1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/mm.h>
61
62 #include "internal.h"
63
64 #ifndef arch_mmap_check
65 #define arch_mmap_check(addr, len, flags) (0)
66 #endif
67
68 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
69 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
70 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
71 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
72 #endif
73 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
74 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
75 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
76 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
77 #endif
78
79 static bool ignore_rlimit_data;
80 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
81
82 static void unmap_region(struct mm_struct *mm,
83 struct vm_area_struct *vma, struct vm_area_struct *prev,
84 unsigned long start, unsigned long end);
85
86 /* description of effects of mapping type and prot in current implementation.
87 * this is due to the limited x86 page protection hardware. The expected
88 * behavior is in parens:
89 *
90 * map_type prot
91 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
92 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
93 * w: (no) no w: (no) no w: (yes) yes w: (no) no
94 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
95 *
96 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
97 * w: (no) no w: (no) no w: (copy) copy w: (no) no
98 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
99 *
100 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
101 * MAP_PRIVATE (with Enhanced PAN supported):
102 * r: (no) no
103 * w: (no) no
104 * x: (yes) yes
105 */
106 pgprot_t protection_map[16] __ro_after_init = {
107 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
108 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
109 };
110
111 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)112 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
113 {
114 return prot;
115 }
116 #endif
117
vm_get_page_prot(unsigned long vm_flags)118 pgprot_t vm_get_page_prot(unsigned long vm_flags)
119 {
120 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
121 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
122 pgprot_val(arch_vm_get_page_prot(vm_flags)));
123
124 return arch_filter_pgprot(ret);
125 }
126 EXPORT_SYMBOL(vm_get_page_prot);
127
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)128 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
129 {
130 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
131 }
132
133 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)134 void vma_set_page_prot(struct vm_area_struct *vma)
135 {
136 unsigned long vm_flags = vma->vm_flags;
137 pgprot_t vm_page_prot;
138
139 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
140 if (vma_wants_writenotify(vma, vm_page_prot)) {
141 vm_flags &= ~VM_SHARED;
142 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
143 }
144 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
145 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
146 }
147
148 /*
149 * Requires inode->i_mapping->i_mmap_rwsem
150 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)151 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
152 struct file *file, struct address_space *mapping)
153 {
154 if (vma->vm_flags & VM_SHARED)
155 mapping_unmap_writable(mapping);
156
157 flush_dcache_mmap_lock(mapping);
158 vma_interval_tree_remove(vma, &mapping->i_mmap);
159 flush_dcache_mmap_unlock(mapping);
160 }
161
162 /*
163 * Unlink a file-based vm structure from its interval tree, to hide
164 * vma from rmap and vmtruncate before freeing its page tables.
165 */
unlink_file_vma(struct vm_area_struct * vma)166 void unlink_file_vma(struct vm_area_struct *vma)
167 {
168 struct file *file = vma->vm_file;
169
170 if (file) {
171 struct address_space *mapping = file->f_mapping;
172 i_mmap_lock_write(mapping);
173 __remove_shared_vm_struct(vma, file, mapping);
174 i_mmap_unlock_write(mapping);
175 }
176 }
177
178 /*
179 * Close a vm structure and free it, returning the next.
180 */
remove_vma(struct vm_area_struct * vma)181 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
182 {
183 struct vm_area_struct *next = vma->vm_next;
184
185 might_sleep();
186 if (vma->vm_ops && vma->vm_ops->close)
187 vma->vm_ops->close(vma);
188 mpol_put(vma_policy(vma));
189 /* fput(vma->vm_file) happens in vm_area_free after an RCU delay. */
190 vm_area_free(vma);
191 return next;
192 }
193
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198 unsigned long newbrk, oldbrk, origbrk;
199 struct mm_struct *mm = current->mm;
200 struct vm_area_struct *next;
201 unsigned long min_brk;
202 bool populate;
203 bool downgraded = false;
204 LIST_HEAD(uf);
205
206 if (mmap_write_lock_killable(mm))
207 return -EINTR;
208
209 origbrk = mm->brk;
210
211 #ifdef CONFIG_COMPAT_BRK
212 /*
213 * CONFIG_COMPAT_BRK can still be overridden by setting
214 * randomize_va_space to 2, which will still cause mm->start_brk
215 * to be arbitrarily shifted
216 */
217 if (current->brk_randomized)
218 min_brk = mm->start_brk;
219 else
220 min_brk = mm->end_data;
221 #else
222 min_brk = mm->start_brk;
223 #endif
224 if (brk < min_brk)
225 goto out;
226
227 /*
228 * Check against rlimit here. If this check is done later after the test
229 * of oldbrk with newbrk then it can escape the test and let the data
230 * segment grow beyond its set limit the in case where the limit is
231 * not page aligned -Ram Gupta
232 */
233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 mm->end_data, mm->start_data))
235 goto out;
236
237 newbrk = PAGE_ALIGN(brk);
238 oldbrk = PAGE_ALIGN(mm->brk);
239 if (oldbrk == newbrk) {
240 mm->brk = brk;
241 goto success;
242 }
243
244 /*
245 * Always allow shrinking brk.
246 * __do_munmap() may downgrade mmap_lock to read.
247 */
248 if (brk <= mm->brk) {
249 int ret;
250
251 /*
252 * mm->brk must to be protected by write mmap_lock so update it
253 * before downgrading mmap_lock. When __do_munmap() fails,
254 * mm->brk will be restored from origbrk.
255 */
256 mm->brk = brk;
257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 if (ret < 0) {
259 mm->brk = origbrk;
260 goto out;
261 } else if (ret == 1) {
262 downgraded = true;
263 }
264 goto success;
265 }
266
267 /* Check against existing mmap mappings. */
268 next = find_vma(mm, oldbrk);
269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 goto out;
271
272 /* Ok, looks good - let it rip. */
273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 goto out;
275 mm->brk = brk;
276
277 success:
278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 if (downgraded)
280 mmap_read_unlock(mm);
281 else
282 mmap_write_unlock(mm);
283 userfaultfd_unmap_complete(mm, &uf);
284 if (populate)
285 mm_populate(oldbrk, newbrk - oldbrk);
286 return brk;
287
288 out:
289 mmap_write_unlock(mm);
290 return origbrk;
291 }
292
vma_compute_gap(struct vm_area_struct * vma)293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295 unsigned long gap, prev_end;
296
297 /*
298 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 * allow two stack_guard_gaps between them here, and when choosing
300 * an unmapped area; whereas when expanding we only require one.
301 * That's a little inconsistent, but keeps the code here simpler.
302 */
303 gap = vm_start_gap(vma);
304 if (vma->vm_prev) {
305 prev_end = vm_end_gap(vma->vm_prev);
306 if (gap > prev_end)
307 gap -= prev_end;
308 else
309 gap = 0;
310 }
311 return gap;
312 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 unsigned long max = vma_compute_gap(vma), subtree_gap;
318 if (vma->vm_rb.rb_left) {
319 subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 if (subtree_gap > max)
322 max = subtree_gap;
323 }
324 if (vma->vm_rb.rb_right) {
325 subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 if (subtree_gap > max)
328 max = subtree_gap;
329 }
330 return max;
331 }
332
browse_rb(struct mm_struct * mm)333 static int browse_rb(struct mm_struct *mm)
334 {
335 struct rb_root *root = &mm->mm_rb;
336 int i = 0, j, bug = 0;
337 struct rb_node *nd, *pn = NULL;
338 unsigned long prev = 0, pend = 0;
339
340 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 struct vm_area_struct *vma;
342 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 if (vma->vm_start < prev) {
344 pr_emerg("vm_start %lx < prev %lx\n",
345 vma->vm_start, prev);
346 bug = 1;
347 }
348 if (vma->vm_start < pend) {
349 pr_emerg("vm_start %lx < pend %lx\n",
350 vma->vm_start, pend);
351 bug = 1;
352 }
353 if (vma->vm_start > vma->vm_end) {
354 pr_emerg("vm_start %lx > vm_end %lx\n",
355 vma->vm_start, vma->vm_end);
356 bug = 1;
357 }
358 spin_lock(&mm->page_table_lock);
359 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 pr_emerg("free gap %lx, correct %lx\n",
361 vma->rb_subtree_gap,
362 vma_compute_subtree_gap(vma));
363 bug = 1;
364 }
365 spin_unlock(&mm->page_table_lock);
366 i++;
367 pn = nd;
368 prev = vma->vm_start;
369 pend = vma->vm_end;
370 }
371 j = 0;
372 for (nd = pn; nd; nd = rb_prev(nd))
373 j++;
374 if (i != j) {
375 pr_emerg("backwards %d, forwards %d\n", j, i);
376 bug = 1;
377 }
378 return bug ? -1 : i;
379 }
380
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383 struct rb_node *nd;
384
385 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 struct vm_area_struct *vma;
387 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 VM_BUG_ON_VMA(vma != ignore &&
389 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 vma);
391 }
392 }
393
validate_mm(struct mm_struct * mm)394 static void validate_mm(struct mm_struct *mm)
395 {
396 int bug = 0;
397 int i = 0;
398 unsigned long highest_address = 0;
399 struct vm_area_struct *vma = mm->mmap;
400
401 while (vma) {
402 struct anon_vma *anon_vma = vma->anon_vma;
403 struct anon_vma_chain *avc;
404
405 if (anon_vma) {
406 anon_vma_lock_read(anon_vma);
407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 anon_vma_interval_tree_verify(avc);
409 anon_vma_unlock_read(anon_vma);
410 }
411
412 highest_address = vm_end_gap(vma);
413 vma = vma->vm_next;
414 i++;
415 }
416 if (i != mm->map_count) {
417 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418 bug = 1;
419 }
420 if (highest_address != mm->highest_vm_end) {
421 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 mm->highest_vm_end, highest_address);
423 bug = 1;
424 }
425 i = browse_rb(mm);
426 if (i != mm->map_count) {
427 if (i != -1)
428 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429 bug = 1;
430 }
431 VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 struct vm_area_struct, vm_rb,
440 unsigned long, rb_subtree_gap, vma_compute_gap)
441
442 /*
443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444 * vma->vm_prev->vm_end values changed, without modifying the vma's position
445 * in the rbtree.
446 */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449 /*
450 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 * a callback function that does exactly what we want.
452 */
453 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 struct rb_root *root)
458 {
459 /* All rb_subtree_gap values must be consistent prior to insertion */
460 validate_mm_rb(root, NULL);
461
462 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467 /*
468 * Note rb_erase_augmented is a fairly large inline function,
469 * so make sure we instantiate it only once with our desired
470 * augmented rbtree callbacks.
471 */
472 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 struct rb_root *root,
477 struct vm_area_struct *ignore)
478 {
479 /*
480 * All rb_subtree_gap values must be consistent prior to erase,
481 * with the possible exception of
482 *
483 * a. the "next" vma being erased if next->vm_start was reduced in
484 * __vma_adjust() -> __vma_unlink()
485 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486 * vma_rb_erase()
487 */
488 validate_mm_rb(root, ignore);
489
490 __vma_rb_erase(vma, root);
491 }
492
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 struct rb_root *root)
495 {
496 vma_rb_erase_ignore(vma, root, vma);
497 }
498
499 /*
500 * vma has some anon_vma assigned, and is already inserted on that
501 * anon_vma's interval trees.
502 *
503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504 * vma must be removed from the anon_vma's interval trees using
505 * anon_vma_interval_tree_pre_update_vma().
506 *
507 * After the update, the vma will be reinserted using
508 * anon_vma_interval_tree_post_update_vma().
509 *
510 * The entire update must be protected by exclusive mmap_lock and by
511 * the root anon_vma's mutex.
512 */
513 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516 struct anon_vma_chain *avc;
517
518 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521
522 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525 struct anon_vma_chain *avc;
526
527 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 unsigned long end, struct vm_area_struct **pprev,
533 struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536
537 mmap_assert_locked(mm);
538 __rb_link = &mm->mm_rb.rb_node;
539 rb_prev = __rb_parent = NULL;
540
541 while (*__rb_link) {
542 struct vm_area_struct *vma_tmp;
543
544 __rb_parent = *__rb_link;
545 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
546
547 if (vma_tmp->vm_end > addr) {
548 /* Fail if an existing vma overlaps the area */
549 if (vma_tmp->vm_start < end)
550 return -ENOMEM;
551 __rb_link = &__rb_parent->rb_left;
552 } else {
553 rb_prev = __rb_parent;
554 __rb_link = &__rb_parent->rb_right;
555 }
556 }
557
558 *pprev = NULL;
559 if (rb_prev)
560 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
561 *rb_link = __rb_link;
562 *rb_parent = __rb_parent;
563 return 0;
564 }
565
566 /*
567 * vma_next() - Get the next VMA.
568 * @mm: The mm_struct.
569 * @vma: The current vma.
570 *
571 * If @vma is NULL, return the first vma in the mm.
572 *
573 * Returns: The next VMA after @vma.
574 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)575 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
576 struct vm_area_struct *vma)
577 {
578 if (!vma)
579 return mm->mmap;
580
581 return vma->vm_next;
582 }
583
584 /*
585 * munmap_vma_range() - munmap VMAs that overlap a range.
586 * @mm: The mm struct
587 * @start: The start of the range.
588 * @len: The length of the range.
589 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
590 * @rb_link: the rb_node
591 * @rb_parent: the parent rb_node
592 *
593 * Find all the vm_area_struct that overlap from @start to
594 * @end and munmap them. Set @pprev to the previous vm_area_struct.
595 *
596 * Returns: -ENOMEM on munmap failure or 0 on success.
597 */
598 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)599 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
600 struct vm_area_struct **pprev, struct rb_node ***link,
601 struct rb_node **parent, struct list_head *uf)
602 {
603
604 while (find_vma_links(mm, start, start + len, pprev, link, parent))
605 if (do_munmap(mm, start, len, uf))
606 return -ENOMEM;
607
608 return 0;
609 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)610 static unsigned long count_vma_pages_range(struct mm_struct *mm,
611 unsigned long addr, unsigned long end)
612 {
613 unsigned long nr_pages = 0;
614 struct vm_area_struct *vma;
615
616 /* Find first overlapping mapping */
617 vma = find_vma_intersection(mm, addr, end);
618 if (!vma)
619 return 0;
620
621 nr_pages = (min(end, vma->vm_end) -
622 max(addr, vma->vm_start)) >> PAGE_SHIFT;
623
624 /* Iterate over the rest of the overlaps */
625 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
626 unsigned long overlap_len;
627
628 if (vma->vm_start > end)
629 break;
630
631 overlap_len = min(end, vma->vm_end) - vma->vm_start;
632 nr_pages += overlap_len >> PAGE_SHIFT;
633 }
634
635 return nr_pages;
636 }
637
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)638 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
639 struct rb_node **rb_link, struct rb_node *rb_parent)
640 {
641 /* Update tracking information for the gap following the new vma. */
642 if (vma->vm_next)
643 vma_gap_update(vma->vm_next);
644 else
645 mm->highest_vm_end = vm_end_gap(vma);
646
647 /*
648 * vma->vm_prev wasn't known when we followed the rbtree to find the
649 * correct insertion point for that vma. As a result, we could not
650 * update the vma vm_rb parents rb_subtree_gap values on the way down.
