(unsigned long pfn, struct page *p,
1429 unsigned long page_flags)
1430 {
1431 struct page_state *ps;
1432
1433 /*
1434 * The first check uses the current page flags which may not have any
1435 * relevant information. The second check with the saved page flags is
1436 * carried out only if the first check can't determine the page status.
1437 */
1438 for (ps = error_states;; ps++)
1439 if ((p->flags & ps->mask) == ps->res)
1440 break;
1441
1442 page_flags |= (p->flags & (1UL << PG_dirty));
1443
1444 if (!ps->mask)
1445 for (ps = error_states;; ps++)
1446 if ((page_flags & ps->mask) == ps->res)
1447 break;
1448 return page_action(ps, p, pfn);
1449 }
1450
try_to_split_thp_page(struct page * page,const char * msg)1451 static int try_to_split_thp_page(struct page *page, const char *msg)
1452 {
1453 lock_page(page);
1454 if (unlikely(split_huge_page(page))) {
1455 unsigned long pfn = page_to_pfn(page);
1456
1457 unlock_page(page);
1458 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1459 put_page(page);
1460 return -EBUSY;
1461 }
1462 unlock_page(page);
1463
1464 return 0;
1465 }
1466
1467 /*
1468 * Called from hugetlb code with hugetlb_lock held.
1469 *
1470 * Return values:
1471 * 0 - free hugepage
1472 * 1 - in-use hugepage
1473 * 2 - not a hugepage
1474 * -EBUSY - the hugepage is busy (try to retry)
1475 * -EHWPOISON - the hugepage is already hwpoisoned
1476 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags)1477 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1478 {
1479 struct page *page = pfn_to_page(pfn);
1480 struct page *head = compound_head(page);
1481 int ret = 2; /* fallback to normal page handling */
1482 bool count_increased = false;
1483
1484 if (!PageHeadHuge(head))
1485 goto out;
1486
1487 if (flags & MF_COUNT_INCREASED) {
1488 ret = 1;
1489 count_increased = true;
1490 } else if (HPageFreed(head) || HPageMigratable(head)) {
1491 ret = get_page_unless_zero(head);
1492 if (ret)
1493 count_increased = true;
1494 } else {
1495 ret = -EBUSY;
1496 goto out;
1497 }
1498
1499 if (TestSetPageHWPoison(head)) {
1500 ret = -EHWPOISON;
1501 goto out;
1502 }
1503
1504 return ret;
1505 out:
1506 if (count_increased)
1507 put_page(head);
1508 return ret;
1509 }
1510
1511 #ifdef CONFIG_HUGETLB_PAGE
1512 /*
1513 * Taking refcount of hugetlb pages needs extra care about race conditions
1514 * with basic operations like hugepage allocation/free/demotion.
1515 * So some of prechecks for hwpoison (pinning, and testing/setting
1516 * PageHWPoison) should be done in single hugetlb_lock range.
1517 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)1518 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1519 {
1520 int res;
1521 struct page *p = pfn_to_page(pfn);
1522 struct page *head;
1523 unsigned long page_flags;
1524 bool retry = true;
1525
1526 *hugetlb = 1;
1527 retry:
1528 res = get_huge_page_for_hwpoison(pfn, flags);
1529 if (res == 2) { /* fallback to normal page handling */
1530 *hugetlb = 0;
1531 return 0;
1532 } else if (res == -EHWPOISON) {
1533 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1534 if (flags & MF_ACTION_REQUIRED) {
1535 head = compound_head(p);
1536 res = kill_accessing_process(current, page_to_pfn(head), flags);
1537 }
1538 return res;
1539 } else if (res == -EBUSY) {
1540 if (retry) {
1541 retry = false;
1542 goto retry;
1543 }
1544 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1545 return res;
1546 }
1547
1548 head = compound_head(p);
1549 lock_page(head);
1550
1551 if (hwpoison_filter(p)) {
1552 ClearPageHWPoison(head);
1553 res = -EOPNOTSUPP;
1554 goto out;
1555 }
1556
1557 num_poisoned_pages_inc();
1558
1559 /*
1560 * Handling free hugepage. The possible race with hugepage allocation
1561 * or demotion can be prevented by PageHWPoison flag.
