1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/kfence.h>
104 #include <linux/cpu.h>
105 #include <linux/sysctl.h>
106 #include <linux/module.h>
107 #include <linux/rcupdate.h>
108 #include <linux/string.h>
109 #include <linux/uaccess.h>
110 #include <linux/nodemask.h>
111 #include <linux/kmemleak.h>
112 #include <linux/mempolicy.h>
113 #include <linux/mutex.h>
114 #include <linux/fault-inject.h>
115 #include <linux/rtmutex.h>
116 #include <linux/reciprocal_div.h>
117 #include <linux/debugobjects.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120 #include <linux/sched/task_stack.h>
121
122 #include <net/sock.h>
123
124 #include <asm/cacheflush.h>
125 #include <asm/tlbflush.h>
126 #include <asm/page.h>
127
128 #include <trace/events/kmem.h>
129
130 #include "internal.h"
131
132 #include "slab.h"
133
134 /*
135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144 #ifdef CONFIG_DEBUG_SLAB
145 #define DEBUG 1
146 #define STATS 1
147 #define FORCED_DEBUG 1
148 #else
149 #define DEBUG 0
150 #define STATS 0
151 #define FORCED_DEBUG 0
152 #endif
153
154 /* Shouldn't this be in a header file somewhere? */
155 #define BYTES_PER_WORD sizeof(void *)
156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157
158 #ifndef ARCH_KMALLOC_FLAGS
159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #endif
161
162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165 #if FREELIST_BYTE_INDEX
166 typedef unsigned char freelist_idx_t;
167 #else
168 typedef unsigned short freelist_idx_t;
169 #endif
170
171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172
173 /*
174 * struct array_cache
175 *
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185 struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
190 void *entry[]; /*
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
194 */
195 };
196
197 struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200 };
201
202 /*
203 * Need this for bootstrapping a per node allocator.
204 */
205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207 #define CACHE_CACHE 0
208 #define SIZE_NODE (MAX_NUMNODES)
209
210 static int drain_freelist(struct kmem_cache *cache,
211 struct kmem_cache_node *n, int tofree);
212 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 int node, struct list_head *list);
214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216 static void cache_reap(struct work_struct *unused);
217
218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220 static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct page *page,
222 void **list);
223 static int slab_early_init = 1;
224
225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226
kmem_cache_node_init(struct kmem_cache_node * parent)227 static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 {
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
232 parent->total_slabs = 0;
233 parent->free_slabs = 0;
234 parent->shared = NULL;
235 parent->alien = NULL;
236 parent->colour_next = 0;
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240 }
241
242 #define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
246 } while (0)
247
248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
254
255 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
256 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260 #define BATCHREFILL_LIMIT 16
261 /*
262 * Optimization question: fewer reaps means less probability for unnecessary
263 * cpucache drain/refill cycles.
264 *
265 * OTOH the cpuarrays can contain lots of objects,
266 * which could lock up otherwise freeable slabs.
267 */
268 #define REAPTIMEOUT_AC (2*HZ)
269 #define REAPTIMEOUT_NODE (4*HZ)
270
271 #if STATS
272 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275 #define STATS_INC_GROWN(x) ((x)->grown++)
276 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y))
277 #define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
282 #define STATS_INC_ERR(x) ((x)->errors++)
283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
286 #define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295 #else
296 #define STATS_INC_ACTIVE(x) do { } while (0)
297 #define STATS_DEC_ACTIVE(x) do { } while (0)
298 #define STATS_INC_ALLOCED(x) do { } while (0)
299 #define STATS_INC_GROWN(x) do { } while (0)
300 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0)
301 #define STATS_SET_HIGH(x) do { } while (0)
302 #define STATS_INC_ERR(x) do { } while (0)
303 #define STATS_INC_NODEALLOCS(x) do { } while (0)
304 #define STATS_INC_NODEFREES(x) do { } while (0)
305 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
306 #define STATS_SET_FREEABLE(x, i) do { } while (0)
307 #define STATS_INC_ALLOCHIT(x) do { } while (0)
308 #define STATS_INC_ALLOCMISS(x) do { } while (0)
309 #define STATS_INC_FREEHIT(x) do { } while (0)
310 #define STATS_INC_FREEMISS(x) do { } while (0)
311 #endif
312
313 #if DEBUG
314
315 /*
316 * memory layout of objects:
317 * 0 : objp
318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * redzone word.
323 * cachep->obj_offset: The real object.
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
326 * [BYTES_PER_WORD long]
327 */
obj_offset(struct kmem_cache * cachep)328 static int obj_offset(struct kmem_cache *cachep)
329 {
330 return cachep->obj_offset;
331 }
332
dbg_redzone1(struct kmem_cache * cachep,void * objp)333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334 {
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 return (unsigned long long *) (objp + obj_offset(cachep) -
337 sizeof(unsigned long long));
338 }
339
dbg_redzone2(struct kmem_cache * cachep,void * objp)340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341 {
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
344 return (unsigned long long *)(objp + cachep->size -
345 sizeof(unsigned long long) -
346 REDZONE_ALIGN);
347 return (unsigned long long *) (objp + cachep->size -
348 sizeof(unsigned long long));
349 }
350
dbg_userword(struct kmem_cache * cachep,void * objp)351 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352 {
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
355 }
356
357 #else
358
359 #define obj_offset(x) 0
360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364 #endif
365
366 /*
367 * Do not go above this order unless 0 objects fit into the slab or
368 * overridden on the command line.
369 */
370 #define SLAB_MAX_ORDER_HI 1
371 #define SLAB_MAX_ORDER_LO 0
372 static int slab_max_order = SLAB_MAX_ORDER_LO;
373 static bool slab_max_order_set __initdata;
374
index_to_obj(struct kmem_cache * cache,struct page * page,unsigned int idx)375 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
376 unsigned int idx)
377 {
378 return page->s_mem + cache->size * idx;
379 }
380
381 #define BOOT_CPUCACHE_ENTRIES 1
382 /* internal cache of cache description objs */
383 static struct kmem_cache kmem_cache_boot = {
384 .batchcount = 1,
385 .limit = BOOT_CPUCACHE_ENTRIES,
386 .shared = 1,
387 .size = sizeof(struct kmem_cache),
388 .name = "kmem_cache",
389 };
390
391 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
392
cpu_cache_get(struct kmem_cache * cachep)393 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
394 {
395 return this_cpu_ptr(cachep->cpu_cache);
396 }
397
398 /*
399 * Calculate the number of objects and left-over bytes for a given buffer size.
400 */
cache_estimate(unsigned long gfporder,size_t buffer_size,slab_flags_t flags,size_t * left_over)401 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
402 slab_flags_t flags, size_t *left_over)
403 {
404 unsigned int num;
405 size_t slab_size = PAGE_SIZE << gfporder;
406
407 /*
408 * The slab management structure can be either off the slab or
409 * on it. For the latter case, the memory allocated for a
410 * slab is used for:
411 *
412 * - @buffer_size bytes for each object
413 * - One freelist_idx_t for each object
414 *
415 * We don't need to consider alignment of freelist because
416 * freelist will be at the end of slab page. The objects will be
417 * at the correct alignment.
418 *
419 * If the slab management structure is off the slab, then the
420 * alignment will already be calculated into the size. Because
421 * the slabs are all pages aligned, the objects will be at the
422 * correct alignment when allocated.
423 */
424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
425 num = slab_size / buffer_size;
426 *left_over = slab_size % buffer_size;
427 } else {
428 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
429 *left_over = slab_size %
430 (buffer_size + sizeof(freelist_idx_t));
431 }
432
433 return num;
434 }
435
436 #if DEBUG
437 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
438
__slab_error(const char * function,struct kmem_cache * cachep,char * msg)439 static void __slab_error(const char *function, struct kmem_cache *cachep,
440 char *msg)
441 {
442 pr_err("slab error in %s(): cache `%s': %s\n",
443 function, cachep->name, msg);
444 dump_stack();
445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
446 }
447 #endif
448
449 /*
450 * By default on NUMA we use alien caches to stage the freeing of
451 * objects allocated from other nodes. This causes massive memory
452 * inefficiencies when using fake NUMA setup to split memory into a
453 * large number of small nodes, so it can be disabled on the command
454 * line
455 */
456
457 static int use_alien_caches __read_mostly = 1;
noaliencache_setup(char * s)458 static int __init noaliencache_setup(char *s)
459 {
460 use_alien_caches = 0;
461 return 1;
462 }
463 __setup("noaliencache", noaliencache_setup);
464
slab_max_order_setup(char * str)465 static int __init slab_max_order_setup(char *str)
466 {
467 get_option(&str, &slab_max_order);
468 slab_max_order = slab_max_order < 0 ? 0 :
469 min(slab_max_order, MAX_ORDER - 1);
470 slab_max_order_set = true;
471
472 return 1;
473 }
474 __setup("slab_max_order=", slab_max_order_setup);
475
476 #ifdef CONFIG_NUMA
477 /*
478 * Special reaping functions for NUMA systems called from cache_reap().
479 * These take care of doing round robin flushing of alien caches (containing
480 * objects freed on different nodes from which they were allocated) and the
481 * flushing of remote pcps by calling drain_node_pages.
482 */
483 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
484
init_reap_node(int cpu)485 static void init_reap_node(int cpu)
486 {
487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
488 node_online_map);
489 }
490
next_reap_node(void)491 static void next_reap_node(void)
492 {
493 int node = __this_cpu_read(slab_reap_node);
494
495 node = next_node_in(node, node_online_map);
496 __this_cpu_write(slab_reap_node, node);
497 }
498
499 #else
500 #define init_reap_node(cpu) do { } while (0)
501 #define next_reap_node(void) do { } while (0)
502 #endif
503
504 /*
505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
506 * via the workqueue/eventd.
507 * Add the CPU number into the expiration time to minimize the possibility of
508 * the CPUs getting into lockstep and contending for the global cache chain
509 * lock.