651 * So, we first insert the vma with a zero rb_subtree_gap value
652 * (to be consistent with what we did on the way down), and then
653 * immediately update the gap to the correct value. Finally we
654 * rebalance the rbtree after all augmented values have been set.
655 */
656 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
657 vma->rb_subtree_gap = 0;
658 vma_gap_update(vma);
659 vma_rb_insert(vma, &mm->mm_rb);
660 }
661
__vma_link_file(struct vm_area_struct * vma)662 static void __vma_link_file(struct vm_area_struct *vma)
663 {
664 struct file *file;
665
666 file = vma->vm_file;
667 if (file) {
668 struct address_space *mapping = file->f_mapping;
669
670 if (vma->vm_flags & VM_SHARED)
671 mapping_allow_writable(mapping);
672
673 flush_dcache_mmap_lock(mapping);
674 vma_interval_tree_insert(vma, &mapping->i_mmap);
675 flush_dcache_mmap_unlock(mapping);
676 }
677 }
678
679 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)680 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
681 struct vm_area_struct *prev, struct rb_node **rb_link,
682 struct rb_node *rb_parent)
683 {
684 __vma_link_list(mm, vma, prev);
685 __vma_link_rb(mm, vma, rb_link, rb_parent);
686 }
687
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)688 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
689 struct vm_area_struct *prev, struct rb_node **rb_link,
690 struct rb_node *rb_parent)
691 {
692 struct address_space *mapping = NULL;
693
694 if (vma->vm_file) {
695 mapping = vma->vm_file->f_mapping;
696 i_mmap_lock_write(mapping);
697 }
698
699 __vma_link(mm, vma, prev, rb_link, rb_parent);
700 __vma_link_file(vma);
701
702 if (mapping)
703 i_mmap_unlock_write(mapping);
704
705 mm->map_count++;
706 validate_mm(mm);
707 }
708
709 /*
710 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
711 * mm's list and rbtree. It has already been inserted into the interval tree.
712 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)713 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
714 {
715 struct vm_area_struct *prev;
716 struct rb_node **rb_link, *rb_parent;
717
718 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
719 &prev, &rb_link, &rb_parent))
720 BUG();
721 __vma_link(mm, vma, prev, rb_link, rb_parent);
722 mm->map_count++;
723 }
724
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)725 static __always_inline void __vma_unlink(struct mm_struct *mm,
726 struct vm_area_struct *vma,
727 struct vm_area_struct *ignore)
728 {
729 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
730 __vma_unlink_list(mm, vma);
731 /* Kill the cache */
732 vmacache_invalidate(mm);
733 }
734
735 /*
736 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
737 * is already present in an i_mmap tree without adjusting the tree.
738 * The following helper function should be used when such adjustments
739 * are necessary. The "insert" vma (if any) is to be inserted
740 * before we drop the necessary locks.
741 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)742 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
743 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
744 struct vm_area_struct *expand)
745 {
746 struct mm_struct *mm = vma->vm_mm;
747 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
748 struct address_space *mapping = NULL;
749 struct rb_root_cached *root = NULL;
750 struct anon_vma *anon_vma = NULL;
751 struct file *file = vma->vm_file;
752 bool start_changed = false, end_changed = false;
753 long adjust_next = 0;
754 int remove_next = 0;
755
756 if (next && !insert) {
757 struct vm_area_struct *exporter = NULL, *importer = NULL;
758
759 if (end >= next->vm_end) {
760 /*
761 * vma expands, overlapping all the next, and
762 * perhaps the one after too (mprotect case 6).
763 * The only other cases that gets here are
764 * case 1, case 7 and case 8.
765 */
766 if (next == expand) {
767 /*
768 * The only case where we don't expand "vma"
769 * and we expand "next" instead is case 8.
770 */
771 VM_WARN_ON(end != next->vm_end);
772 /*
773 * remove_next == 3 means we're
774 * removing "vma" and that to do so we
775 * swapped "vma" and "next".
776 */
777 remove_next = 3;
778 VM_WARN_ON(file != next->vm_file);
779 swap(vma, next);
780 } else {
781 VM_WARN_ON(expand != vma);
782 /*
783 * case 1, 6, 7, remove_next == 2 is case 6,
784 * remove_next == 1 is case 1 or 7.
785 */
786 remove_next = 1 + (end > next->vm_end);
787 VM_WARN_ON(remove_next == 2 &&
788 end != next->vm_next->vm_end);
789 /* trim end to next, for case 6 first pass */
790 end = next->vm_end;
791 }
792
793 exporter = next;
794 importer = vma;
795
796 /*
797 * If next doesn't have anon_vma, import from vma after
798 * next, if the vma overlaps with it.
799 */
800 if (remove_next == 2 && !next->anon_vma)
801 exporter = next->vm_next;
802
803 } else if (end > next->vm_start) {
804 /*
805 * vma expands, overlapping part of the next:
806 * mprotect case 5 shifting the boundary up.
807 */
808 adjust_next = (end - next->vm_start);
809 exporter = next;
810 importer = vma;
811 VM_WARN_ON(expand != importer);
812 } else if (end < vma->vm_end) {
813 /*
814 * vma shrinks, and !insert tells it's not
815 * split_vma inserting another: so it must be
816 * mprotect case 4 shifting the boundary down.
817 */
818 adjust_next = -(vma->vm_end - end);
819 exporter = vma;
820 importer = next;
821 VM_WARN_ON(expand != importer);
822 }
823
824 /*
825 * Easily overlooked: when mprotect shifts the boundary,
826 * make sure the expanding vma has anon_vma set if the
827 * shrinking vma had, to cover any anon pages imported.
828 */
829 if (exporter && exporter->anon_vma && !importer->anon_vma) {
830 int error;
831
832 importer->anon_vma = exporter->anon_vma;
833 error = anon_vma_clone(importer, exporter);
834 if (error)
835 return error;
836 }
837 }
838 again:
839 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
840
841 if (file) {
842 mapping = file->f_mapping;
843 root = &mapping->i_mmap;
844 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
845
846 if (adjust_next)
847 uprobe_munmap(next, next->vm_start, next->vm_end);
848
849 i_mmap_lock_write(mapping);
850 if (insert) {
851 /*
852 * Put into interval tree now, so instantiated pages
853 * are visible to arm/parisc __flush_dcache_page
854 * throughout; but we cannot insert into address
855 * space until vma start or end is updated.
856 */
857 __vma_link_file(insert);
858 }
859 }
860
861 anon_vma = vma->anon_vma;
862 if (!anon_vma && adjust_next)
863 anon_vma = next->anon_vma;
864 if (anon_vma) {
865 VM_WARN_ON(adjust_next && next->anon_vma &&
866 anon_vma != next->anon_vma);
867 anon_vma_lock_write(anon_vma);
868 anon_vma_interval_tree_pre_update_vma(vma);
869 if (adjust_next)
870 anon_vma_interval_tree_pre_update_vma(next);
871 }
872
873 if (file) {
874 flush_dcache_mmap_lock(mapping);
875 vma_interval_tree_remove(vma, root);
876 if (adjust_next)
877 vma_interval_tree_remove(next, root);
878 }
879
880 if (start != vma->vm_start) {
881 vma->vm_start = start;
882 start_changed = true;
883 }
884 if (end != vma->vm_end) {
885 vma->vm_end = end;
886 end_changed = true;
887 }
888 vma->vm_pgoff = pgoff;
889 if (adjust_next) {
890 next->vm_start += adjust_next;
891 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
892 }
893
894 if (file) {
895 if (adjust_next)
896 vma_interval_tree_insert(next, root);
897 vma_interval_tree_insert(vma, root);
898 flush_dcache_mmap_unlock(mapping);
899 }
900
901 if (remove_next) {
902 /*
903 * vma_merge has merged next into vma, and needs
904 * us to remove next before dropping the locks.
905 */
906 if (remove_next != 3)
907 __vma_unlink(mm, next, next);
908 else
909 /*
910 * vma is not before next if they've been
911 * swapped.
912 *
913 * pre-swap() next->vm_start was reduced so
914 * tell validate_mm_rb to ignore pre-swap()
915 * "next" (which is stored in post-swap()
916 * "vma").
917 */
918 __vma_unlink(mm, next, vma);
919 if (file)
920 __remove_shared_vm_struct(next, file, mapping);
921 } else if (insert) {
922 /*
923 * split_vma has split insert from vma, and needs
924 * us to insert it before dropping the locks
925 * (it may either follow vma or precede it).
926 */
927 __insert_vm_struct(mm, insert);
928 } else {
929 if (start_changed)
930 vma_gap_update(vma);
931 if (end_changed) {
932 if (!next)
933 mm->highest_vm_end = vm_end_gap(vma);
934 else if (!adjust_next)
935 vma_gap_update(next);
936 }
937 }
938
939 if (anon_vma) {
940 anon_vma_interval_tree_post_update_vma(vma);
941 if (adjust_next)
942 anon_vma_interval_tree_post_update_vma(next);
943 anon_vma_unlock_write(anon_vma);
944 }
945
946 if (file) {
947 i_mmap_unlock_write(mapping);
948 uprobe_mmap(vma);
949
950 if (adjust_next)
951 uprobe_mmap(next);
952 }
953
954 if (remove_next) {
955 if (file) {
956 uprobe_munmap(next, next->vm_start, next->vm_end);
957 /* fput(file) happens whthin vm_area_free(next) */
958 VM_BUG_ON(file != next->vm_file);
959 }
960 if (next->anon_vma)
961 anon_vma_merge(vma, next);
962 mm->map_count--;
963 mpol_put(vma_policy(next));
964 vm_area_free(next);
965 /*
966 * In mprotect's case 6 (see comments on vma_merge),
967 * we must remove another next too. It would clutter
968 * up the code too much to do both in one go.
969 */
970 if (remove_next != 3) {
971 /*
972 * If "next" was removed and vma->vm_end was
973 * expanded (up) over it, in turn
974 * "next->vm_prev->vm_end" changed and the
975 * "vma->vm_next" gap must be updated.
976 */
977 next = vma->vm_next;
978 } else {
979 /*
980 * For the scope of the comment "next" and
981 * "vma" considered pre-swap(): if "vma" was
982 * removed, next->vm_start was expanded (down)
983 * over it and the "next" gap must be updated.
984 * Because of the swap() the post-swap() "vma"
985 * actually points to pre-swap() "next"
986 * (post-swap() "next" as opposed is now a
987 * dangling pointer).
988 */
989 next = vma;
990 }
991 if (remove_next == 2) {
992 remove_next = 1;
993 end = next->vm_end;
994 goto again;
995 }
996 else if (next)
997 vma_gap_update(next);
998 else {
999 /*
1000 * If remove_next == 2 we obviously can't
1001 * reach this path.
1002 *
1003 * If remove_next == 3 we can't reach this
1004 * path because pre-swap() next is always not
1005 * NULL. pre-swap() "next" is not being
1006 * removed and its next->vm_end is not altered
1007 * (and furthermore "end" already matches
1008 * next->vm_end in remove_next == 3).
1009 *
1010 * We reach this only in the remove_next == 1
1011 * case if the "next" vma that was removed was
1012 * the highest vma of the mm. However in such
1013 * case next->vm_end == "end" and the extended
1014 * "vma" has vma->vm_end == next->vm_end so
1015 * mm->highest_vm_end doesn't need any update
1016 * in remove_next == 1 case.
1017 */
1018 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019 }
1020 }
1021 if (insert && file)
1022 uprobe_mmap(insert);
1023
1024 validate_mm(mm);
1025
1026 return 0;
1027 }
1028
1029 /*
1030 * If the vma has a ->close operation then the driver probably needs to release
1031 * per-vma resources, so we don't attempt to merge those.
1032 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034 struct file *file, unsigned long vm_flags,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1036 struct anon_vma_name *anon_name)
1037 {
1038 /*
1039 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1040 * match the flags but dirty bit -- the caller should mark
1041 * merged VMA as dirty. If dirty bit won't be excluded from
1042 * comparison, we increase pressure on the memory system forcing
1043 * the kernel to generate new VMAs when old one could be
1044 * extended instead.
1045 */
1046 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1047 return 0;
1048 if (vma->vm_file != file)
1049 return 0;
1050 if (vma->vm_ops && vma->vm_ops->close)
1051 return 0;
1052 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1053 return 0;
1054 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1055 return 0;
1056 return 1;
1057 }
1058
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1059 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1060 struct anon_vma *anon_vma2,
1061 struct vm_area_struct *vma)
1062 {
1063 /*
1064 * The list_is_singular() test is to avoid merging VMA cloned from
1065 * parents. This can improve scalability caused by anon_vma lock.
1066 */
1067 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1068 list_is_singular(&vma->anon_vma_chain)))
1069 return 1;
1070 return anon_vma1 == anon_vma2;
1071 }
1072
1073 /*
1074 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1075 * in front of (at a lower virtual address and file offset than) the vma.
1076 *
1077 * We cannot merge two vmas if they have differently assigned (non-NULL)
1078 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1079 *
1080 * We don't check here for the merged mmap wrapping around the end of pagecache
1081 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1082 * wrap, nor mmaps which cover the final page at index -1UL.
1083 */
1084 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1085 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1086 struct anon_vma *anon_vma, struct file *file,
1087 pgoff_t vm_pgoff,
1088 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1089 struct anon_vma_name *anon_name)
1090 {
1091 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1092 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1093 if (vma->vm_pgoff == vm_pgoff)
1094 return 1;
1095 }
1096 return 0;
1097 }
1098
1099 /*
1100 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1101 * beyond (at a higher virtual address and file offset than) the vma.
