• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/mm.h>
61 
62 #include "internal.h"
63 
64 #ifndef arch_mmap_check
65 #define arch_mmap_check(addr, len, flags)	(0)
66 #endif
67 
68 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
69 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
70 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
71 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
72 #endif
73 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
74 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
75 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
76 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
77 #endif
78 
79 static bool ignore_rlimit_data;
80 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
81 
82 static void unmap_region(struct mm_struct *mm,
83 		struct vm_area_struct *vma, struct vm_area_struct *prev,
84 		unsigned long start, unsigned long end);
85 
86 /* description of effects of mapping type and prot in current implementation.
87  * this is due to the limited x86 page protection hardware.  The expected
88  * behavior is in parens:
89  *
90  * map_type	prot
91  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
92  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
93  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
94  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
95  *
96  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
97  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
98  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
99  *
100  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
101  * MAP_PRIVATE (with Enhanced PAN supported):
102  *								r: (no) no
103  *								w: (no) no
104  *								x: (yes) yes
105  */
106 pgprot_t protection_map[16] __ro_after_init = {
107 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
108 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
109 };
110 
111 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)112 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
113 {
114 	return prot;
115 }
116 #endif
117 
vm_get_page_prot(unsigned long vm_flags)118 pgprot_t vm_get_page_prot(unsigned long vm_flags)
119 {
120 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
121 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
122 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
123 
124 	return arch_filter_pgprot(ret);
125 }
126 EXPORT_SYMBOL(vm_get_page_prot);
127 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)128 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
129 {
130 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
131 }
132 
133 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)134 void vma_set_page_prot(struct vm_area_struct *vma)
135 {
136 	unsigned long vm_flags = vma->vm_flags;
137 	pgprot_t vm_page_prot;
138 
139 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
140 	if (vma_wants_writenotify(vma, vm_page_prot)) {
141 		vm_flags &= ~VM_SHARED;
142 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
143 	}
144 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
145 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
146 }
147 
148 /*
149  * Requires inode->i_mapping->i_mmap_rwsem
150  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)151 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
152 		struct file *file, struct address_space *mapping)
153 {
154 	if (vma->vm_flags & VM_SHARED)
155 		mapping_unmap_writable(mapping);
156 
157 	flush_dcache_mmap_lock(mapping);
158 	vma_interval_tree_remove(vma, &mapping->i_mmap);
159 	flush_dcache_mmap_unlock(mapping);
160 }
161 
162 /*
163  * Unlink a file-based vm structure from its interval tree, to hide
164  * vma from rmap and vmtruncate before freeing its page tables.
165  */
unlink_file_vma(struct vm_area_struct * vma)166 void unlink_file_vma(struct vm_area_struct *vma)
167 {
168 	struct file *file = vma->vm_file;
169 
170 	if (file) {
171 		struct address_space *mapping = file->f_mapping;
172 		i_mmap_lock_write(mapping);
173 		__remove_shared_vm_struct(vma, file, mapping);
174 		i_mmap_unlock_write(mapping);
175 	}
176 }
177 
178 /*
179  * Close a vm structure and free it, returning the next.
180  */
remove_vma(struct vm_area_struct * vma)181 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
182 {
183 	struct vm_area_struct *next = vma->vm_next;
184 
185 	might_sleep();
186 	if (vma->vm_ops && vma->vm_ops->close)
187 		vma->vm_ops->close(vma);
188 	mpol_put(vma_policy(vma));
189 	/* fput(vma->vm_file) happens in vm_area_free after an RCU delay. */
190 	vm_area_free(vma);
191 	return next;
192 }
193 
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195 		struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198 	unsigned long newbrk, oldbrk, origbrk;
199 	struct mm_struct *mm = current->mm;
200 	struct vm_area_struct *next;
201 	unsigned long min_brk;
202 	bool populate;
203 	bool downgraded = false;
204 	LIST_HEAD(uf);
205 
206 	if (mmap_write_lock_killable(mm))
207 		return -EINTR;
208 
209 	origbrk = mm->brk;
210 
211 #ifdef CONFIG_COMPAT_BRK
212 	/*
213 	 * CONFIG_COMPAT_BRK can still be overridden by setting
214 	 * randomize_va_space to 2, which will still cause mm->start_brk
215 	 * to be arbitrarily shifted
216 	 */
217 	if (current->brk_randomized)
218 		min_brk = mm->start_brk;
219 	else
220 		min_brk = mm->end_data;
221 #else
222 	min_brk = mm->start_brk;
223 #endif
224 	if (brk < min_brk)
225 		goto out;
226 
227 	/*
228 	 * Check against rlimit here. If this check is done later after the test
229 	 * of oldbrk with newbrk then it can escape the test and let the data
230 	 * segment grow beyond its set limit the in case where the limit is
231 	 * not page aligned -Ram Gupta
232 	 */
233 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 			      mm->end_data, mm->start_data))
235 		goto out;
236 
237 	newbrk = PAGE_ALIGN(brk);
238 	oldbrk = PAGE_ALIGN(mm->brk);
239 	if (oldbrk == newbrk) {
240 		mm->brk = brk;
241 		goto success;
242 	}
243 
244 	/*
245 	 * Always allow shrinking brk.
246 	 * __do_munmap() may downgrade mmap_lock to read.
247 	 */
248 	if (brk <= mm->brk) {
249 		int ret;
250 
251 		/*
252 		 * mm->brk must to be protected by write mmap_lock so update it
253 		 * before downgrading mmap_lock. When __do_munmap() fails,
254 		 * mm->brk will be restored from origbrk.
255 		 */
256 		mm->brk = brk;
257 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 		if (ret < 0) {
259 			mm->brk = origbrk;
260 			goto out;
261 		} else if (ret == 1) {
262 			downgraded = true;
263 		}
264 		goto success;
265 	}
266 
267 	/* Check against existing mmap mappings. */
268 	next = find_vma(mm, oldbrk);
269 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 		goto out;
271 
272 	/* Ok, looks good - let it rip. */
273 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 		goto out;
275 	mm->brk = brk;
276 
277 success:
278 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 	if (downgraded)
280 		mmap_read_unlock(mm);
281 	else
282 		mmap_write_unlock(mm);
283 	userfaultfd_unmap_complete(mm, &uf);
284 	if (populate)
285 		mm_populate(oldbrk, newbrk - oldbrk);
286 	return brk;
287 
288 out:
289 	mmap_write_unlock(mm);
290 	return origbrk;
291 }
292 
vma_compute_gap(struct vm_area_struct * vma)293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295 	unsigned long gap, prev_end;
296 
297 	/*
298 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 	 * allow two stack_guard_gaps between them here, and when choosing
300 	 * an unmapped area; whereas when expanding we only require one.
301 	 * That's a little inconsistent, but keeps the code here simpler.
302 	 */
303 	gap = vm_start_gap(vma);
304 	if (vma->vm_prev) {
305 		prev_end = vm_end_gap(vma->vm_prev);
306 		if (gap > prev_end)
307 			gap -= prev_end;
308 		else
309 			gap = 0;
310 	}
311 	return gap;
312 }
313 
314 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 	unsigned long max = vma_compute_gap(vma), subtree_gap;
318 	if (vma->vm_rb.rb_left) {
319 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 		if (subtree_gap > max)
322 			max = subtree_gap;
323 	}
324 	if (vma->vm_rb.rb_right) {
325 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 		if (subtree_gap > max)
328 			max = subtree_gap;
329 	}
330 	return max;
331 }
332 
browse_rb(struct mm_struct * mm)333 static int browse_rb(struct mm_struct *mm)
334 {
335 	struct rb_root *root = &mm->mm_rb;
336 	int i = 0, j, bug = 0;
337 	struct rb_node *nd, *pn = NULL;
338 	unsigned long prev = 0, pend = 0;
339 
340 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 		struct vm_area_struct *vma;
342 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 		if (vma->vm_start < prev) {
344 			pr_emerg("vm_start %lx < prev %lx\n",
345 				  vma->vm_start, prev);
346 			bug = 1;
347 		}
348 		if (vma->vm_start < pend) {
349 			pr_emerg("vm_start %lx < pend %lx\n",
350 				  vma->vm_start, pend);
351 			bug = 1;
352 		}
353 		if (vma->vm_start > vma->vm_end) {
354 			pr_emerg("vm_start %lx > vm_end %lx\n",
355 				  vma->vm_start, vma->vm_end);
356 			bug = 1;
357 		}
358 		spin_lock(&mm->page_table_lock);
359 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 			pr_emerg("free gap %lx, correct %lx\n",
361 			       vma->rb_subtree_gap,
362 			       vma_compute_subtree_gap(vma));
363 			bug = 1;
364 		}
365 		spin_unlock(&mm->page_table_lock);
366 		i++;
367 		pn = nd;
368 		prev = vma->vm_start;
369 		pend = vma->vm_end;
370 	}
371 	j = 0;
372 	for (nd = pn; nd; nd = rb_prev(nd))
373 		j++;
374 	if (i != j) {
375 		pr_emerg("backwards %d, forwards %d\n", j, i);
376 		bug = 1;
377 	}
378 	return bug ? -1 : i;
379 }
380 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383 	struct rb_node *nd;
384 
385 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 		struct vm_area_struct *vma;
387 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 		VM_BUG_ON_VMA(vma != ignore &&
389 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 			vma);
391 	}
392 }
393 
validate_mm(struct mm_struct * mm)394 static void validate_mm(struct mm_struct *mm)
395 {
396 	int bug = 0;
397 	int i = 0;
398 	unsigned long highest_address = 0;
399 	struct vm_area_struct *vma = mm->mmap;
400 
401 	while (vma) {
402 		struct anon_vma *anon_vma = vma->anon_vma;
403 		struct anon_vma_chain *avc;
404 
405 		if (anon_vma) {
406 			anon_vma_lock_read(anon_vma);
407 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 				anon_vma_interval_tree_verify(avc);
409 			anon_vma_unlock_read(anon_vma);
410 		}
411 
412 		highest_address = vm_end_gap(vma);
413 		vma = vma->vm_next;
414 		i++;
415 	}
416 	if (i != mm->map_count) {
417 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418 		bug = 1;
419 	}
420 	if (highest_address != mm->highest_vm_end) {
421 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 			  mm->highest_vm_end, highest_address);
423 		bug = 1;
424 	}
425 	i = browse_rb(mm);
426 	if (i != mm->map_count) {
427 		if (i != -1)
428 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429 		bug = 1;
430 	}
431 	VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437 
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 			 struct vm_area_struct, vm_rb,
440 			 unsigned long, rb_subtree_gap, vma_compute_gap)
441 
442 /*
443  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444  * vma->vm_prev->vm_end values changed, without modifying the vma's position
445  * in the rbtree.
446  */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449 	/*
450 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 	 * a callback function that does exactly what we want.
452 	 */
453 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 				 struct rb_root *root)
458 {
459 	/* All rb_subtree_gap values must be consistent prior to insertion */
460 	validate_mm_rb(root, NULL);
461 
462 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464 
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467 	/*
468 	 * Note rb_erase_augmented is a fairly large inline function,
469 	 * so make sure we instantiate it only once with our desired
470 	 * augmented rbtree callbacks.
471 	 */
472 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474 
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 						struct rb_root *root,
477 						struct vm_area_struct *ignore)
478 {
479 	/*
480 	 * All rb_subtree_gap values must be consistent prior to erase,
481 	 * with the possible exception of
482 	 *
483 	 * a. the "next" vma being erased if next->vm_start was reduced in
484 	 *    __vma_adjust() -> __vma_unlink()
485 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486 	 *    vma_rb_erase()
487 	 */
488 	validate_mm_rb(root, ignore);
489 
490 	__vma_rb_erase(vma, root);
491 }
492 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 					 struct rb_root *root)
495 {
496 	vma_rb_erase_ignore(vma, root, vma);
497 }
498 
499 /*
500  * vma has some anon_vma assigned, and is already inserted on that
501  * anon_vma's interval trees.
502  *
503  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504  * vma must be removed from the anon_vma's interval trees using
505  * anon_vma_interval_tree_pre_update_vma().
506  *
507  * After the update, the vma will be reinserted using
508  * anon_vma_interval_tree_post_update_vma().
509  *
510  * The entire update must be protected by exclusive mmap_lock and by
511  * the root anon_vma's mutex.
512  */
513 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516 	struct anon_vma_chain *avc;
517 
518 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521 
522 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525 	struct anon_vma_chain *avc;
526 
527 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 		unsigned long end, struct vm_area_struct **pprev,
533 		struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536 
537 	mmap_assert_locked(mm);
538 	__rb_link = &mm->mm_rb.rb_node;
539 	rb_prev = __rb_parent = NULL;
540 
541 	while (*__rb_link) {
542 		struct vm_area_struct *vma_tmp;
543 
544 		__rb_parent = *__rb_link;
545 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
546 
547 		if (vma_tmp->vm_end > addr) {
548 			/* Fail if an existing vma overlaps the area */
549 			if (vma_tmp->vm_start < end)
550 				return -ENOMEM;
551 			__rb_link = &__rb_parent->rb_left;
552 		} else {
553 			rb_prev = __rb_parent;
554 			__rb_link = &__rb_parent->rb_right;
555 		}
556 	}
557 
558 	*pprev = NULL;
559 	if (rb_prev)
560 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
561 	*rb_link = __rb_link;
562 	*rb_parent = __rb_parent;
563 	return 0;
564 }
565 
566 /*
567  * vma_next() - Get the next VMA.
568  * @mm: The mm_struct.
569  * @vma: The current vma.
570  *
571  * If @vma is NULL, return the first vma in the mm.
572  *
573  * Returns: The next VMA after @vma.
574  */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)575 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
576 					 struct vm_area_struct *vma)
577 {
578 	if (!vma)
579 		return mm->mmap;
580 
581 	return vma->vm_next;
582 }
583 
584 /*
585  * munmap_vma_range() - munmap VMAs that overlap a range.
586  * @mm: The mm struct
587  * @start: The start of the range.
588  * @len: The length of the range.
589  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
590  * @rb_link: the rb_node
591  * @rb_parent: the parent rb_node
592  *
593  * Find all the vm_area_struct that overlap from @start to
594  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
595  *
596  * Returns: -ENOMEM on munmap failure or 0 on success.