510 */
start_cpu_timer(int cpu)511 static void start_cpu_timer(int cpu)
512 {
513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
514
515 if (reap_work->work.func == NULL) {
516 init_reap_node(cpu);
517 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
518 schedule_delayed_work_on(cpu, reap_work,
519 __round_jiffies_relative(HZ, cpu));
520 }
521 }
522
init_arraycache(struct array_cache * ac,int limit,int batch)523 static void init_arraycache(struct array_cache *ac, int limit, int batch)
524 {
525 if (ac) {
526 ac->avail = 0;
527 ac->limit = limit;
528 ac->batchcount = batch;
529 ac->touched = 0;
530 }
531 }
532
alloc_arraycache(int node,int entries,int batchcount,gfp_t gfp)533 static struct array_cache *alloc_arraycache(int node, int entries,
534 int batchcount, gfp_t gfp)
535 {
536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
537 struct array_cache *ac = NULL;
538
539 ac = kmalloc_node(memsize, gfp, node);
540 /*
541 * The array_cache structures contain pointers to free object.
542 * However, when such objects are allocated or transferred to another
543 * cache the pointers are not cleared and they could be counted as
544 * valid references during a kmemleak scan. Therefore, kmemleak must
545 * not scan such objects.
546 */
547 kmemleak_no_scan(ac);
548 init_arraycache(ac, entries, batchcount);
549 return ac;
550 }
551
cache_free_pfmemalloc(struct kmem_cache * cachep,struct page * page,void * objp)552 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
553 struct page *page, void *objp)
554 {
555 struct kmem_cache_node *n;
556 int page_node;
557 LIST_HEAD(list);
558
559 page_node = page_to_nid(page);
560 n = get_node(cachep, page_node);
561
562 spin_lock(&n->list_lock);
563 free_block(cachep, &objp, 1, page_node, &list);
564 spin_unlock(&n->list_lock);
565
566 slabs_destroy(cachep, &list);
567 }
568
569 /*
570 * Transfer objects in one arraycache to another.
571 * Locking must be handled by the caller.
572 *
573 * Return the number of entries transferred.
574 */
transfer_objects(struct array_cache * to,struct array_cache * from,unsigned int max)575 static int transfer_objects(struct array_cache *to,
576 struct array_cache *from, unsigned int max)
577 {
578 /* Figure out how many entries to transfer */
579 int nr = min3(from->avail, max, to->limit - to->avail);
580
581 if (!nr)
582 return 0;
583
584 memcpy(to->entry + to->avail, from->entry + from->avail - nr,
585 sizeof(void *) *nr);
586
587 from->avail -= nr;
588 to->avail += nr;
589 return nr;
590 }
591
592 /* &alien->lock must be held by alien callers. */
__free_one(struct array_cache * ac,void * objp)593 static __always_inline void __free_one(struct array_cache *ac, void *objp)
594 {
595 /* Avoid trivial double-free. */
596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
598 return;
599 ac->entry[ac->avail++] = objp;
600 }
601
602 #ifndef CONFIG_NUMA
603
604 #define drain_alien_cache(cachep, alien) do { } while (0)
605 #define reap_alien(cachep, n) do { } while (0)
606
alloc_alien_cache(int node,int limit,gfp_t gfp)607 static inline struct alien_cache **alloc_alien_cache(int node,
608 int limit, gfp_t gfp)
609 {
610 return NULL;
611 }
612
free_alien_cache(struct alien_cache ** ac_ptr)613 static inline void free_alien_cache(struct alien_cache **ac_ptr)
614 {
615 }
616
cache_free_alien(struct kmem_cache * cachep,void * objp)617 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
618 {
619 return 0;
620 }
621
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)622 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
623 gfp_t flags)
624 {
625 return NULL;
626 }
627
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)628 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
629 gfp_t flags, int nodeid)
630 {
631 return NULL;
632 }
633
gfp_exact_node(gfp_t flags)634 static inline gfp_t gfp_exact_node(gfp_t flags)
635 {
636 return flags & ~__GFP_NOFAIL;
637 }
638
639 #else /* CONFIG_NUMA */
640
641 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
642 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
643
__alloc_alien_cache(int node,int entries,int batch,gfp_t gfp)644 static struct alien_cache *__alloc_alien_cache(int node, int entries,
645 int batch, gfp_t gfp)
646 {
647 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
648 struct alien_cache *alc = NULL;
649
650 alc = kmalloc_node(memsize, gfp, node);
651 if (alc) {
652 kmemleak_no_scan(alc);
653 init_arraycache(&alc->ac, entries, batch);
654 spin_lock_init(&alc->lock);
655 }
656 return alc;
657 }
658
alloc_alien_cache(int node,int limit,gfp_t gfp)659 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
660 {
661 struct alien_cache **alc_ptr;
662 int i;
663
664 if (limit > 1)
665 limit = 12;
666 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
667 if (!alc_ptr)
668 return NULL;
669
670 for_each_node(i) {
671 if (i == node || !node_online(i))
672 continue;
673 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
674 if (!alc_ptr[i]) {
675 for (i--; i >= 0; i--)
676 kfree(alc_ptr[i]);
677 kfree(alc_ptr);
678 return NULL;
679 }
680 }
681 return alc_ptr;
682 }
683
free_alien_cache(struct alien_cache ** alc_ptr)684 static void free_alien_cache(struct alien_cache **alc_ptr)
685 {
686 int i;
687
688 if (!alc_ptr)
689 return;
690 for_each_node(i)
691 kfree(alc_ptr[i]);
692 kfree(alc_ptr);
693 }
694
__drain_alien_cache(struct kmem_cache * cachep,struct array_cache * ac,int node,struct list_head * list)695 static void __drain_alien_cache(struct kmem_cache *cachep,
696 struct array_cache *ac, int node,
697 struct list_head *list)
698 {
699 struct kmem_cache_node *n = get_node(cachep, node);
700
701 if (ac->avail) {
702 spin_lock(&n->list_lock);
703 /*
704 * Stuff objects into the remote nodes shared array first.
705 * That way we could avoid the overhead of putting the objects
706 * into the free lists and getting them back later.
707 */
708 if (n->shared)
709 transfer_objects(n->shared, ac, ac->limit);
710
711 free_block(cachep, ac->entry, ac->avail, node, list);
712 ac->avail = 0;
713 spin_unlock(&n->list_lock);
714 }
715 }
716
717 /*
718 * Called from cache_reap() to regularly drain alien caches round robin.
719 */
reap_alien(struct kmem_cache * cachep,struct kmem_cache_node * n)720 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
721 {
722 int node = __this_cpu_read(slab_reap_node);
723
724 if (n->alien) {
725 struct alien_cache *alc = n->alien[node];
726 struct array_cache *ac;
727
728 if (alc) {
729 ac = &alc->ac;
730 if (ac->avail && spin_trylock_irq(&alc->lock)) {
731 LIST_HEAD(list);
732
733 __drain_alien_cache(cachep, ac, node, &list);
734 spin_unlock_irq(&alc->lock);
735 slabs_destroy(cachep, &list);
736 }
737 }
738 }
739 }
740
drain_alien_cache(struct kmem_cache * cachep,struct alien_cache ** alien)741 static void drain_alien_cache(struct kmem_cache *cachep,
742 struct alien_cache **alien)
743 {
744 int i = 0;
745 struct alien_cache *alc;
746 struct array_cache *ac;
747 unsigned long flags;
748
749 for_each_online_node(i) {
750 alc = alien[i];
751 if (alc) {
752 LIST_HEAD(list);
753
754 ac = &alc->ac;
755 spin_lock_irqsave(&alc->lock, flags);
756 __drain_alien_cache(cachep, ac, i, &list);
757 spin_unlock_irqrestore(&alc->lock, flags);
758 slabs_destroy(cachep, &list);
759 }
760 }
761 }
762
__cache_free_alien(struct kmem_cache * cachep,void * objp,int node,int page_node)763 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
764 int node, int page_node)
765 {
766 struct kmem_cache_node *n;
767 struct alien_cache *alien = NULL;
768 struct array_cache *ac;
769 LIST_HEAD(list);
770
771 n = get_node(cachep, node);
772 STATS_INC_NODEFREES(cachep);
773 if (n->alien && n->alien[page_node]) {
774 alien = n->alien[page_node];
775 ac = &alien->ac;
776 spin_lock(&alien->lock);
777 if (unlikely(ac->avail == ac->limit)) {
778 STATS_INC_ACOVERFLOW(cachep);
779 __drain_alien_cache(cachep, ac, page_node, &list);
780 }
781 __free_one(ac, objp);
782 spin_unlock(&alien->lock);
783 slabs_destroy(cachep, &list);
784 } else {
785 n = get_node(cachep, page_node);
786 spin_lock(&n->list_lock);
787 free_block(cachep, &objp, 1, page_node, &list);
788 spin_unlock(&n->list_lock);
789 slabs_destroy(cachep, &list);
790 }
791 return 1;
792 }
793
cache_free_alien(struct kmem_cache * cachep,void * objp)794 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
795 {
796 int page_node = page_to_nid(virt_to_page(objp));
797 int node = numa_mem_id();
798 /*
799 * Make sure we are not freeing a object from another node to the array
800 * cache on this cpu.
801 */
802 if (likely(node == page_node))
803 return 0;
804
805 return __cache_free_alien(cachep, objp, node, page_node);
806 }
807
808 /*
809 * Construct gfp mask to allocate from a specific node but do not reclaim or
810 * warn about failures.
811 */
gfp_exact_node(gfp_t flags)812 static inline gfp_t gfp_exact_node(gfp_t flags)
813 {
814 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
815 }
816 #endif
817
init_cache_node(struct kmem_cache * cachep,int node,gfp_t gfp)818 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
819 {
820 struct kmem_cache_node *n;
821
822 /*
823 * Set up the kmem_cache_node for cpu before we can
824 * begin anything. Make sure some other cpu on this
825 * node has not already allocated this
826 */
827 n = get_node(cachep, node);
828 if (n) {
829 spin_lock_irq(&n->list_lock);
830 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
831 cachep->num;
832 spin_unlock_irq(&n->list_lock);
833
834 return 0;
835 }
836
837 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
838 if (!n)
839 return -ENOMEM;
840
841 kmem_cache_node_init(n);
842 n->next_reap = jiffies + REAPTIMEOUT_NODE +
843 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
844
845 n->free_limit =
846 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
847
848 /*
849 * The kmem_cache_nodes don't come and go as CPUs
850 * come and go. slab_mutex is sufficient
851 * protection here.