1102 *
1103 * We cannot merge two vmas if they have differently assigned (non-NULL)
1104 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1105 */
1106 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1107 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1108 struct anon_vma *anon_vma, struct file *file,
1109 pgoff_t vm_pgoff,
1110 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1111 struct anon_vma_name *anon_name)
1112 {
1113 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1114 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1115 pgoff_t vm_pglen;
1116 vm_pglen = vma_pages(vma);
1117 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1118 return 1;
1119 }
1120 return 0;
1121 }
1122
1123 /*
1124 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1125 * figure out whether that can be merged with its predecessor or its
1126 * successor. Or both (it neatly fills a hole).
1127 *
1128 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1129 * certain not to be mapped by the time vma_merge is called; but when
1130 * called for mprotect, it is certain to be already mapped (either at
1131 * an offset within prev, or at the start of next), and the flags of
1132 * this area are about to be changed to vm_flags - and the no-change
1133 * case has already been eliminated.
1134 *
1135 * The following mprotect cases have to be considered, where AAAA is
1136 * the area passed down from mprotect_fixup, never extending beyond one
1137 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1138 *
1139 * AAAA AAAA AAAA
1140 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1141 * cannot merge might become might become
1142 * PPNNNNNNNNNN PPPPPPPPPPNN
1143 * mmap, brk or case 4 below case 5 below
1144 * mremap move:
1145 * AAAA AAAA
1146 * PPPP NNNN PPPPNNNNXXXX
1147 * might become might become
1148 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1149 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1150 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1151 *
1152 * It is important for case 8 that the vma NNNN overlapping the
1153 * region AAAA is never going to extended over XXXX. Instead XXXX must
1154 * be extended in region AAAA and NNNN must be removed. This way in
1155 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1156 * rmap_locks, the properties of the merged vma will be already
1157 * correct for the whole merged range. Some of those properties like
1158 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1159 * be correct for the whole merged range immediately after the
1160 * rmap_locks are released. Otherwise if XXXX would be removed and
1161 * NNNN would be extended over the XXXX range, remove_migration_ptes
1162 * or other rmap walkers (if working on addresses beyond the "end"
1163 * parameter) may establish ptes with the wrong permissions of NNNN
1164 * instead of the right permissions of XXXX.
1165 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1166 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1167 struct vm_area_struct *prev, unsigned long addr,
1168 unsigned long end, unsigned long vm_flags,
1169 struct anon_vma *anon_vma, struct file *file,
1170 pgoff_t pgoff, struct mempolicy *policy,
1171 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1172 struct anon_vma_name *anon_name)
1173 {
1174 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1175 struct vm_area_struct *area, *next;
1176 int err;
1177
1178 /*
1179 * We later require that vma->vm_flags == vm_flags,
1180 * so this tests vma->vm_flags & VM_SPECIAL, too.
1181 */
1182 if (vm_flags & VM_SPECIAL)
1183 return NULL;
1184
1185 next = vma_next(mm, prev);
1186 area = next;
1187 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1188 next = next->vm_next;
1189
1190 /* verify some invariant that must be enforced by the caller */
1191 VM_WARN_ON(prev && addr <= prev->vm_start);
1192 VM_WARN_ON(area && end > area->vm_end);
1193 VM_WARN_ON(addr >= end);
1194
1195 /*
1196 * Can it merge with the predecessor?
1197 */
1198 if (prev && prev->vm_end == addr &&
1199 mpol_equal(vma_policy(prev), policy) &&
1200 can_vma_merge_after(prev, vm_flags,
1201 anon_vma, file, pgoff,
1202 vm_userfaultfd_ctx, anon_name)) {
1203 /*
1204 * OK, it can. Can we now merge in the successor as well?
1205 */
1206 if (next && end == next->vm_start &&
1207 mpol_equal(policy, vma_policy(next)) &&
1208 can_vma_merge_before(next, vm_flags,
1209 anon_vma, file,
1210 pgoff+pglen,
1211 vm_userfaultfd_ctx, anon_name) &&
1212 is_mergeable_anon_vma(prev->anon_vma,
1213 next->anon_vma, NULL)) {
1214 /* cases 1, 6 */
1215 err = __vma_adjust(prev, prev->vm_start,
1216 next->vm_end, prev->vm_pgoff, NULL,
1217 prev);
1218 } else /* cases 2, 5, 7 */
1219 err = __vma_adjust(prev, prev->vm_start,
1220 end, prev->vm_pgoff, NULL, prev);
1221 if (err)
1222 return NULL;
1223 khugepaged_enter_vma_merge(prev, vm_flags);
1224 return prev;
1225 }
1226
1227 /*
1228 * Can this new request be merged in front of next?
1229 */
1230 if (next && end == next->vm_start &&
1231 mpol_equal(policy, vma_policy(next)) &&
1232 can_vma_merge_before(next, vm_flags,
1233 anon_vma, file, pgoff+pglen,
1234 vm_userfaultfd_ctx, anon_name)) {
1235 if (prev && addr < prev->vm_end) /* case 4 */
1236 err = __vma_adjust(prev, prev->vm_start,
1237 addr, prev->vm_pgoff, NULL, next);
1238 else { /* cases 3, 8 */
1239 err = __vma_adjust(area, addr, next->vm_end,
1240 next->vm_pgoff - pglen, NULL, next);
1241 /*
1242 * In case 3 area is already equal to next and
1243 * this is a noop, but in case 8 "area" has
1244 * been removed and next was expanded over it.
1245 */
1246 area = next;
1247 }
1248 if (err)
1249 return NULL;
1250 khugepaged_enter_vma_merge(area, vm_flags);
1251 return area;
1252 }
1253
1254 return NULL;
1255 }
1256
1257 /*
1258 * Rough compatibility check to quickly see if it's even worth looking
1259 * at sharing an anon_vma.
1260 *
1261 * They need to have the same vm_file, and the flags can only differ
1262 * in things that mprotect may change.
1263 *
1264 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1265 * we can merge the two vma's. For example, we refuse to merge a vma if
1266 * there is a vm_ops->close() function, because that indicates that the
1267 * driver is doing some kind of reference counting. But that doesn't
1268 * really matter for the anon_vma sharing case.
1269 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1270 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1271 {
1272 return a->vm_end == b->vm_start &&
1273 mpol_equal(vma_policy(a), vma_policy(b)) &&
1274 a->vm_file == b->vm_file &&
1275 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1276 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1277 }
1278
1279 /*
1280 * Do some basic sanity checking to see if we can re-use the anon_vma
1281 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1282 * the same as 'old', the other will be the new one that is trying
1283 * to share the anon_vma.
1284 *
1285 * NOTE! This runs with mm_sem held for reading, so it is possible that
1286 * the anon_vma of 'old' is concurrently in the process of being set up
1287 * by another page fault trying to merge _that_. But that's ok: if it
1288 * is being set up, that automatically means that it will be a singleton
1289 * acceptable for merging, so we can do all of this optimistically. But
1290 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1291 *
1292 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1293 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1294 * is to return an anon_vma that is "complex" due to having gone through
1295 * a fork).
1296 *
1297 * We also make sure that the two vma's are compatible (adjacent,
1298 * and with the same memory policies). That's all stable, even with just
1299 * a read lock on the mm_sem.
1300 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1301 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1302 {
1303 if (anon_vma_compatible(a, b)) {
1304 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1305
1306 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1307 return anon_vma;
1308 }
1309 return NULL;
1310 }
1311
1312 /*
1313 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1314 * neighbouring vmas for a suitable anon_vma, before it goes off
1315 * to allocate a new anon_vma. It checks because a repetitive
1316 * sequence of mprotects and faults may otherwise lead to distinct
1317 * anon_vmas being allocated, preventing vma merge in subsequent
1318 * mprotect.
1319 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1320 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1321 {
1322 struct anon_vma *anon_vma = NULL;
1323
1324 /* Try next first. */
1325 if (vma->vm_next) {
1326 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1327 if (anon_vma)
1328 return anon_vma;
1329 }
1330
1331 /* Try prev next. */
1332 if (vma->vm_prev)
1333 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1334
1335 /*
1336 * We might reach here with anon_vma == NULL if we can't find
1337 * any reusable anon_vma.
1338 * There's no absolute need to look only at touching neighbours:
1339 * we could search further afield for "compatible" anon_vmas.
1340 * But it would probably just be a waste of time searching,
1341 * or lead to too many vmas hanging off the same anon_vma.
1342 * We're trying to allow mprotect remerging later on,
1343 * not trying to minimize memory used for anon_vmas.
1344 */
1345 return anon_vma;
1346 }
1347
1348 /*
1349 * If a hint addr is less than mmap_min_addr change hint to be as
1350 * low as possible but still greater than mmap_min_addr
1351 */
round_hint_to_min(unsigned long hint)1352 static inline unsigned long round_hint_to_min(unsigned long hint)
1353 {
1354 hint &= PAGE_MASK;
1355 if (((void *)hint != NULL) &&
1356 (hint < mmap_min_addr))
1357 return PAGE_ALIGN(mmap_min_addr);
1358 return hint;
1359 }
1360
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1361 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1362 unsigned long len)
1363 {
1364 unsigned long locked, lock_limit;
1365
1366 /* mlock MCL_FUTURE? */
1367 if (flags & VM_LOCKED) {
1368 locked = len >> PAGE_SHIFT;
1369 locked += mm->locked_vm;
1370 lock_limit = rlimit(RLIMIT_MEMLOCK);
1371 lock_limit >>= PAGE_SHIFT;
1372 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1373 return -EAGAIN;
1374 }
1375 return 0;
1376 }
1377
file_mmap_size_max(struct file * file,struct inode * inode)1378 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1379 {
1380 if (S_ISREG(inode->i_mode))
1381 return MAX_LFS_FILESIZE;
1382
1383 if (S_ISBLK(inode->i_mode))
1384 return MAX_LFS_FILESIZE;
1385
1386 if (S_ISSOCK(inode->i_mode))
1387 return MAX_LFS_FILESIZE;
1388
1389 /* Special "we do even unsigned file positions" case */
1390 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1391 return 0;
1392
1393 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1394 return ULONG_MAX;
1395 }
1396
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1397 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1398 unsigned long pgoff, unsigned long len)
1399 {
1400 u64 maxsize = file_mmap_size_max(file, inode);
1401
1402 if (maxsize && len > maxsize)
1403 return false;
1404 maxsize -= len;
1405 if (pgoff > maxsize >> PAGE_SHIFT)
1406 return false;
1407 return true;
1408 }
1409
1410 /*
1411 * The caller must write-lock current->mm->mmap_lock.
1412 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1413 unsigned long do_mmap(struct file *file, unsigned long addr,
1414 unsigned long len, unsigned long prot,
1415 unsigned long flags, unsigned long pgoff,
1416 unsigned long *populate, struct list_head *uf)
1417 {
1418 struct mm_struct *mm = current->mm;
1419 vm_flags_t vm_flags;
1420 int pkey = 0;
1421
1422 *populate = 0;
1423
1424 if (!len)
1425 return -EINVAL;
1426
1427 /*
1428 * Does the application expect PROT_READ to imply PROT_EXEC?
1429 *
1430 * (the exception is when the underlying filesystem is noexec
1431 * mounted, in which case we dont add PROT_EXEC.)
1432 */
1433 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1434 if (!(file && path_noexec(&file->f_path)))
1435 prot |= PROT_EXEC;
1436
1437 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1438 if (flags & MAP_FIXED_NOREPLACE)
1439 flags |= MAP_FIXED;
1440
1441 if (!(flags & MAP_FIXED))
1442 addr = round_hint_to_min(addr);
1443
1444 /* Careful about overflows.. */
1445 len = PAGE_ALIGN(len);
1446 if (!len)
1447 return -ENOMEM;
1448
1449 /* offset overflow? */
1450 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1451 return -EOVERFLOW;
1452
1453 /* Too many mappings? */
1454 if (mm->map_count > sysctl_max_map_count)
1455 return -ENOMEM;
1456
1457 /* Obtain the address to map to. we verify (or select) it and ensure
1458 * that it represents a valid section of the address space.
1459 */
1460 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1461 if (IS_ERR_VALUE(addr))
1462 return addr;
1463
1464 if (flags & MAP_FIXED_NOREPLACE) {
1465 if (find_vma_intersection(mm, addr, addr + len))
1466 return -EEXIST;
1467 }
1468
1469 if (prot == PROT_EXEC) {
1470 pkey = execute_only_pkey(mm);
1471 if (pkey < 0)
1472 pkey = 0;
1473 }
1474
1475 /* Do simple checking here so the lower-level routines won't have
1476 * to. we assume access permissions have been handled by the open
1477 * of the memory object, so we don't do any here.
1478 */
1479 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1480 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1481
1482 if (flags & MAP_LOCKED)
1483 if (!can_do_mlock())
1484 return -EPERM;
1485
1486 if (mlock_future_check(mm, vm_flags, len))
1487 return -EAGAIN;
1488
1489 if (file) {
1490 struct inode *inode = file_inode(file);
1491 unsigned long flags_mask;
1492
1493 if (!file_mmap_ok(file, inode, pgoff, len))
1494 return -EOVERFLOW;
1495
1496 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1497
1498 switch (flags & MAP_TYPE) {
1499 case MAP_SHARED:
1500 /*
1501 * Force use of MAP_SHARED_VALIDATE with non-legacy
1502 * flags. E.g. MAP_SYNC is dangerous to use with
1503 * MAP_SHARED as you don't know which consistency model
1504 * you will get. We silently ignore unsupported flags
1505 * with MAP_SHARED to preserve backward compatibility.
1506 */
1507 flags &= LEGACY_MAP_MASK;
1508 fallthrough;
1509 case MAP_SHARED_VALIDATE:
1510 if (flags & ~flags_mask)
1511 return -EOPNOTSUPP;
1512 if (prot & PROT_WRITE) {
1513 if (!(file->f_mode & FMODE_WRITE))
1514 return -EACCES;
1515 if (IS_SWAPFILE(file->f_mapping->host))
1516 return -ETXTBSY;
1517 }
1518
1519 /*
1520 * Make sure we don't allow writing to an append-only
1521 * file..