597  */
598 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)599 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
600 		 struct vm_area_struct **pprev, struct rb_node ***link,
601 		 struct rb_node **parent, struct list_head *uf)
602 {
603 
604 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
605 		if (do_munmap(mm, start, len, uf))
606 			return -ENOMEM;
607 
608 	return 0;
609 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)610 static unsigned long count_vma_pages_range(struct mm_struct *mm,
611 		unsigned long addr, unsigned long end)
612 {
613 	unsigned long nr_pages = 0;
614 	struct vm_area_struct *vma;
615 
616 	/* Find first overlapping mapping */
617 	vma = find_vma_intersection(mm, addr, end);
618 	if (!vma)
619 		return 0;
620 
621 	nr_pages = (min(end, vma->vm_end) -
622 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
623 
624 	/* Iterate over the rest of the overlaps */
625 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
626 		unsigned long overlap_len;
627 
628 		if (vma->vm_start > end)
629 			break;
630 
631 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
632 		nr_pages += overlap_len >> PAGE_SHIFT;
633 	}
634 
635 	return nr_pages;
636 }
637 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)638 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
639 		struct rb_node **rb_link, struct rb_node *rb_parent)
640 {
641 	/* Update tracking information for the gap following the new vma. */
642 	if (vma->vm_next)
643 		vma_gap_update(vma->vm_next);
644 	else
645 		mm->highest_vm_end = vm_end_gap(vma);
646 
647 	/*
648 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
649 	 * correct insertion point for that vma. As a result, we could not
650 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
651 	 * So, we first insert the vma with a zero rb_subtree_gap value
652 	 * (to be consistent with what we did on the way down), and then
653 	 * immediately update the gap to the correct value. Finally we
654 	 * rebalance the rbtree after all augmented values have been set.
655 	 */
656 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
657 	vma->rb_subtree_gap = 0;
658 	vma_gap_update(vma);
659 	vma_rb_insert(vma, &mm->mm_rb);
660 }
661 
__vma_link_file(struct vm_area_struct * vma)662 static void __vma_link_file(struct vm_area_struct *vma)
663 {
664 	struct file *file;
665 
666 	file = vma->vm_file;
667 	if (file) {
668 		struct address_space *mapping = file->f_mapping;
669 
670 		if (vma->vm_flags & VM_SHARED)
671 			mapping_allow_writable(mapping);
672 
673 		flush_dcache_mmap_lock(mapping);
674 		vma_interval_tree_insert(vma, &mapping->i_mmap);
675 		flush_dcache_mmap_unlock(mapping);
676 	}
677 }
678 
679 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)680 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
681 	struct vm_area_struct *prev, struct rb_node **rb_link,
682 	struct rb_node *rb_parent)
683 {
684 	__vma_link_list(mm, vma, prev);
685 	__vma_link_rb(mm, vma, rb_link, rb_parent);
686 }
687 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)688 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
689 			struct vm_area_struct *prev, struct rb_node **rb_link,
690 			struct rb_node *rb_parent)
691 {
692 	struct address_space *mapping = NULL;
693 
694 	if (vma->vm_file) {
695 		mapping = vma->vm_file->f_mapping;
696 		i_mmap_lock_write(mapping);
697 	}
698 
699 	__vma_link(mm, vma, prev, rb_link, rb_parent);
700 	__vma_link_file(vma);
701 
702 	if (mapping)
703 		i_mmap_unlock_write(mapping);
704 
705 	mm->map_count++;
706 	validate_mm(mm);
707 }
708 
709 /*
710  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
711  * mm's list and rbtree.  It has already been inserted into the interval tree.
712  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)713 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
714 {
715 	struct vm_area_struct *prev;
716 	struct rb_node **rb_link, *rb_parent;
717 
718 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
719 			   &prev, &rb_link, &rb_parent))
720 		BUG();
721 	__vma_link(mm, vma, prev, rb_link, rb_parent);
722 	mm->map_count++;
723 }
724 
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)725 static __always_inline void __vma_unlink(struct mm_struct *mm,
726 						struct vm_area_struct *vma,
727 						struct vm_area_struct *ignore)
728 {
729 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
730 	__vma_unlink_list(mm, vma);
731 	/* Kill the cache */
732 	vmacache_invalidate(mm);
733 }
734 
735 /*
736  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
737  * is already present in an i_mmap tree without adjusting the tree.
738  * The following helper function should be used when such adjustments
739  * are necessary.  The "insert" vma (if any) is to be inserted
740  * before we drop the necessary locks.
741  */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)742 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
743 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
744 	struct vm_area_struct *expand)
745 {
746 	struct mm_struct *mm = vma->vm_mm;
747 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
748 	struct address_space *mapping = NULL;
749 	struct rb_root_cached *root = NULL;
750 	struct anon_vma *anon_vma = NULL;
751 	struct file *file = vma->vm_file;
752 	bool start_changed = false, end_changed = false;
753 	long adjust_next = 0;
754 	int remove_next = 0;
755 
756 	if (next && !insert) {
757 		struct vm_area_struct *exporter = NULL, *importer = NULL;
758 
759 		if (end >= next->vm_end) {
760 			/*
761 			 * vma expands, overlapping all the next, and
762 			 * perhaps the one after too (mprotect case 6).
763 			 * The only other cases that gets here are
764 			 * case 1, case 7 and case 8.
765 			 */
766 			if (next == expand) {
767 				/*
768 				 * The only case where we don't expand "vma"
769 				 * and we expand "next" instead is case 8.
770 				 */
771 				VM_WARN_ON(end != next->vm_end);
772 				/*
773 				 * remove_next == 3 means we're
774 				 * removing "vma" and that to do so we
775 				 * swapped "vma" and "next".
776 				 */
777 				remove_next = 3;
778 				VM_WARN_ON(file != next->vm_file);
779 				swap(vma, next);
780 			} else {
781 				VM_WARN_ON(expand != vma);
782 				/*
783 				 * case 1, 6, 7, remove_next == 2 is case 6,
784 				 * remove_next == 1 is case 1 or 7.
785 				 */
786 				remove_next = 1 + (end > next->vm_end);
787 				VM_WARN_ON(remove_next == 2 &&
788 					   end != next->vm_next->vm_end);
789 				/* trim end to next, for case 6 first pass */
790 				end = next->vm_end;
791 			}
792 
793 			exporter = next;
794 			importer = vma;
795 
796 			/*
797 			 * If next doesn't have anon_vma, import from vma after
798 			 * next, if the vma overlaps with it.
799 			 */
800 			if (remove_next == 2 && !next->anon_vma)
801 				exporter = next->vm_next;
802 
803 		} else if (end > next->vm_start) {
804 			/*
805 			 * vma expands, overlapping part of the next:
806 			 * mprotect case 5 shifting the boundary up.
807 			 */
808 			adjust_next = (end - next->vm_start);
809 			exporter = next;
810 			importer = vma;
811 			VM_WARN_ON(expand != importer);
812 		} else if (end < vma->vm_end) {
813 			/*
814 			 * vma shrinks, and !insert tells it's not
815 			 * split_vma inserting another: so it must be
816 			 * mprotect case 4 shifting the boundary down.
817 			 */
818 			adjust_next = -(vma->vm_end - end);
819 			exporter = vma;
820 			importer = next;
821 			VM_WARN_ON(expand != importer);
822 		}
823 
824 		/*
825 		 * Easily overlooked: when mprotect shifts the boundary,
826 		 * make sure the expanding vma has anon_vma set if the
827 		 * shrinking vma had, to cover any anon pages imported.
828 		 */
829 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
830 			int error;
831 
832 			importer->anon_vma = exporter->anon_vma;
833 			error = anon_vma_clone(importer, exporter);
834 			if (error)
835 				return error;
836 		}
837 	}
838 again:
839 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
840 
841 	if (file) {
842 		mapping = file->f_mapping;
843 		root = &mapping->i_mmap;
844 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
845 
846 		if (adjust_next)
847 			uprobe_munmap(next, next->vm_start, next->vm_end);
848 
849 		i_mmap_lock_write(mapping);
850 		if (insert) {
851 			/*
852 			 * Put into interval tree now, so instantiated pages
853 			 * are visible to arm/parisc __flush_dcache_page
854 			 * throughout; but we cannot insert into address
855 			 * space until vma start or end is updated.
856 			 */
857 			__vma_link_file(insert);
858 		}
859 	}
860 
861 	anon_vma = vma->anon_vma;
862 	if (!anon_vma && adjust_next)
863 		anon_vma = next->anon_vma;
864 	if (anon_vma) {
865 		VM_WARN_ON(adjust_next && next->anon_vma &&
866 			   anon_vma != next->anon_vma);
867 		anon_vma_lock_write(anon_vma);
868 		anon_vma_interval_tree_pre_update_vma(vma);
869 		if (adjust_next)
870 			anon_vma_interval_tree_pre_update_vma(next);
871 	}
872 
873 	if (file) {
874 		flush_dcache_mmap_lock(mapping);
875 		vma_interval_tree_remove(vma, root);
876 		if (adjust_next)
877 			vma_interval_tree_remove(next, root);
878 	}
879 
880 	if (start != vma->vm_start) {
881 		vma->vm_start = start;
882 		start_changed = true;
883 	}
884 	if (end != vma->vm_end) {
885 		vma->vm_end = end;
886 		end_changed = true;
887 	}
888 	vma->vm_pgoff = pgoff;
889 	if (adjust_next) {
890 		next->vm_start += adjust_next;
891 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
892 	}
893 
894 	if (file) {
895 		if (adjust_next)
896 			vma_interval_tree_insert(next, root);
897 		vma_interval_tree_insert(vma, root);
898 		flush_dcache_mmap_unlock(mapping);
899 	}
900 
901 	if (remove_next) {
902 		/*
903 		 * vma_merge has merged next into vma, and needs
904 		 * us to remove next before dropping the locks.
905 		 */
906 		if (remove_next != 3)
907 			__vma_unlink(mm, next, next);
908 		else
909 			/*
910 			 * vma is not before next if they've been
911 			 * swapped.
912 			 *
913 			 * pre-swap() next->vm_start was reduced so
914 			 * tell validate_mm_rb to ignore pre-swap()
915 			 * "next" (which is stored in post-swap()
916 			 * "vma").
917 			 */
918 			__vma_unlink(mm, next, vma);
919 		if (file)
920 			__remove_shared_vm_struct(next, file, mapping);
921 	} else if (insert) {
922 		/*
923 		 * split_vma has split insert from vma, and needs
924 		 * us to insert it before dropping the locks
925 		 * (it may either follow vma or precede it).
926 		 */
927 		__insert_vm_struct(mm, insert);
928 	} else {
929 		if (start_changed)
930 			vma_gap_update(vma);
931 		if (end_changed) {
932 			if (!next)
933 				mm->highest_vm_end = vm_end_gap(vma);
934 			else if (!adjust_next)
935 				vma_gap_update(next);
936 		}
937 	}
938 
939 	if (anon_vma) {
940 		anon_vma_interval_tree_post_update_vma(vma);
941 		if (adjust_next)
942 			anon_vma_interval_tree_post_update_vma(next);
943 		anon_vma_unlock_write(anon_vma);
944 	}
945 
946 	if (file) {
947 		i_mmap_unlock_write(mapping);
948 		uprobe_mmap(vma);
949 
950 		if (adjust_next)
951 			uprobe_mmap(next);
952 	}
953 
954 	if (remove_next) {
955 		if (file) {
956 			uprobe_munmap(next, next->vm_start, next->vm_end);
957 			/* fput(file) happens whthin vm_area_free(next) */
958 			VM_BUG_ON(file != next->vm_file);
959 		}
960 		if (next->anon_vma)
961 			anon_vma_merge(vma, next);
962 		mm->map_count--;
963 		mpol_put(vma_policy(next));
964 		vm_area_free(next);
965 		/*
966 		 * In mprotect's case 6 (see comments on vma_merge),
967 		 * we must remove another next too. It would clutter
968 		 * up the code too much to do both in one go.
969 		 */
970 		if (remove_next != 3) {
971 			/*
972 			 * If "next" was removed and vma->vm_end was
973 			 * expanded (up) over it, in turn
974 			 * "next->vm_prev->vm_end" changed and the
975 			 * "vma->vm_next" gap must be updated.
976 			 */
977 			next = vma->vm_next;
978 		} else {
979 			/*
980 			 * For the scope of the comment "next" and
981 			 * "vma" considered pre-swap(): if "vma" was
982 			 * removed, next->vm_start was expanded (down)
983 			 * over it and the "next" gap must be updated.
984 			 * Because of the swap() the post-swap() "vma"
985 			 * actually points to pre-swap() "next"
986 			 * (post-swap() "next" as opposed is now a
987 			 * dangling pointer).
988 			 */
989 			next = vma;
990 		}
991 		if (remove_next == 2) {
992 			remove_next = 1;
993 			end = next->vm_end;
994 			goto again;
995 		}
996 		else if (next)
997 			vma_gap_update(next);
998 		else {
999 			/*
1000 			 * If remove_next == 2 we obviously can't
1001 			 * reach this path.
1002 			 *
1003 			 * If remove_next == 3 we can't reach this
1004 			 * path because pre-swap() next is always not
1005 			 * NULL. pre-swap() "next" is not being
1006 			 * removed and its next->vm_end is not altered
1007 			 * (and furthermore "end" already matches
1008 			 * next->vm_end in remove_next == 3).
1009 			 *
1010 			 * We reach this only in the remove_next == 1
1011 			 * case if the "next" vma that was removed was
1012 			 * the highest vma of the mm. However in such
1013 			 * case next->vm_end == "end" and the extended
1014 			 * "vma" has vma->vm_end == next->vm_end so
1015 			 * mm->highest_vm_end doesn't need any update
1016 			 * in remove_next == 1 case.
1017 			 */
1018 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019 		}
1020 	}
1021 	if (insert && file)
1022 		uprobe_mmap(insert);
1023 
1024 	validate_mm(mm);
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * If the vma has a ->close operation then the driver probably needs to release
1031  * per-vma resources, so we don't attempt to merge those.
1032  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034 				struct file *file, unsigned long vm_flags,
1035 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1036 				struct anon_vma_name *anon_name)
1037 {
1038 	/*
1039 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1040 	 * match the flags but dirty bit -- the caller should mark
1041 	 * merged VMA as dirty. If dirty bit won't be excluded from
1042 	 * comparison, we increase pressure on the memory system forcing
1043 	 * the kernel to generate new VMAs when old one could be
1044 	 * extended instead.
1045 	 */
1046 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1047 		return 0;
1048 	if (vma->vm_file != file)
1049 		return 0;
1050 	if (vma->vm_ops && vma->vm_ops->close)
1051 		return 0;
1052 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1053 		return 0;
1054 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1055 		return 0;
1056 	return 1;
1057 }
1058 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1059 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1060 					struct anon_vma *anon_vma2,
1061 					struct vm_area_struct *vma)
1062 {
1063 	/*
1064 	 * The list_is_singular() test is to avoid merging VMA cloned from
1065 	 * parents. This can improve scalability caused by anon_vma lock.
1066 	 */
1067 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1068 		list_is_singular(&vma->anon_vma_chain)))
1069 		return 1;
1070 	return anon_vma1 == anon_vma2;
1071 }
1072 
1073 /*
1074  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1075  * in front of (at a lower virtual address and file offset than) the vma.
1076  *
1077  * We cannot merge two vmas if they have differently assigned (non-NULL)
1078  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1079  *
1080  * We don't check here for the merged mmap wrapping around the end of pagecache
1081  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1082  * wrap, nor mmaps which cover the final page at index -1UL.