852 */
853 cachep->node[node] = n;
854
855 return 0;
856 }
857
858 #if defined(CONFIG_NUMA) || defined(CONFIG_SMP)
859 /*
860 * Allocates and initializes node for a node on each slab cache, used for
861 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
862 * will be allocated off-node since memory is not yet online for the new node.
863 * When hotplugging memory or a cpu, existing node are not replaced if
864 * already in use.
865 *
866 * Must hold slab_mutex.
867 */
init_cache_node_node(int node)868 static int init_cache_node_node(int node)
869 {
870 int ret;
871 struct kmem_cache *cachep;
872
873 list_for_each_entry(cachep, &slab_caches, list) {
874 ret = init_cache_node(cachep, node, GFP_KERNEL);
875 if (ret)
876 return ret;
877 }
878
879 return 0;
880 }
881 #endif
882
setup_kmem_cache_node(struct kmem_cache * cachep,int node,gfp_t gfp,bool force_change)883 static int setup_kmem_cache_node(struct kmem_cache *cachep,
884 int node, gfp_t gfp, bool force_change)
885 {
886 int ret = -ENOMEM;
887 struct kmem_cache_node *n;
888 struct array_cache *old_shared = NULL;
889 struct array_cache *new_shared = NULL;
890 struct alien_cache **new_alien = NULL;
891 LIST_HEAD(list);
892
893 if (use_alien_caches) {
894 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
895 if (!new_alien)
896 goto fail;
897 }
898
899 if (cachep->shared) {
900 new_shared = alloc_arraycache(node,
901 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
902 if (!new_shared)
903 goto fail;
904 }
905
906 ret = init_cache_node(cachep, node, gfp);
907 if (ret)
908 goto fail;
909
910 n = get_node(cachep, node);
911 spin_lock_irq(&n->list_lock);
912 if (n->shared && force_change) {
913 free_block(cachep, n->shared->entry,
914 n->shared->avail, node, &list);
915 n->shared->avail = 0;
916 }
917
918 if (!n->shared || force_change) {
919 old_shared = n->shared;
920 n->shared = new_shared;
921 new_shared = NULL;
922 }
923
924 if (!n->alien) {
925 n->alien = new_alien;
926 new_alien = NULL;
927 }
928
929 spin_unlock_irq(&n->list_lock);
930 slabs_destroy(cachep, &list);
931
932 /*
933 * To protect lockless access to n->shared during irq disabled context.
934 * If n->shared isn't NULL in irq disabled context, accessing to it is
935 * guaranteed to be valid until irq is re-enabled, because it will be
936 * freed after synchronize_rcu().
937 */
938 if (old_shared && force_change)
939 synchronize_rcu();
940
941 fail:
942 kfree(old_shared);
943 kfree(new_shared);
944 free_alien_cache(new_alien);
945
946 return ret;
947 }
948
949 #ifdef CONFIG_SMP
950
cpuup_canceled(long cpu)951 static void cpuup_canceled(long cpu)
952 {
953 struct kmem_cache *cachep;
954 struct kmem_cache_node *n = NULL;
955 int node = cpu_to_mem(cpu);
956 const struct cpumask *mask = cpumask_of_node(node);
957
958 list_for_each_entry(cachep, &slab_caches, list) {
959 struct array_cache *nc;
960 struct array_cache *shared;
961 struct alien_cache **alien;
962 LIST_HEAD(list);
963
964 n = get_node(cachep, node);
965 if (!n)
966 continue;
967
968 spin_lock_irq(&n->list_lock);
969
970 /* Free limit for this kmem_cache_node */
971 n->free_limit -= cachep->batchcount;
972
973 /* cpu is dead; no one can alloc from it. */
974 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
975 free_block(cachep, nc->entry, nc->avail, node, &list);
976 nc->avail = 0;
977
978 if (!cpumask_empty(mask)) {
979 spin_unlock_irq(&n->list_lock);
980 goto free_slab;
981 }
982
983 shared = n->shared;
984 if (shared) {
985 free_block(cachep, shared->entry,
986 shared->avail, node, &list);
987 n->shared = NULL;
988 }
989
990 alien = n->alien;
991 n->alien = NULL;
992
993 spin_unlock_irq(&n->list_lock);
994
995 kfree(shared);
996 if (alien) {
997 drain_alien_cache(cachep, alien);
998 free_alien_cache(alien);
999 }
1000
1001 free_slab:
1002 slabs_destroy(cachep, &list);
1003 }
1004 /*
1005 * In the previous loop, all the objects were freed to
1006 * the respective cache's slabs, now we can go ahead and
1007 * shrink each nodelist to its limit.
1008 */
1009 list_for_each_entry(cachep, &slab_caches, list) {
1010 n = get_node(cachep, node);
1011 if (!n)
1012 continue;
1013 drain_freelist(cachep, n, INT_MAX);
1014 }
1015 }
1016
cpuup_prepare(long cpu)1017 static int cpuup_prepare(long cpu)
1018 {
1019 struct kmem_cache *cachep;
1020 int node = cpu_to_mem(cpu);
1021 int err;
1022
1023 /*
1024 * We need to do this right in the beginning since
1025 * alloc_arraycache's are going to use this list.
1026 * kmalloc_node allows us to add the slab to the right
1027 * kmem_cache_node and not this cpu's kmem_cache_node
1028 */
1029 err = init_cache_node_node(node);
1030 if (err < 0)
1031 goto bad;
1032
1033 /*
1034 * Now we can go ahead with allocating the shared arrays and
1035 * array caches
1036 */
1037 list_for_each_entry(cachep, &slab_caches, list) {
1038 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1039 if (err)
1040 goto bad;
1041 }
1042
1043 return 0;
1044 bad:
1045 cpuup_canceled(cpu);
1046 return -ENOMEM;
1047 }
1048
slab_prepare_cpu(unsigned int cpu)1049 int slab_prepare_cpu(unsigned int cpu)
1050 {
1051 int err;
1052
1053 mutex_lock(&slab_mutex);
1054 err = cpuup_prepare(cpu);
1055 mutex_unlock(&slab_mutex);
1056 return err;
1057 }
1058
1059 /*
1060 * This is called for a failed online attempt and for a successful
1061 * offline.
1062 *
1063 * Even if all the cpus of a node are down, we don't free the
1064 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1065 * a kmalloc allocation from another cpu for memory from the node of
1066 * the cpu going down. The kmem_cache_node structure is usually allocated from
1067 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1068 */
slab_dead_cpu(unsigned int cpu)1069 int slab_dead_cpu(unsigned int cpu)
1070 {
1071 mutex_lock(&slab_mutex);
1072 cpuup_canceled(cpu);
1073 mutex_unlock(&slab_mutex);
1074 return 0;
1075 }
1076 #endif
1077
slab_online_cpu(unsigned int cpu)1078 static int slab_online_cpu(unsigned int cpu)
1079 {
1080 start_cpu_timer(cpu);
1081 return 0;
1082 }
1083
slab_offline_cpu(unsigned int cpu)1084 static int slab_offline_cpu(unsigned int cpu)
1085 {
1086 /*
1087 * Shutdown cache reaper. Note that the slab_mutex is held so
1088 * that if cache_reap() is invoked it cannot do anything
1089 * expensive but will only modify reap_work and reschedule the
1090 * timer.
1091 */
1092 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1093 /* Now the cache_reaper is guaranteed to be not running. */
1094 per_cpu(slab_reap_work, cpu).work.func = NULL;
1095 return 0;
1096 }
1097
1098 #if defined(CONFIG_NUMA)
1099 /*
1100 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1101 * Returns -EBUSY if all objects cannot be drained so that the node is not
1102 * removed.
1103 *
1104 * Must hold slab_mutex.
1105 */
drain_cache_node_node(int node)1106 static int __meminit drain_cache_node_node(int node)
1107 {
1108 struct kmem_cache *cachep;
1109 int ret = 0;
1110
1111 list_for_each_entry(cachep, &slab_caches, list) {
1112 struct kmem_cache_node *n;
1113
1114 n = get_node(cachep, node);
1115 if (!n)
1116 continue;
1117
1118 drain_freelist(cachep, n, INT_MAX);
1119
1120 if (!list_empty(&n->slabs_full) ||
1121 !list_empty(&n->slabs_partial)) {
1122 ret = -EBUSY;
1123 break;
1124 }
1125 }
1126 return ret;
1127 }
1128
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)1129 static int __meminit slab_memory_callback(struct notifier_block *self,
1130 unsigned long action, void *arg)
1131 {
1132 struct memory_notify *mnb = arg;
1133 int ret = 0;
1134 int nid;
1135
1136 nid = mnb->status_change_nid;
1137 if (nid < 0)
1138 goto out;
1139
1140 switch (action) {
1141 case MEM_GOING_ONLINE:
1142 mutex_lock(&slab_mutex);
1143 ret = init_cache_node_node(nid);
1144 mutex_unlock(&slab_mutex);
1145 break;
1146 case MEM_GOING_OFFLINE:
1147 mutex_lock(&slab_mutex);
1148 ret = drain_cache_node_node(nid);
1149 mutex_unlock(&slab_mutex);
1150 break;
1151 case MEM_ONLINE:
1152 case MEM_OFFLINE:
1153 case MEM_CANCEL_ONLINE:
1154 case MEM_CANCEL_OFFLINE:
1155 break;
1156 }
1157 out:
1158 return notifier_from_errno(ret);
1159 }
1160 #endif /* CONFIG_NUMA */
1161
1162 /*
1163 * swap the static kmem_cache_node with kmalloced memory
1164 */
init_list(struct kmem_cache * cachep,struct kmem_cache_node * list,int nodeid)1165 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1166 int nodeid)
1167 {
1168 struct kmem_cache_node *ptr;
1169
1170 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1171 BUG_ON(!ptr);
1172
1173 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1174 /*
1175 * Do not assume that spinlocks can be initialized via memcpy:
1176 */
1177 spin_lock_init(&ptr->list_lock);
1178
1179 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1180 cachep->node[nodeid] = ptr;
1181 }
1182
1183 /*
1184 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1185 * size of kmem_cache_node.
1186 */
set_up_node(struct kmem_cache * cachep,int index)1187 static void __init set_up_node(struct kmem_cache *cachep, int index)
1188 {
1189 int node;
1190
1191 for_each_online_node(node) {
1192 cachep->node[node] = &init_kmem_cache_node[index + node];
1193 cachep->node[node]->next_reap = jiffies +
1194 REAPTIMEOUT_NODE +
1195 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1196 }
1197 }
1198
1199 /*
1200 * Initialisation. Called after the page allocator have been initialised and
1201 * before smp_init().