1522 */
1523 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1524 return -EACCES;
1525
1526 vm_flags |= VM_SHARED | VM_MAYSHARE;
1527 if (!(file->f_mode & FMODE_WRITE))
1528 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1529 fallthrough;
1530 case MAP_PRIVATE:
1531 if (!(file->f_mode & FMODE_READ))
1532 return -EACCES;
1533 if (path_noexec(&file->f_path)) {
1534 if (vm_flags & VM_EXEC)
1535 return -EPERM;
1536 vm_flags &= ~VM_MAYEXEC;
1537 }
1538
1539 if (!file->f_op->mmap)
1540 return -ENODEV;
1541 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1542 return -EINVAL;
1543 break;
1544
1545 default:
1546 return -EINVAL;
1547 }
1548 } else {
1549 switch (flags & MAP_TYPE) {
1550 case MAP_SHARED:
1551 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1552 return -EINVAL;
1553 /*
1554 * Ignore pgoff.
1555 */
1556 pgoff = 0;
1557 vm_flags |= VM_SHARED | VM_MAYSHARE;
1558 break;
1559 case MAP_PRIVATE:
1560 /*
1561 * Set pgoff according to addr for anon_vma.
1562 */
1563 pgoff = addr >> PAGE_SHIFT;
1564 break;
1565 default:
1566 return -EINVAL;
1567 }
1568 }
1569
1570 /*
1571 * Set 'VM_NORESERVE' if we should not account for the
1572 * memory use of this mapping.
1573 */
1574 if (flags & MAP_NORESERVE) {
1575 /* We honor MAP_NORESERVE if allowed to overcommit */
1576 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1577 vm_flags |= VM_NORESERVE;
1578
1579 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1580 if (file && is_file_hugepages(file))
1581 vm_flags |= VM_NORESERVE;
1582 }
1583
1584 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1585 if (!IS_ERR_VALUE(addr) &&
1586 ((vm_flags & VM_LOCKED) ||
1587 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1588 *populate = len;
1589 return addr;
1590 }
1591
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1592 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1593 unsigned long prot, unsigned long flags,
1594 unsigned long fd, unsigned long pgoff)
1595 {
1596 struct file *file = NULL;
1597 unsigned long retval;
1598
1599 if (!(flags & MAP_ANONYMOUS)) {
1600 audit_mmap_fd(fd, flags);
1601 file = fget(fd);
1602 if (!file)
1603 return -EBADF;
1604 if (is_file_hugepages(file)) {
1605 len = ALIGN(len, huge_page_size(hstate_file(file)));
1606 } else if (unlikely(flags & MAP_HUGETLB)) {
1607 retval = -EINVAL;
1608 goto out_fput;
1609 }
1610 } else if (flags & MAP_HUGETLB) {
1611 struct ucounts *ucounts = NULL;
1612 struct hstate *hs;
1613
1614 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1615 if (!hs)
1616 return -EINVAL;
1617
1618 len = ALIGN(len, huge_page_size(hs));
1619 /*
1620 * VM_NORESERVE is used because the reservations will be
1621 * taken when vm_ops->mmap() is called
1622 * A dummy user value is used because we are not locking
1623 * memory so no accounting is necessary
1624 */
1625 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626 VM_NORESERVE,
1627 &ucounts, HUGETLB_ANONHUGE_INODE,
1628 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629 if (IS_ERR(file))
1630 return PTR_ERR(file);
1631 }
1632
1633 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1634 out_fput:
1635 if (file)
1636 fput(file);
1637 return retval;
1638 }
1639
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1641 unsigned long, prot, unsigned long, flags,
1642 unsigned long, fd, unsigned long, pgoff)
1643 {
1644 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1645 }
1646
1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1648 struct mmap_arg_struct {
1649 unsigned long addr;
1650 unsigned long len;
1651 unsigned long prot;
1652 unsigned long flags;
1653 unsigned long fd;
1654 unsigned long offset;
1655 };
1656
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1658 {
1659 struct mmap_arg_struct a;
1660
1661 if (copy_from_user(&a, arg, sizeof(a)))
1662 return -EFAULT;
1663 if (offset_in_page(a.offset))
1664 return -EINVAL;
1665
1666 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1667 a.offset >> PAGE_SHIFT);
1668 }
1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1670
1671 /*
1672 * Some shared mappings will want the pages marked read-only
1673 * to track write events. If so, we'll downgrade vm_page_prot
1674 * to the private version (using protection_map[] without the
1675 * VM_SHARED bit).
1676 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1678 {
1679 vm_flags_t vm_flags = vma->vm_flags;
1680 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1681
1682 /* If it was private or non-writable, the write bit is already clear */
1683 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1684 return 0;
1685
1686 /* The backer wishes to know when pages are first written to? */
1687 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1688 return 1;
1689
1690 /* The open routine did something to the protections that pgprot_modify
1691 * won't preserve? */
1692 if (pgprot_val(vm_page_prot) !=
1693 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1694 return 0;
1695
1696 /*
1697 * Do we need to track softdirty? hugetlb does not support softdirty
1698 * tracking yet.
1699 */
1700 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1701 !is_vm_hugetlb_page(vma))
1702 return 1;
1703
1704 /* Specialty mapping? */
1705 if (vm_flags & VM_PFNMAP)
1706 return 0;
1707
1708 /* Can the mapping track the dirty pages? */
1709 return vma->vm_file && vma->vm_file->f_mapping &&
1710 mapping_can_writeback(vma->vm_file->f_mapping);
1711 }
1712
1713 /*
1714 * We account for memory if it's a private writeable mapping,
1715 * not hugepages and VM_NORESERVE wasn't set.
1716 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1717 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1718 {
1719 /*
1720 * hugetlb has its own accounting separate from the core VM
1721 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1722 */
1723 if (file && is_file_hugepages(file))
1724 return 0;
1725
1726 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1727 }
1728
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1729 unsigned long mmap_region(struct file *file, unsigned long addr,
1730 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1731 struct list_head *uf)
1732 {
1733 struct mm_struct *mm = current->mm;
1734 struct vm_area_struct *vma, *prev, *merge;
1735 int error;
1736 struct rb_node **rb_link, *rb_parent;
1737 unsigned long charged = 0;
1738
1739 /* Check against address space limit. */
1740 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1741 unsigned long nr_pages;
1742
1743 /*
1744 * MAP_FIXED may remove pages of mappings that intersects with
1745 * requested mapping. Account for the pages it would unmap.
1746 */
1747 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1748
1749 if (!may_expand_vm(mm, vm_flags,
1750 (len >> PAGE_SHIFT) - nr_pages))
1751 return -ENOMEM;
1752 }
1753
1754 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1755 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1756 return -ENOMEM;
1757 /*
1758 * Private writable mapping: check memory availability
1759 */
1760 if (accountable_mapping(file, vm_flags)) {
1761 charged = len >> PAGE_SHIFT;
1762 if (security_vm_enough_memory_mm(mm, charged))
1763 return -ENOMEM;
1764 vm_flags |= VM_ACCOUNT;
1765 }
1766
1767 /*
1768 * Can we just expand an old mapping?
1769 */
1770 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1771 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1772 if (vma)
1773 goto out;
1774
1775 /*
1776 * Determine the object being mapped and call the appropriate
1777 * specific mapper. the address has already been validated, but
1778 * not unmapped, but the maps are removed from the list.
1779 */
1780 vma = vm_area_alloc(mm);
1781 if (!vma) {
1782 error = -ENOMEM;
1783 goto unacct_error;
1784 }
1785
1786 vma->vm_start = addr;
1787 vma->vm_end = addr + len;
1788 vma->vm_flags = vm_flags;
1789 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1790 vma->vm_pgoff = pgoff;
1791
1792 if (file) {
1793 if (vm_flags & VM_SHARED) {
1794 error = mapping_map_writable(file->f_mapping);
1795 if (error)
1796 goto free_vma;
1797 }
1798
1799 vma->vm_file = get_file(file);
1800 error = call_mmap(file, vma);
1801 if (error)
1802 goto unmap_and_free_vma;
1803
1804 /* Can addr have changed??
1805 *
1806 * Answer: Yes, several device drivers can do it in their
1807 * f_op->mmap method. -DaveM
1808 * Bug: If addr is changed, prev, rb_link, rb_parent should
1809 * be updated for vma_link()
1810 */
1811 WARN_ON_ONCE(addr != vma->vm_start);
1812
1813 addr = vma->vm_start;
1814
1815 /* If vm_flags changed after call_mmap(), we should try merge vma again
1816 * as we may succeed this time.
1817 */
1818 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1819 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1820 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1821 if (merge) {
1822 /* ->mmap() can change vma->vm_file and fput the original file. So
1823 * fput the vma->vm_file here or we would add an extra fput for file
1824 * and cause general protection fault ultimately.
1825 */
1826 /* fput happens within vm_area_free */
1827 vm_area_free(vma);
1828 vma = merge;
1829 /* Update vm_flags to pick up the change. */
1830 vm_flags = vma->vm_flags;
1831 goto unmap_writable;
1832 }
1833 }
1834
1835 vm_flags = vma->vm_flags;
1836 } else if (vm_flags & VM_SHARED) {
1837 error = shmem_zero_setup(vma);
1838 if (error)
1839 goto free_vma;
1840 } else {
1841 vma_set_anonymous(vma);
1842 }
1843
1844 /* Allow architectures to sanity-check the vm_flags */
1845 if (!arch_validate_flags(vma->vm_flags)) {
1846 error = -EINVAL;
1847 if (file)
1848 goto close_and_free_vma;
1849 else
1850 goto free_vma;
1851 }
1852
1853 vma_link(mm, vma, prev, rb_link, rb_parent);
1854 /* Once vma denies write, undo our temporary denial count */
1855 unmap_writable:
1856 if (file && vm_flags & VM_SHARED)
1857 mapping_unmap_writable(file->f_mapping);
1858 file = vma->vm_file;
1859 out:
1860 perf_event_mmap(vma);
1861
1862 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1863 if (vm_flags & VM_LOCKED) {
1864 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1865 is_vm_hugetlb_page(vma) ||
1866 vma == get_gate_vma(current->mm))
1867 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1868 else
1869 mm->locked_vm += (len >> PAGE_SHIFT);
1870 }
1871
1872 if (file)
1873 uprobe_mmap(vma);
1874
1875 /*
1876 * New (or expanded) vma always get soft dirty status.
1877 * Otherwise user-space soft-dirty page tracker won't
1878 * be able to distinguish situation when vma area unmapped,
1879 * then new mapped in-place (which must be aimed as
1880 * a completely new data area).
1881 */
1882 vma->vm_flags |= VM_SOFTDIRTY;
1883
1884 vma_set_page_prot(vma);
1885
1886 trace_android_vh_mmap_region(vma, addr);
1887
1888 return addr;
1889
1890 close_and_free_vma:
1891 if (vma->vm_ops && vma->vm_ops->close)
1892 vma->vm_ops->close(vma);
1893 unmap_and_free_vma:
1894 fput(vma->vm_file);
1895 vma->vm_file = NULL;
1896
1897 /* Undo any partial mapping done by a device driver. */
1898 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1899 if (vm_flags & VM_SHARED)
1900 mapping_unmap_writable(file->f_mapping);
1901 free_vma:
1902 VM_BUG_ON(vma->vm_file);
1903 vm_area_free(vma);
1904 unacct_error:
1905 if (charged)
1906 vm_unacct_memory(charged);
1907 return error;
1908 }
1909
unmapped_area(struct vm_unmapped_area_info * info)1910 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1911 {
1912 /*
1913 * We implement the search by looking for an rbtree node that
1914 * immediately follows a suitable gap. That is,
1915 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1916 * - gap_end = vma->vm_start >= info->low_limit + length;
1917 * - gap_end - gap_start >= length
1918 */
1919
1920 struct mm_struct *mm = current->mm;
1921 struct vm_area_struct *vma;
1922 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1923
1924 /* Adjust search length to account for worst case alignment overhead */
1925 length = info->length + info->align_mask;
1926 if (length < info->length)
1927 return -ENOMEM;
1928
1929 /* Adjust search limits by the desired length */
1930 if (info->high_limit < length)
1931 return -ENOMEM;
1932 high_limit = info->high_limit - length;
1933
1934 if (info->low_limit > high_limit)
1935 return -ENOMEM;
1936 low_limit = info->low_limit + length;
1937
1938 /* Check if rbtree root looks promising */
1939 if (RB_EMPTY_ROOT(&mm->mm_rb))
1940 goto check_highest;
1941 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1942 if (vma->rb_subtree_gap < length)
1943 goto check_highest;
1944
1945 while (true) {
1946 /* Visit left subtree if it looks promising */
1947 gap_end = vm_start_gap(vma);
1948 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1949 struct vm_area_struct *left =
1950 rb_entry(vma->vm_rb.rb_left,
1951 struct vm_area_struct, vm_rb);
1952 if (left->rb_subtree_gap >= length) {
1953 vma = left;
1954 continue;
1955 }
1956 }
1957
1958 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1959 check_current:
1960 /* Check if current node has a suitable gap */
1961 if (gap_start > high_limit)
1962 return -ENOMEM;
1963 if (gap_end >= low_limit &&
1964 gap_end > gap_start && gap_end - gap_start >= length)
1965 goto found;
1966
1967 /* Visit right subtree if it looks promising */
1968 if (vma->vm_rb.rb_right) {
1969 struct vm_area_struct *right =
1970 rb_entry(vma->vm_rb.rb_right,
1971 struct vm_area_struct, vm_rb);
1972 if (right->rb_subtree_gap >= length) {
1973 vma = right;
1974 continue;
1975 }
1976 }
1977
1978 /* Go back up the rbtree to find next candidate node */
1979 while (true) {
1980 struct rb_node *prev = &vma->vm_rb;
1981 if (!rb_parent(prev))
1982 goto check_highest;
1983 vma = rb_entry(rb_parent(prev),
1984 struct vm_area_struct, vm_rb);
1985 if (prev == vma->vm_rb.rb_left) {
1986 gap_start = vm_end_gap(vma->vm_prev);
1987 gap_end = vm_start_gap(vma);
1988 goto check_current;
1989 }
1990 }
1991 }
1992
1993 check_highest:
1994 /* Check highest gap, which does not precede any rbtree node */
1995 gap_start = mm->highest_vm_end;
1996 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1997 if (gap_start > high_limit)
1998 return -ENOMEM;
1999
2000 found:
2001 /* We found a suitable gap. Clip it with the original low_limit. */
2002 if (gap_start < info->low_limit)
2003 gap_start = info->low_limit;
2004
2005 /* Adjust gap address to the desired alignment */
2006 gap_start += (info->align_offset - gap_start) & info->align_mask;
2007
2008 VM_BUG_ON(gap_start + info->length > info->high_limit);
2009 VM_BUG_ON(gap_start + info->length > gap_end);
2010 return gap_start;
2011 }
2012
unmapped_area_topdown(struct vm_unmapped_area_info * info)2013 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2014 {
2015 struct mm_struct *mm = current->mm;
2016 struct vm_area_struct *vma;
2017 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2018
2019 /* Adjust search length to account for worst case alignment overhead */
2020 length = info->length + info->align_mask;
2021 if (length < info->length)
2022 return -ENOMEM;
2023
2024 /*
2025 * Adjust search limits by the desired length.