1562 */
1563 if (res == 0) {
1564 unlock_page(head);
1565 res = MF_FAILED;
1566 if (__page_handle_poison(p)) {
1567 page_ref_inc(p);
1568 res = MF_RECOVERED;
1569 }
1570 action_result(pfn, MF_MSG_FREE_HUGE, res);
1571 return res == MF_RECOVERED ? 0 : -EBUSY;
1572 }
1573
1574 page_flags = head->flags;
1575
1576 /*
1577 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1578 * simply disable it. In order to make it work properly, we need
1579 * make sure that:
1580 * - conversion of a pud that maps an error hugetlb into hwpoison
1581 * entry properly works, and
1582 * - other mm code walking over page table is aware of pud-aligned
1583 * hwpoison entries.
1584 */
1585 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1586 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1587 res = -EBUSY;
1588 goto out;
1589 }
1590
1591 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1592 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1593 res = -EBUSY;
1594 goto out;
1595 }
1596
1597 return identify_page_state(pfn, p, page_flags);
1598 out:
1599 unlock_page(head);
1600 return res;
1601 }
1602 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)1603 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1604 {
1605 return 0;
1606 }
1607 #endif
1608
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)1609 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1610 struct dev_pagemap *pgmap)
1611 {
1612 struct page *page = pfn_to_page(pfn);
1613 unsigned long size = 0;
1614 struct to_kill *tk;
1615 LIST_HEAD(tokill);
1616 int rc = -EBUSY;
1617 loff_t start;
1618 dax_entry_t cookie;
1619
1620 if (flags & MF_COUNT_INCREASED)
1621 /*
1622 * Drop the extra refcount in case we come from madvise().
1623 */
1624 put_page(page);
1625
1626 /* device metadata space is not recoverable */
1627 if (!pgmap_pfn_valid(pgmap, pfn)) {
1628 rc = -ENXIO;
1629 goto out;
1630 }
1631
1632 /*
1633 * Prevent the inode from being freed while we are interrogating
1634 * the address_space, typically this would be handled by
1635 * lock_page(), but dax pages do not use the page lock. This
1636 * also prevents changes to the mapping of this pfn until
1637 * poison signaling is complete.
1638 */
1639 cookie = dax_lock_page(page);
1640 if (!cookie)
1641 goto out;
1642
1643 if (hwpoison_filter(page)) {
1644 rc = -EOPNOTSUPP;
1645 goto unlock;
1646 }
1647
1648 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1649 /*
1650 * TODO: Handle HMM pages which may need coordination
1651 * with device-side memory.
1652 */
1653 goto unlock;
1654 }
1655
1656 /*
1657 * Use this flag as an indication that the dax page has been
1658 * remapped UC to prevent speculative consumption of poison.
1659 */
1660 SetPageHWPoison(page);
1661
1662 /*
1663 * Unlike System-RAM there is no possibility to swap in a
1664 * different physical page at a given virtual address, so all
1665 * userspace consumption of ZONE_DEVICE memory necessitates
1666 * SIGBUS (i.e. MF_MUST_KILL)
1667 */
1668 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1669 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1670
1671 list_for_each_entry(tk, &tokill, nd)
1672 if (tk->size_shift)
1673 size = max(size, 1UL << tk->size_shift);
1674 if (size) {
1675 /*
1676 * Unmap the largest mapping to avoid breaking up
1677 * device-dax mappings which are constant size. The
1678 * actual size of the mapping being torn down is
1679 * communicated in siginfo, see kill_proc()
1680 */
1681 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1682 unmap_mapping_range(page->mapping, start, size, 0);
1683 }
1684 kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1685 rc = 0;
1686 unlock:
1687 dax_unlock_page(page, cookie);
1688 out:
1689 /* drop pgmap ref acquired in caller */
1690 put_dev_pagemap(pgmap);
1691 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1692 return rc;
1693 }
1694
1695 static DEFINE_MUTEX(mf_mutex);
1696
1697 /**
1698 * memory_failure - Handle memory failure of a page.