1202 */
kmem_cache_init(void)1203 void __init kmem_cache_init(void)
1204 {
1205 int i;
1206
1207 kmem_cache = &kmem_cache_boot;
1208
1209 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1210 use_alien_caches = 0;
1211
1212 for (i = 0; i < NUM_INIT_LISTS; i++)
1213 kmem_cache_node_init(&init_kmem_cache_node[i]);
1214
1215 /*
1216 * Fragmentation resistance on low memory - only use bigger
1217 * page orders on machines with more than 32MB of memory if
1218 * not overridden on the command line.
1219 */
1220 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1221 slab_max_order = SLAB_MAX_ORDER_HI;
1222
1223 /* Bootstrap is tricky, because several objects are allocated
1224 * from caches that do not exist yet:
1225 * 1) initialize the kmem_cache cache: it contains the struct
1226 * kmem_cache structures of all caches, except kmem_cache itself:
1227 * kmem_cache is statically allocated.
1228 * Initially an __init data area is used for the head array and the
1229 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1230 * array at the end of the bootstrap.
1231 * 2) Create the first kmalloc cache.
1232 * The struct kmem_cache for the new cache is allocated normally.
1233 * An __init data area is used for the head array.
1234 * 3) Create the remaining kmalloc caches, with minimally sized
1235 * head arrays.
1236 * 4) Replace the __init data head arrays for kmem_cache and the first
1237 * kmalloc cache with kmalloc allocated arrays.
1238 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1239 * the other cache's with kmalloc allocated memory.
1240 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1241 */
1242
1243 /* 1) create the kmem_cache */
1244
1245 /*
1246 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1247 */
1248 create_boot_cache(kmem_cache, "kmem_cache",
1249 offsetof(struct kmem_cache, node) +
1250 nr_node_ids * sizeof(struct kmem_cache_node *),
1251 SLAB_HWCACHE_ALIGN, 0, 0);
1252 list_add(&kmem_cache->list, &slab_caches);
1253 slab_state = PARTIAL;
1254
1255 /*
1256 * Initialize the caches that provide memory for the kmem_cache_node
1257 * structures first. Without this, further allocations will bug.
1258 */
1259 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1260 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1261 kmalloc_info[INDEX_NODE].size,
1262 ARCH_KMALLOC_FLAGS, 0,
1263 kmalloc_info[INDEX_NODE].size);
1264 slab_state = PARTIAL_NODE;
1265 setup_kmalloc_cache_index_table();
1266
1267 slab_early_init = 0;
1268
1269 /* 5) Replace the bootstrap kmem_cache_node */
1270 {
1271 int nid;
1272
1273 for_each_online_node(nid) {
1274 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1275
1276 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1277 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1278 }
1279 }
1280
1281 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1282 }
1283
kmem_cache_init_late(void)1284 void __init kmem_cache_init_late(void)
1285 {
1286 struct kmem_cache *cachep;
1287
1288 /* 6) resize the head arrays to their final sizes */
1289 mutex_lock(&slab_mutex);
1290 list_for_each_entry(cachep, &slab_caches, list)
1291 if (enable_cpucache(cachep, GFP_NOWAIT))
1292 BUG();
1293 mutex_unlock(&slab_mutex);
1294
1295 /* Done! */
1296 slab_state = FULL;
1297
1298 #ifdef CONFIG_NUMA
1299 /*
1300 * Register a memory hotplug callback that initializes and frees
1301 * node.
1302 */
1303 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1304 #endif
1305
1306 /*
1307 * The reap timers are started later, with a module init call: That part
1308 * of the kernel is not yet operational.
1309 */
1310 }
1311
cpucache_init(void)1312 static int __init cpucache_init(void)
1313 {
1314 int ret;
1315
1316 /*
1317 * Register the timers that return unneeded pages to the page allocator
1318 */
1319 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1320 slab_online_cpu, slab_offline_cpu);
1321 WARN_ON(ret < 0);
1322
1323 return 0;
1324 }
1325 __initcall(cpucache_init);
1326
1327 static noinline void
slab_out_of_memory(struct kmem_cache * cachep,gfp_t gfpflags,int nodeid)1328 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329 {
1330 #if DEBUG
1331 struct kmem_cache_node *n;
1332 unsigned long flags;
1333 int node;
1334 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1335 DEFAULT_RATELIMIT_BURST);
1336
1337 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1338 return;
1339
1340 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1341 nodeid, gfpflags, &gfpflags);
1342 pr_warn(" cache: %s, object size: %d, order: %d\n",
1343 cachep->name, cachep->size, cachep->gfporder);
1344
1345 for_each_kmem_cache_node(cachep, node, n) {
1346 unsigned long total_slabs, free_slabs, free_objs;
1347
1348 spin_lock_irqsave(&n->list_lock, flags);
1349 total_slabs = n->total_slabs;
1350 free_slabs = n->free_slabs;
1351 free_objs = n->free_objects;
1352 spin_unlock_irqrestore(&n->list_lock, flags);
1353
1354 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1355 node, total_slabs - free_slabs, total_slabs,
1356 (total_slabs * cachep->num) - free_objs,
1357 total_slabs * cachep->num);
1358 }
1359 #endif
1360 }
1361
1362 /*
1363 * Interface to system's page allocator. No need to hold the
1364 * kmem_cache_node ->list_lock.
1365 *
1366 * If we requested dmaable memory, we will get it. Even if we
1367 * did not request dmaable memory, we might get it, but that
1368 * would be relatively rare and ignorable.
1369 */
kmem_getpages(struct kmem_cache * cachep,gfp_t flags,int nodeid)1370 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1371 int nodeid)
1372 {
1373 struct page *page;
1374
1375 flags |= cachep->allocflags;
1376
1377 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1378 if (!page) {
1379 slab_out_of_memory(cachep, flags, nodeid);
1380 return NULL;
1381 }
1382
1383 account_slab_page(page, cachep->gfporder, cachep, flags);
1384 __SetPageSlab(page);
1385 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1386 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1387 SetPageSlabPfmemalloc(page);
1388
1389 return page;
1390 }
1391
1392 /*
1393 * Interface to system's page release.
1394 */
kmem_freepages(struct kmem_cache * cachep,struct page * page)1395 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1396 {
1397 int order = cachep->gfporder;
1398
1399 BUG_ON(!PageSlab(page));
1400 __ClearPageSlabPfmemalloc(page);
1401 __ClearPageSlab(page);
1402 page_mapcount_reset(page);
1403 /* In union with page->mapping where page allocator expects NULL */
1404 page->slab_cache = NULL;
1405
1406 if (current->reclaim_state)
1407 current->reclaim_state->reclaimed_slab += 1 << order;
1408 unaccount_slab_page(page, order, cachep);
1409 __free_pages(page, order);
1410 }
1411
kmem_rcu_free(struct rcu_head * head)1412 static void kmem_rcu_free(struct rcu_head *head)
1413 {
1414 struct kmem_cache *cachep;
1415 struct page *page;
1416
1417 page = container_of(head, struct page, rcu_head);
1418 cachep = page->slab_cache;
1419
1420 kmem_freepages(cachep, page);
1421 }
1422
1423 #if DEBUG
is_debug_pagealloc_cache(struct kmem_cache * cachep)1424 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1425 {
1426 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1427 (cachep->size % PAGE_SIZE) == 0)
1428 return true;
1429
1430 return false;
1431 }
1432
1433 #ifdef CONFIG_DEBUG_PAGEALLOC
slab_kernel_map(struct kmem_cache * cachep,void * objp,int map)1434 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1435 {
1436 if (!is_debug_pagealloc_cache(cachep))
1437 return;
1438
1439 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1440 }
1441
1442 #else
slab_kernel_map(struct kmem_cache * cachep,void * objp,int map)1443 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1444 int map) {}
1445
1446 #endif
1447
poison_obj(struct kmem_cache * cachep,void * addr,unsigned char val)1448 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1449 {
1450 int size = cachep->object_size;
1451 addr = &((char *)addr)[obj_offset(cachep)];
1452
1453 memset(addr, val, size);
1454 *(unsigned char *)(addr + size - 1) = POISON_END;
1455 }
1456
dump_line(char * data,int offset,int limit)1457 static void dump_line(char *data, int offset, int limit)
1458 {
1459 int i;
1460 unsigned char error = 0;
1461 int bad_count = 0;
1462
1463 pr_err("%03x: ", offset);
1464 for (i = 0; i < limit; i++) {
1465 if (data[offset + i] != POISON_FREE) {
1466 error = data[offset + i];
1467 bad_count++;
1468 }
1469 }
1470 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1471 &data[offset], limit, 1);
1472
1473 if (bad_count == 1) {
1474 error ^= POISON_FREE;
1475 if (!(error & (error - 1))) {
1476 pr_err("Single bit error detected. Probably bad RAM.\n");
1477 #ifdef CONFIG_X86
1478 pr_err("Run memtest86+ or a similar memory test tool.\n");
1479 #else
1480 pr_err("Run a memory test tool.\n");
1481 #endif
1482 }
1483 }
1484 }
1485 #endif
1486
1487 #if DEBUG
1488
print_objinfo(struct kmem_cache * cachep,void * objp,int lines)1489 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1490 {
1491 int i, size;
1492 char *realobj;
1493
1494 if (cachep->flags & SLAB_RED_ZONE) {
1495 pr_err("Redzone: 0x%llx/0x%llx\n",
1496 *dbg_redzone1(cachep, objp),
1497 *dbg_redzone2(cachep, objp));
1498 }
1499
1500 if (cachep->flags & SLAB_STORE_USER)
1501 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1502 realobj = (char *)objp + obj_offset(cachep);
1503 size = cachep->object_size;
1504 for (i = 0; i < size && lines; i += 16, lines--) {
1505 int limit;
1506 limit = 16;
1507 if (i + limit > size)
1508 limit = size - i;
1509 dump_line(realobj, i, limit);
1510 }
1511 }
1512
check_poison_obj(struct kmem_cache * cachep,void * objp)1513 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1514 {
1515 char *realobj;
1516 int size, i;
1517 int lines = 0;
1518
1519 if (is_debug_pagealloc_cache(cachep))
1520 return;
1521
1522 realobj = (char *)objp + obj_offset(cachep);
1523 size = cachep->object_size;
1524
1525 for (i = 0; i < size; i++) {
1526 char exp = POISON_FREE;
1527 if (i == size - 1)
1528 exp = POISON_END;
1529 if (realobj[i] != exp) {
1530 int limit;
1531 /* Mismatch ! */
1532 /* Print header */
1533 if (lines == 0) {
1534 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1535 print_tainted(), cachep->name,
1536 realobj, size);
1537 print_objinfo(cachep, objp, 0);
1538 }
1539 /* Hexdump the affected line */
1540 i = (i / 16) * 16;
1541 limit = 16;
1542 if (i + limit > size)
1543 limit = size - i;
1544 dump_line(realobj, i, limit);
1545 i += 16;
1546 lines++;
1547 /* Limit to 5 lines */
1548 if (lines > 5)
1549 break;
1550 }
1551 }
1552 if (lines != 0) {
1553 /* Print some data about the neighboring objects, if they
1554 * exist:
1555 */
1556 struct page *page = virt_to_head_page(objp);
1557 unsigned int objnr;
1558
1559 objnr = obj_to_index(cachep, page, objp);
1560 if (objnr) {
1561 objp = index_to_obj(cachep, page, objnr - 1);
1562 realobj = (char *)objp + obj_offset(cachep);
1563 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1564 print_objinfo(cachep, objp, 2);
1565 }
1566 if (objnr + 1 < cachep->num) {
1567 objp = index_to_obj(cachep, page, objnr + 1);
1568 realobj = (char *)objp + obj_offset(cachep);
1569 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1570 print_objinfo(cachep, objp, 2);
1571 }
1572 }
1573 }
1574 #endif
1575
1576 #if DEBUG
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1577 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1578 struct page *page)
1579 {
1580 int i;
1581
1582 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1583 poison_obj(cachep, page->freelist - obj_offset(cachep),
1584 POISON_FREE);
1585 }
1586
1587 for (i = 0; i < cachep->num; i++) {
1588 void *objp = index_to_obj(cachep, page, i);
1589
1590 if (cachep->flags & SLAB_POISON) {
1591 check_poison_obj(cachep, objp);
1592 slab_kernel_map(cachep, objp, 1);
1593 }
1594 if (cachep->flags & SLAB_RED_ZONE) {
1595 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1596 slab_error(cachep, "start of a freed object was overwritten");
1597 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1598 slab_error(cachep, "end of a freed object was overwritten");
1599 }
1600 }
1601 }
1602 #else
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1603 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1604 struct page *page)
1605 {
1606 }
1607 #endif
1608
1609 /**
1610 * slab_destroy - destroy and release all objects in a slab
1611 * @cachep: cache pointer being destroyed
1612 * @page: page pointer being destroyed
1613 *
1614 * Destroy all the objs in a slab page, and release the mem back to the system.