2026 * See implementation comment at top of unmapped_area().
2027 */
2028 gap_end = info->high_limit;
2029 if (gap_end < length)
2030 return -ENOMEM;
2031 high_limit = gap_end - length;
2032
2033 if (info->low_limit > high_limit)
2034 return -ENOMEM;
2035 low_limit = info->low_limit + length;
2036
2037 /* Check highest gap, which does not precede any rbtree node */
2038 gap_start = mm->highest_vm_end;
2039 if (gap_start <= high_limit)
2040 goto found_highest;
2041
2042 /* Check if rbtree root looks promising */
2043 if (RB_EMPTY_ROOT(&mm->mm_rb))
2044 return -ENOMEM;
2045 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2046 if (vma->rb_subtree_gap < length)
2047 return -ENOMEM;
2048
2049 while (true) {
2050 /* Visit right subtree if it looks promising */
2051 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2052 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2053 struct vm_area_struct *right =
2054 rb_entry(vma->vm_rb.rb_right,
2055 struct vm_area_struct, vm_rb);
2056 if (right->rb_subtree_gap >= length) {
2057 vma = right;
2058 continue;
2059 }
2060 }
2061
2062 check_current:
2063 /* Check if current node has a suitable gap */
2064 gap_end = vm_start_gap(vma);
2065 if (gap_end < low_limit)
2066 return -ENOMEM;
2067 if (gap_start <= high_limit &&
2068 gap_end > gap_start && gap_end - gap_start >= length)
2069 goto found;
2070
2071 /* Visit left subtree if it looks promising */
2072 if (vma->vm_rb.rb_left) {
2073 struct vm_area_struct *left =
2074 rb_entry(vma->vm_rb.rb_left,
2075 struct vm_area_struct, vm_rb);
2076 if (left->rb_subtree_gap >= length) {
2077 vma = left;
2078 continue;
2079 }
2080 }
2081
2082 /* Go back up the rbtree to find next candidate node */
2083 while (true) {
2084 struct rb_node *prev = &vma->vm_rb;
2085 if (!rb_parent(prev))
2086 return -ENOMEM;
2087 vma = rb_entry(rb_parent(prev),
2088 struct vm_area_struct, vm_rb);
2089 if (prev == vma->vm_rb.rb_right) {
2090 gap_start = vma->vm_prev ?
2091 vm_end_gap(vma->vm_prev) : 0;
2092 goto check_current;
2093 }
2094 }
2095 }
2096
2097 found:
2098 /* We found a suitable gap. Clip it with the original high_limit. */
2099 if (gap_end > info->high_limit)
2100 gap_end = info->high_limit;
2101
2102 found_highest:
2103 /* Compute highest gap address at the desired alignment */
2104 gap_end -= info->length;
2105 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2106
2107 VM_BUG_ON(gap_end < info->low_limit);
2108 VM_BUG_ON(gap_end < gap_start);
2109 return gap_end;
2110 }
2111
2112 /*
2113 * Search for an unmapped address range.
2114 *
2115 * We are looking for a range that:
2116 * - does not intersect with any VMA;
2117 * - is contained within the [low_limit, high_limit) interval;
2118 * - is at least the desired size.
2119 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2120 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2121 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2122 {
2123 unsigned long addr;
2124
2125 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2126 addr = unmapped_area_topdown(info);
2127 else
2128 addr = unmapped_area(info);
2129
2130 trace_vm_unmapped_area(addr, info);
2131 return addr;
2132 }
2133
2134 /* Get an address range which is currently unmapped.
2135 * For shmat() with addr=0.
2136 *
2137 * Ugly calling convention alert:
2138 * Return value with the low bits set means error value,
2139 * ie
2140 * if (ret & ~PAGE_MASK)
2141 * error = ret;
2142 *
2143 * This function "knows" that -ENOMEM has the bits set.
2144 */
2145 #ifndef HAVE_ARCH_UNMAPPED_AREA
2146 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2147 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2148 unsigned long len, unsigned long pgoff, unsigned long flags)
2149 {
2150 struct mm_struct *mm = current->mm;
2151 struct vm_area_struct *vma, *prev;
2152 struct vm_unmapped_area_info info;
2153 const unsigned long mmap_end = arch_get_mmap_end(addr);
2154
2155 if (len > mmap_end - mmap_min_addr)
2156 return -ENOMEM;
2157
2158 if (flags & MAP_FIXED)
2159 return addr;
2160
2161 if (addr) {
2162 addr = PAGE_ALIGN(addr);
2163 vma = find_vma_prev(mm, addr, &prev);
2164 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2165 (!vma || addr + len <= vm_start_gap(vma)) &&
2166 (!prev || addr >= vm_end_gap(prev)))
2167 return addr;
2168 }
2169
2170 info.flags = 0;
2171 info.length = len;
2172 info.low_limit = mm->mmap_base;
2173 info.high_limit = mmap_end;
2174 info.align_mask = 0;
2175 info.align_offset = 0;
2176 return vm_unmapped_area(&info);
2177 }
2178 #endif
2179
2180 /*
2181 * This mmap-allocator allocates new areas top-down from below the
2182 * stack's low limit (the base):
2183 */
2184 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2185 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2186 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2187 unsigned long len, unsigned long pgoff,
2188 unsigned long flags)
2189 {
2190 struct vm_area_struct *vma, *prev;
2191 struct mm_struct *mm = current->mm;
2192 struct vm_unmapped_area_info info;
2193 const unsigned long mmap_end = arch_get_mmap_end(addr);
2194
2195 /* requested length too big for entire address space */
2196 if (len > mmap_end - mmap_min_addr)
2197 return -ENOMEM;
2198
2199 if (flags & MAP_FIXED)
2200 return addr;
2201
2202 /* requesting a specific address */
2203 if (addr) {
2204 addr = PAGE_ALIGN(addr);
2205 vma = find_vma_prev(mm, addr, &prev);
2206 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2207 (!vma || addr + len <= vm_start_gap(vma)) &&
2208 (!prev || addr >= vm_end_gap(prev)))
2209 return addr;
2210 }
2211
2212 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2213 info.length = len;
2214 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2215 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2216 info.align_mask = 0;
2217 info.align_offset = 0;
2218 addr = vm_unmapped_area(&info);
2219
2220 /*
2221 * A failed mmap() very likely causes application failure,
2222 * so fall back to the bottom-up function here. This scenario
2223 * can happen with large stack limits and large mmap()
2224 * allocations.
2225 */
2226 if (offset_in_page(addr)) {
2227 VM_BUG_ON(addr != -ENOMEM);
2228 info.flags = 0;
2229 info.low_limit = TASK_UNMAPPED_BASE;
2230 info.high_limit = mmap_end;
2231 addr = vm_unmapped_area(&info);
2232 }
2233
2234 return addr;
2235 }
2236 #endif
2237
2238 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2239 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2240 unsigned long pgoff, unsigned long flags)
2241 {
2242 unsigned long (*get_area)(struct file *, unsigned long,
2243 unsigned long, unsigned long, unsigned long);
2244
2245 unsigned long error = arch_mmap_check(addr, len, flags);
2246 if (error)
2247 return error;
2248
2249 /* Careful about overflows.. */
2250 if (len > TASK_SIZE)
2251 return -ENOMEM;
2252
2253 get_area = current->mm->get_unmapped_area;
2254 if (file) {
2255 if (file->f_op->get_unmapped_area)
2256 get_area = file->f_op->get_unmapped_area;
2257 } else if (flags & MAP_SHARED) {
2258 /*
2259 * mmap_region() will call shmem_zero_setup() to create a file,
2260 * so use shmem's get_unmapped_area in case it can be huge.
2261 * do_mmap() will clear pgoff, so match alignment.
2262 */
2263 pgoff = 0;
2264 get_area = shmem_get_unmapped_area;
2265 }
2266
2267 addr = get_area(file, addr, len, pgoff, flags);
2268 if (IS_ERR_VALUE(addr))
2269 return addr;
2270
2271 if (addr > TASK_SIZE - len)
2272 return -ENOMEM;
2273 if (offset_in_page(addr))
2274 return -EINVAL;
2275
2276 error = security_mmap_addr(addr);
2277 return error ? error : addr;
2278 }
2279
2280 EXPORT_SYMBOL(get_unmapped_area);
2281
find_vma_from_tree(struct mm_struct * mm,unsigned long addr)2282 struct vm_area_struct *find_vma_from_tree(struct mm_struct *mm, unsigned long addr)
2283 {
2284 struct rb_node *rb_node;
2285 struct vm_area_struct *vma = NULL;
2286
2287 rb_node = mm->mm_rb.rb_node;
2288
2289 while (rb_node) {
2290 struct vm_area_struct *tmp;
2291
2292 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2293
2294 if (tmp->vm_end > addr) {
2295 vma = tmp;
2296 if (tmp->vm_start <= addr)
2297 break;
2298 rb_node = rb_node->rb_left;
2299 } else
2300 rb_node = rb_node->rb_right;
2301 }
2302
2303 return vma;
2304 }
2305
2306 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
__find_vma(struct mm_struct * mm,unsigned long addr)2307 struct vm_area_struct *__find_vma(struct mm_struct *mm, unsigned long addr)
2308 {
2309 struct vm_area_struct *vma;
2310
2311 /* Check the cache first. */
2312 vma = vmacache_find(mm, addr);
2313 if (likely(vma))
2314 return vma;
2315
2316 vma = find_vma_from_tree(mm, addr);
2317
2318 if (vma)
2319 vmacache_update(addr, vma);
2320 return vma;
2321 }
2322
2323 EXPORT_SYMBOL(__find_vma);
2324
2325 /*
2326 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2327 */
2328 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2329 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2330 struct vm_area_struct **pprev)
2331 {
2332 struct vm_area_struct *vma;
2333
2334 vma = find_vma(mm, addr);
2335 if (vma) {
2336 *pprev = vma->vm_prev;
2337 } else {
2338 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2339
2340 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2341 }
2342 return vma;
2343 }
2344
2345 /*
2346 * Verify that the stack growth is acceptable and
2347 * update accounting. This is shared with both the
2348 * grow-up and grow-down cases.
2349 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2350 static int acct_stack_growth(struct vm_area_struct *vma,
2351 unsigned long size, unsigned long grow)
2352 {
2353 struct mm_struct *mm = vma->vm_mm;
2354 unsigned long new_start;
2355
2356 /* address space limit tests */
2357 if (!may_expand_vm(mm, vma->vm_flags, grow))
2358 return -ENOMEM;
2359
2360 /* Stack limit test */
2361 if (size > rlimit(RLIMIT_STACK))
2362 return -ENOMEM;
2363
2364 /* mlock limit tests */
2365 if (vma->vm_flags & VM_LOCKED) {
2366 unsigned long locked;
2367 unsigned long limit;
2368 locked = mm->locked_vm + grow;
2369 limit = rlimit(RLIMIT_MEMLOCK);
2370 limit >>= PAGE_SHIFT;
2371 if (locked > limit && !capable(CAP_IPC_LOCK))
2372 return -ENOMEM;
2373 }
2374
2375 /* Check to ensure the stack will not grow into a hugetlb-only region */
2376 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2377 vma->vm_end - size;
2378 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2379 return -EFAULT;
2380
2381 /*
2382 * Overcommit.. This must be the final test, as it will
2383 * update security statistics.
2384 */
2385 if (security_vm_enough_memory_mm(mm, grow))
2386 return -ENOMEM;
2387
2388 return 0;
2389 }
2390
2391 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2392 /*
2393 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2394 * vma is the last one with address > vma->vm_end. Have to extend vma.
2395 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2396 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2397 {
2398 struct mm_struct *mm = vma->vm_mm;
2399 struct vm_area_struct *next;
2400 unsigned long gap_addr;
2401 int error = 0;
2402
2403 if (!(vma->vm_flags & VM_GROWSUP))
2404 return -EFAULT;
2405
2406 /* Guard against exceeding limits of the address space. */
2407 address &= PAGE_MASK;
2408 if (address >= (TASK_SIZE & PAGE_MASK))
2409 return -ENOMEM;
2410 address += PAGE_SIZE;
2411
2412 /* Enforce stack_guard_gap */
2413 gap_addr = address + stack_guard_gap;
2414
2415 /* Guard against overflow */
2416 if (gap_addr < address || gap_addr > TASK_SIZE)
2417 gap_addr = TASK_SIZE;
2418
2419 next = vma->vm_next;
2420 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2421 if (!(next->vm_flags & VM_GROWSUP))
2422 return -ENOMEM;
2423 /* Check that both stack segments have the same anon_vma? */
2424 }
2425
2426 /* We must make sure the anon_vma is allocated. */
2427 if (unlikely(anon_vma_prepare(vma)))
2428 return -ENOMEM;
2429
2430 /*
2431 * vma->vm_start/vm_end cannot change under us because the caller
2432 * is required to hold the mmap_lock in read mode. We need the
2433 * anon_vma lock to serialize against concurrent expand_stacks.
2434 */
2435 anon_vma_lock_write(vma->anon_vma);
2436
2437 /* Somebody else might have raced and expanded it already */
2438 if (address > vma->vm_end) {
2439 unsigned long size, grow;
2440
2441 size = address - vma->vm_start;
2442 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2443
2444 error = -ENOMEM;
2445 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2446 error = acct_stack_growth(vma, size, grow);
2447 if (!error) {
2448 /*
2449 * vma_gap_update() doesn't support concurrent
2450 * updates, but we only hold a shared mmap_lock
2451 * lock here, so we need to protect against
2452 * concurrent vma expansions.
2453 * anon_vma_lock_write() doesn't help here, as
2454 * we don't guarantee that all growable vmas
2455 * in a mm share the same root anon vma.
2456 * So, we reuse mm->page_table_lock to guard
2457 * against concurrent vma expansions.