1699 * @pfn: Page Number of the corrupted page
1700 * @flags: fine tune action taken
1701 *
1702 * This function is called by the low level machine check code
1703 * of an architecture when it detects hardware memory corruption
1704 * of a page. It tries its best to recover, which includes
1705 * dropping pages, killing processes etc.
1706 *
1707 * The function is primarily of use for corruptions that
1708 * happen outside the current execution context (e.g. when
1709 * detected by a background scrubber)
1710 *
1711 * Must run in process context (e.g. a work queue) with interrupts
1712 * enabled and no spinlocks hold.
1713 *
1714 * Return: 0 for successfully handled the memory error,
1715 * -EOPNOTSUPP for memory_filter() filtered the error event,
1716 * < 0(except -EOPNOTSUPP) on failure.
1717 */
memory_failure(unsigned long pfn,int flags)1718 int memory_failure(unsigned long pfn, int flags)
1719 {
1720 struct page *p;
1721 struct page *hpage;
1722 struct page *orig_head;
1723 struct dev_pagemap *pgmap;
1724 int res = 0;
1725 unsigned long page_flags;
1726 bool retry = true;
1727 int hugetlb = 0;
1728
1729 if (!sysctl_memory_failure_recovery)
1730 panic("Memory failure on page %lx", pfn);
1731
1732 p = pfn_to_online_page(pfn);
1733 if (!p) {
1734 if (pfn_valid(pfn)) {
1735 pgmap = get_dev_pagemap(pfn, NULL);
1736 if (pgmap)
1737 return memory_failure_dev_pagemap(pfn, flags,
1738 pgmap);
1739 }
1740 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1741 pfn);
1742 return -ENXIO;
1743 }
1744
1745 mutex_lock(&mf_mutex);
1746
1747 try_again:
1748 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1749 if (hugetlb)
1750 goto unlock_mutex;
1751
1752 if (TestSetPageHWPoison(p)) {
1753 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1754 pfn);
1755 res = -EHWPOISON;
1756 if (flags & MF_ACTION_REQUIRED)
1757 res = kill_accessing_process(current, pfn, flags);
1758 goto unlock_mutex;
1759 }
1760
1761 orig_head = hpage = compound_head(p);
1762 num_poisoned_pages_inc();
1763
1764 /*
1765 * We need/can do nothing about count=0 pages.
1766 * 1) it's a free page, and therefore in safe hand:
1767 * prep_new_page() will be the gate keeper.
1768 * 2) it's part of a non-compound high order page.
1769 * Implies some kernel user: cannot stop them from
1770 * R/W the page; let's pray that the page has been
1771 * used and will be freed some time later.
1772 * In fact it's dangerous to directly bump up page count from 0,
1773 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1774 */
1775 if (!(flags & MF_COUNT_INCREASED)) {
1776 res = get_hwpoison_page(p, flags);
1777 if (!res) {
1778 if (is_free_buddy_page(p)) {
1779 if (take_page_off_buddy(p)) {
1780 page_ref_inc(p);
1781 res = MF_RECOVERED;
1782 } else {
1783 /* We lost the race, try again */
1784 if (retry) {
1785 ClearPageHWPoison(p);
1786 num_poisoned_pages_dec();
1787 retry = false;
1788 goto try_again;
1789 }
1790 res = MF_FAILED;
1791 }
1792 action_result(pfn, MF_MSG_BUDDY, res);
1793 res = res == MF_RECOVERED ? 0 : -EBUSY;
1794 } else {
1795 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1796 res = -EBUSY;
1797 }
1798 goto unlock_mutex;
1799 } else if (res < 0) {
1800 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1801 res = -EBUSY;
1802 goto unlock_mutex;
1803 }
1804 }
1805
1806 if (PageTransHuge(hpage)) {
1807 /*
1808 * The flag must be set after the refcount is bumped
1809 * otherwise it may race with THP split.