1083  */
1084 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1085 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1086 		     struct anon_vma *anon_vma, struct file *file,
1087 		     pgoff_t vm_pgoff,
1088 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1089 		     struct anon_vma_name *anon_name)
1090 {
1091 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1092 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1093 		if (vma->vm_pgoff == vm_pgoff)
1094 			return 1;
1095 	}
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1101  * beyond (at a higher virtual address and file offset than) the vma.
1102  *
1103  * We cannot merge two vmas if they have differently assigned (non-NULL)
1104  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1105  */
1106 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1107 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1108 		    struct anon_vma *anon_vma, struct file *file,
1109 		    pgoff_t vm_pgoff,
1110 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1111 		    struct anon_vma_name *anon_name)
1112 {
1113 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1114 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1115 		pgoff_t vm_pglen;
1116 		vm_pglen = vma_pages(vma);
1117 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1118 			return 1;
1119 	}
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1125  * figure out whether that can be merged with its predecessor or its
1126  * successor.  Or both (it neatly fills a hole).
1127  *
1128  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1129  * certain not to be mapped by the time vma_merge is called; but when
1130  * called for mprotect, it is certain to be already mapped (either at
1131  * an offset within prev, or at the start of next), and the flags of
1132  * this area are about to be changed to vm_flags - and the no-change
1133  * case has already been eliminated.
1134  *
1135  * The following mprotect cases have to be considered, where AAAA is
1136  * the area passed down from mprotect_fixup, never extending beyond one
1137  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1138  *
1139  *     AAAA             AAAA                   AAAA
1140  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1141  *    cannot merge    might become       might become
1142  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1143  *    mmap, brk or    case 4 below       case 5 below
1144  *    mremap move:
1145  *                        AAAA               AAAA
1146  *                    PPPP    NNNN       PPPPNNNNXXXX
1147  *                    might become       might become
1148  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1149  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1150  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1151  *
1152  * It is important for case 8 that the vma NNNN overlapping the
1153  * region AAAA is never going to extended over XXXX. Instead XXXX must
1154  * be extended in region AAAA and NNNN must be removed. This way in
1155  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1156  * rmap_locks, the properties of the merged vma will be already
1157  * correct for the whole merged range. Some of those properties like
1158  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1159  * be correct for the whole merged range immediately after the
1160  * rmap_locks are released. Otherwise if XXXX would be removed and
1161  * NNNN would be extended over the XXXX range, remove_migration_ptes
1162  * or other rmap walkers (if working on addresses beyond the "end"
1163  * parameter) may establish ptes with the wrong permissions of NNNN
1164  * instead of the right permissions of XXXX.
1165  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1166 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1167 			struct vm_area_struct *prev, unsigned long addr,
1168 			unsigned long end, unsigned long vm_flags,
1169 			struct anon_vma *anon_vma, struct file *file,
1170 			pgoff_t pgoff, struct mempolicy *policy,
1171 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1172 			struct anon_vma_name *anon_name)
1173 {
1174 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1175 	struct vm_area_struct *area, *next;
1176 	int err;
1177 
1178 	/*
1179 	 * We later require that vma->vm_flags == vm_flags,
1180 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1181 	 */
1182 	if (vm_flags & VM_SPECIAL)
1183 		return NULL;
1184 
1185 	next = vma_next(mm, prev);
1186 	area = next;
1187 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1188 		next = next->vm_next;
1189 
1190 	/* verify some invariant that must be enforced by the caller */
1191 	VM_WARN_ON(prev && addr <= prev->vm_start);
1192 	VM_WARN_ON(area && end > area->vm_end);
1193 	VM_WARN_ON(addr >= end);
1194 
1195 	/*
1196 	 * Can it merge with the predecessor?
1197 	 */
1198 	if (prev && prev->vm_end == addr &&
1199 			mpol_equal(vma_policy(prev), policy) &&
1200 			can_vma_merge_after(prev, vm_flags,
1201 					    anon_vma, file, pgoff,
1202 					    vm_userfaultfd_ctx, anon_name)) {
1203 		/*
1204 		 * OK, it can.  Can we now merge in the successor as well?
1205 		 */
1206 		if (next && end == next->vm_start &&
1207 				mpol_equal(policy, vma_policy(next)) &&
1208 				can_vma_merge_before(next, vm_flags,
1209 						     anon_vma, file,
1210 						     pgoff+pglen,
1211 						     vm_userfaultfd_ctx, anon_name) &&
1212 				is_mergeable_anon_vma(prev->anon_vma,
1213 						      next->anon_vma, NULL)) {
1214 							/* cases 1, 6 */
1215 			err = __vma_adjust(prev, prev->vm_start,
1216 					 next->vm_end, prev->vm_pgoff, NULL,
1217 					 prev);
1218 		} else					/* cases 2, 5, 7 */
1219 			err = __vma_adjust(prev, prev->vm_start,
1220 					 end, prev->vm_pgoff, NULL, prev);
1221 		if (err)
1222 			return NULL;
1223 		khugepaged_enter_vma_merge(prev, vm_flags);
1224 		return prev;
1225 	}
1226 
1227 	/*
1228 	 * Can this new request be merged in front of next?
1229 	 */
1230 	if (next && end == next->vm_start &&
1231 			mpol_equal(policy, vma_policy(next)) &&
1232 			can_vma_merge_before(next, vm_flags,
1233 					     anon_vma, file, pgoff+pglen,
1234 					     vm_userfaultfd_ctx, anon_name)) {
1235 		if (prev && addr < prev->vm_end)	/* case 4 */
1236 			err = __vma_adjust(prev, prev->vm_start,
1237 					 addr, prev->vm_pgoff, NULL, next);
1238 		else {					/* cases 3, 8 */
1239 			err = __vma_adjust(area, addr, next->vm_end,
1240 					 next->vm_pgoff - pglen, NULL, next);
1241 			/*
1242 			 * In case 3 area is already equal to next and
1243 			 * this is a noop, but in case 8 "area" has
1244 			 * been removed and next was expanded over it.
1245 			 */
1246 			area = next;
1247 		}
1248 		if (err)
1249 			return NULL;
1250 		khugepaged_enter_vma_merge(area, vm_flags);
1251 		return area;
1252 	}
1253 
1254 	return NULL;
1255 }
1256 
1257 /*
1258  * Rough compatibility check to quickly see if it's even worth looking
1259  * at sharing an anon_vma.
1260  *
1261  * They need to have the same vm_file, and the flags can only differ
1262  * in things that mprotect may change.
1263  *
1264  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1265  * we can merge the two vma's. For example, we refuse to merge a vma if
1266  * there is a vm_ops->close() function, because that indicates that the
1267  * driver is doing some kind of reference counting. But that doesn't
1268  * really matter for the anon_vma sharing case.
1269  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1270 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1271 {
1272 	return a->vm_end == b->vm_start &&
1273 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1274 		a->vm_file == b->vm_file &&
1275 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1276 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1277 }
1278 
1279 /*
1280  * Do some basic sanity checking to see if we can re-use the anon_vma
1281  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1282  * the same as 'old', the other will be the new one that is trying
1283  * to share the anon_vma.
1284  *
1285  * NOTE! This runs with mm_sem held for reading, so it is possible that
1286  * the anon_vma of 'old' is concurrently in the process of being set up
1287  * by another page fault trying to merge _that_. But that's ok: if it
1288  * is being set up, that automatically means that it will be a singleton
1289  * acceptable for merging, so we can do all of this optimistically. But
1290  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1291  *
1292  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1293  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1294  * is to return an anon_vma that is "complex" due to having gone through
1295  * a fork).
1296  *
1297  * We also make sure that the two vma's are compatible (adjacent,
1298  * and with the same memory policies). That's all stable, even with just
1299  * a read lock on the mm_sem.
1300  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1301 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1302 {
1303 	if (anon_vma_compatible(a, b)) {
1304 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1305 
1306 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1307 			return anon_vma;
1308 	}
1309 	return NULL;
1310 }
1311 
1312 /*
1313  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1314  * neighbouring vmas for a suitable anon_vma, before it goes off
1315  * to allocate a new anon_vma.  It checks because a repetitive
1316  * sequence of mprotects and faults may otherwise lead to distinct
1317  * anon_vmas being allocated, preventing vma merge in subsequent
1318  * mprotect.
1319  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1320 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1321 {
1322 	struct anon_vma *anon_vma = NULL;
1323 
1324 	/* Try next first. */
1325 	if (vma->vm_next) {
1326 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1327 		if (anon_vma)
1328 			return anon_vma;
1329 	}
1330 
1331 	/* Try prev next. */
1332 	if (vma->vm_prev)
1333 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1334 
1335 	/*
1336 	 * We might reach here with anon_vma == NULL if we can't find
1337 	 * any reusable anon_vma.
1338 	 * There's no absolute need to look only at touching neighbours:
1339 	 * we could search further afield for "compatible" anon_vmas.
1340 	 * But it would probably just be a waste of time searching,
1341 	 * or lead to too many vmas hanging off the same anon_vma.
1342 	 * We're trying to allow mprotect remerging later on,
1343 	 * not trying to minimize memory used for anon_vmas.
1344 	 */
1345 	return anon_vma;
1346 }
1347 
1348 /*
1349  * If a hint addr is less than mmap_min_addr change hint to be as
1350  * low as possible but still greater than mmap_min_addr
1351  */
round_hint_to_min(unsigned long hint)1352 static inline unsigned long round_hint_to_min(unsigned long hint)
1353 {
1354 	hint &= PAGE_MASK;
1355 	if (((void *)hint != NULL) &&
1356 	    (hint < mmap_min_addr))
1357 		return PAGE_ALIGN(mmap_min_addr);
1358 	return hint;
1359 }
1360 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1361 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1362 		       unsigned long len)
1363 {
1364 	unsigned long locked, lock_limit;
1365 
1366 	/*  mlock MCL_FUTURE? */
1367 	if (flags & VM_LOCKED) {
1368 		locked = len >> PAGE_SHIFT;
1369 		locked += mm->locked_vm;
1370 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1371 		lock_limit >>= PAGE_SHIFT;
1372 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1373 			return -EAGAIN;
1374 	}
1375 	return 0;
1376 }
1377 
file_mmap_size_max(struct file * file,struct inode * inode)1378 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1379 {
1380 	if (S_ISREG(inode->i_mode))
1381 		return MAX_LFS_FILESIZE;
1382 
1383 	if (S_ISBLK(inode->i_mode))
1384 		return MAX_LFS_FILESIZE;
1385 
1386 	if (S_ISSOCK(inode->i_mode))
1387 		return MAX_LFS_FILESIZE;
1388 
1389 	/* Special "we do even unsigned file positions" case */
1390 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1391 		return 0;
1392 
1393 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1394 	return ULONG_MAX;
1395 }
1396 
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1397 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1398 				unsigned long pgoff, unsigned long len)
1399 {
1400 	u64 maxsize = file_mmap_size_max(file, inode);
1401 
1402 	if (maxsize && len > maxsize)
1403 		return false;
1404 	maxsize -= len;
1405 	if (pgoff > maxsize >> PAGE_SHIFT)
1406 		return false;
1407 	return true;
1408 }
1409 
1410 /*
1411  * The caller must write-lock current->mm->mmap_lock.
1412  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1413 unsigned long do_mmap(struct file *file, unsigned long addr,
1414 			unsigned long len, unsigned long prot,
1415 			unsigned long flags, unsigned long pgoff,
1416 			unsigned long *populate, struct list_head *uf)
1417 {
1418 	struct mm_struct *mm = current->mm;
1419 	vm_flags_t vm_flags;
1420 	int pkey = 0;
1421 
1422 	*populate = 0;
1423 
1424 	if (!len)
1425 		return -EINVAL;
1426 
1427 	/*
1428 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1429 	 *
1430 	 * (the exception is when the underlying filesystem is noexec
1431 	 *  mounted, in which case we dont add PROT_EXEC.)
1432 	 */
1433 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1434 		if (!(file && path_noexec(&file->f_path)))
1435 			prot |= PROT_EXEC;
1436 
1437 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1438 	if (flags & MAP_FIXED_NOREPLACE)
1439 		flags |= MAP_FIXED;
1440 
1441 	if (!(flags & MAP_FIXED))
1442 		addr = round_hint_to_min(addr);
1443 
1444 	/* Careful about overflows.. */
1445 	len = PAGE_ALIGN(len);
1446 	if (!len)
1447 		return -ENOMEM;
1448 
1449 	/* offset overflow? */
1450 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1451 		return -EOVERFLOW;
1452 
1453 	/* Too many mappings? */
1454 	if (mm->map_count > sysctl_max_map_count)
1455 		return -ENOMEM;
1456 
1457 	/* Obtain the address to map to. we verify (or select) it and ensure
1458 	 * that it represents a valid section of the address space.
1459 	 */
1460 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1461 	if (IS_ERR_VALUE(addr))
1462 		return addr;
1463 
1464 	if (flags & MAP_FIXED_NOREPLACE) {
1465 		if (find_vma_intersection(mm, addr, addr + len))
1466 			return -EEXIST;
1467 	}
1468 
1469 	if (prot == PROT_EXEC) {
1470 		pkey = execute_only_pkey(mm);
1471 		if (pkey < 0)
1472 			pkey = 0;
1473 	}
1474 
1475 	/* Do simple checking here so the lower-level routines won't have
1476 	 * to. we assume access permissions have been handled by the open
1477 	 * of the memory object, so we don't do any here.
1478 	 */
1479 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1480 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1481 
1482 	if (flags & MAP_LOCKED)
1483 		if (!can_do_mlock())
1484 			return -EPERM;
1485 
1486 	if (mlock_future_check(mm, vm_flags, len))
1487 		return -EAGAIN;
1488 
1489 	if (file) {
1490 		struct inode *inode = file_inode(file);
1491 		unsigned long flags_mask;
1492 
1493 		if (!file_mmap_ok(file, inode, pgoff, len))
1494 			return -EOVERFLOW;
1495 
1496 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1497 
1498 		switch (flags & MAP_TYPE) {
1499 		case MAP_SHARED:
1500 			/*
1501 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1502 			 * flags. E.g. MAP_SYNC is dangerous to use with
1503 			 * MAP_SHARED as you don't know which consistency model
1504 			 * you will get. We silently ignore unsupported flags
1505 			 * with MAP_SHARED to preserve backward compatibility.
1506 			 */
1507 			flags &= LEGACY_MAP_MASK;
1508 			fallthrough;
1509 		case MAP_SHARED_VALIDATE:
1510 			if (flags & ~flags_mask)
1511 				return -EOPNOTSUPP;
1512 			if (prot & PROT_WRITE) {
1513 				if (!(file->f_mode & FMODE_WRITE))
1514 					return -EACCES;
1515 				if (IS_SWAPFILE(file->f_mapping->host))
1516 					return -ETXTBSY;
1517 			}
1518 
1519 			/*
1520 			 * Make sure we don't allow writing to an append-only
1521 			 * file..