2458 */
2459 spin_lock(&mm->page_table_lock);
2460 if (vma->vm_flags & VM_LOCKED)
2461 mm->locked_vm += grow;
2462 vm_stat_account(mm, vma->vm_flags, grow);
2463 anon_vma_interval_tree_pre_update_vma(vma);
2464 vma->vm_end = address;
2465 anon_vma_interval_tree_post_update_vma(vma);
2466 if (vma->vm_next)
2467 vma_gap_update(vma->vm_next);
2468 else
2469 mm->highest_vm_end = vm_end_gap(vma);
2470 spin_unlock(&mm->page_table_lock);
2471
2472 perf_event_mmap(vma);
2473 }
2474 }
2475 }
2476 anon_vma_unlock_write(vma->anon_vma);
2477 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2478 validate_mm(mm);
2479 return error;
2480 }
2481 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2482
2483 /*
2484 * vma is the first one with address < vma->vm_start. Have to extend vma.
2485 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2486 int expand_downwards(struct vm_area_struct *vma,
2487 unsigned long address)
2488 {
2489 struct mm_struct *mm = vma->vm_mm;
2490 struct vm_area_struct *prev;
2491 int error = 0;
2492
2493 address &= PAGE_MASK;
2494 if (address < mmap_min_addr)
2495 return -EPERM;
2496
2497 /* Enforce stack_guard_gap */
2498 prev = vma->vm_prev;
2499 /* Check that both stack segments have the same anon_vma? */
2500 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2501 vma_is_accessible(prev)) {
2502 if (address - prev->vm_end < stack_guard_gap)
2503 return -ENOMEM;
2504 }
2505
2506 /* We must make sure the anon_vma is allocated. */
2507 if (unlikely(anon_vma_prepare(vma)))
2508 return -ENOMEM;
2509
2510 /*
2511 * vma->vm_start/vm_end cannot change under us because the caller
2512 * is required to hold the mmap_lock in read mode. We need the
2513 * anon_vma lock to serialize against concurrent expand_stacks.
2514 */
2515 anon_vma_lock_write(vma->anon_vma);
2516
2517 /* Somebody else might have raced and expanded it already */
2518 if (address < vma->vm_start) {
2519 unsigned long size, grow;
2520
2521 size = vma->vm_end - address;
2522 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2523
2524 error = -ENOMEM;
2525 if (grow <= vma->vm_pgoff) {
2526 error = acct_stack_growth(vma, size, grow);
2527 if (!error) {
2528 /*
2529 * vma_gap_update() doesn't support concurrent
2530 * updates, but we only hold a shared mmap_lock
2531 * lock here, so we need to protect against
2532 * concurrent vma expansions.
2533 * anon_vma_lock_write() doesn't help here, as
2534 * we don't guarantee that all growable vmas
2535 * in a mm share the same root anon vma.
2536 * So, we reuse mm->page_table_lock to guard
2537 * against concurrent vma expansions.
2538 */
2539 spin_lock(&mm->page_table_lock);
2540 if (vma->vm_flags & VM_LOCKED)
2541 mm->locked_vm += grow;
2542 vm_stat_account(mm, vma->vm_flags, grow);
2543 anon_vma_interval_tree_pre_update_vma(vma);
2544 vma->vm_start = address;
2545 vma->vm_pgoff -= grow;
2546 anon_vma_interval_tree_post_update_vma(vma);
2547 vma_gap_update(vma);
2548 spin_unlock(&mm->page_table_lock);
2549
2550 perf_event_mmap(vma);
2551 }
2552 }
2553 }
2554 anon_vma_unlock_write(vma->anon_vma);
2555 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2556 validate_mm(mm);
2557 return error;
2558 }
2559
2560 /* enforced gap between the expanding stack and other mappings. */
2561 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2562
cmdline_parse_stack_guard_gap(char * p)2563 static int __init cmdline_parse_stack_guard_gap(char *p)
2564 {
2565 unsigned long val;
2566 char *endptr;
2567
2568 val = simple_strtoul(p, &endptr, 10);
2569 if (!*endptr)
2570 stack_guard_gap = val << PAGE_SHIFT;
2571
2572 return 1;
2573 }
2574 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2575
2576 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2577 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2578 {
2579 return expand_upwards(vma, address);
2580 }
2581
2582 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2583 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2584 {
2585 struct vm_area_struct *vma, *prev;
2586
2587 addr &= PAGE_MASK;
2588 vma = find_vma_prev(mm, addr, &prev);
2589 if (vma && (vma->vm_start <= addr))
2590 return vma;
2591 /* don't alter vm_end if the coredump is running */
2592 if (!prev || expand_stack(prev, addr))
2593 return NULL;
2594 if (prev->vm_flags & VM_LOCKED)
2595 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2596 return prev;
2597 }
2598 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2599 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2600 {
2601 return expand_downwards(vma, address);
2602 }
2603
2604 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2605 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2606 {
2607 struct vm_area_struct *vma;
2608 unsigned long start;
2609
2610 addr &= PAGE_MASK;
2611 vma = find_vma(mm, addr);
2612 if (!vma)
2613 return NULL;
2614 if (vma->vm_start <= addr)
2615 return vma;
2616 if (!(vma->vm_flags & VM_GROWSDOWN))
2617 return NULL;
2618 start = vma->vm_start;
2619 if (expand_stack(vma, addr))
2620 return NULL;
2621 if (vma->vm_flags & VM_LOCKED)
2622 populate_vma_page_range(vma, addr, start, NULL);
2623 return vma;
2624 }
2625 #endif
2626
2627 EXPORT_SYMBOL_GPL(find_extend_vma);
2628
2629 /*
2630 * Ok - we have the memory areas we should free on the vma list,
2631 * so release them, and do the vma updates.
2632 *
2633 * Called with the mm semaphore held.
2634 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2635 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2636 {
2637 unsigned long nr_accounted = 0;
2638
2639 /* Update high watermark before we lower total_vm */
2640 update_hiwater_vm(mm);
2641 do {
2642 long nrpages = vma_pages(vma);
2643
2644 if (vma->vm_flags & VM_ACCOUNT)
2645 nr_accounted += nrpages;
2646 vm_stat_account(mm, vma->vm_flags, -nrpages);
2647 vma = remove_vma(vma);
2648 } while (vma);
2649 vm_unacct_memory(nr_accounted);
2650 validate_mm(mm);
2651 }
2652
2653 /*
2654 * Get rid of page table information in the indicated region.
2655 *
2656 * Called with the mm semaphore held.
2657 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2658 static void unmap_region(struct mm_struct *mm,
2659 struct vm_area_struct *vma, struct vm_area_struct *prev,
2660 unsigned long start, unsigned long end)
2661 {
2662 struct vm_area_struct *next = vma_next(mm, prev);
2663 struct mmu_gather tlb;
2664 struct vm_area_struct *cur_vma;
2665
2666 lru_add_drain();
2667 tlb_gather_mmu(&tlb, mm);
2668 update_hiwater_rss(mm);
2669 unmap_vmas(&tlb, vma, start, end);
2670
2671 /*
2672 * Ensure we have no stale TLB entries by the time this mapping is
2673 * removed from the rmap.
2674 * Note that we don't have to worry about nested flushes here because
2675 * we're holding the mm semaphore for removing the mapping - so any
2676 * concurrent flush in this region has to be coming through the rmap,
2677 * and we synchronize against that using the rmap lock.
2678 */
2679 for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2680 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2681 tlb_flush_mmu(&tlb);
2682 break;
2683 }
2684 }
2685
2686 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2687 next ? next->vm_start : USER_PGTABLES_CEILING);
2688 tlb_finish_mmu(&tlb);
2689 }
2690
2691 /*
2692 * Create a list of vma's touched by the unmap, removing them from the mm's
2693 * vma list as we go..
2694 */
2695 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2696 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2697 struct vm_area_struct *prev, unsigned long end)
2698 {
2699 struct vm_area_struct **insertion_point;
2700 struct vm_area_struct *tail_vma = NULL;
2701
2702 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2703 vma->vm_prev = NULL;
2704 do {
2705 vma_rb_erase(vma, &mm->mm_rb);
2706 mm->map_count--;
2707 tail_vma = vma;
2708 vma = vma->vm_next;
2709 } while (vma && vma->vm_start < end);
2710 *insertion_point = vma;
2711 if (vma) {
2712 vma->vm_prev = prev;
2713 vma_gap_update(vma);
2714 } else
2715 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2716 tail_vma->vm_next = NULL;
2717
2718 /* Kill the cache */
2719 vmacache_invalidate(mm);
2720
2721 /*
2722 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2723 * VM_GROWSUP VMA. Such VMAs can change their size under
2724 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2725 */
2726 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2727 return false;
2728 if (prev && (prev->vm_flags & VM_GROWSUP))
2729 return false;
2730 return true;
2731 }
2732
2733 /*
2734 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2735 * has already been checked or doesn't make sense to fail.
2736 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2737 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2738 unsigned long addr, int new_below)
2739 {
2740 struct vm_area_struct *new;
2741 int err;
2742
2743 if (vma->vm_ops && vma->vm_ops->may_split) {
2744 err = vma->vm_ops->may_split(vma, addr);
2745 if (err)
2746 return err;
2747 }
2748
2749 new = vm_area_dup(vma);
2750 if (!new)
2751 return -ENOMEM;
2752
2753 if (new_below)
2754 new->vm_end = addr;
2755 else {
2756 new->vm_start = addr;
2757 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2758 }
2759
2760 err = vma_dup_policy(vma, new);
2761 if (err)
2762 goto out_free_vma;
2763
2764 err = anon_vma_clone(new, vma);
2765 if (err)
2766 goto out_free_mpol;
2767
2768 if (new->vm_file)
2769 get_file(new->vm_file);
2770
2771 if (new->vm_ops && new->vm_ops->open)
2772 new->vm_ops->open(new);
2773
2774 if (new_below)
2775 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2776 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2777 else
2778 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2779
2780 /* Success. */
2781 if (!err)
2782 return 0;
2783
2784 /* Clean everything up if vma_adjust failed. */
2785 if (new->vm_ops && new->vm_ops->close)
2786 new->vm_ops->close(new);
2787 if (new->vm_file)
2788 fput(new->vm_file);
2789 unlink_anon_vmas(new);
2790 out_free_mpol:
2791 mpol_put(vma_policy(new));
2792 out_free_vma:
2793 new->vm_file = NULL; /* prevents fput within vm_area_free() */
2794 vm_area_free(new);
2795 return err;
2796 }
2797
2798 /*
2799 * Split a vma into two pieces at address 'addr', a new vma is allocated
2800 * either for the first part or the tail.
2801 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2802 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2803 unsigned long addr, int new_below)
2804 {
2805 if (mm->map_count >= sysctl_max_map_count)
2806 return -ENOMEM;
2807
2808 return __split_vma(mm, vma, addr, new_below);
2809 }
2810
2811 static inline void
unlock_range(struct vm_area_struct * start,unsigned long limit)2812 unlock_range(struct vm_area_struct *start, unsigned long limit)
2813 {
2814 struct mm_struct *mm = start->vm_mm;
2815 struct vm_area_struct *tmp = start;
2816
2817 while (tmp && tmp->vm_start < limit) {
2818 if (tmp->vm_flags & VM_LOCKED) {
2819 mm->locked_vm -= vma_pages(tmp);
2820 munlock_vma_pages_all(tmp);
2821 }
2822
2823 tmp = tmp->vm_next;
2824 }
2825 }
2826
2827 /* Munmap is split into 2 main parts -- this part which finds
2828 * what needs doing, and the areas themselves, which do the
2829 * work. This now handles partial unmappings.
2830 * Jeremy Fitzhardinge <jeremy@goop.org>
2831 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2832 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2833 struct list_head *uf, bool downgrade)
2834 {
2835 unsigned long end;
2836 struct vm_area_struct *vma, *prev, *last;
2837
2838 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2839 return -EINVAL;
2840
2841 len = PAGE_ALIGN(len);
2842 end = start + len;
2843 if (len == 0)
2844 return -EINVAL;
2845
2846 /*
2847 * arch_unmap() might do unmaps itself. It must be called
2848 * and finish any rbtree manipulation before this code
2849 * runs and also starts to manipulate the rbtree.
2850 */
2851 arch_unmap(mm, start, end);
2852
2853 /* Find the first overlapping VMA where start < vma->vm_end */
2854 vma = find_vma_intersection(mm, start, end);
2855 if (!vma)
2856 return 0;
2857 prev = vma->vm_prev;
2858
2859 /*
2860 * If we need to split any vma, do it now to save pain later.
2861 *
2862 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2863 * unmapped vm_area_struct will remain in use: so lower split_vma
2864 * places tmp vma above, and higher split_vma places tmp vma below.
2865 */
2866 if (start > vma->vm_start) {
2867 int error;
2868
2869 /*
2870 * Make sure that map_count on return from munmap() will
2871 * not exceed its limit; but let map_count go just above
2872 * its limit temporarily, to help free resources as expected.
2873 */
2874 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2875 return -ENOMEM;
2876
2877 error = __split_vma(mm, vma, start, 0);
2878 if (error)
2879 return error;
2880 prev = vma;
2881 }
2882
2883 /* Does it split the last one? */
2884 last = find_vma(mm, end);
2885 if (last && end > last->vm_start) {
2886 int error = __split_vma(mm, last, end, 1);
2887 if (error)
2888 return error;
2889 }
2890 vma = vma_next(mm, prev);
2891
2892 if (unlikely(uf)) {
2893 /*
2894 * If userfaultfd_unmap_prep returns an error the vmas
2895 * will remain split, but userland will get a
2896 * highly unexpected error anyway. This is no
2897 * different than the case where the first of the two
2898 * __split_vma fails, but we don't undo the first
2899 * split, despite we could. This is unlikely enough
2900 * failure that it's not worth optimizing it for.
2901 */
2902 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2903 if (error)
2904 return error;
2905 }
2906
2907 /*
2908 * unlock any mlock()ed ranges before detaching vmas
2909 */
2910 if (mm->locked_vm)
2911 unlock_range(vma, end);
2912
2913 /* Detach vmas from rbtree */
2914 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2915 downgrade = false;
2916
2917 if (downgrade)
2918 mmap_write_downgrade(mm);
2919
2920 unmap_region(mm, vma, prev, start, end);
2921
2922 /* Fix up all other VM information */
2923 remove_vma_list(mm, vma);
2924
2925 return downgrade ? 1 : 0;
2926 }
2927
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2928 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2929 struct list_head *uf)
2930 {
2931 return __do_munmap(mm, start, len, uf, false);
2932 }
2933
__vm_munmap(unsigned long start,size_t len,bool downgrade)2934 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2935 {
2936 int ret;
2937 struct mm_struct *mm = current->mm;
2938 LIST_HEAD(uf);
2939
2940 if (mmap_write_lock_killable(mm))
2941 return -EINTR;
2942
2943 ret = __do_munmap(mm, start, len, &uf, downgrade);
2944 /*
2945 * Returning 1 indicates mmap_lock is downgraded.