1810 * And the flag can't be set in get_hwpoison_page() since
1811 * it is called by soft offline too and it is just called
1812 * for !MF_COUNT_INCREASE. So here seems to be the best
1813 * place.
1814 *
1815 * Don't need care about the above error handling paths for
1816 * get_hwpoison_page() since they handle either free page
1817 * or unhandlable page. The refcount is bumped iff the
1818 * page is a valid handlable page.
1819 */
1820 SetPageHasHWPoisoned(hpage);
1821 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1822 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1823 res = -EBUSY;
1824 goto unlock_mutex;
1825 }
1826 VM_BUG_ON_PAGE(!page_count(p), p);
1827 }
1828
1829 /*
1830 * We ignore non-LRU pages for good reasons.
1831 * - PG_locked is only well defined for LRU pages and a few others
1832 * - to avoid races with __SetPageLocked()
1833 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1834 * The check (unnecessarily) ignores LRU pages being isolated and
1835 * walked by the page reclaim code, however that's not a big loss.
1836 */
1837 shake_page(p);
1838
1839 lock_page(p);
1840
1841 /*
1842 * The page could have changed compound pages during the locking.
1843 * If this happens just bail out.
1844 */
1845 if (PageCompound(p) && compound_head(p) != orig_head) {
1846 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1847 res = -EBUSY;
1848 goto unlock_page;
1849 }
1850
1851 /*
1852 * We use page flags to determine what action should be taken, but
1853 * the flags can be modified by the error containment action. One
1854 * example is an mlocked page, where PG_mlocked is cleared by
1855 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1856 * correctly, we save a copy of the page flags at this time.
1857 */
1858 page_flags = p->flags;
1859
1860 if (hwpoison_filter(p)) {
1861 if (TestClearPageHWPoison(p))
1862 num_poisoned_pages_dec();
1863 unlock_page(p);
1864 put_page(p);
1865 res = -EOPNOTSUPP;
1866 goto unlock_mutex;
1867 }
1868
1869 /*
1870 * __munlock_pagevec may clear a writeback page's LRU flag without
1871 * page_lock. We need wait writeback completion for this page or it
1872 * may trigger vfs BUG while evict inode.
1873 */
1874 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1875 goto identify_page_state;
1876
1877 /*
1878 * It's very difficult to mess with pages currently under IO
1879 * and in many cases impossible, so we just avoid it here.
1880 */
1881 wait_on_page_writeback(p);
1882
1883 /*
1884 * Now take care of user space mappings.
1885 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1886 */
1887 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1888 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1889 res = -EBUSY;
1890 goto unlock_page;
1891 }
1892
1893 /*
1894 * Torn down by someone else?
1895 */
1896 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1897 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1898 res = -EBUSY;
1899 goto unlock_page;
1900 }
1901
1902 identify_page_state:
1903 res = identify_page_state(pfn, p, page_flags);
1904 mutex_unlock(&mf_mutex);
1905 return res;
1906 unlock_page:
1907 unlock_page(p);
1908 unlock_mutex:
1909 mutex_unlock(&mf_mutex);
1910 return res;
1911 }
1912 EXPORT_SYMBOL_GPL(memory_failure);
1913
1914 #define MEMORY_FAILURE_FIFO_ORDER 4
1915 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1916
1917 struct memory_failure_entry {
1918 unsigned long pfn;
1919 int flags;
1920 };
1921
1922 struct memory_failure_cpu {
1923 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1924 MEMORY_FAILURE_FIFO_SIZE);
1925 spinlock_t lock;
1926 struct work_struct work;
1927 };
1928
1929 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1930
1931 /**
1932 * memory_failure_queue - Schedule handling memory failure of a page.