1522 			 */
1523 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1524 				return -EACCES;
1525 
1526 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1527 			if (!(file->f_mode & FMODE_WRITE))
1528 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1529 			fallthrough;
1530 		case MAP_PRIVATE:
1531 			if (!(file->f_mode & FMODE_READ))
1532 				return -EACCES;
1533 			if (path_noexec(&file->f_path)) {
1534 				if (vm_flags & VM_EXEC)
1535 					return -EPERM;
1536 				vm_flags &= ~VM_MAYEXEC;
1537 			}
1538 
1539 			if (!file->f_op->mmap)
1540 				return -ENODEV;
1541 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1542 				return -EINVAL;
1543 			break;
1544 
1545 		default:
1546 			return -EINVAL;
1547 		}
1548 	} else {
1549 		switch (flags & MAP_TYPE) {
1550 		case MAP_SHARED:
1551 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1552 				return -EINVAL;
1553 			/*
1554 			 * Ignore pgoff.
1555 			 */
1556 			pgoff = 0;
1557 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1558 			break;
1559 		case MAP_PRIVATE:
1560 			/*
1561 			 * Set pgoff according to addr for anon_vma.
1562 			 */
1563 			pgoff = addr >> PAGE_SHIFT;
1564 			break;
1565 		default:
1566 			return -EINVAL;
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * Set 'VM_NORESERVE' if we should not account for the
1572 	 * memory use of this mapping.
1573 	 */
1574 	if (flags & MAP_NORESERVE) {
1575 		/* We honor MAP_NORESERVE if allowed to overcommit */
1576 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1577 			vm_flags |= VM_NORESERVE;
1578 
1579 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1580 		if (file && is_file_hugepages(file))
1581 			vm_flags |= VM_NORESERVE;
1582 	}
1583 
1584 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1585 	if (!IS_ERR_VALUE(addr) &&
1586 	    ((vm_flags & VM_LOCKED) ||
1587 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1588 		*populate = len;
1589 	return addr;
1590 }
1591 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1592 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1593 			      unsigned long prot, unsigned long flags,
1594 			      unsigned long fd, unsigned long pgoff)
1595 {
1596 	struct file *file = NULL;
1597 	unsigned long retval;
1598 
1599 	if (!(flags & MAP_ANONYMOUS)) {
1600 		audit_mmap_fd(fd, flags);
1601 		file = fget(fd);
1602 		if (!file)
1603 			return -EBADF;
1604 		if (is_file_hugepages(file)) {
1605 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1606 		} else if (unlikely(flags & MAP_HUGETLB)) {
1607 			retval = -EINVAL;
1608 			goto out_fput;
1609 		}
1610 	} else if (flags & MAP_HUGETLB) {
1611 		struct ucounts *ucounts = NULL;
1612 		struct hstate *hs;
1613 
1614 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1615 		if (!hs)
1616 			return -EINVAL;
1617 
1618 		len = ALIGN(len, huge_page_size(hs));
1619 		/*
1620 		 * VM_NORESERVE is used because the reservations will be
1621 		 * taken when vm_ops->mmap() is called
1622 		 * A dummy user value is used because we are not locking
1623 		 * memory so no accounting is necessary
1624 		 */
1625 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626 				VM_NORESERVE,
1627 				&ucounts, HUGETLB_ANONHUGE_INODE,
1628 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629 		if (IS_ERR(file))
1630 			return PTR_ERR(file);
1631 	}
1632 
1633 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1634 out_fput:
1635 	if (file)
1636 		fput(file);
1637 	return retval;
1638 }
1639 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1641 		unsigned long, prot, unsigned long, flags,
1642 		unsigned long, fd, unsigned long, pgoff)
1643 {
1644 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1645 }
1646 
1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1648 struct mmap_arg_struct {
1649 	unsigned long addr;
1650 	unsigned long len;
1651 	unsigned long prot;
1652 	unsigned long flags;
1653 	unsigned long fd;
1654 	unsigned long offset;
1655 };
1656 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1658 {
1659 	struct mmap_arg_struct a;
1660 
1661 	if (copy_from_user(&a, arg, sizeof(a)))
1662 		return -EFAULT;
1663 	if (offset_in_page(a.offset))
1664 		return -EINVAL;
1665 
1666 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1667 			       a.offset >> PAGE_SHIFT);
1668 }
1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1670 
1671 /*
1672  * Some shared mappings will want the pages marked read-only
1673  * to track write events. If so, we'll downgrade vm_page_prot
1674  * to the private version (using protection_map[] without the
1675  * VM_SHARED bit).
1676  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1678 {
1679 	vm_flags_t vm_flags = vma->vm_flags;
1680 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1681 
1682 	/* If it was private or non-writable, the write bit is already clear */
1683 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1684 		return 0;
1685 
1686 	/* The backer wishes to know when pages are first written to? */
1687 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1688 		return 1;
1689 
1690 	/* The open routine did something to the protections that pgprot_modify
1691 	 * won't preserve? */
1692 	if (pgprot_val(vm_page_prot) !=
1693 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1694 		return 0;
1695 
1696 	/*
1697 	 * Do we need to track softdirty? hugetlb does not support softdirty
1698 	 * tracking yet.
1699 	 */
1700 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1701 	    !is_vm_hugetlb_page(vma))
1702 		return 1;
1703 
1704 	/* Specialty mapping? */
1705 	if (vm_flags & VM_PFNMAP)
1706 		return 0;
1707 
1708 	/* Can the mapping track the dirty pages? */
1709 	return vma->vm_file && vma->vm_file->f_mapping &&
1710 		mapping_can_writeback(vma->vm_file->f_mapping);
1711 }
1712 
1713 /*
1714  * We account for memory if it's a private writeable mapping,
1715  * not hugepages and VM_NORESERVE wasn't set.
1716  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1717 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1718 {
1719 	/*
1720 	 * hugetlb has its own accounting separate from the core VM
1721 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1722 	 */
1723 	if (file && is_file_hugepages(file))
1724 		return 0;
1725 
1726 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1727 }
1728 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1729 unsigned long mmap_region(struct file *file, unsigned long addr,
1730 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1731 		struct list_head *uf)
1732 {
1733 	struct mm_struct *mm = current->mm;
1734 	struct vm_area_struct *vma, *prev, *merge;
1735 	int error;
1736 	struct rb_node **rb_link, *rb_parent;
1737 	unsigned long charged = 0;
1738 
1739 	/* Check against address space limit. */
1740 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1741 		unsigned long nr_pages;
1742 
1743 		/*
1744 		 * MAP_FIXED may remove pages of mappings that intersects with
1745 		 * requested mapping. Account for the pages it would unmap.
1746 		 */
1747 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1748 
1749 		if (!may_expand_vm(mm, vm_flags,
1750 					(len >> PAGE_SHIFT) - nr_pages))
1751 			return -ENOMEM;
1752 	}
1753 
1754 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1755 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1756 		return -ENOMEM;
1757 	/*
1758 	 * Private writable mapping: check memory availability
1759 	 */
1760 	if (accountable_mapping(file, vm_flags)) {
1761 		charged = len >> PAGE_SHIFT;
1762 		if (security_vm_enough_memory_mm(mm, charged))
1763 			return -ENOMEM;
1764 		vm_flags |= VM_ACCOUNT;
1765 	}
1766 
1767 	/*
1768 	 * Can we just expand an old mapping?
1769 	 */
1770 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1771 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1772 	if (vma)
1773 		goto out;
1774 
1775 	/*
1776 	 * Determine the object being mapped and call the appropriate
1777 	 * specific mapper. the address has already been validated, but
1778 	 * not unmapped, but the maps are removed from the list.
1779 	 */
1780 	vma = vm_area_alloc(mm);
1781 	if (!vma) {
1782 		error = -ENOMEM;
1783 		goto unacct_error;
1784 	}
1785 
1786 	vma->vm_start = addr;
1787 	vma->vm_end = addr + len;
1788 	vma->vm_flags = vm_flags;
1789 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1790 	vma->vm_pgoff = pgoff;
1791 
1792 	if (file) {
1793 		if (vm_flags & VM_SHARED) {
1794 			error = mapping_map_writable(file->f_mapping);
1795 			if (error)
1796 				goto free_vma;
1797 		}
1798 
1799 		vma->vm_file = get_file(file);
1800 		error = call_mmap(file, vma);
1801 		if (error)
1802 			goto unmap_and_free_vma;
1803 
1804 		/* Can addr have changed??
1805 		 *
1806 		 * Answer: Yes, several device drivers can do it in their
1807 		 *         f_op->mmap method. -DaveM
1808 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1809 		 *      be updated for vma_link()
1810 		 */
1811 		WARN_ON_ONCE(addr != vma->vm_start);
1812 
1813 		addr = vma->vm_start;
1814 
1815 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1816 		 * as we may succeed this time.
1817 		 */
1818 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1819 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1820 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1821 			if (merge) {
1822 				/* ->mmap() can change vma->vm_file and fput the original file. So
1823 				 * fput the vma->vm_file here or we would add an extra fput for file
1824 				 * and cause general protection fault ultimately.
1825 				 */
1826 				/* fput happens within vm_area_free */
1827 				vm_area_free(vma);
1828 				vma = merge;
1829 				/* Update vm_flags to pick up the change. */
1830 				vm_flags = vma->vm_flags;
1831 				goto unmap_writable;
1832 			}
1833 		}
1834 
1835 		vm_flags = vma->vm_flags;
1836 	} else if (vm_flags & VM_SHARED) {
1837 		error = shmem_zero_setup(vma);
1838 		if (error)
1839 			goto free_vma;
1840 	} else {
1841 		vma_set_anonymous(vma);
1842 	}
1843 
1844 	/* Allow architectures to sanity-check the vm_flags */
1845 	if (!arch_validate_flags(vma->vm_flags)) {
1846 		error = -EINVAL;
1847 		if (file)
1848 			goto close_and_free_vma;
1849 		else
1850 			goto free_vma;
1851 	}
1852 
1853 	vma_link(mm, vma, prev, rb_link, rb_parent);
1854 	/* Once vma denies write, undo our temporary denial count */
1855 unmap_writable:
1856 	if (file && vm_flags & VM_SHARED)
1857 		mapping_unmap_writable(file->f_mapping);
1858 	file = vma->vm_file;
1859 out:
1860 	perf_event_mmap(vma);
1861 
1862 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1863 	if (vm_flags & VM_LOCKED) {
1864 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1865 					is_vm_hugetlb_page(vma) ||
1866 					vma == get_gate_vma(current->mm))
1867 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1868 		else
1869 			mm->locked_vm += (len >> PAGE_SHIFT);
1870 	}
1871 
1872 	if (file)
1873 		uprobe_mmap(vma);
1874 
1875 	/*
1876 	 * New (or expanded) vma always get soft dirty status.
1877 	 * Otherwise user-space soft-dirty page tracker won't
1878 	 * be able to distinguish situation when vma area unmapped,
1879 	 * then new mapped in-place (which must be aimed as
1880 	 * a completely new data area).
1881 	 */
1882 	vma->vm_flags |= VM_SOFTDIRTY;
1883 
1884 	vma_set_page_prot(vma);
1885 
1886 	trace_android_vh_mmap_region(vma, addr);
1887 
1888 	return addr;
1889 
1890 close_and_free_vma:
1891 	if (vma->vm_ops && vma->vm_ops->close)
1892 		vma->vm_ops->close(vma);
1893 unmap_and_free_vma:
1894 	fput(vma->vm_file);
1895 	vma->vm_file = NULL;
1896 
1897 	/* Undo any partial mapping done by a device driver. */
1898 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1899 	if (vm_flags & VM_SHARED)
1900 		mapping_unmap_writable(file->f_mapping);
1901 free_vma:
1902 	VM_BUG_ON(vma->vm_file);
1903 	vm_area_free(vma);
1904 unacct_error:
1905 	if (charged)
1906 		vm_unacct_memory(charged);
1907 	return error;
1908 }
1909 
unmapped_area(struct vm_unmapped_area_info * info)1910 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1911 {
1912 	/*
1913 	 * We implement the search by looking for an rbtree node that
1914 	 * immediately follows a suitable gap. That is,
1915 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1916 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1917 	 * - gap_end - gap_start >= length
1918 	 */
1919 
1920 	struct mm_struct *mm = current->mm;
1921 	struct vm_area_struct *vma;
1922 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1923 
1924 	/* Adjust search length to account for worst case alignment overhead */
1925 	length = info->length + info->align_mask;
1926 	if (length < info->length)
1927 		return -ENOMEM;
1928 
1929 	/* Adjust search limits by the desired length */
1930 	if (info->high_limit < length)
1931 		return -ENOMEM;
1932 	high_limit = info->high_limit - length;
1933 
1934 	if (info->low_limit > high_limit)
1935 		return -ENOMEM;
1936 	low_limit = info->low_limit + length;
1937 
1938 	/* Check if rbtree root looks promising */
1939 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1940 		goto check_highest;
1941 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1942 	if (vma->rb_subtree_gap < length)
1943 		goto check_highest;
1944 
1945 	while (true) {
1946 		/* Visit left subtree if it looks promising */
1947 		gap_end = vm_start_gap(vma);
1948 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1949 			struct vm_area_struct *left =
1950 				rb_entry(vma->vm_rb.rb_left,
1951 					 struct vm_area_struct, vm_rb);
1952 			if (left->rb_subtree_gap >= length) {
1953 				vma = left;
1954 				continue;
1955 			}
1956 		}
1957 
1958 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1959 check_current:
1960 		/* Check if current node has a suitable gap */
1961 		if (gap_start > high_limit)
1962 			return -ENOMEM;
1963 		if (gap_end >= low_limit &&
1964 		    gap_end > gap_start && gap_end - gap_start >= length)
1965 			goto found;
1966 
1967 		/* Visit right subtree if it looks promising */
1968 		if (vma->vm_rb.rb_right) {
1969 			struct vm_area_struct *right =
1970 				rb_entry(vma->vm_rb.rb_right,
1971 					 struct vm_area_struct, vm_rb);
1972 			if (right->rb_subtree_gap >= length) {
1973 				vma = right;
1974 				continue;
1975 			}
1976 		}
1977 
1978 		/* Go back up the rbtree to find next candidate node */
1979 		while (true) {
1980 			struct rb_node *prev = &vma->vm_rb;
1981 			if (!rb_parent(prev))
1982 				goto check_highest;
1983 			vma = rb_entry(rb_parent(prev),
1984 				       struct vm_area_struct, vm_rb);
1985 			if (prev == vma->vm_rb.rb_left) {
1986 				gap_start = vm_end_gap(vma->vm_prev);
1987 				gap_end = vm_start_gap(vma);
1988 				goto check_current;
1989 			}
1990 		}
1991 	}
1992 
1993 check_highest:
1994 	/* Check highest gap, which does not precede any rbtree node */
1995 	gap_start = mm->highest_vm_end;
1996 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1997 	if (gap_start > high_limit)
1998 		return -ENOMEM;
1999 
2000 found:
2001 	/* We found a suitable gap. Clip it with the original low_limit. */
2002 	if (gap_start < info->low_limit)
2003 		gap_start = info->low_limit;
2004 
2005 	/* Adjust gap address to the desired alignment */
2006 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2007 
2008 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2009 	VM_BUG_ON(gap_start + info->length > gap_end);
2010 	return gap_start;
2011 }
2012 
unmapped_area_topdown(struct vm_unmapped_area_info * info)2013 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2014 {
2015 	struct mm_struct *mm = current->mm;
2016 	struct vm_area_struct *vma;
2017 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2018 
2019 	/* Adjust search length to account for worst case alignment overhead */
2020 	length = info->length + info->align_mask;
2021 	if (length < info->length)
2022 		return -ENOMEM;
2023 
2024 	/*
2025 	 * Adjust search limits by the desired length.