1615 * Before calling the slab page must have been unlinked from the cache. The
1616 * kmem_cache_node ->list_lock is not held/needed.
1617 */
slab_destroy(struct kmem_cache * cachep,struct page * page)1618 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1619 {
1620 void *freelist;
1621
1622 freelist = page->freelist;
1623 slab_destroy_debugcheck(cachep, page);
1624 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1625 call_rcu(&page->rcu_head, kmem_rcu_free);
1626 else
1627 kmem_freepages(cachep, page);
1628
1629 /*
1630 * From now on, we don't use freelist
1631 * although actual page can be freed in rcu context
1632 */
1633 if (OFF_SLAB(cachep))
1634 kmem_cache_free(cachep->freelist_cache, freelist);
1635 }
1636
1637 /*
1638 * Update the size of the caches before calling slabs_destroy as it may
1639 * recursively call kfree.
1640 */
slabs_destroy(struct kmem_cache * cachep,struct list_head * list)1641 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1642 {
1643 struct page *page, *n;
1644
1645 list_for_each_entry_safe(page, n, list, slab_list) {
1646 list_del(&page->slab_list);
1647 slab_destroy(cachep, page);
1648 }
1649 }
1650
1651 /**
1652 * calculate_slab_order - calculate size (page order) of slabs
1653 * @cachep: pointer to the cache that is being created
1654 * @size: size of objects to be created in this cache.
1655 * @flags: slab allocation flags
1656 *
1657 * Also calculates the number of objects per slab.
1658 *
1659 * This could be made much more intelligent. For now, try to avoid using
1660 * high order pages for slabs. When the gfp() functions are more friendly
1661 * towards high-order requests, this should be changed.
1662 *
1663 * Return: number of left-over bytes in a slab
1664 */
calculate_slab_order(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1665 static size_t calculate_slab_order(struct kmem_cache *cachep,
1666 size_t size, slab_flags_t flags)
1667 {
1668 size_t left_over = 0;
1669 int gfporder;
1670
1671 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1672 unsigned int num;
1673 size_t remainder;
1674
1675 num = cache_estimate(gfporder, size, flags, &remainder);
1676 if (!num)
1677 continue;
1678
1679 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1680 if (num > SLAB_OBJ_MAX_NUM)
1681 break;
1682
1683 if (flags & CFLGS_OFF_SLAB) {
1684 struct kmem_cache *freelist_cache;
1685 size_t freelist_size;
1686
1687 freelist_size = num * sizeof(freelist_idx_t);
1688 freelist_cache = kmalloc_slab(freelist_size, 0u);
1689 if (!freelist_cache)
1690 continue;
1691
1692 /*
1693 * Needed to avoid possible looping condition
1694 * in cache_grow_begin()
1695 */
1696 if (OFF_SLAB(freelist_cache))
1697 continue;
1698
1699 /* check if off slab has enough benefit */
1700 if (freelist_cache->size > cachep->size / 2)
1701 continue;
1702 }
1703
1704 /* Found something acceptable - save it away */
1705 cachep->num = num;
1706 cachep->gfporder = gfporder;
1707 left_over = remainder;
1708
1709 /*
1710 * A VFS-reclaimable slab tends to have most allocations
1711 * as GFP_NOFS and we really don't want to have to be allocating
1712 * higher-order pages when we are unable to shrink dcache.
1713 */
1714 if (flags & SLAB_RECLAIM_ACCOUNT)
1715 break;
1716
1717 /*
1718 * Large number of objects is good, but very large slabs are
1719 * currently bad for the gfp()s.
1720 */
1721 if (gfporder >= slab_max_order)
1722 break;
1723
1724 /*
1725 * Acceptable internal fragmentation?
1726 */
1727 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1728 break;
1729 }
1730 return left_over;
1731 }
1732
alloc_kmem_cache_cpus(struct kmem_cache * cachep,int entries,int batchcount)1733 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1734 struct kmem_cache *cachep, int entries, int batchcount)
1735 {
1736 int cpu;
1737 size_t size;
1738 struct array_cache __percpu *cpu_cache;
1739
1740 size = sizeof(void *) * entries + sizeof(struct array_cache);
1741 cpu_cache = __alloc_percpu(size, sizeof(void *));
1742
1743 if (!cpu_cache)
1744 return NULL;
1745
1746 for_each_possible_cpu(cpu) {
1747 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1748 entries, batchcount);
1749 }
1750
1751 return cpu_cache;
1752 }
1753
setup_cpu_cache(struct kmem_cache * cachep,gfp_t gfp)1754 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1755 {
1756 if (slab_state >= FULL)
1757 return enable_cpucache(cachep, gfp);
1758
1759 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1760 if (!cachep->cpu_cache)
1761 return 1;
1762
1763 if (slab_state == DOWN) {
1764 /* Creation of first cache (kmem_cache). */
1765 set_up_node(kmem_cache, CACHE_CACHE);
1766 } else if (slab_state == PARTIAL) {
1767 /* For kmem_cache_node */
1768 set_up_node(cachep, SIZE_NODE);
1769 } else {
1770 int node;
1771
1772 for_each_online_node(node) {
1773 cachep->node[node] = kmalloc_node(
1774 sizeof(struct kmem_cache_node), gfp, node);
1775 BUG_ON(!cachep->node[node]);
1776 kmem_cache_node_init(cachep->node[node]);
1777 }
1778 }
1779
1780 cachep->node[numa_mem_id()]->next_reap =
1781 jiffies + REAPTIMEOUT_NODE +
1782 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1783
1784 cpu_cache_get(cachep)->avail = 0;
1785 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1786 cpu_cache_get(cachep)->batchcount = 1;
1787 cpu_cache_get(cachep)->touched = 0;
1788 cachep->batchcount = 1;
1789 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1790 return 0;
1791 }
1792
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1793 slab_flags_t kmem_cache_flags(unsigned int object_size,
1794 slab_flags_t flags, const char *name)
1795 {
1796 return flags;
1797 }
1798
1799 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))1800 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1801 slab_flags_t flags, void (*ctor)(void *))
1802 {
1803 struct kmem_cache *cachep;
1804
1805 cachep = find_mergeable(size, align, flags, name, ctor);
1806 if (cachep) {
1807 cachep->refcount++;
1808
1809 /*
1810 * Adjust the object sizes so that we clear
1811 * the complete object on kzalloc.
1812 */
1813 cachep->object_size = max_t(int, cachep->object_size, size);
1814 }
1815 return cachep;
1816 }
1817
set_objfreelist_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1818 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1819 size_t size, slab_flags_t flags)
1820 {
1821 size_t left;
1822
1823 cachep->num = 0;
1824
1825 /*
1826 * If slab auto-initialization on free is enabled, store the freelist
1827 * off-slab, so that its contents don't end up in one of the allocated
1828 * objects.
1829 */
1830 if (unlikely(slab_want_init_on_free(cachep)))
1831 return false;
1832
1833 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834 return false;
1835
1836 left = calculate_slab_order(cachep, size,
1837 flags | CFLGS_OBJFREELIST_SLAB);
1838 if (!cachep->num)
1839 return false;
1840
1841 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 return false;
1843
1844 cachep->colour = left / cachep->colour_off;
1845
1846 return true;
1847 }
1848
set_off_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1849 static bool set_off_slab_cache(struct kmem_cache *cachep,
1850 size_t size, slab_flags_t flags)
1851 {
1852 size_t left;
1853
1854 cachep->num = 0;
1855
1856 /*
1857 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 * to avoid recursive calls into kmemleak.