1933 * @pfn: Page Number of the corrupted page
1934 * @flags: Flags for memory failure handling
1935 *
1936 * This function is called by the low level hardware error handler
1937 * when it detects hardware memory corruption of a page. It schedules
1938 * the recovering of error page, including dropping pages, killing
1939 * processes etc.
1940 *
1941 * The function is primarily of use for corruptions that
1942 * happen outside the current execution context (e.g. when
1943 * detected by a background scrubber)
1944 *
1945 * Can run in IRQ context.
1946 */
memory_failure_queue(unsigned long pfn,int flags)1947 void memory_failure_queue(unsigned long pfn, int flags)
1948 {
1949 struct memory_failure_cpu *mf_cpu;
1950 unsigned long proc_flags;
1951 struct memory_failure_entry entry = {
1952 .pfn = pfn,
1953 .flags = flags,
1954 };
1955
1956 mf_cpu = &get_cpu_var(memory_failure_cpu);
1957 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1958 if (kfifo_put(&mf_cpu->fifo, entry))
1959 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1960 else
1961 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1962 pfn);
1963 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1964 put_cpu_var(memory_failure_cpu);
1965 }
1966 EXPORT_SYMBOL_GPL(memory_failure_queue);
1967
memory_failure_work_func(struct work_struct * work)1968 static void memory_failure_work_func(struct work_struct *work)
1969 {
1970 struct memory_failure_cpu *mf_cpu;
1971 struct memory_failure_entry entry = { 0, };
1972 unsigned long proc_flags;
1973 int gotten;
1974
1975 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1976 for (;;) {
1977 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1978 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1979 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1980 if (!gotten)
1981 break;
1982 if (entry.flags & MF_SOFT_OFFLINE)
1983 soft_offline_page(entry.pfn, entry.flags);
1984 else
1985 memory_failure(entry.pfn, entry.flags);
1986 }
1987 }
1988
1989 /*
1990 * Process memory_failure work queued on the specified CPU.
1991 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1992 */
memory_failure_queue_kick(int cpu)1993 void memory_failure_queue_kick(int cpu)
1994 {
1995 struct memory_failure_cpu *mf_cpu;
1996
1997 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1998 cancel_work_sync(&mf_cpu->work);
1999 memory_failure_work_func(&mf_cpu->work);
2000 }
2001
memory_failure_init(void)2002 static int __init memory_failure_init(void)
2003 {
2004 struct memory_failure_cpu *mf_cpu;
2005 int cpu;
2006
2007 for_each_possible_cpu(cpu) {
2008 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2009 spin_lock_init(&mf_cpu->lock);
2010 INIT_KFIFO(mf_cpu->fifo);
2011 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2012 }
2013
2014 return 0;
2015 }
2016 core_initcall(memory_failure_init);
2017
2018 #define unpoison_pr_info(fmt, pfn, rs) \
2019 ({ \
2020 if (__ratelimit(rs)) \
2021 pr_info(fmt, pfn); \
2022 })
2023
2024 /**
2025 * unpoison_memory - Unpoison a previously poisoned page
2026 * @pfn: Page number of the to be unpoisoned page
2027 *
2028 * Software-unpoison a page that has been poisoned by
2029 * memory_failure() earlier.
2030 *
2031 * This is only done on the software-level, so it only works
2032 * for linux injected failures, not real hardware failures
2033 *
2034 * Returns 0 for success, otherwise -errno.