2026 	 * See implementation comment at top of unmapped_area().
2027 	 */
2028 	gap_end = info->high_limit;
2029 	if (gap_end < length)
2030 		return -ENOMEM;
2031 	high_limit = gap_end - length;
2032 
2033 	if (info->low_limit > high_limit)
2034 		return -ENOMEM;
2035 	low_limit = info->low_limit + length;
2036 
2037 	/* Check highest gap, which does not precede any rbtree node */
2038 	gap_start = mm->highest_vm_end;
2039 	if (gap_start <= high_limit)
2040 		goto found_highest;
2041 
2042 	/* Check if rbtree root looks promising */
2043 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2044 		return -ENOMEM;
2045 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2046 	if (vma->rb_subtree_gap < length)
2047 		return -ENOMEM;
2048 
2049 	while (true) {
2050 		/* Visit right subtree if it looks promising */
2051 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2052 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2053 			struct vm_area_struct *right =
2054 				rb_entry(vma->vm_rb.rb_right,
2055 					 struct vm_area_struct, vm_rb);
2056 			if (right->rb_subtree_gap >= length) {
2057 				vma = right;
2058 				continue;
2059 			}
2060 		}
2061 
2062 check_current:
2063 		/* Check if current node has a suitable gap */
2064 		gap_end = vm_start_gap(vma);
2065 		if (gap_end < low_limit)
2066 			return -ENOMEM;
2067 		if (gap_start <= high_limit &&
2068 		    gap_end > gap_start && gap_end - gap_start >= length)
2069 			goto found;
2070 
2071 		/* Visit left subtree if it looks promising */
2072 		if (vma->vm_rb.rb_left) {
2073 			struct vm_area_struct *left =
2074 				rb_entry(vma->vm_rb.rb_left,
2075 					 struct vm_area_struct, vm_rb);
2076 			if (left->rb_subtree_gap >= length) {
2077 				vma = left;
2078 				continue;
2079 			}
2080 		}
2081 
2082 		/* Go back up the rbtree to find next candidate node */
2083 		while (true) {
2084 			struct rb_node *prev = &vma->vm_rb;
2085 			if (!rb_parent(prev))
2086 				return -ENOMEM;
2087 			vma = rb_entry(rb_parent(prev),
2088 				       struct vm_area_struct, vm_rb);
2089 			if (prev == vma->vm_rb.rb_right) {
2090 				gap_start = vma->vm_prev ?
2091 					vm_end_gap(vma->vm_prev) : 0;
2092 				goto check_current;
2093 			}
2094 		}
2095 	}
2096 
2097 found:
2098 	/* We found a suitable gap. Clip it with the original high_limit. */
2099 	if (gap_end > info->high_limit)
2100 		gap_end = info->high_limit;
2101 
2102 found_highest:
2103 	/* Compute highest gap address at the desired alignment */
2104 	gap_end -= info->length;
2105 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2106 
2107 	VM_BUG_ON(gap_end < info->low_limit);
2108 	VM_BUG_ON(gap_end < gap_start);
2109 	return gap_end;
2110 }
2111 
2112 /*
2113  * Search for an unmapped address range.
2114  *
2115  * We are looking for a range that:
2116  * - does not intersect with any VMA;
2117  * - is contained within the [low_limit, high_limit) interval;
2118  * - is at least the desired size.
2119  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2120  */
vm_unmapped_area(struct vm_unmapped_area_info * info)2121 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2122 {
2123 	unsigned long addr;
2124 
2125 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2126 		addr = unmapped_area_topdown(info);
2127 	else
2128 		addr = unmapped_area(info);
2129 
2130 	trace_vm_unmapped_area(addr, info);
2131 	return addr;
2132 }
2133 
2134 /* Get an address range which is currently unmapped.
2135  * For shmat() with addr=0.
2136  *
2137  * Ugly calling convention alert:
2138  * Return value with the low bits set means error value,
2139  * ie
2140  *	if (ret & ~PAGE_MASK)
2141  *		error = ret;
2142  *
2143  * This function "knows" that -ENOMEM has the bits set.
2144  */
2145 #ifndef HAVE_ARCH_UNMAPPED_AREA
2146 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2147 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2148 		unsigned long len, unsigned long pgoff, unsigned long flags)
2149 {
2150 	struct mm_struct *mm = current->mm;
2151 	struct vm_area_struct *vma, *prev;
2152 	struct vm_unmapped_area_info info;
2153 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2154 
2155 	if (len > mmap_end - mmap_min_addr)
2156 		return -ENOMEM;
2157 
2158 	if (flags & MAP_FIXED)
2159 		return addr;
2160 
2161 	if (addr) {
2162 		addr = PAGE_ALIGN(addr);
2163 		vma = find_vma_prev(mm, addr, &prev);
2164 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2165 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2166 		    (!prev || addr >= vm_end_gap(prev)))
2167 			return addr;
2168 	}
2169 
2170 	info.flags = 0;
2171 	info.length = len;
2172 	info.low_limit = mm->mmap_base;
2173 	info.high_limit = mmap_end;
2174 	info.align_mask = 0;
2175 	info.align_offset = 0;
2176 	return vm_unmapped_area(&info);
2177 }
2178 #endif
2179 
2180 /*
2181  * This mmap-allocator allocates new areas top-down from below the
2182  * stack's low limit (the base):
2183  */
2184 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2185 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2186 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2187 			  unsigned long len, unsigned long pgoff,
2188 			  unsigned long flags)
2189 {
2190 	struct vm_area_struct *vma, *prev;
2191 	struct mm_struct *mm = current->mm;
2192 	struct vm_unmapped_area_info info;
2193 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2194 
2195 	/* requested length too big for entire address space */
2196 	if (len > mmap_end - mmap_min_addr)
2197 		return -ENOMEM;
2198 
2199 	if (flags & MAP_FIXED)
2200 		return addr;
2201 
2202 	/* requesting a specific address */
2203 	if (addr) {
2204 		addr = PAGE_ALIGN(addr);
2205 		vma = find_vma_prev(mm, addr, &prev);
2206 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2207 				(!vma || addr + len <= vm_start_gap(vma)) &&
2208 				(!prev || addr >= vm_end_gap(prev)))
2209 			return addr;
2210 	}
2211 
2212 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2213 	info.length = len;
2214 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2215 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2216 	info.align_mask = 0;
2217 	info.align_offset = 0;
2218 	addr = vm_unmapped_area(&info);
2219 
2220 	/*
2221 	 * A failed mmap() very likely causes application failure,
2222 	 * so fall back to the bottom-up function here. This scenario
2223 	 * can happen with large stack limits and large mmap()
2224 	 * allocations.
2225 	 */
2226 	if (offset_in_page(addr)) {
2227 		VM_BUG_ON(addr != -ENOMEM);
2228 		info.flags = 0;
2229 		info.low_limit = TASK_UNMAPPED_BASE;
2230 		info.high_limit = mmap_end;
2231 		addr = vm_unmapped_area(&info);
2232 	}
2233 
2234 	return addr;
2235 }
2236 #endif
2237 
2238 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2239 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2240 		unsigned long pgoff, unsigned long flags)
2241 {
2242 	unsigned long (*get_area)(struct file *, unsigned long,
2243 				  unsigned long, unsigned long, unsigned long);
2244 
2245 	unsigned long error = arch_mmap_check(addr, len, flags);
2246 	if (error)
2247 		return error;
2248 
2249 	/* Careful about overflows.. */
2250 	if (len > TASK_SIZE)
2251 		return -ENOMEM;
2252 
2253 	get_area = current->mm->get_unmapped_area;
2254 	if (file) {
2255 		if (file->f_op->get_unmapped_area)
2256 			get_area = file->f_op->get_unmapped_area;
2257 	} else if (flags & MAP_SHARED) {
2258 		/*
2259 		 * mmap_region() will call shmem_zero_setup() to create a file,
2260 		 * so use shmem's get_unmapped_area in case it can be huge.
2261 		 * do_mmap() will clear pgoff, so match alignment.
2262 		 */
2263 		pgoff = 0;
2264 		get_area = shmem_get_unmapped_area;
2265 	}
2266 
2267 	addr = get_area(file, addr, len, pgoff, flags);
2268 	if (IS_ERR_VALUE(addr))
2269 		return addr;
2270 
2271 	if (addr > TASK_SIZE - len)
2272 		return -ENOMEM;
2273 	if (offset_in_page(addr))
2274 		return -EINVAL;
2275 
2276 	error = security_mmap_addr(addr);
2277 	return error ? error : addr;
2278 }
2279 
2280 EXPORT_SYMBOL(get_unmapped_area);
2281 
find_vma_from_tree(struct mm_struct * mm,unsigned long addr)2282 struct vm_area_struct *find_vma_from_tree(struct mm_struct *mm, unsigned long addr)
2283 {
2284 	struct rb_node *rb_node;
2285 	struct vm_area_struct *vma = NULL;
2286 
2287 	rb_node = mm->mm_rb.rb_node;
2288 
2289 	while (rb_node) {
2290 		struct vm_area_struct *tmp;
2291 
2292 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2293 
2294 		if (tmp->vm_end > addr) {
2295 			vma = tmp;
2296 			if (tmp->vm_start <= addr)
2297 				break;
2298 			rb_node = rb_node->rb_left;
2299 		} else
2300 			rb_node = rb_node->rb_right;
2301 	}
2302 
2303 	return vma;
2304 }
2305 
2306 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
__find_vma(struct mm_struct * mm,unsigned long addr)2307 struct vm_area_struct *__find_vma(struct mm_struct *mm, unsigned long addr)
2308 {
2309 	struct vm_area_struct *vma;
2310 
2311 	/* Check the cache first. */
2312 	vma = vmacache_find(mm, addr);
2313 	if (likely(vma))
2314 		return vma;
2315 
2316 	vma = find_vma_from_tree(mm, addr);
2317 
2318 	if (vma)
2319 		vmacache_update(addr, vma);
2320 	return vma;
2321 }
2322 
2323 EXPORT_SYMBOL(__find_vma);
2324 
2325 /*
2326  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2327  */
2328 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2329 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2330 			struct vm_area_struct **pprev)
2331 {
2332 	struct vm_area_struct *vma;
2333 
2334 	vma = find_vma(mm, addr);
2335 	if (vma) {
2336 		*pprev = vma->vm_prev;
2337 	} else {
2338 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2339 
2340 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2341 	}
2342 	return vma;
2343 }
2344 
2345 /*
2346  * Verify that the stack growth is acceptable and
2347  * update accounting. This is shared with both the
2348  * grow-up and grow-down cases.
2349  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2350 static int acct_stack_growth(struct vm_area_struct *vma,
2351 			     unsigned long size, unsigned long grow)
2352 {
2353 	struct mm_struct *mm = vma->vm_mm;
2354 	unsigned long new_start;
2355 
2356 	/* address space limit tests */
2357 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2358 		return -ENOMEM;
2359 
2360 	/* Stack limit test */
2361 	if (size > rlimit(RLIMIT_STACK))
2362 		return -ENOMEM;
2363 
2364 	/* mlock limit tests */
2365 	if (vma->vm_flags & VM_LOCKED) {
2366 		unsigned long locked;
2367 		unsigned long limit;
2368 		locked = mm->locked_vm + grow;
2369 		limit = rlimit(RLIMIT_MEMLOCK);
2370 		limit >>= PAGE_SHIFT;
2371 		if (locked > limit && !capable(CAP_IPC_LOCK))
2372 			return -ENOMEM;
2373 	}
2374 
2375 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2376 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2377 			vma->vm_end - size;
2378 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2379 		return -EFAULT;
2380 
2381 	/*
2382 	 * Overcommit..  This must be the final test, as it will
2383 	 * update security statistics.
2384 	 */
2385 	if (security_vm_enough_memory_mm(mm, grow))
2386 		return -ENOMEM;
2387 
2388 	return 0;
2389 }
2390 
2391 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2392 /*
2393  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2394  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2395  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2396 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2397 {
2398 	struct mm_struct *mm = vma->vm_mm;
2399 	struct vm_area_struct *next;
2400 	unsigned long gap_addr;
2401 	int error = 0;
2402 
2403 	if (!(vma->vm_flags & VM_GROWSUP))
2404 		return -EFAULT;
2405 
2406 	/* Guard against exceeding limits of the address space. */
2407 	address &= PAGE_MASK;
2408 	if (address >= (TASK_SIZE & PAGE_MASK))
2409 		return -ENOMEM;
2410 	address += PAGE_SIZE;
2411 
2412 	/* Enforce stack_guard_gap */
2413 	gap_addr = address + stack_guard_gap;
2414 
2415 	/* Guard against overflow */
2416 	if (gap_addr < address || gap_addr > TASK_SIZE)
2417 		gap_addr = TASK_SIZE;
2418 
2419 	next = vma->vm_next;
2420 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2421 		if (!(next->vm_flags & VM_GROWSUP))
2422 			return -ENOMEM;
2423 		/* Check that both stack segments have the same anon_vma? */
2424 	}
2425 
2426 	/* We must make sure the anon_vma is allocated. */
2427 	if (unlikely(anon_vma_prepare(vma)))
2428 		return -ENOMEM;
2429 
2430 	/*
2431 	 * vma->vm_start/vm_end cannot change under us because the caller
2432 	 * is required to hold the mmap_lock in read mode.  We need the
2433 	 * anon_vma lock to serialize against concurrent expand_stacks.
2434 	 */
2435 	anon_vma_lock_write(vma->anon_vma);
2436 
2437 	/* Somebody else might have raced and expanded it already */
2438 	if (address > vma->vm_end) {
2439 		unsigned long size, grow;
2440 
2441 		size = address - vma->vm_start;
2442 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2443 
2444 		error = -ENOMEM;
2445 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2446 			error = acct_stack_growth(vma, size, grow);
2447 			if (!error) {
2448 				/*
2449 				 * vma_gap_update() doesn't support concurrent
2450 				 * updates, but we only hold a shared mmap_lock
2451 				 * lock here, so we need to protect against
2452 				 * concurrent vma expansions.