1859 */
1860 if (flags & SLAB_NOLEAKTRACE)
1861 return false;
1862
1863 /*
1864 * Size is large, assume best to place the slab management obj
1865 * off-slab (should allow better packing of objs).
1866 */
1867 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 if (!cachep->num)
1869 return false;
1870
1871 /*
1872 * If the slab has been placed off-slab, and we have enough space then
1873 * move it on-slab. This is at the expense of any extra colouring.
1874 */
1875 if (left >= cachep->num * sizeof(freelist_idx_t))
1876 return false;
1877
1878 cachep->colour = left / cachep->colour_off;
1879
1880 return true;
1881 }
1882
set_on_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1883 static bool set_on_slab_cache(struct kmem_cache *cachep,
1884 size_t size, slab_flags_t flags)
1885 {
1886 size_t left;
1887
1888 cachep->num = 0;
1889
1890 left = calculate_slab_order(cachep, size, flags);
1891 if (!cachep->num)
1892 return false;
1893
1894 cachep->colour = left / cachep->colour_off;
1895
1896 return true;
1897 }
1898
1899 /**
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
1902 * @flags: SLAB flags
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1907 *
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline. This can be beneficial if you're counting cycles as closely
1918 * as davem.
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1921 */
__kmem_cache_create(struct kmem_cache * cachep,slab_flags_t flags)1922 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1923 {
1924 size_t ralign = BYTES_PER_WORD;
1925 gfp_t gfp;
1926 int err;
1927 unsigned int size = cachep->size;
1928
1929 #if DEBUG
1930 #if FORCED_DEBUG
1931 /*
1932 * Enable redzoning and last user accounting, except for caches with
1933 * large objects, if the increased size would increase the object size
1934 * above the next power of two: caches with object sizes just above a
1935 * power of two have a significant amount of internal fragmentation.
1936 */
1937 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 2 * sizeof(unsigned long long)))
1939 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941 flags |= SLAB_POISON;
1942 #endif
1943 #endif
1944
1945 /*
1946 * Check that size is in terms of words. This is needed to avoid
1947 * unaligned accesses for some archs when redzoning is used, and makes
1948 * sure any on-slab bufctl's are also correctly aligned.
1949 */
1950 size = ALIGN(size, BYTES_PER_WORD);
1951
1952 if (flags & SLAB_RED_ZONE) {
1953 ralign = REDZONE_ALIGN;
1954 /* If redzoning, ensure that the second redzone is suitably
1955 * aligned, by adjusting the object size accordingly. */
1956 size = ALIGN(size, REDZONE_ALIGN);
1957 }
1958
1959 /* 3) caller mandated alignment */
1960 if (ralign < cachep->align) {
1961 ralign = cachep->align;
1962 }
1963 /* disable debug if necessary */
1964 if (ralign > __alignof__(unsigned long long))
1965 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966 /*
1967 * 4) Store it.
1968 */
1969 cachep->align = ralign;
1970 cachep->colour_off = cache_line_size();
1971 /* Offset must be a multiple of the alignment. */
1972 if (cachep->colour_off < cachep->align)
1973 cachep->colour_off = cachep->align;
1974
1975 if (slab_is_available())
1976 gfp = GFP_KERNEL;
1977 else
1978 gfp = GFP_NOWAIT;
1979
1980 #if DEBUG
1981
1982 /*
1983 * Both debugging options require word-alignment which is calculated
1984 * into align above.
1985 */
1986 if (flags & SLAB_RED_ZONE) {
1987 /* add space for red zone words */
1988 cachep->obj_offset += sizeof(unsigned long long);
1989 size += 2 * sizeof(unsigned long long);
1990 }
1991 if (flags & SLAB_STORE_USER) {
1992 /* user store requires one word storage behind the end of
1993 * the real object. But if the second red zone needs to be
1994 * aligned to 64 bits, we must allow that much space.
1995 */
1996 if (flags & SLAB_RED_ZONE)
1997 size += REDZONE_ALIGN;
1998 else
1999 size += BYTES_PER_WORD;
2000 }
2001 #endif
2002
2003 kasan_cache_create(cachep, &size, &flags);
2004
2005 size = ALIGN(size, cachep->align);
2006 /*
2007 * We should restrict the number of objects in a slab to implement
2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009 */
2010 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013 #if DEBUG
2014 /*
2015 * To activate debug pagealloc, off-slab management is necessary
2016 * requirement. In early phase of initialization, small sized slab
2017 * doesn't get initialized so it would not be possible. So, we need
2018 * to check size >= 256. It guarantees that all necessary small
2019 * sized slab is initialized in current slab initialization sequence.
2020 */
2021 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2022 size >= 256 && cachep->object_size > cache_line_size()) {
2023 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 flags |= CFLGS_OFF_SLAB;
2028 cachep->obj_offset += tmp_size - size;
2029 size = tmp_size;
2030 goto done;
2031 }
2032 }
2033 }
2034 #endif
2035
2036 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 flags |= CFLGS_OBJFREELIST_SLAB;
2038 goto done;
2039 }
2040
2041 if (set_off_slab_cache(cachep, size, flags)) {
2042 flags |= CFLGS_OFF_SLAB;
2043 goto done;
2044 }
2045
2046 if (set_on_slab_cache(cachep, size, flags))
2047 goto done;
2048
2049 return -E2BIG;
2050
2051 done:
2052 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053 cachep->flags = flags;
2054 cachep->allocflags = __GFP_COMP;
2055 if (flags & SLAB_CACHE_DMA)
2056 cachep->allocflags |= GFP_DMA;
2057 if (flags & SLAB_CACHE_DMA32)
2058 cachep->allocflags |= GFP_DMA32;
2059 if (flags & SLAB_RECLAIM_ACCOUNT)
2060 cachep->allocflags |= __GFP_RECLAIMABLE;
2061 cachep->size = size;
2062 cachep->reciprocal_buffer_size = reciprocal_value(size);
2063
2064 #if DEBUG
2065 /*
2066 * If we're going to use the generic kernel_map_pages()
2067 * poisoning, then it's going to smash the contents of
2068 * the redzone and userword anyhow, so switch them off.
2069 */
2070 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 (cachep->flags & SLAB_POISON) &&
2072 is_debug_pagealloc_cache(cachep))
2073 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074 #endif
2075
2076 if (OFF_SLAB(cachep)) {
2077 cachep->freelist_cache =
2078 kmalloc_slab(cachep->freelist_size, 0u);
2079 }
2080
2081 err = setup_cpu_cache(cachep, gfp);
2082 if (err) {
2083 __kmem_cache_release(cachep);
2084 return err;
2085 }
2086
2087 return 0;
2088 }
2089
2090 #if DEBUG
check_irq_off(void)2091 static void check_irq_off(void)
2092 {
2093 BUG_ON(!irqs_disabled());
2094 }
2095
check_irq_on(void)2096 static void check_irq_on(void)
2097 {
2098 BUG_ON(irqs_disabled());
2099 }
2100
check_mutex_acquired(void)2101 static void check_mutex_acquired(void)
2102 {
2103 BUG_ON(!mutex_is_locked(&slab_mutex));
2104 }
2105
check_spinlock_acquired(struct kmem_cache * cachep)2106 static void check_spinlock_acquired(struct kmem_cache *cachep)
2107 {
2108 #ifdef CONFIG_SMP
2109 check_irq_off();
2110 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111 #endif
2112 }
2113
check_spinlock_acquired_node(struct kmem_cache * cachep,int node)2114 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115 {
2116 #ifdef CONFIG_SMP
2117 check_irq_off();
2118 assert_spin_locked(&get_node(cachep, node)->list_lock);
2119 #endif
2120 }
2121
2122 #else
2123 #define check_irq_off() do { } while(0)
2124 #define check_irq_on() do { } while(0)
2125 #define check_mutex_acquired() do { } while(0)
2126 #define check_spinlock_acquired(x) do { } while(0)
2127 #define check_spinlock_acquired_node(x, y) do { } while(0)
2128 #endif
2129
drain_array_locked(struct kmem_cache * cachep,struct array_cache * ac,int node,bool free_all,struct list_head * list)2130 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 int node, bool free_all, struct list_head *list)
2132 {
2133 int tofree;
2134
2135 if (!ac || !ac->avail)
2136 return;
2137
2138 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 if (tofree > ac->avail)
2140 tofree = (ac->avail + 1) / 2;
2141
2142 free_block(cachep, ac->entry, tofree, node, list);
2143 ac->avail -= tofree;
2144 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145 }
2146
do_drain(void * arg)2147 static void do_drain(void *arg)
2148 {
2149 struct kmem_cache *cachep = arg;
2150 struct array_cache *ac;
2151 int node = numa_mem_id();
2152 struct kmem_cache_node *n;
2153 LIST_HEAD(list);
2154
2155 check_irq_off();
2156 ac = cpu_cache_get(cachep);
2157 n = get_node(cachep, node);
2158 spin_lock(&n->list_lock);
2159 free_block(cachep, ac->entry, ac->avail, node, &list);
2160 spin_unlock(&n->list_lock);
2161 ac->avail = 0;
2162 slabs_destroy(cachep, &list);
2163 }
2164
drain_cpu_caches(struct kmem_cache * cachep)2165 static void drain_cpu_caches(struct kmem_cache *cachep)
2166 {
2167 struct kmem_cache_node *n;
2168 int node;
2169 LIST_HEAD(list);
2170
2171 on_each_cpu(do_drain, cachep, 1);
2172 check_irq_on();
2173 for_each_kmem_cache_node(cachep, node, n)
2174 if (n->alien)
2175 drain_alien_cache(cachep, n->alien);
2176
2177 for_each_kmem_cache_node(cachep, node, n) {
2178 spin_lock_irq(&n->list_lock);
2179 drain_array_locked(cachep, n->shared, node, true, &list);
2180 spin_unlock_irq(&n->list_lock);
2181
2182 slabs_destroy(cachep, &list);
2183 }
2184 }
2185
2186 /*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
drain_freelist(struct kmem_cache * cache,struct kmem_cache_node * n,int tofree)2192 static int drain_freelist(struct kmem_cache *cache,
2193 struct kmem_cache_node *n, int tofree)
2194 {
2195 struct list_head *p;
2196 int nr_freed;
2197 struct page *page;
2198
2199 nr_freed = 0;
2200 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201
2202 spin_lock_irq(&n->list_lock);
2203 p = n->slabs_free.prev;
2204 if (p == &n->slabs_free) {
2205 spin_unlock_irq(&n->list_lock);
2206 goto out;
2207 }
2208
2209 page = list_entry(p, struct page, slab_list);
2210 list_del(&page->slab_list);
2211 n->free_slabs--;
2212 n->total_slabs--;
2213 /*
2214 * Safe to drop the lock. The slab is no longer linked
2215 * to the cache.