2946 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2947 * it to 0 before return.
2948 */
2949 if (ret == 1) {
2950 mmap_read_unlock(mm);
2951 ret = 0;
2952 } else
2953 mmap_write_unlock(mm);
2954
2955 userfaultfd_unmap_complete(mm, &uf);
2956 return ret;
2957 }
2958
vm_munmap(unsigned long start,size_t len)2959 int vm_munmap(unsigned long start, size_t len)
2960 {
2961 return __vm_munmap(start, len, false);
2962 }
2963 EXPORT_SYMBOL(vm_munmap);
2964
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2965 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2966 {
2967 addr = untagged_addr(addr);
2968 profile_munmap(addr);
2969 return __vm_munmap(addr, len, true);
2970 }
2971
2972
2973 /*
2974 * Emulation of deprecated remap_file_pages() syscall.
2975 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2976 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2977 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2978 {
2979
2980 struct mm_struct *mm = current->mm;
2981 struct vm_area_struct *vma;
2982 unsigned long populate = 0;
2983 unsigned long ret = -EINVAL;
2984 struct file *file;
2985
2986 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2987 current->comm, current->pid);
2988
2989 if (prot)
2990 return ret;
2991 start = start & PAGE_MASK;
2992 size = size & PAGE_MASK;
2993
2994 if (start + size <= start)
2995 return ret;
2996
2997 /* Does pgoff wrap? */
2998 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2999 return ret;
3000
3001 if (mmap_write_lock_killable(mm))
3002 return -EINTR;
3003
3004 vma = vma_lookup(mm, start);
3005
3006 if (!vma || !(vma->vm_flags & VM_SHARED))
3007 goto out;
3008
3009 if (start + size > vma->vm_end) {
3010 struct vm_area_struct *next;
3011
3012 for (next = vma->vm_next; next; next = next->vm_next) {
3013 /* hole between vmas ? */
3014 if (next->vm_start != next->vm_prev->vm_end)
3015 goto out;
3016
3017 if (next->vm_file != vma->vm_file)
3018 goto out;
3019
3020 if (next->vm_flags != vma->vm_flags)
3021 goto out;
3022
3023 if (start + size <= next->vm_end)
3024 break;
3025 }
3026
3027 if (!next)
3028 goto out;
3029 }
3030
3031 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3032 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3033 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3034
3035 flags &= MAP_NONBLOCK;
3036 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3037 if (vma->vm_flags & VM_LOCKED)
3038 flags |= MAP_LOCKED;
3039
3040 file = get_file(vma->vm_file);
3041 ret = do_mmap(vma->vm_file, start, size,
3042 prot, flags, pgoff, &populate, NULL);
3043 fput(file);
3044 out:
3045 mmap_write_unlock(mm);
3046 if (populate)
3047 mm_populate(ret, populate);
3048 if (!IS_ERR_VALUE(ret))
3049 ret = 0;
3050 return ret;
3051 }
3052
3053 /*
3054 * this is really a simplified "do_mmap". it only handles
3055 * anonymous maps. eventually we may be able to do some
3056 * brk-specific accounting here.
3057 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3058 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3059 {
3060 struct mm_struct *mm = current->mm;
3061 struct vm_area_struct *vma, *prev;
3062 struct rb_node **rb_link, *rb_parent;
3063 pgoff_t pgoff = addr >> PAGE_SHIFT;
3064 int error;
3065 unsigned long mapped_addr;
3066
3067 /* Until we need other flags, refuse anything except VM_EXEC. */
3068 if ((flags & (~VM_EXEC)) != 0)
3069 return -EINVAL;
3070 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3071
3072 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3073 if (IS_ERR_VALUE(mapped_addr))
3074 return mapped_addr;
3075
3076 error = mlock_future_check(mm, mm->def_flags, len);
3077 if (error)
3078 return error;
3079
3080 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3081 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3082 return -ENOMEM;
3083
3084 /* Check against address space limits *after* clearing old maps... */
3085 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3086 return -ENOMEM;
3087
3088 if (mm->map_count > sysctl_max_map_count)
3089 return -ENOMEM;
3090
3091 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3092 return -ENOMEM;
3093
3094 /* Can we just expand an old private anonymous mapping? */
3095 vma = vma_merge(mm, prev, addr, addr + len, flags,
3096 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3097 if (vma)
3098 goto out;
3099
3100 /*
3101 * create a vma struct for an anonymous mapping
3102 */
3103 vma = vm_area_alloc(mm);
3104 if (!vma) {
3105 vm_unacct_memory(len >> PAGE_SHIFT);
3106 return -ENOMEM;
3107 }
3108
3109 vma_set_anonymous(vma);
3110 vma->vm_start = addr;
3111 vma->vm_end = addr + len;
3112 vma->vm_pgoff = pgoff;
3113 vma->vm_flags = flags;
3114 vma->vm_page_prot = vm_get_page_prot(flags);
3115 vma_link(mm, vma, prev, rb_link, rb_parent);
3116 out:
3117 perf_event_mmap(vma);
3118 mm->total_vm += len >> PAGE_SHIFT;
3119 mm->data_vm += len >> PAGE_SHIFT;
3120 if (flags & VM_LOCKED)
3121 mm->locked_vm += (len >> PAGE_SHIFT);
3122 vma->vm_flags |= VM_SOFTDIRTY;
3123 return 0;
3124 }
3125
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3126 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3127 {
3128 struct mm_struct *mm = current->mm;
3129 unsigned long len;
3130 int ret;
3131 bool populate;
3132 LIST_HEAD(uf);
3133
3134 len = PAGE_ALIGN(request);
3135 if (len < request)
3136 return -ENOMEM;
3137 if (!len)
3138 return 0;
3139
3140 if (mmap_write_lock_killable(mm))
3141 return -EINTR;
3142
3143 ret = do_brk_flags(addr, len, flags, &uf);
3144 populate = ((mm->def_flags & VM_LOCKED) != 0);
3145 mmap_write_unlock(mm);
3146 userfaultfd_unmap_complete(mm, &uf);
3147 if (populate && !ret)
3148 mm_populate(addr, len);
3149 return ret;
3150 }
3151 EXPORT_SYMBOL(vm_brk_flags);
3152
vm_brk(unsigned long addr,unsigned long len)3153 int vm_brk(unsigned long addr, unsigned long len)
3154 {
3155 return vm_brk_flags(addr, len, 0);
3156 }
3157 EXPORT_SYMBOL(vm_brk);
3158
3159 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3160 void exit_mmap(struct mm_struct *mm)
3161 {
3162 struct mmu_gather tlb;
3163 struct vm_area_struct *vma;
3164 unsigned long nr_accounted = 0;
3165
3166 /* mm's last user has gone, and its about to be pulled down */
3167 mmu_notifier_release(mm);
3168
3169 if (unlikely(mm_is_oom_victim(mm))) {
3170 /*
3171 * Manually reap the mm to free as much memory as possible.
3172 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3173 * this mm from further consideration. Taking mm->mmap_lock for
3174 * write after setting MMF_OOM_SKIP will guarantee that the oom
3175 * reaper will not run on this mm again after mmap_lock is
3176 * dropped.
3177 *
3178 * Nothing can be holding mm->mmap_lock here and the above call
3179 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3180 * __oom_reap_task_mm() will not block.
3181 *
3182 * This needs to be done before calling unlock_range(),
3183 * which clears VM_LOCKED, otherwise the oom reaper cannot
3184 * reliably test it.
3185 */
3186 (void)__oom_reap_task_mm(mm);
3187
3188 set_bit(MMF_OOM_SKIP, &mm->flags);
3189 }
3190
3191 mmap_write_lock(mm);
3192 if (mm->locked_vm)
3193 unlock_range(mm->mmap, ULONG_MAX);
3194
3195 arch_exit_mmap(mm);
3196
3197 vma = mm->mmap;
3198 if (!vma) {
3199 /* Can happen if dup_mmap() received an OOM */
3200 mmap_write_unlock(mm);
3201 return;
3202 }
3203
3204 lru_add_drain();
3205 flush_cache_mm(mm);
3206 tlb_gather_mmu_fullmm(&tlb, mm);
3207 /* update_hiwater_rss(mm) here? but nobody should be looking */
3208 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3209 unmap_vmas(&tlb, vma, 0, -1);
3210 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3211 tlb_finish_mmu(&tlb);
3212
3213 /* Walk the list again, actually closing and freeing it. */
3214 while (vma) {
3215 if (vma->vm_flags & VM_ACCOUNT)
3216 nr_accounted += vma_pages(vma);
3217 vma = remove_vma(vma);
3218 cond_resched();
3219 }
3220 mm->mmap = NULL;
3221 mmap_write_unlock(mm);
3222 vm_unacct_memory(nr_accounted);
3223 }
3224
3225 /* Insert vm structure into process list sorted by address
3226 * and into the inode's i_mmap tree. If vm_file is non-NULL
3227 * then i_mmap_rwsem is taken here.
3228 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3229 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3230 {
3231 struct vm_area_struct *prev;
3232 struct rb_node **rb_link, *rb_parent;
3233
3234 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3235 &prev, &rb_link, &rb_parent))
3236 return -ENOMEM;
3237 if ((vma->vm_flags & VM_ACCOUNT) &&
3238 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3239 return -ENOMEM;
3240
3241 /*
3242 * The vm_pgoff of a purely anonymous vma should be irrelevant
3243 * until its first write fault, when page's anon_vma and index
3244 * are set. But now set the vm_pgoff it will almost certainly
3245 * end up with (unless mremap moves it elsewhere before that
3246 * first wfault), so /proc/pid/maps tells a consistent story.
3247 *
3248 * By setting it to reflect the virtual start address of the
3249 * vma, merges and splits can happen in a seamless way, just
3250 * using the existing file pgoff checks and manipulations.
3251 * Similarly in do_mmap and in do_brk_flags.
3252 */
3253 if (vma_is_anonymous(vma)) {
3254 BUG_ON(vma->anon_vma);
3255 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3256 }
3257
3258 vma_link(mm, vma, prev, rb_link, rb_parent);
3259 return 0;
3260 }
3261
3262 /*
3263 * Copy the vma structure to a new location in the same mm,
3264 * prior to moving page table entries, to effect an mremap move.
3265 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3266 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3267 unsigned long addr, unsigned long len, pgoff_t pgoff,
3268 bool *need_rmap_locks)
3269 {
3270 struct vm_area_struct *vma = *vmap;
3271 unsigned long vma_start = vma->vm_start;
3272 struct mm_struct *mm = vma->vm_mm;
3273 struct vm_area_struct *new_vma, *prev;
3274 struct rb_node **rb_link, *rb_parent;
3275 bool faulted_in_anon_vma = true;
3276
3277 /*
3278 * If anonymous vma has not yet been faulted, update new pgoff
3279 * to match new location, to increase its chance of merging.
3280 */
3281 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3282 pgoff = addr >> PAGE_SHIFT;
3283 faulted_in_anon_vma = false;
3284 }
3285
3286 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3287 return NULL; /* should never get here */
3288 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3289 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3290 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3291 if (new_vma) {
3292 /*
3293 * Source vma may have been merged into new_vma
3294 */
3295 if (unlikely(vma_start >= new_vma->vm_start &&
3296 vma_start < new_vma->vm_end)) {
3297 /*
3298 * The only way we can get a vma_merge with
3299 * self during an mremap is if the vma hasn't
3300 * been faulted in yet and we were allowed to
3301 * reset the dst vma->vm_pgoff to the
3302 * destination address of the mremap to allow
3303 * the merge to happen. mremap must change the
3304 * vm_pgoff linearity between src and dst vmas
3305 * (in turn preventing a vma_merge) to be
3306 * safe. It is only safe to keep the vm_pgoff
3307 * linear if there are no pages mapped yet.
3308 */
3309 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3310 *vmap = vma = new_vma;
3311 }
3312 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3313 } else {
3314 new_vma = vm_area_dup(vma);
3315 if (!new_vma)
3316 goto out;
3317 new_vma->vm_start = addr;
3318 new_vma->vm_end = addr + len;
3319 new_vma->vm_pgoff = pgoff;
3320 if (vma_dup_policy(vma, new_vma))
3321 goto out_free_vma;
3322 if (anon_vma_clone(new_vma, vma))
3323 goto out_free_mempol;
3324 if (new_vma->vm_file)
3325 get_file(new_vma->vm_file);
3326 if (new_vma->vm_ops && new_vma->vm_ops->open)
3327 new_vma->vm_ops->open(new_vma);
3328 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3329 *need_rmap_locks = false;
3330 }
3331 return new_vma;
3332
3333 out_free_mempol:
3334 mpol_put(vma_policy(new_vma));
3335 out_free_vma:
3336 new_vma->vm_file = NULL; /* Prevent fput within vm_area_free */
3337 vm_area_free(new_vma);
3338 out:
3339 return NULL;
3340 }
3341
3342 /*
3343 * Return true if the calling process may expand its vm space by the passed
3344 * number of pages
3345 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3346 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3347 {
3348 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3349 return false;
3350
3351 if (is_data_mapping(flags) &&
3352 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3353 /* Workaround for Valgrind */
3354 if (rlimit(RLIMIT_DATA) == 0 &&
3355 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3356 return true;
3357
3358 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3359 current->comm, current->pid,
3360 (mm->data_vm + npages) << PAGE_SHIFT,
3361 rlimit(RLIMIT_DATA),
3362 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3363
3364 if (!ignore_rlimit_data)
3365 return false;
3366 }
3367
3368 return true;
3369 }
3370
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3371 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3372 {
3373 mm->total_vm += npages;
3374
3375 if (is_exec_mapping(flags))
3376 mm->exec_vm += npages;
3377 else if (is_stack_mapping(flags))
3378 mm->stack_vm += npages;
3379 else if (is_data_mapping(flags))
3380 mm->data_vm += npages;
3381 }
3382
3383 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3384
3385 /*
3386 * Having a close hook prevents vma merging regardless of flags.