2453 				 * anon_vma_lock_write() doesn't help here, as
2454 				 * we don't guarantee that all growable vmas
2455 				 * in a mm share the same root anon vma.
2456 				 * So, we reuse mm->page_table_lock to guard
2457 				 * against concurrent vma expansions.
2458 				 */
2459 				spin_lock(&mm->page_table_lock);
2460 				if (vma->vm_flags & VM_LOCKED)
2461 					mm->locked_vm += grow;
2462 				vm_stat_account(mm, vma->vm_flags, grow);
2463 				anon_vma_interval_tree_pre_update_vma(vma);
2464 				vma->vm_end = address;
2465 				anon_vma_interval_tree_post_update_vma(vma);
2466 				if (vma->vm_next)
2467 					vma_gap_update(vma->vm_next);
2468 				else
2469 					mm->highest_vm_end = vm_end_gap(vma);
2470 				spin_unlock(&mm->page_table_lock);
2471 
2472 				perf_event_mmap(vma);
2473 			}
2474 		}
2475 	}
2476 	anon_vma_unlock_write(vma->anon_vma);
2477 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2478 	validate_mm(mm);
2479 	return error;
2480 }
2481 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2482 
2483 /*
2484  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2485  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2486 int expand_downwards(struct vm_area_struct *vma,
2487 				   unsigned long address)
2488 {
2489 	struct mm_struct *mm = vma->vm_mm;
2490 	struct vm_area_struct *prev;
2491 	int error = 0;
2492 
2493 	address &= PAGE_MASK;
2494 	if (address < mmap_min_addr)
2495 		return -EPERM;
2496 
2497 	/* Enforce stack_guard_gap */
2498 	prev = vma->vm_prev;
2499 	/* Check that both stack segments have the same anon_vma? */
2500 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2501 			vma_is_accessible(prev)) {
2502 		if (address - prev->vm_end < stack_guard_gap)
2503 			return -ENOMEM;
2504 	}
2505 
2506 	/* We must make sure the anon_vma is allocated. */
2507 	if (unlikely(anon_vma_prepare(vma)))
2508 		return -ENOMEM;
2509 
2510 	/*
2511 	 * vma->vm_start/vm_end cannot change under us because the caller
2512 	 * is required to hold the mmap_lock in read mode.  We need the
2513 	 * anon_vma lock to serialize against concurrent expand_stacks.
2514 	 */
2515 	anon_vma_lock_write(vma->anon_vma);
2516 
2517 	/* Somebody else might have raced and expanded it already */
2518 	if (address < vma->vm_start) {
2519 		unsigned long size, grow;
2520 
2521 		size = vma->vm_end - address;
2522 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2523 
2524 		error = -ENOMEM;
2525 		if (grow <= vma->vm_pgoff) {
2526 			error = acct_stack_growth(vma, size, grow);
2527 			if (!error) {
2528 				/*
2529 				 * vma_gap_update() doesn't support concurrent
2530 				 * updates, but we only hold a shared mmap_lock
2531 				 * lock here, so we need to protect against
2532 				 * concurrent vma expansions.
2533 				 * anon_vma_lock_write() doesn't help here, as
2534 				 * we don't guarantee that all growable vmas
2535 				 * in a mm share the same root anon vma.
2536 				 * So, we reuse mm->page_table_lock to guard
2537 				 * against concurrent vma expansions.
2538 				 */
2539 				spin_lock(&mm->page_table_lock);
2540 				if (vma->vm_flags & VM_LOCKED)
2541 					mm->locked_vm += grow;
2542 				vm_stat_account(mm, vma->vm_flags, grow);
2543 				anon_vma_interval_tree_pre_update_vma(vma);
2544 				vma->vm_start = address;
2545 				vma->vm_pgoff -= grow;
2546 				anon_vma_interval_tree_post_update_vma(vma);
2547 				vma_gap_update(vma);
2548 				spin_unlock(&mm->page_table_lock);
2549 
2550 				perf_event_mmap(vma);
2551 			}
2552 		}
2553 	}
2554 	anon_vma_unlock_write(vma->anon_vma);
2555 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2556 	validate_mm(mm);
2557 	return error;
2558 }
2559 
2560 /* enforced gap between the expanding stack and other mappings. */
2561 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2562 
cmdline_parse_stack_guard_gap(char * p)2563 static int __init cmdline_parse_stack_guard_gap(char *p)
2564 {
2565 	unsigned long val;
2566 	char *endptr;
2567 
2568 	val = simple_strtoul(p, &endptr, 10);
2569 	if (!*endptr)
2570 		stack_guard_gap = val << PAGE_SHIFT;
2571 
2572 	return 1;
2573 }
2574 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2575 
2576 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2577 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2578 {
2579 	return expand_upwards(vma, address);
2580 }
2581 
2582 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2583 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2584 {
2585 	struct vm_area_struct *vma, *prev;
2586 
2587 	addr &= PAGE_MASK;
2588 	vma = find_vma_prev(mm, addr, &prev);
2589 	if (vma && (vma->vm_start <= addr))
2590 		return vma;
2591 	/* don't alter vm_end if the coredump is running */
2592 	if (!prev || expand_stack(prev, addr))
2593 		return NULL;
2594 	if (prev->vm_flags & VM_LOCKED)
2595 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2596 	return prev;
2597 }
2598 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2599 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2600 {
2601 	return expand_downwards(vma, address);
2602 }
2603 
2604 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2605 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2606 {
2607 	struct vm_area_struct *vma;
2608 	unsigned long start;
2609 
2610 	addr &= PAGE_MASK;
2611 	vma = find_vma(mm, addr);
2612 	if (!vma)
2613 		return NULL;
2614 	if (vma->vm_start <= addr)
2615 		return vma;
2616 	if (!(vma->vm_flags & VM_GROWSDOWN))
2617 		return NULL;
2618 	start = vma->vm_start;
2619 	if (expand_stack(vma, addr))
2620 		return NULL;
2621 	if (vma->vm_flags & VM_LOCKED)
2622 		populate_vma_page_range(vma, addr, start, NULL);
2623 	return vma;
2624 }
2625 #endif
2626 
2627 EXPORT_SYMBOL_GPL(find_extend_vma);
2628 
2629 /*
2630  * Ok - we have the memory areas we should free on the vma list,
2631  * so release them, and do the vma updates.
2632  *
2633  * Called with the mm semaphore held.
2634  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2635 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2636 {
2637 	unsigned long nr_accounted = 0;
2638 
2639 	/* Update high watermark before we lower total_vm */
2640 	update_hiwater_vm(mm);
2641 	do {
2642 		long nrpages = vma_pages(vma);
2643 
2644 		if (vma->vm_flags & VM_ACCOUNT)
2645 			nr_accounted += nrpages;
2646 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2647 		vma = remove_vma(vma);
2648 	} while (vma);
2649 	vm_unacct_memory(nr_accounted);
2650 	validate_mm(mm);
2651 }
2652 
2653 /*
2654  * Get rid of page table information in the indicated region.
2655  *
2656  * Called with the mm semaphore held.
2657  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2658 static void unmap_region(struct mm_struct *mm,
2659 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2660 		unsigned long start, unsigned long end)
2661 {
2662 	struct vm_area_struct *next = vma_next(mm, prev);
2663 	struct mmu_gather tlb;
2664 	struct vm_area_struct *cur_vma;
2665 
2666 	lru_add_drain();
2667 	tlb_gather_mmu(&tlb, mm);
2668 	update_hiwater_rss(mm);
2669 	unmap_vmas(&tlb, vma, start, end);
2670 
2671 	/*
2672 	 * Ensure we have no stale TLB entries by the time this mapping is
2673 	 * removed from the rmap.
2674 	 * Note that we don't have to worry about nested flushes here because
2675 	 * we're holding the mm semaphore for removing the mapping - so any
2676 	 * concurrent flush in this region has to be coming through the rmap,
2677 	 * and we synchronize against that using the rmap lock.
2678 	 */
2679 	for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2680 		if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2681 			tlb_flush_mmu(&tlb);
2682 			break;
2683 		}
2684 	}
2685 
2686 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2687 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2688 	tlb_finish_mmu(&tlb);
2689 }
2690 
2691 /*
2692  * Create a list of vma's touched by the unmap, removing them from the mm's
2693  * vma list as we go..
2694  */
2695 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2696 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2697 	struct vm_area_struct *prev, unsigned long end)
2698 {
2699 	struct vm_area_struct **insertion_point;
2700 	struct vm_area_struct *tail_vma = NULL;
2701 
2702 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2703 	vma->vm_prev = NULL;
2704 	do {
2705 		vma_rb_erase(vma, &mm->mm_rb);
2706 		mm->map_count--;
2707 		tail_vma = vma;
2708 		vma = vma->vm_next;
2709 	} while (vma && vma->vm_start < end);
2710 	*insertion_point = vma;
2711 	if (vma) {
2712 		vma->vm_prev = prev;
2713 		vma_gap_update(vma);
2714 	} else
2715 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2716 	tail_vma->vm_next = NULL;
2717 
2718 	/* Kill the cache */
2719 	vmacache_invalidate(mm);
2720 
2721 	/*
2722 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2723 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2724 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2725 	 */
2726 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2727 		return false;
2728 	if (prev && (prev->vm_flags & VM_GROWSUP))
2729 		return false;
2730 	return true;
2731 }
2732 
2733 /*
2734  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2735  * has already been checked or doesn't make sense to fail.
2736  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2737 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2738 		unsigned long addr, int new_below)
2739 {
2740 	struct vm_area_struct *new;
2741 	int err;
2742 
2743 	if (vma->vm_ops && vma->vm_ops->may_split) {
2744 		err = vma->vm_ops->may_split(vma, addr);
2745 		if (err)
2746 			return err;
2747 	}
2748 
2749 	new = vm_area_dup(vma);
2750 	if (!new)
2751 		return -ENOMEM;
2752 
2753 	if (new_below)
2754 		new->vm_end = addr;
2755 	else {
2756 		new->vm_start = addr;
2757 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2758 	}
2759 
2760 	err = vma_dup_policy(vma, new);
2761 	if (err)
2762 		goto out_free_vma;
2763 
2764 	err = anon_vma_clone(new, vma);
2765 	if (err)
2766 		goto out_free_mpol;
2767 
2768 	if (new->vm_file)
2769 		get_file(new->vm_file);
2770 
2771 	if (new->vm_ops && new->vm_ops->open)
2772 		new->vm_ops->open(new);
2773 
2774 	if (new_below)
2775 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2776 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2777 	else
2778 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2779 
2780 	/* Success. */
2781 	if (!err)
2782 		return 0;
2783 
2784 	/* Clean everything up if vma_adjust failed. */
2785 	if (new->vm_ops && new->vm_ops->close)
2786 		new->vm_ops->close(new);
2787 	if (new->vm_file)
2788 		fput(new->vm_file);
2789 	unlink_anon_vmas(new);
2790  out_free_mpol:
2791 	mpol_put(vma_policy(new));
2792  out_free_vma:
2793 	new->vm_file = NULL;	/* prevents fput within vm_area_free() */
2794 	vm_area_free(new);
2795 	return err;
2796 }
2797 
2798 /*
2799  * Split a vma into two pieces at address 'addr', a new vma is allocated
2800  * either for the first part or the tail.
2801  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2802 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2803 	      unsigned long addr, int new_below)
2804 {
2805 	if (mm->map_count >= sysctl_max_map_count)
2806 		return -ENOMEM;
2807 
2808 	return __split_vma(mm, vma, addr, new_below);
2809 }
2810 
2811 static inline void
unlock_range(struct vm_area_struct * start,unsigned long limit)2812 unlock_range(struct vm_area_struct *start, unsigned long limit)
2813 {
2814 	struct mm_struct *mm = start->vm_mm;
2815 	struct vm_area_struct *tmp = start;
2816 
2817 	while (tmp && tmp->vm_start < limit) {
2818 		if (tmp->vm_flags & VM_LOCKED) {
2819 			mm->locked_vm -= vma_pages(tmp);
2820 			munlock_vma_pages_all(tmp);
2821 		}
2822 
2823 		tmp = tmp->vm_next;
2824 	}
2825 }
2826 
2827 /* Munmap is split into 2 main parts -- this part which finds
2828  * what needs doing, and the areas themselves, which do the
2829  * work.  This now handles partial unmappings.
2830  * Jeremy Fitzhardinge <jeremy@goop.org>
2831  */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2832 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2833 		struct list_head *uf, bool downgrade)
2834 {
2835 	unsigned long end;
2836 	struct vm_area_struct *vma, *prev, *last;
2837 
2838 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2839 		return -EINVAL;
2840 
2841 	len = PAGE_ALIGN(len);
2842 	end = start + len;
2843 	if (len == 0)
2844 		return -EINVAL;
2845 
2846 	/*
2847 	 * arch_unmap() might do unmaps itself.  It must be called
2848 	 * and finish any rbtree manipulation before this code
2849 	 * runs and also starts to manipulate the rbtree.
2850 	 */
2851 	arch_unmap(mm, start, end);
2852 
2853 	/* Find the first overlapping VMA where start < vma->vm_end */
2854 	vma = find_vma_intersection(mm, start, end);
2855 	if (!vma)
2856 		return 0;
2857 	prev = vma->vm_prev;
2858 
2859 	/*
2860 	 * If we need to split any vma, do it now to save pain later.
2861 	 *
2862 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2863 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2864 	 * places tmp vma above, and higher split_vma places tmp vma below.
2865 	 */
2866 	if (start > vma->vm_start) {
2867 		int error;
2868 
2869 		/*
2870 		 * Make sure that map_count on return from munmap() will
2871 		 * not exceed its limit; but let map_count go just above
2872 		 * its limit temporarily, to help free resources as expected.
2873 		 */
2874 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2875 			return -ENOMEM;
2876 
2877 		error = __split_vma(mm, vma, start, 0);
2878 		if (error)
2879 			return error;
2880 		prev = vma;
2881 	}
2882 
2883 	/* Does it split the last one? */
2884 	last = find_vma(mm, end);
2885 	if (last && end > last->vm_start) {
2886 		int error = __split_vma(mm, last, end, 1);
2887 		if (error)
2888 			return error;
2889 	}
2890 	vma = vma_next(mm, prev);
2891 
2892 	if (unlikely(uf)) {
2893 		/*
2894 		 * If userfaultfd_unmap_prep returns an error the vmas
2895 		 * will remain split, but userland will get a
2896 		 * highly unexpected error anyway. This is no
2897 		 * different than the case where the first of the two
2898 		 * __split_vma fails, but we don't undo the first
2899 		 * split, despite we could. This is unlikely enough
2900 		 * failure that it's not worth optimizing it for.