2216 */
2217 n->free_objects -= cache->num;
2218 spin_unlock_irq(&n->list_lock);
2219 slab_destroy(cache, page);
2220 nr_freed++;
2221 }
2222 out:
2223 return nr_freed;
2224 }
2225
__kmem_cache_empty(struct kmem_cache * s)2226 bool __kmem_cache_empty(struct kmem_cache *s)
2227 {
2228 int node;
2229 struct kmem_cache_node *n;
2230
2231 for_each_kmem_cache_node(s, node, n)
2232 if (!list_empty(&n->slabs_full) ||
2233 !list_empty(&n->slabs_partial))
2234 return false;
2235 return true;
2236 }
2237
__kmem_cache_shrink(struct kmem_cache * cachep)2238 int __kmem_cache_shrink(struct kmem_cache *cachep)
2239 {
2240 int ret = 0;
2241 int node;
2242 struct kmem_cache_node *n;
2243
2244 drain_cpu_caches(cachep);
2245
2246 check_irq_on();
2247 for_each_kmem_cache_node(cachep, node, n) {
2248 drain_freelist(cachep, n, INT_MAX);
2249
2250 ret += !list_empty(&n->slabs_full) ||
2251 !list_empty(&n->slabs_partial);
2252 }
2253 return (ret ? 1 : 0);
2254 }
2255
__kmem_cache_shutdown(struct kmem_cache * cachep)2256 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2257 {
2258 return __kmem_cache_shrink(cachep);
2259 }
2260
__kmem_cache_release(struct kmem_cache * cachep)2261 void __kmem_cache_release(struct kmem_cache *cachep)
2262 {
2263 int i;
2264 struct kmem_cache_node *n;
2265
2266 cache_random_seq_destroy(cachep);
2267
2268 free_percpu(cachep->cpu_cache);
2269
2270 /* NUMA: free the node structures */
2271 for_each_kmem_cache_node(cachep, i, n) {
2272 kfree(n->shared);
2273 free_alien_cache(n->alien);
2274 kfree(n);
2275 cachep->node[i] = NULL;
2276 }
2277 }
2278
2279 /*
2280 * Get the memory for a slab management obj.
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
2292 */
alloc_slabmgmt(struct kmem_cache * cachep,struct page * page,int colour_off,gfp_t local_flags,int nodeid)2293 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294 struct page *page, int colour_off,
2295 gfp_t local_flags, int nodeid)
2296 {
2297 void *freelist;
2298 void *addr = page_address(page);
2299
2300 page->s_mem = addr + colour_off;
2301 page->active = 0;
2302
2303 if (OBJFREELIST_SLAB(cachep))
2304 freelist = NULL;
2305 else if (OFF_SLAB(cachep)) {
2306 /* Slab management obj is off-slab. */
2307 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308 local_flags, nodeid);
2309 } else {
2310 /* We will use last bytes at the slab for freelist */
2311 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2312 cachep->freelist_size;
2313 }
2314
2315 return freelist;
2316 }
2317
get_free_obj(struct page * page,unsigned int idx)2318 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2319 {
2320 return ((freelist_idx_t *)page->freelist)[idx];
2321 }
2322
set_free_obj(struct page * page,unsigned int idx,freelist_idx_t val)2323 static inline void set_free_obj(struct page *page,
2324 unsigned int idx, freelist_idx_t val)
2325 {
2326 ((freelist_idx_t *)(page->freelist))[idx] = val;
2327 }
2328
cache_init_objs_debug(struct kmem_cache * cachep,struct page * page)2329 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2330 {
2331 #if DEBUG
2332 int i;
2333
2334 for (i = 0; i < cachep->num; i++) {
2335 void *objp = index_to_obj(cachep, page, i);
2336
2337 if (cachep->flags & SLAB_STORE_USER)
2338 *dbg_userword(cachep, objp) = NULL;
2339
2340 if (cachep->flags & SLAB_RED_ZONE) {
2341 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2342 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2343 }
2344 /*
2345 * Constructors are not allowed to allocate memory from the same
2346 * cache which they are a constructor for. Otherwise, deadlock.
2347 * They must also be threaded.
2348 */
2349 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2350 kasan_unpoison_object_data(cachep,
2351 objp + obj_offset(cachep));
2352 cachep->ctor(objp + obj_offset(cachep));
2353 kasan_poison_object_data(
2354 cachep, objp + obj_offset(cachep));
2355 }
2356
2357 if (cachep->flags & SLAB_RED_ZONE) {
2358 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2359 slab_error(cachep, "constructor overwrote the end of an object");
2360 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2361 slab_error(cachep, "constructor overwrote the start of an object");
2362 }
2363 /* need to poison the objs? */
2364 if (cachep->flags & SLAB_POISON) {
2365 poison_obj(cachep, objp, POISON_FREE);
2366 slab_kernel_map(cachep, objp, 0);
2367 }
2368 }
2369 #endif
2370 }
2371
2372 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2373 /* Hold information during a freelist initialization */
2374 union freelist_init_state {
2375 struct {
2376 unsigned int pos;
2377 unsigned int *list;
2378 unsigned int count;
2379 };
2380 struct rnd_state rnd_state;
2381 };
2382
2383 /*
2384 * Initialize the state based on the randomization method available.
2385 * return true if the pre-computed list is available, false otherwise.
2386 */
freelist_state_initialize(union freelist_init_state * state,struct kmem_cache * cachep,unsigned int count)2387 static bool freelist_state_initialize(union freelist_init_state *state,
2388 struct kmem_cache *cachep,
2389 unsigned int count)
2390 {
2391 bool ret;
2392 unsigned int rand;
2393
2394 /* Use best entropy available to define a random shift */
2395 rand = get_random_int();
2396
2397 /* Use a random state if the pre-computed list is not available */
2398 if (!cachep->random_seq) {
2399 prandom_seed_state(&state->rnd_state, rand);
2400 ret = false;
2401 } else {
2402 state->list = cachep->random_seq;
2403 state->count = count;
2404 state->pos = rand % count;
2405 ret = true;
2406 }
2407 return ret;
2408 }
2409
2410 /* Get the next entry on the list and randomize it using a random shift */
next_random_slot(union freelist_init_state * state)2411 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2412 {
2413 if (state->pos >= state->count)
2414 state->pos = 0;
2415 return state->list[state->pos++];
2416 }
2417
2418 /* Swap two freelist entries */
swap_free_obj(struct page * page,unsigned int a,unsigned int b)2419 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2420 {
2421 swap(((freelist_idx_t *)page->freelist)[a],
2422 ((freelist_idx_t *)page->freelist)[b]);
2423 }
2424
2425 /*
2426 * Shuffle the freelist initialization state based on pre-computed lists.
2427 * return true if the list was successfully shuffled, false otherwise.
2428 */
shuffle_freelist(struct kmem_cache * cachep,struct page * page)2429 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2430 {
2431 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2432 union freelist_init_state state;
2433 bool precomputed;
2434
2435 if (count < 2)
2436 return false;
2437
2438 precomputed = freelist_state_initialize(&state, cachep, count);
2439
2440 /* Take a random entry as the objfreelist */
2441 if (OBJFREELIST_SLAB(cachep)) {
2442 if (!precomputed)
2443 objfreelist = count - 1;
2444 else
2445 objfreelist = next_random_slot(&state);
2446 page->freelist = index_to_obj(cachep, page, objfreelist) +
2447 obj_offset(cachep);
2448 count--;
2449 }
2450
2451 /*
2452 * On early boot, generate the list dynamically.
2453 * Later use a pre-computed list for speed.
2454 */
2455 if (!precomputed) {
2456 for (i = 0; i < count; i++)
2457 set_free_obj(page, i, i);
2458
2459 /* Fisher-Yates shuffle */
2460 for (i = count - 1; i > 0; i--) {
2461 rand = prandom_u32_state(&state.rnd_state);
2462 rand %= (i + 1);
2463 swap_free_obj(page, i, rand);
2464 }
2465 } else {
2466 for (i = 0; i < count; i++)
2467 set_free_obj(page, i, next_random_slot(&state));
2468 }
2469
2470 if (OBJFREELIST_SLAB(cachep))
2471 set_free_obj(page, cachep->num - 1, objfreelist);
2472
2473 return true;
2474 }
2475 #else
shuffle_freelist(struct kmem_cache * cachep,struct page * page)2476 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2477 struct page *page)
2478 {
2479 return false;
2480 }
2481 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2482
cache_init_objs(struct kmem_cache * cachep,struct page * page)2483 static void cache_init_objs(struct kmem_cache *cachep,
2484 struct page *page)
2485 {
2486 int i;
2487 void *objp;
2488 bool shuffled;
2489
2490 cache_init_objs_debug(cachep, page);
2491
2492 /* Try to randomize the freelist if enabled */
2493 shuffled = shuffle_freelist(cachep, page);
2494
2495 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2496 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2497 obj_offset(cachep);
2498 }
2499
2500 for (i = 0; i < cachep->num; i++) {
2501 objp = index_to_obj(cachep, page, i);
2502 objp = kasan_init_slab_obj(cachep, objp);
2503
2504 /* constructor could break poison info */
2505 if (DEBUG == 0 && cachep->ctor) {
2506 kasan_unpoison_object_data(cachep, objp);
2507 cachep->ctor(objp);
2508 kasan_poison_object_data(cachep, objp);
2509 }
2510
2511 if (!shuffled)
2512 set_free_obj(page, i, i);
2513 }
2514 }
2515
slab_get_obj(struct kmem_cache * cachep,struct page * page)2516 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2517 {
2518 void *objp;
2519
2520 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2521 page->active++;
2522
2523 return objp;
2524 }
2525
slab_put_obj(struct kmem_cache * cachep,struct page * page,void * objp)2526 static void slab_put_obj(struct kmem_cache *cachep,
2527 struct page *page, void *objp)
2528 {
2529 unsigned int objnr = obj_to_index(cachep, page, objp);
2530 #if DEBUG
2531 unsigned int i;
2532
2533 /* Verify double free bug */
2534 for (i = page->active; i < cachep->num; i++) {
2535 if (get_free_obj(page, i) == objnr) {
2536 pr_err("slab: double free detected in cache '%s', objp %px\n",
2537 cachep->name, objp);
2538 BUG();
2539 }
2540 }
2541 #endif
2542 page->active--;
2543 if (!page->freelist)
2544 page->freelist = objp + obj_offset(cachep);
2545
2546 set_free_obj(page, page->active, objnr);
2547 }
2548
2549 /*
2550 * Map pages beginning at addr to the given cache and slab. This is required
2551 * for the slab allocator to be able to lookup the cache and slab of a
2552 * virtual address for kfree, ksize, and slab debugging.