3387 */
special_mapping_close(struct vm_area_struct * vma)3388 static void special_mapping_close(struct vm_area_struct *vma)
3389 {
3390 }
3391
special_mapping_name(struct vm_area_struct * vma)3392 static const char *special_mapping_name(struct vm_area_struct *vma)
3393 {
3394 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3395 }
3396
special_mapping_mremap(struct vm_area_struct * new_vma)3397 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3398 {
3399 struct vm_special_mapping *sm = new_vma->vm_private_data;
3400
3401 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3402 return -EFAULT;
3403
3404 if (sm->mremap)
3405 return sm->mremap(sm, new_vma);
3406
3407 return 0;
3408 }
3409
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3410 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3411 {
3412 /*
3413 * Forbid splitting special mappings - kernel has expectations over
3414 * the number of pages in mapping. Together with VM_DONTEXPAND
3415 * the size of vma should stay the same over the special mapping's
3416 * lifetime.
3417 */
3418 return -EINVAL;
3419 }
3420
3421 static const struct vm_operations_struct special_mapping_vmops = {
3422 .close = special_mapping_close,
3423 .fault = special_mapping_fault,
3424 .mremap = special_mapping_mremap,
3425 .name = special_mapping_name,
3426 /* vDSO code relies that VVAR can't be accessed remotely */
3427 .access = NULL,
3428 .may_split = special_mapping_split,
3429 };
3430
3431 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3432 .close = special_mapping_close,
3433 .fault = special_mapping_fault,
3434 };
3435
special_mapping_fault(struct vm_fault * vmf)3436 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3437 {
3438 struct vm_area_struct *vma = vmf->vma;
3439 pgoff_t pgoff;
3440 struct page **pages;
3441
3442 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3443 pages = vma->vm_private_data;
3444 } else {
3445 struct vm_special_mapping *sm = vma->vm_private_data;
3446
3447 if (sm->fault)
3448 return sm->fault(sm, vmf->vma, vmf);
3449
3450 pages = sm->pages;
3451 }
3452
3453 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3454 pgoff--;
3455
3456 if (*pages) {
3457 struct page *page = *pages;
3458 get_page(page);
3459 vmf->page = page;
3460 return 0;
3461 }
3462
3463 return VM_FAULT_SIGBUS;
3464 }
3465
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3466 static struct vm_area_struct *__install_special_mapping(
3467 struct mm_struct *mm,
3468 unsigned long addr, unsigned long len,
3469 unsigned long vm_flags, void *priv,
3470 const struct vm_operations_struct *ops)
3471 {
3472 int ret;
3473 struct vm_area_struct *vma;
3474
3475 vma = vm_area_alloc(mm);
3476 if (unlikely(vma == NULL))
3477 return ERR_PTR(-ENOMEM);
3478
3479 vma->vm_start = addr;
3480 vma->vm_end = addr + len;
3481
3482 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3483 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3484
3485 vma->vm_ops = ops;
3486 vma->vm_private_data = priv;
3487
3488 ret = insert_vm_struct(mm, vma);
3489 if (ret)
3490 goto out;
3491
3492 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3493
3494 perf_event_mmap(vma);
3495
3496 return vma;
3497
3498 out:
3499 vm_area_free(vma);
3500 return ERR_PTR(ret);
3501 }
3502
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3503 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3504 const struct vm_special_mapping *sm)
3505 {
3506 return vma->vm_private_data == sm &&
3507 (vma->vm_ops == &special_mapping_vmops ||
3508 vma->vm_ops == &legacy_special_mapping_vmops);
3509 }
3510
3511 /*
3512 * Called with mm->mmap_lock held for writing.
3513 * Insert a new vma covering the given region, with the given flags.
3514 * Its pages are supplied by the given array of struct page *.
3515 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3516 * The region past the last page supplied will always produce SIGBUS.
3517 * The array pointer and the pages it points to are assumed to stay alive
3518 * for as long as this mapping might exist.
3519 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3520 struct vm_area_struct *_install_special_mapping(
3521 struct mm_struct *mm,
3522 unsigned long addr, unsigned long len,
3523 unsigned long vm_flags, const struct vm_special_mapping *spec)
3524 {
3525 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3526 &special_mapping_vmops);
3527 }
3528
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3529 int install_special_mapping(struct mm_struct *mm,
3530 unsigned long addr, unsigned long len,
3531 unsigned long vm_flags, struct page **pages)
3532 {
3533 struct vm_area_struct *vma = __install_special_mapping(
3534 mm, addr, len, vm_flags, (void *)pages,
3535 &legacy_special_mapping_vmops);
3536
3537 return PTR_ERR_OR_ZERO(vma);
3538 }
3539
3540 static DEFINE_MUTEX(mm_all_locks_mutex);
3541
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3542 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3543 {
3544 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3545 /*
3546 * The LSB of head.next can't change from under us
3547 * because we hold the mm_all_locks_mutex.
3548 */
3549 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3550 /*
3551 * We can safely modify head.next after taking the
3552 * anon_vma->root->rwsem. If some other vma in this mm shares
3553 * the same anon_vma we won't take it again.
3554 *
3555 * No need of atomic instructions here, head.next
3556 * can't change from under us thanks to the
3557 * anon_vma->root->rwsem.
3558 */
3559 if (__test_and_set_bit(0, (unsigned long *)
3560 &anon_vma->root->rb_root.rb_root.rb_node))
3561 BUG();
3562 }
3563 }
3564
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3565 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3566 {
3567 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3568 /*
3569 * AS_MM_ALL_LOCKS can't change from under us because
3570 * we hold the mm_all_locks_mutex.
3571 *
3572 * Operations on ->flags have to be atomic because
3573 * even if AS_MM_ALL_LOCKS is stable thanks to the
3574 * mm_all_locks_mutex, there may be other cpus
3575 * changing other bitflags in parallel to us.
3576 */
3577 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3578 BUG();
3579 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3580 }
3581 }
3582
3583 /*
3584 * This operation locks against the VM for all pte/vma/mm related
3585 * operations that could ever happen on a certain mm. This includes
3586 * vmtruncate, try_to_unmap, and all page faults.
3587 *
3588 * The caller must take the mmap_lock in write mode before calling
3589 * mm_take_all_locks(). The caller isn't allowed to release the
3590 * mmap_lock until mm_drop_all_locks() returns.
3591 *
3592 * mmap_lock in write mode is required in order to block all operations
3593 * that could modify pagetables and free pages without need of
3594 * altering the vma layout. It's also needed in write mode to avoid new
3595 * anon_vmas to be associated with existing vmas.
3596 *
3597 * A single task can't take more than one mm_take_all_locks() in a row
3598 * or it would deadlock.
3599 *
3600 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3601 * mapping->flags avoid to take the same lock twice, if more than one
3602 * vma in this mm is backed by the same anon_vma or address_space.
3603 *
3604 * We take locks in following order, accordingly to comment at beginning
3605 * of mm/rmap.c:
3606 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3607 * hugetlb mapping);
3608 * - all i_mmap_rwsem locks;
3609 * - all anon_vma->rwseml
3610 *
3611 * We can take all locks within these types randomly because the VM code
3612 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3613 * mm_all_locks_mutex.
3614 *
3615 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3616 * that may have to take thousand of locks.
3617 *
3618 * mm_take_all_locks() can fail if it's interrupted by signals.
3619 */
mm_take_all_locks(struct mm_struct * mm)3620 int mm_take_all_locks(struct mm_struct *mm)
3621 {
3622 struct vm_area_struct *vma;
3623 struct anon_vma_chain *avc;
3624
3625 BUG_ON(mmap_read_trylock(mm));
3626
3627 mutex_lock(&mm_all_locks_mutex);
3628
3629 #if defined(CONFIG_MMU_NOTIFIER) && defined(CONFIG_SPECULATIVE_PAGE_FAULT)
3630 percpu_down_write(mm->mmu_notifier_lock);
3631 #endif
3632
3633 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3634 if (signal_pending(current))
3635 goto out_unlock;
3636 if (vma->vm_file && vma->vm_file->f_mapping &&
3637 is_vm_hugetlb_page(vma))
3638 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3639 }
3640
3641 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3642 if (signal_pending(current))
3643 goto out_unlock;
3644 if (vma->vm_file && vma->vm_file->f_mapping &&
3645 !is_vm_hugetlb_page(vma))
3646 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3647 }
3648
3649 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3650 if (signal_pending(current))
3651 goto out_unlock;
3652 if (vma->anon_vma)
3653 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3654 vm_lock_anon_vma(mm, avc->anon_vma);
3655 }
3656
3657 return 0;
3658
3659 out_unlock:
3660 mm_drop_all_locks(mm);
3661 return -EINTR;
3662 }
3663
vm_unlock_anon_vma(struct anon_vma * anon_vma)3664 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3665 {
3666 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3667 /*
3668 * The LSB of head.next can't change to 0 from under
3669 * us because we hold the mm_all_locks_mutex.
3670 *
3671 * We must however clear the bitflag before unlocking
3672 * the vma so the users using the anon_vma->rb_root will
3673 * never see our bitflag.
3674 *
3675 * No need of atomic instructions here, head.next
3676 * can't change from under us until we release the
3677 * anon_vma->root->rwsem.
3678 */
3679 if (!__test_and_clear_bit(0, (unsigned long *)
3680 &anon_vma->root->rb_root.rb_root.rb_node))
3681 BUG();
3682 anon_vma_unlock_write(anon_vma);
3683 }
3684 }
3685
vm_unlock_mapping(struct address_space * mapping)3686 static void vm_unlock_mapping(struct address_space *mapping)
3687 {
3688 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3689 /*
3690 * AS_MM_ALL_LOCKS can't change to 0 from under us
3691 * because we hold the mm_all_locks_mutex.
3692 */
3693 i_mmap_unlock_write(mapping);
3694 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3695 &mapping->flags))
3696 BUG();
3697 }
3698 }
3699
3700 /*
3701 * The mmap_lock cannot be released by the caller until
3702 * mm_drop_all_locks() returns.
3703 */
mm_drop_all_locks(struct mm_struct * mm)3704 void mm_drop_all_locks(struct mm_struct *mm)
3705 {
3706 struct vm_area_struct *vma;
3707 struct anon_vma_chain *avc;
3708
3709 BUG_ON(mmap_read_trylock(mm));
3710 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3711
3712 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3713 if (vma->anon_vma)
3714 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3715 vm_unlock_anon_vma(avc->anon_vma);
3716 if (vma->vm_file && vma->vm_file->f_mapping)
3717 vm_unlock_mapping(vma->vm_file->f_mapping);
3718 }
3719
3720 #if defined(CONFIG_MMU_NOTIFIER) && defined(CONFIG_SPECULATIVE_PAGE_FAULT)
3721 percpu_up_write(mm->mmu_notifier_lock);
3722 #endif
3723
3724 mutex_unlock(&mm_all_locks_mutex);
3725 }
3726
3727 /*
3728 * initialise the percpu counter for VM
3729 */
mmap_init(void)3730 void __init mmap_init(void)
3731 {
3732 int ret;
3733
3734 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3735 VM_BUG_ON(ret);
3736 }
3737
3738 /*
3739 * Initialise sysctl_user_reserve_kbytes.
3740 *
3741 * This is intended to prevent a user from starting a single memory hogging
3742 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3743 * mode.
3744 *
3745 * The default value is min(3% of free memory, 128MB)
3746 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3747 */
init_user_reserve(void)3748 static int init_user_reserve(void)
3749 {
3750 unsigned long free_kbytes;
3751
3752 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3753
3754 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3755 return 0;
3756 }
3757 subsys_initcall(init_user_reserve);
3758
3759 /*
3760 * Initialise sysctl_admin_reserve_kbytes.
3761 *
3762 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3763 * to log in and kill a memory hogging process.
3764 *
3765 * Systems with more than 256MB will reserve 8MB, enough to recover
3766 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3767 * only reserve 3% of free pages by default.
3768 */
init_admin_reserve(void)3769 static int init_admin_reserve(void)
3770 {
3771 unsigned long free_kbytes;
3772
3773 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3774
3775 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3776 return 0;
3777 }
3778 subsys_initcall(init_admin_reserve);
3779
3780 /*
3781 * Reinititalise user and admin reserves if memory is added or removed.
3782 *
3783 * The default user reserve max is 128MB, and the default max for the
3784 * admin reserve is 8MB. These are usually, but not always, enough to
3785 * enable recovery from a memory hogging process using login/sshd, a shell,
3786 * and tools like top. It may make sense to increase or even disable the
3787 * reserve depending on the existence of swap or variations in the recovery
3788 * tools. So, the admin may have changed them.
3789 *
3790 * If memory is added and the reserves have been eliminated or increased above
3791 * the default max, then we'll trust the admin.
3792 *
3793 * If memory is removed and there isn't enough free memory, then we
3794 * need to reset the reserves.
3795 *
3796 * Otherwise keep the reserve set by the admin.
3797 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3798 static int reserve_mem_notifier(struct notifier_block *nb,
3799 unsigned long action, void *data)
3800 {
3801 unsigned long tmp, free_kbytes;
3802
3803 switch (action) {
3804 case MEM_ONLINE:
3805 /* Default max is 128MB. Leave alone if modified by operator. */
3806 tmp = sysctl_user_reserve_kbytes;
3807 if (0 < tmp && tmp < (1UL << 17))
3808 init_user_reserve();
3809
3810 /* Default max is 8MB. Leave alone if modified by operator. */
3811 tmp = sysctl_admin_reserve_kbytes;
3812 if (0 < tmp && tmp < (1UL << 13))
3813 init_admin_reserve();
3814
3815 break;
3816 case MEM_OFFLINE:
3817 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3818
3819 if (sysctl_user_reserve_kbytes > free_kbytes) {
3820 init_user_reserve();
3821 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3822 sysctl_user_reserve_kbytes);
3823 }
3824
3825 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3826 init_admin_reserve();
3827 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3828 sysctl_admin_reserve_kbytes);
3829 }
3830 break;
3831 default:
3832 break;
3833 }
3834 return NOTIFY_OK;
3835 }
3836
3837 static struct notifier_block reserve_mem_nb = {
3838 .notifier_call = reserve_mem_notifier,
3839 };
3840
init_reserve_notifier(void)3841 static int __meminit init_reserve_notifier(void)
3842 {
3843 if (register_hotmemory_notifier(&reserve_mem_nb))
3844 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3845
3846 return 0;
3847 }
3848 subsys_initcall(init_reserve_notifier);
3849