2901 		 */
2902 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2903 		if (error)
2904 			return error;
2905 	}
2906 
2907 	/*
2908 	 * unlock any mlock()ed ranges before detaching vmas
2909 	 */
2910 	if (mm->locked_vm)
2911 		unlock_range(vma, end);
2912 
2913 	/* Detach vmas from rbtree */
2914 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2915 		downgrade = false;
2916 
2917 	if (downgrade)
2918 		mmap_write_downgrade(mm);
2919 
2920 	unmap_region(mm, vma, prev, start, end);
2921 
2922 	/* Fix up all other VM information */
2923 	remove_vma_list(mm, vma);
2924 
2925 	return downgrade ? 1 : 0;
2926 }
2927 
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2928 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2929 	      struct list_head *uf)
2930 {
2931 	return __do_munmap(mm, start, len, uf, false);
2932 }
2933 
__vm_munmap(unsigned long start,size_t len,bool downgrade)2934 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2935 {
2936 	int ret;
2937 	struct mm_struct *mm = current->mm;
2938 	LIST_HEAD(uf);
2939 
2940 	if (mmap_write_lock_killable(mm))
2941 		return -EINTR;
2942 
2943 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2944 	/*
2945 	 * Returning 1 indicates mmap_lock is downgraded.
2946 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2947 	 * it to 0 before return.
2948 	 */
2949 	if (ret == 1) {
2950 		mmap_read_unlock(mm);
2951 		ret = 0;
2952 	} else
2953 		mmap_write_unlock(mm);
2954 
2955 	userfaultfd_unmap_complete(mm, &uf);
2956 	return ret;
2957 }
2958 
vm_munmap(unsigned long start,size_t len)2959 int vm_munmap(unsigned long start, size_t len)
2960 {
2961 	return __vm_munmap(start, len, false);
2962 }
2963 EXPORT_SYMBOL(vm_munmap);
2964 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2965 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2966 {
2967 	addr = untagged_addr(addr);
2968 	profile_munmap(addr);
2969 	return __vm_munmap(addr, len, true);
2970 }
2971 
2972 
2973 /*
2974  * Emulation of deprecated remap_file_pages() syscall.
2975  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2976 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2977 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2978 {
2979 
2980 	struct mm_struct *mm = current->mm;
2981 	struct vm_area_struct *vma;
2982 	unsigned long populate = 0;
2983 	unsigned long ret = -EINVAL;
2984 	struct file *file;
2985 
2986 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2987 		     current->comm, current->pid);
2988 
2989 	if (prot)
2990 		return ret;
2991 	start = start & PAGE_MASK;
2992 	size = size & PAGE_MASK;
2993 
2994 	if (start + size <= start)
2995 		return ret;
2996 
2997 	/* Does pgoff wrap? */
2998 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2999 		return ret;
3000 
3001 	if (mmap_write_lock_killable(mm))
3002 		return -EINTR;
3003 
3004 	vma = vma_lookup(mm, start);
3005 
3006 	if (!vma || !(vma->vm_flags & VM_SHARED))
3007 		goto out;
3008 
3009 	if (start + size > vma->vm_end) {
3010 		struct vm_area_struct *next;
3011 
3012 		for (next = vma->vm_next; next; next = next->vm_next) {
3013 			/* hole between vmas ? */
3014 			if (next->vm_start != next->vm_prev->vm_end)
3015 				goto out;
3016 
3017 			if (next->vm_file != vma->vm_file)
3018 				goto out;
3019 
3020 			if (next->vm_flags != vma->vm_flags)
3021 				goto out;
3022 
3023 			if (start + size <= next->vm_end)
3024 				break;
3025 		}
3026 
3027 		if (!next)
3028 			goto out;
3029 	}
3030 
3031 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3032 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3033 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3034 
3035 	flags &= MAP_NONBLOCK;
3036 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3037 	if (vma->vm_flags & VM_LOCKED)
3038 		flags |= MAP_LOCKED;
3039 
3040 	file = get_file(vma->vm_file);
3041 	ret = do_mmap(vma->vm_file, start, size,
3042 			prot, flags, pgoff, &populate, NULL);
3043 	fput(file);
3044 out:
3045 	mmap_write_unlock(mm);
3046 	if (populate)
3047 		mm_populate(ret, populate);
3048 	if (!IS_ERR_VALUE(ret))
3049 		ret = 0;
3050 	return ret;
3051 }
3052 
3053 /*
3054  *  this is really a simplified "do_mmap".  it only handles
3055  *  anonymous maps.  eventually we may be able to do some
3056  *  brk-specific accounting here.
3057  */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3058 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3059 {
3060 	struct mm_struct *mm = current->mm;
3061 	struct vm_area_struct *vma, *prev;
3062 	struct rb_node **rb_link, *rb_parent;
3063 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3064 	int error;
3065 	unsigned long mapped_addr;
3066 
3067 	/* Until we need other flags, refuse anything except VM_EXEC. */
3068 	if ((flags & (~VM_EXEC)) != 0)
3069 		return -EINVAL;
3070 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3071 
3072 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3073 	if (IS_ERR_VALUE(mapped_addr))
3074 		return mapped_addr;
3075 
3076 	error = mlock_future_check(mm, mm->def_flags, len);
3077 	if (error)
3078 		return error;
3079 
3080 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3081 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3082 		return -ENOMEM;
3083 
3084 	/* Check against address space limits *after* clearing old maps... */
3085 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3086 		return -ENOMEM;
3087 
3088 	if (mm->map_count > sysctl_max_map_count)
3089 		return -ENOMEM;
3090 
3091 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3092 		return -ENOMEM;
3093 
3094 	/* Can we just expand an old private anonymous mapping? */
3095 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3096 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3097 	if (vma)
3098 		goto out;
3099 
3100 	/*
3101 	 * create a vma struct for an anonymous mapping
3102 	 */
3103 	vma = vm_area_alloc(mm);
3104 	if (!vma) {
3105 		vm_unacct_memory(len >> PAGE_SHIFT);
3106 		return -ENOMEM;
3107 	}
3108 
3109 	vma_set_anonymous(vma);
3110 	vma->vm_start = addr;
3111 	vma->vm_end = addr + len;
3112 	vma->vm_pgoff = pgoff;
3113 	vma->vm_flags = flags;
3114 	vma->vm_page_prot = vm_get_page_prot(flags);
3115 	vma_link(mm, vma, prev, rb_link, rb_parent);
3116 out:
3117 	perf_event_mmap(vma);
3118 	mm->total_vm += len >> PAGE_SHIFT;
3119 	mm->data_vm += len >> PAGE_SHIFT;
3120 	if (flags & VM_LOCKED)
3121 		mm->locked_vm += (len >> PAGE_SHIFT);
3122 	vma->vm_flags |= VM_SOFTDIRTY;
3123 	return 0;
3124 }
3125 
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3126 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3127 {
3128 	struct mm_struct *mm = current->mm;
3129 	unsigned long len;
3130 	int ret;
3131 	bool populate;
3132 	LIST_HEAD(uf);
3133 
3134 	len = PAGE_ALIGN(request);
3135 	if (len < request)
3136 		return -ENOMEM;
3137 	if (!len)
3138 		return 0;
3139 
3140 	if (mmap_write_lock_killable(mm))
3141 		return -EINTR;
3142 
3143 	ret = do_brk_flags(addr, len, flags, &uf);
3144 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3145 	mmap_write_unlock(mm);
3146 	userfaultfd_unmap_complete(mm, &uf);
3147 	if (populate && !ret)
3148 		mm_populate(addr, len);
3149 	return ret;
3150 }
3151 EXPORT_SYMBOL(vm_brk_flags);
3152 
vm_brk(unsigned long addr,unsigned long len)3153 int vm_brk(unsigned long addr, unsigned long len)
3154 {
3155 	return vm_brk_flags(addr, len, 0);
3156 }
3157 EXPORT_SYMBOL(vm_brk);
3158 
3159 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3160 void exit_mmap(struct mm_struct *mm)
3161 {
3162 	struct mmu_gather tlb;
3163 	struct vm_area_struct *vma;
3164 	unsigned long nr_accounted = 0;
3165 
3166 	/* mm's last user has gone, and its about to be pulled down */
3167 	mmu_notifier_release(mm);
3168 
3169 	if (unlikely(mm_is_oom_victim(mm))) {
3170 		/*
3171 		 * Manually reap the mm to free as much memory as possible.
3172 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3173 		 * this mm from further consideration.  Taking mm->mmap_lock for
3174 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3175 		 * reaper will not run on this mm again after mmap_lock is
3176 		 * dropped.
3177 		 *
3178 		 * Nothing can be holding mm->mmap_lock here and the above call
3179 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3180 		 * __oom_reap_task_mm() will not block.
3181 		 *
3182 		 * This needs to be done before calling unlock_range(),
3183 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3184 		 * reliably test it.
3185 		 */
3186 		(void)__oom_reap_task_mm(mm);
3187 
3188 		set_bit(MMF_OOM_SKIP, &mm->flags);
3189 	}
3190 
3191 	mmap_write_lock(mm);
3192 	if (mm->locked_vm)
3193 		unlock_range(mm->mmap, ULONG_MAX);
3194 
3195 	arch_exit_mmap(mm);
3196 
3197 	vma = mm->mmap;
3198 	if (!vma) {
3199 		/* Can happen if dup_mmap() received an OOM */
3200 		mmap_write_unlock(mm);
3201 		return;
3202 	}
3203 
3204 	lru_add_drain();
3205 	flush_cache_mm(mm);
3206 	tlb_gather_mmu_fullmm(&tlb, mm);
3207 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3208 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3209 	unmap_vmas(&tlb, vma, 0, -1);
3210 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3211 	tlb_finish_mmu(&tlb);
3212 
3213 	/* Walk the list again, actually closing and freeing it. */
3214 	while (vma) {
3215 		if (vma->vm_flags & VM_ACCOUNT)
3216 			nr_accounted += vma_pages(vma);
3217 		vma = remove_vma(vma);
3218 		cond_resched();
3219 	}
3220 	mm->mmap = NULL;
3221 	mmap_write_unlock(mm);
3222 	vm_unacct_memory(nr_accounted);
3223 }
3224 
3225 /* Insert vm structure into process list sorted by address
3226  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3227  * then i_mmap_rwsem is taken here.
3228  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3229 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3230 {
3231 	struct vm_area_struct *prev;
3232 	struct rb_node **rb_link, *rb_parent;
3233 
3234 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3235 			   &prev, &rb_link, &rb_parent))
3236 		return -ENOMEM;
3237 	if ((vma->vm_flags & VM_ACCOUNT) &&
3238 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3239 		return -ENOMEM;
3240 
3241 	/*
3242 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3243 	 * until its first write fault, when page's anon_vma and index
3244 	 * are set.  But now set the vm_pgoff it will almost certainly
3245 	 * end up with (unless mremap moves it elsewhere before that
3246 	 * first wfault), so /proc/pid/maps tells a consistent story.
3247 	 *
3248 	 * By setting it to reflect the virtual start address of the
3249 	 * vma, merges and splits can happen in a seamless way, just
3250 	 * using the existing file pgoff checks and manipulations.
3251 	 * Similarly in do_mmap and in do_brk_flags.
3252 	 */
3253 	if (vma_is_anonymous(vma)) {
3254 		BUG_ON(vma->anon_vma);
3255 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3256 	}
3257 
3258 	vma_link(mm, vma, prev, rb_link, rb_parent);
3259 	return 0;
3260 }
3261 
3262 /*
3263  * Copy the vma structure to a new location in the same mm,
3264  * prior to moving page table entries, to effect an mremap move.
3265  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3266 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3267 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3268 	bool *need_rmap_locks)
3269 {
3270 	struct vm_area_struct *vma = *vmap;
3271 	unsigned long vma_start = vma->vm_start;
3272 	struct mm_struct *mm = vma->vm_mm;
3273 	struct vm_area_struct *new_vma, *prev;
3274 	struct rb_node **rb_link, *rb_parent;
3275 	bool faulted_in_anon_vma = true;
3276 
3277 	/*
3278 	 * If anonymous vma has not yet been faulted, update new pgoff
3279 	 * to match new location, to increase its chance of merging.
3280 	 */
3281 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3282 		pgoff = addr >> PAGE_SHIFT;
3283 		faulted_in_anon_vma = false;
3284 	}
3285 
3286 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3287 		return NULL;	/* should never get here */
3288 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3289 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3290 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3291 	if (new_vma) {
3292 		/*
3293 		 * Source vma may have been merged into new_vma
3294 		 */
3295 		if (unlikely(vma_start >= new_vma->vm_start &&
3296 			     vma_start < new_vma->vm_end)) {
3297 			/*
3298 			 * The only way we can get a vma_merge with
3299 			 * self during an mremap is if the vma hasn't
3300 			 * been faulted in yet and we were allowed to
3301 			 * reset the dst vma->vm_pgoff to the
3302 			 * destination address of the mremap to allow
3303 			 * the merge to happen. mremap must change the
3304 			 * vm_pgoff linearity between src and dst vmas
3305 			 * (in turn preventing a vma_merge) to be
3306 			 * safe. It is only safe to keep the vm_pgoff
3307 			 * linear if there are no pages mapped yet.
3308 			 */
3309 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3310 			*vmap = vma = new_vma;
3311 		}
3312 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3313 	} else {
3314 		new_vma = vm_area_dup(vma);
3315 		if (!new_vma)
3316 			goto out;
3317 		new_vma->vm_start = addr;
3318 		new_vma->vm_end = addr + len;
3319 		new_vma->vm_pgoff = pgoff;
3320 		if (vma_dup_policy(vma, new_vma))
3321 			goto out_free_vma;
3322 		if (anon_vma_clone(new_vma, vma))
3323 			goto out_free_mempol;
3324 		if (new_vma->vm_file)
3325 			get_file(new_vma->vm_file);
3326 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3327 			new_vma->vm_ops->open(new_vma);
3328 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3329 		*need_rmap_locks = false;
3330 	}
3331 	return new_vma;
3332 
3333 out_free_mempol:
3334 	mpol_put(vma_policy(new_vma));
3335 out_free_vma:
3336 	new_vma->vm_file = NULL;	/* Prevent fput within vm_area_free */
3337 	vm_area_free(new_vma);
3338 out:
3339 	return NULL;
3340 }
3341 
3342 /*
3343  * Return true if the calling process may expand its vm space by the passed
3344  * number of pages
3345  */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3346 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3347 {
3348 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3349 		return false;
3350 
3351 	if (is_data_mapping(flags) &&
3352 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3353 		/* Workaround for Valgrind */
3354 		if (rlimit(RLIMIT_DATA) == 0 &&
3355 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3356 			return true;
3357 
3358 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3359 			     current->comm, current->pid,
3360 			     (mm->data_vm + npages) << PAGE_SHIFT,
3361 			     rlimit(RLIMIT_DATA),
3362 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3363 
3364 		if (!ignore_rlimit_data)
3365 			return false;
3366 	}
3367 
3368 	return true;
3369 }
3370 
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3371 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3372 {
3373 	mm->total_vm += npages;
3374 
3375 	if (is_exec_mapping(flags))
3376 		mm->exec_vm += npages;
3377 	else if (is_stack_mapping(flags))
3378 		mm->stack_vm += npages;
3379 	else if (is_data_mapping(flags))
3380 		mm->data_vm += npages;
3381 }
3382 
3383 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3384 
3385 /*
3386  * Having a close hook prevents vma merging regardless of flags.