2035 */
unpoison_memory(unsigned long pfn)2036 int unpoison_memory(unsigned long pfn)
2037 {
2038 struct page *page;
2039 struct page *p;
2040 int freeit = 0;
2041 int ret = 0;
2042 unsigned long flags = 0;
2043 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2044 DEFAULT_RATELIMIT_BURST);
2045
2046 if (!pfn_valid(pfn))
2047 return -ENXIO;
2048
2049 p = pfn_to_page(pfn);
2050 page = compound_head(p);
2051
2052 mutex_lock(&mf_mutex);
2053
2054 if (!PageHWPoison(p)) {
2055 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2056 pfn, &unpoison_rs);
2057 goto unlock_mutex;
2058 }
2059
2060 if (page_count(page) > 1) {
2061 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2062 pfn, &unpoison_rs);
2063 goto unlock_mutex;
2064 }
2065
2066 if (page_mapped(page)) {
2067 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2068 pfn, &unpoison_rs);
2069 goto unlock_mutex;
2070 }
2071
2072 if (page_mapping(page)) {
2073 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2074 pfn, &unpoison_rs);
2075 goto unlock_mutex;
2076 }
2077
2078 if (!get_hwpoison_page(p, flags)) {
2079 if (TestClearPageHWPoison(p))
2080 num_poisoned_pages_dec();
2081 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
2082 pfn, &unpoison_rs);
2083 goto unlock_mutex;
2084 }
2085
2086 if (TestClearPageHWPoison(page)) {
2087 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2088 pfn, &unpoison_rs);
2089 num_poisoned_pages_dec();
2090 freeit = 1;
2091 }
2092
2093 put_page(page);
2094 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2095 put_page(page);
2096
2097 unlock_mutex:
2098 mutex_unlock(&mf_mutex);
2099 return ret;
2100 }
2101 EXPORT_SYMBOL(unpoison_memory);
2102
isolate_page(struct page * page,struct list_head * pagelist)2103 static bool isolate_page(struct page *page, struct list_head *pagelist)
2104 {
2105 bool isolated = false;
2106 bool lru = PageLRU(page);
2107
2108 if (PageHuge(page)) {
2109 isolated = !isolate_hugetlb(page, pagelist);
2110 } else {
2111 if (lru)
2112 isolated = !isolate_lru_page(page);
2113 else
2114 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2115
2116 if (isolated)
2117 list_add(&page->lru, pagelist);
2118 }
2119
2120 if (isolated && lru)
2121 inc_node_page_state(page, NR_ISOLATED_ANON +
2122 page_is_file_lru(page));
2123
2124 /*
2125 * If we succeed to isolate the page, we grabbed another refcount on
2126 * the page, so we can safely drop the one we got from get_any_pages().
2127 * If we failed to isolate the page, it means that we cannot go further
2128 * and we will return an error, so drop the reference we got from
2129 * get_any_pages() as well.
2130 */
2131 put_page(page);
2132 return isolated;
2133 }
2134
2135 /*
2136 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2137 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2138 * If the page is mapped, it migrates the contents over.
2139 */
__soft_offline_page(struct page * page)2140 static int __soft_offline_page(struct page *page)
2141 {
2142 int ret = 0;
2143 unsigned long pfn = page_to_pfn(page);
2144 struct page *hpage = compound_head(page);
2145 char const *msg_page[] = {"page", "hugepage"};
2146 bool huge = PageHuge(page);
2147 LIST_HEAD(pagelist);
2148 struct migration_target_control mtc = {
2149 .nid = NUMA_NO_NODE,
2150 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2151 };
2152
2153 /*
2154 * Check PageHWPoison again inside page lock because PageHWPoison
2155 * is set by memory_failure() outside page lock. Note that
2156 * memory_failure() also double-checks PageHWPoison inside page lock,
2157 * so there's no race between soft_offline_page() and memory_failure().
2158 */
2159 lock_page(page);
2160 if (!PageHuge(page))
2161 wait_on_page_writeback(page);
2162 if (PageHWPoison(page)) {
2163 unlock_page(page);
2164 put_page(page);
2165 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2166 return 0;
2167 }
2168
2169 if (!PageHuge(page))
2170 /*
2171 * Try to invalidate first. This should work for
2172 * non dirty unmapped page cache pages.