3387  */
special_mapping_close(struct vm_area_struct * vma)3388 static void special_mapping_close(struct vm_area_struct *vma)
3389 {
3390 }
3391 
special_mapping_name(struct vm_area_struct * vma)3392 static const char *special_mapping_name(struct vm_area_struct *vma)
3393 {
3394 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3395 }
3396 
special_mapping_mremap(struct vm_area_struct * new_vma)3397 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3398 {
3399 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3400 
3401 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3402 		return -EFAULT;
3403 
3404 	if (sm->mremap)
3405 		return sm->mremap(sm, new_vma);
3406 
3407 	return 0;
3408 }
3409 
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3410 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3411 {
3412 	/*
3413 	 * Forbid splitting special mappings - kernel has expectations over
3414 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3415 	 * the size of vma should stay the same over the special mapping's
3416 	 * lifetime.
3417 	 */
3418 	return -EINVAL;
3419 }
3420 
3421 static const struct vm_operations_struct special_mapping_vmops = {
3422 	.close = special_mapping_close,
3423 	.fault = special_mapping_fault,
3424 	.mremap = special_mapping_mremap,
3425 	.name = special_mapping_name,
3426 	/* vDSO code relies that VVAR can't be accessed remotely */
3427 	.access = NULL,
3428 	.may_split = special_mapping_split,
3429 };
3430 
3431 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3432 	.close = special_mapping_close,
3433 	.fault = special_mapping_fault,
3434 };
3435 
special_mapping_fault(struct vm_fault * vmf)3436 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3437 {
3438 	struct vm_area_struct *vma = vmf->vma;
3439 	pgoff_t pgoff;
3440 	struct page **pages;
3441 
3442 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3443 		pages = vma->vm_private_data;
3444 	} else {
3445 		struct vm_special_mapping *sm = vma->vm_private_data;
3446 
3447 		if (sm->fault)
3448 			return sm->fault(sm, vmf->vma, vmf);
3449 
3450 		pages = sm->pages;
3451 	}
3452 
3453 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3454 		pgoff--;
3455 
3456 	if (*pages) {
3457 		struct page *page = *pages;
3458 		get_page(page);
3459 		vmf->page = page;
3460 		return 0;
3461 	}
3462 
3463 	return VM_FAULT_SIGBUS;
3464 }
3465 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3466 static struct vm_area_struct *__install_special_mapping(
3467 	struct mm_struct *mm,
3468 	unsigned long addr, unsigned long len,
3469 	unsigned long vm_flags, void *priv,
3470 	const struct vm_operations_struct *ops)
3471 {
3472 	int ret;
3473 	struct vm_area_struct *vma;
3474 
3475 	vma = vm_area_alloc(mm);
3476 	if (unlikely(vma == NULL))
3477 		return ERR_PTR(-ENOMEM);
3478 
3479 	vma->vm_start = addr;
3480 	vma->vm_end = addr + len;
3481 
3482 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3483 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3484 
3485 	vma->vm_ops = ops;
3486 	vma->vm_private_data = priv;
3487 
3488 	ret = insert_vm_struct(mm, vma);
3489 	if (ret)
3490 		goto out;
3491 
3492 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3493 
3494 	perf_event_mmap(vma);
3495 
3496 	return vma;
3497 
3498 out:
3499 	vm_area_free(vma);
3500 	return ERR_PTR(ret);
3501 }
3502 
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3503 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3504 	const struct vm_special_mapping *sm)
3505 {
3506 	return vma->vm_private_data == sm &&
3507 		(vma->vm_ops == &special_mapping_vmops ||
3508 		 vma->vm_ops == &legacy_special_mapping_vmops);
3509 }
3510 
3511 /*
3512  * Called with mm->mmap_lock held for writing.
3513  * Insert a new vma covering the given region, with the given flags.
3514  * Its pages are supplied by the given array of struct page *.
3515  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3516  * The region past the last page supplied will always produce SIGBUS.
3517  * The array pointer and the pages it points to are assumed to stay alive
3518  * for as long as this mapping might exist.
3519  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3520 struct vm_area_struct *_install_special_mapping(
3521 	struct mm_struct *mm,
3522 	unsigned long addr, unsigned long len,
3523 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3524 {
3525 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3526 					&special_mapping_vmops);
3527 }
3528 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3529 int install_special_mapping(struct mm_struct *mm,
3530 			    unsigned long addr, unsigned long len,
3531 			    unsigned long vm_flags, struct page **pages)
3532 {
3533 	struct vm_area_struct *vma = __install_special_mapping(
3534 		mm, addr, len, vm_flags, (void *)pages,
3535 		&legacy_special_mapping_vmops);
3536 
3537 	return PTR_ERR_OR_ZERO(vma);
3538 }
3539 
3540 static DEFINE_MUTEX(mm_all_locks_mutex);
3541 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3542 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3543 {
3544 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3545 		/*
3546 		 * The LSB of head.next can't change from under us
3547 		 * because we hold the mm_all_locks_mutex.
3548 		 */
3549 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3550 		/*
3551 		 * We can safely modify head.next after taking the
3552 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3553 		 * the same anon_vma we won't take it again.
3554 		 *
3555 		 * No need of atomic instructions here, head.next
3556 		 * can't change from under us thanks to the
3557 		 * anon_vma->root->rwsem.
3558 		 */
3559 		if (__test_and_set_bit(0, (unsigned long *)
3560 				       &anon_vma->root->rb_root.rb_root.rb_node))
3561 			BUG();
3562 	}
3563 }
3564 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3565 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3566 {
3567 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3568 		/*
3569 		 * AS_MM_ALL_LOCKS can't change from under us because
3570 		 * we hold the mm_all_locks_mutex.
3571 		 *
3572 		 * Operations on ->flags have to be atomic because
3573 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3574 		 * mm_all_locks_mutex, there may be other cpus
3575 		 * changing other bitflags in parallel to us.
3576 		 */
3577 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3578 			BUG();
3579 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3580 	}
3581 }
3582 
3583 /*
3584  * This operation locks against the VM for all pte/vma/mm related
3585  * operations that could ever happen on a certain mm. This includes
3586  * vmtruncate, try_to_unmap, and all page faults.
3587  *
3588  * The caller must take the mmap_lock in write mode before calling
3589  * mm_take_all_locks(). The caller isn't allowed to release the
3590  * mmap_lock until mm_drop_all_locks() returns.
3591  *
3592  * mmap_lock in write mode is required in order to block all operations
3593  * that could modify pagetables and free pages without need of
3594  * altering the vma layout. It's also needed in write mode to avoid new
3595  * anon_vmas to be associated with existing vmas.
3596  *
3597  * A single task can't take more than one mm_take_all_locks() in a row
3598  * or it would deadlock.
3599  *
3600  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3601  * mapping->flags avoid to take the same lock twice, if more than one
3602  * vma in this mm is backed by the same anon_vma or address_space.
3603  *
3604  * We take locks in following order, accordingly to comment at beginning
3605  * of mm/rmap.c:
3606  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3607  *     hugetlb mapping);
3608  *   - all i_mmap_rwsem locks;
3609  *   - all anon_vma->rwseml
3610  *
3611  * We can take all locks within these types randomly because the VM code
3612  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3613  * mm_all_locks_mutex.
3614  *
3615  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3616  * that may have to take thousand of locks.
3617  *
3618  * mm_take_all_locks() can fail if it's interrupted by signals.
3619  */
mm_take_all_locks(struct mm_struct * mm)3620 int mm_take_all_locks(struct mm_struct *mm)
3621 {
3622 	struct vm_area_struct *vma;
3623 	struct anon_vma_chain *avc;
3624 
3625 	BUG_ON(mmap_read_trylock(mm));
3626 
3627 	mutex_lock(&mm_all_locks_mutex);
3628 
3629 #if defined(CONFIG_MMU_NOTIFIER) && defined(CONFIG_SPECULATIVE_PAGE_FAULT)
3630 	percpu_down_write(mm->mmu_notifier_lock);
3631 #endif
3632 
3633 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3634 		if (signal_pending(current))
3635 			goto out_unlock;
3636 		if (vma->vm_file && vma->vm_file->f_mapping &&
3637 				is_vm_hugetlb_page(vma))
3638 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3639 	}
3640 
3641 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3642 		if (signal_pending(current))
3643 			goto out_unlock;
3644 		if (vma->vm_file && vma->vm_file->f_mapping &&
3645 				!is_vm_hugetlb_page(vma))
3646 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3647 	}
3648 
3649 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3650 		if (signal_pending(current))
3651 			goto out_unlock;
3652 		if (vma->anon_vma)
3653 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3654 				vm_lock_anon_vma(mm, avc->anon_vma);
3655 	}
3656 
3657 	return 0;
3658 
3659 out_unlock:
3660 	mm_drop_all_locks(mm);
3661 	return -EINTR;
3662 }
3663 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3664 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3665 {
3666 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3667 		/*
3668 		 * The LSB of head.next can't change to 0 from under
3669 		 * us because we hold the mm_all_locks_mutex.
3670 		 *
3671 		 * We must however clear the bitflag before unlocking
3672 		 * the vma so the users using the anon_vma->rb_root will
3673 		 * never see our bitflag.
3674 		 *
3675 		 * No need of atomic instructions here, head.next
3676 		 * can't change from under us until we release the
3677 		 * anon_vma->root->rwsem.
3678 		 */
3679 		if (!__test_and_clear_bit(0, (unsigned long *)
3680 					  &anon_vma->root->rb_root.rb_root.rb_node))
3681 			BUG();
3682 		anon_vma_unlock_write(anon_vma);
3683 	}
3684 }
3685 
vm_unlock_mapping(struct address_space * mapping)3686 static void vm_unlock_mapping(struct address_space *mapping)
3687 {
3688 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3689 		/*
3690 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3691 		 * because we hold the mm_all_locks_mutex.
3692 		 */
3693 		i_mmap_unlock_write(mapping);
3694 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3695 					&mapping->flags))
3696 			BUG();
3697 	}
3698 }
3699 
3700 /*
3701  * The mmap_lock cannot be released by the caller until
3702  * mm_drop_all_locks() returns.
3703  */
mm_drop_all_locks(struct mm_struct * mm)3704 void mm_drop_all_locks(struct mm_struct *mm)
3705 {
3706 	struct vm_area_struct *vma;
3707 	struct anon_vma_chain *avc;
3708 
3709 	BUG_ON(mmap_read_trylock(mm));
3710 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3711 
3712 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3713 		if (vma->anon_vma)
3714 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3715 				vm_unlock_anon_vma(avc->anon_vma);
3716 		if (vma->vm_file && vma->vm_file->f_mapping)
3717 			vm_unlock_mapping(vma->vm_file->f_mapping);
3718 	}
3719 
3720 #if defined(CONFIG_MMU_NOTIFIER) && defined(CONFIG_SPECULATIVE_PAGE_FAULT)
3721 	percpu_up_write(mm->mmu_notifier_lock);
3722 #endif
3723 
3724 	mutex_unlock(&mm_all_locks_mutex);
3725 }
3726 
3727 /*
3728  * initialise the percpu counter for VM
3729  */
mmap_init(void)3730 void __init mmap_init(void)
3731 {
3732 	int ret;
3733 
3734 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3735 	VM_BUG_ON(ret);
3736 }
3737 
3738 /*
3739  * Initialise sysctl_user_reserve_kbytes.
3740  *
3741  * This is intended to prevent a user from starting a single memory hogging
3742  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3743  * mode.
3744  *
3745  * The default value is min(3% of free memory, 128MB)
3746  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3747  */
init_user_reserve(void)3748 static int init_user_reserve(void)
3749 {
3750 	unsigned long free_kbytes;
3751 
3752 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3753 
3754 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3755 	return 0;
3756 }
3757 subsys_initcall(init_user_reserve);
3758 
3759 /*
3760  * Initialise sysctl_admin_reserve_kbytes.
3761  *
3762  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3763  * to log in and kill a memory hogging process.
3764  *
3765  * Systems with more than 256MB will reserve 8MB, enough to recover
3766  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3767  * only reserve 3% of free pages by default.
3768  */
init_admin_reserve(void)3769 static int init_admin_reserve(void)
3770 {
3771 	unsigned long free_kbytes;
3772 
3773 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3774 
3775 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3776 	return 0;
3777 }
3778 subsys_initcall(init_admin_reserve);
3779 
3780 /*
3781  * Reinititalise user and admin reserves if memory is added or removed.
3782  *
3783  * The default user reserve max is 128MB, and the default max for the
3784  * admin reserve is 8MB. These are usually, but not always, enough to
3785  * enable recovery from a memory hogging process using login/sshd, a shell,
3786  * and tools like top. It may make sense to increase or even disable the
3787  * reserve depending on the existence of swap or variations in the recovery
3788  * tools. So, the admin may have changed them.
3789  *
3790  * If memory is added and the reserves have been eliminated or increased above
3791  * the default max, then we'll trust the admin.
3792  *
3793  * If memory is removed and there isn't enough free memory, then we
3794  * need to reset the reserves.
3795  *
3796  * Otherwise keep the reserve set by the admin.
3797  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3798 static int reserve_mem_notifier(struct notifier_block *nb,
3799 			     unsigned long action, void *data)
3800 {
3801 	unsigned long tmp, free_kbytes;
3802 
3803 	switch (action) {
3804 	case MEM_ONLINE:
3805 		/* Default max is 128MB. Leave alone if modified by operator. */
3806 		tmp = sysctl_user_reserve_kbytes;
3807 		if (0 < tmp && tmp < (1UL << 17))
3808 			init_user_reserve();
3809 
3810 		/* Default max is 8MB.  Leave alone if modified by operator. */
3811 		tmp = sysctl_admin_reserve_kbytes;
3812 		if (0 < tmp && tmp < (1UL << 13))
3813 			init_admin_reserve();
3814 
3815 		break;
3816 	case MEM_OFFLINE:
3817 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3818 
3819 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3820 			init_user_reserve();
3821 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3822 				sysctl_user_reserve_kbytes);
3823 		}
3824 
3825 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3826 			init_admin_reserve();
3827 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3828 				sysctl_admin_reserve_kbytes);
3829 		}
3830 		break;
3831 	default:
3832 		break;
3833 	}
3834 	return NOTIFY_OK;
3835 }
3836 
3837 static struct notifier_block reserve_mem_nb = {
3838 	.notifier_call = reserve_mem_notifier,
3839 };
3840 
init_reserve_notifier(void)3841 static int __meminit init_reserve_notifier(void)
3842 {
3843 	if (register_hotmemory_notifier(&reserve_mem_nb))
3844 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3845 
3846 	return 0;
3847 }
3848 subsys_initcall(init_reserve_notifier);
3849