2173 */
2174 ret = invalidate_inode_page(page);
2175 unlock_page(page);
2176
2177 /*
2178 * RED-PEN would be better to keep it isolated here, but we
2179 * would need to fix isolation locking first.
2180 */
2181 if (ret) {
2182 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2183 page_handle_poison(page, false, true);
2184 return 0;
2185 }
2186
2187 if (isolate_page(hpage, &pagelist)) {
2188 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2189 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2190 if (!ret) {
2191 bool release = !huge;
2192
2193 if (!page_handle_poison(page, huge, release))
2194 ret = -EBUSY;
2195 } else {
2196 if (!list_empty(&pagelist))
2197 putback_movable_pages(&pagelist);
2198
2199 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2200 pfn, msg_page[huge], ret, page->flags, &page->flags);
2201 if (ret > 0)
2202 ret = -EBUSY;
2203 }
2204 } else {
2205 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2206 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2207 ret = -EBUSY;
2208 }
2209 return ret;
2210 }
2211
soft_offline_in_use_page(struct page * page)2212 static int soft_offline_in_use_page(struct page *page)
2213 {
2214 struct page *hpage = compound_head(page);
2215
2216 if (!PageHuge(page) && PageTransHuge(hpage))
2217 if (try_to_split_thp_page(page, "soft offline") < 0)
2218 return -EBUSY;
2219 return __soft_offline_page(page);
2220 }
2221
put_ref_page(struct page * page)2222 static void put_ref_page(struct page *page)
2223 {
2224 if (page)
2225 put_page(page);
2226 }
2227
2228 /**
2229 * soft_offline_page - Soft offline a page.
2230 * @pfn: pfn to soft-offline
2231 * @flags: flags. Same as memory_failure().
2232 *
2233 * Returns 0 on success, otherwise negated errno.
2234 *
2235 * Soft offline a page, by migration or invalidation,
2236 * without killing anything. This is for the case when
2237 * a page is not corrupted yet (so it's still valid to access),
2238 * but has had a number of corrected errors and is better taken
2239 * out.
2240 *
2241 * The actual policy on when to do that is maintained by
2242 * user space.
2243 *
2244 * This should never impact any application or cause data loss,
2245 * however it might take some time.
2246 *
2247 * This is not a 100% solution for all memory, but tries to be
2248 * ``good enough'' for the majority of memory.
2249 */
soft_offline_page(unsigned long pfn,int flags)2250 int soft_offline_page(unsigned long pfn, int flags)
2251 {
2252 int ret;
2253 bool try_again = true;
2254 struct page *page, *ref_page = NULL;
2255
2256 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2257
2258 if (!pfn_valid(pfn))
2259 return -ENXIO;
2260 if (flags & MF_COUNT_INCREASED)
2261 ref_page = pfn_to_page(pfn);
2262
2263 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2264 page = pfn_to_online_page(pfn);
2265 if (!page) {
2266 put_ref_page(ref_page);
2267 return -EIO;
2268 }
2269
2270 mutex_lock(&mf_mutex);
2271
2272 if (PageHWPoison(page)) {
2273 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2274 put_ref_page(ref_page);
2275 mutex_unlock(&mf_mutex);
2276 return 0;
2277 }
2278
2279 retry:
2280 get_online_mems();
2281 ret = get_hwpoison_page(page, flags);
2282 put_online_mems();
2283
2284 if (ret > 0) {
2285 ret = soft_offline_in_use_page(page);
2286 } else if (ret == 0) {
2287 if (!page_handle_poison(page, true, false)) {
2288 if (try_again) {
2289 try_again = false;
2290 flags &= ~MF_COUNT_INCREASED;
2291 goto retry;
2292 }
2293 ret = -EBUSY;
2294 }
2295 }
2296
2297 mutex_unlock(&mf_mutex);
2298
2299 return ret;
2300 }
2301