2553 */
slab_map_pages(struct kmem_cache * cache,struct page * page,void * freelist)2554 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2555 void *freelist)
2556 {
2557 page->slab_cache = cache;
2558 page->freelist = freelist;
2559 }
2560
2561 /*
2562 * Grow (by 1) the number of slabs within a cache. This is called by
2563 * kmem_cache_alloc() when there are no active objs left in a cache.
2564 */
cache_grow_begin(struct kmem_cache * cachep,gfp_t flags,int nodeid)2565 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2566 gfp_t flags, int nodeid)
2567 {
2568 void *freelist;
2569 size_t offset;
2570 gfp_t local_flags;
2571 int page_node;
2572 struct kmem_cache_node *n;
2573 struct page *page;
2574
2575 /*
2576 * Be lazy and only check for valid flags here, keeping it out of the
2577 * critical path in kmem_cache_alloc().
2578 */
2579 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2580 flags = kmalloc_fix_flags(flags);
2581
2582 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2583 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2584
2585 check_irq_off();
2586 if (gfpflags_allow_blocking(local_flags))
2587 local_irq_enable();
2588
2589 /*
2590 * Get mem for the objs. Attempt to allocate a physical page from
2591 * 'nodeid'.
2592 */
2593 page = kmem_getpages(cachep, local_flags, nodeid);
2594 if (!page)
2595 goto failed;
2596
2597 page_node = page_to_nid(page);
2598 n = get_node(cachep, page_node);
2599
2600 /* Get colour for the slab, and cal the next value. */
2601 n->colour_next++;
2602 if (n->colour_next >= cachep->colour)
2603 n->colour_next = 0;
2604
2605 offset = n->colour_next;
2606 if (offset >= cachep->colour)
2607 offset = 0;
2608
2609 offset *= cachep->colour_off;
2610
2611 /*
2612 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2613 * page_address() in the latter returns a non-tagged pointer,
2614 * as it should be for slab pages.
2615 */
2616 kasan_poison_slab(page);
2617
2618 /* Get slab management. */
2619 freelist = alloc_slabmgmt(cachep, page, offset,
2620 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2621 if (OFF_SLAB(cachep) && !freelist)
2622 goto opps1;
2623
2624 slab_map_pages(cachep, page, freelist);
2625
2626 cache_init_objs(cachep, page);
2627
2628 if (gfpflags_allow_blocking(local_flags))
2629 local_irq_disable();
2630
2631 return page;
2632
2633 opps1:
2634 kmem_freepages(cachep, page);
2635 failed:
2636 if (gfpflags_allow_blocking(local_flags))
2637 local_irq_disable();
2638 return NULL;
2639 }
2640
cache_grow_end(struct kmem_cache * cachep,struct page * page)2641 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2642 {
2643 struct kmem_cache_node *n;
2644 void *list = NULL;
2645
2646 check_irq_off();
2647
2648 if (!page)
2649 return;
2650
2651 INIT_LIST_HEAD(&page->slab_list);
2652 n = get_node(cachep, page_to_nid(page));
2653
2654 spin_lock(&n->list_lock);
2655 n->total_slabs++;
2656 if (!page->active) {
2657 list_add_tail(&page->slab_list, &n->slabs_free);
2658 n->free_slabs++;
2659 } else
2660 fixup_slab_list(cachep, n, page, &list);
2661
2662 STATS_INC_GROWN(cachep);
2663 n->free_objects += cachep->num - page->active;
2664 spin_unlock(&n->list_lock);
2665
2666 fixup_objfreelist_debug(cachep, &list);
2667 }
2668
2669 #if DEBUG
2670
2671 /*
2672 * Perform extra freeing checks:
2673 * - detect bad pointers.
2674 * - POISON/RED_ZONE checking
2675 */
kfree_debugcheck(const void * objp)2676 static void kfree_debugcheck(const void *objp)
2677 {
2678 if (!virt_addr_valid(objp)) {
2679 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2680 (unsigned long)objp);
2681 BUG();
2682 }
2683 }
2684
verify_redzone_free(struct kmem_cache * cache,void * obj)2685 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2686 {
2687 unsigned long long redzone1, redzone2;
2688
2689 redzone1 = *dbg_redzone1(cache, obj);
2690 redzone2 = *dbg_redzone2(cache, obj);
2691
2692 /*
2693 * Redzone is ok.
2694 */
2695 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2696 return;
2697
2698 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2699 slab_error(cache, "double free detected");
2700 else
2701 slab_error(cache, "memory outside object was overwritten");
2702
2703 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2704 obj, redzone1, redzone2);
2705 }
2706
cache_free_debugcheck(struct kmem_cache * cachep,void * objp,unsigned long caller)2707 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2708 unsigned long caller)
2709 {
2710 unsigned int objnr;
2711 struct page *page;
2712
2713 BUG_ON(virt_to_cache(objp) != cachep);
2714
2715 objp -= obj_offset(cachep);
2716 kfree_debugcheck(objp);
2717 page = virt_to_head_page(objp);
2718
2719 if (cachep->flags & SLAB_RED_ZONE) {
2720 verify_redzone_free(cachep, objp);
2721 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2722 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2723 }
2724 if (cachep->flags & SLAB_STORE_USER)
2725 *dbg_userword(cachep, objp) = (void *)caller;
2726
2727 objnr = obj_to_index(cachep, page, objp);
2728
2729 BUG_ON(objnr >= cachep->num);
2730 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2731
2732 if (cachep->flags & SLAB_POISON) {
2733 poison_obj(cachep, objp, POISON_FREE);
2734 slab_kernel_map(cachep, objp, 0);
2735 }
2736 return objp;
2737 }
2738
2739 #else
2740 #define kfree_debugcheck(x) do { } while(0)
2741 #define cache_free_debugcheck(x, objp, z) (objp)
2742 #endif
2743
fixup_objfreelist_debug(struct kmem_cache * cachep,void ** list)2744 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745 void **list)
2746 {
2747 #if DEBUG
2748 void *next = *list;
2749 void *objp;
2750
2751 while (next) {
2752 objp = next - obj_offset(cachep);
2753 next = *(void **)next;
2754 poison_obj(cachep, objp, POISON_FREE);
2755 }
2756 #endif
2757 }
2758
fixup_slab_list(struct kmem_cache * cachep,struct kmem_cache_node * n,struct page * page,void ** list)2759 static inline void fixup_slab_list(struct kmem_cache *cachep,
2760 struct kmem_cache_node *n, struct page *page,
2761 void **list)
2762 {
2763 /* move slabp to correct slabp list: */
2764 list_del(&page->slab_list);
2765 if (page->active == cachep->num) {
2766 list_add(&page->slab_list, &n->slabs_full);
2767 if (OBJFREELIST_SLAB(cachep)) {
2768 #if DEBUG
2769 /* Poisoning will be done without holding the lock */
2770 if (cachep->flags & SLAB_POISON) {
2771 void **objp = page->freelist;
2772
2773 *objp = *list;
2774 *list = objp;
2775 }
2776 #endif
2777 page->freelist = NULL;
2778 }
2779 } else
2780 list_add(&page->slab_list, &n->slabs_partial);
2781 }
2782
2783 /* Try to find non-pfmemalloc slab if needed */
get_valid_first_slab(struct kmem_cache_node * n,struct page * page,bool pfmemalloc)2784 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2785 struct page *page, bool pfmemalloc)
2786 {
2787 if (!page)
2788 return NULL;
2789
2790 if (pfmemalloc)
2791 return page;
2792
2793 if (!PageSlabPfmemalloc(page))
2794 return page;
2795
2796 /* No need to keep pfmemalloc slab if we have enough free objects */
2797 if (n->free_objects > n->free_limit) {
2798 ClearPageSlabPfmemalloc(page);
2799 return page;
2800 }
2801
2802 /* Move pfmemalloc slab to the end of list to speed up next search */
2803 list_del(&page->slab_list);
2804 if (!page->active) {
2805 list_add_tail(&page->slab_list, &n->slabs_free);
2806 n->free_slabs++;
2807 } else
2808 list_add_tail(&page->slab_list, &n->slabs_partial);
2809
2810 list_for_each_entry(page, &n->slabs_partial, slab_list) {
2811 if (!PageSlabPfmemalloc(page))
2812 return page;
2813 }
2814
2815 n->free_touched = 1;
2816 list_for_each_entry(page, &n->slabs_free, slab_list) {
2817 if (!PageSlabPfmemalloc(page)) {
2818 n->free_slabs--;
2819 return page;
2820 }
2821 }
2822
2823 return NULL;
2824 }
2825
get_first_slab(struct kmem_cache_node * n,bool pfmemalloc)2826 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2827 {
2828 struct page *page;
2829
2830 assert_spin_locked(&n->list_lock);
2831 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2832 slab_list);
2833 if (!page) {
2834 n->free_touched = 1;
2835 page = list_first_entry_or_null(&n->slabs_free, struct page,
2836 slab_list);
2837 if (page)
2838 n->free_slabs--;
2839 }
2840
2841 if (sk_memalloc_socks())
2842 page = get_valid_first_slab(n, page, pfmemalloc);
2843
2844 return page;
2845 }
2846
cache_alloc_pfmemalloc(struct kmem_cache * cachep,struct kmem_cache_node * n,gfp_t flags)2847 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2848 struct kmem_cache_node *n, gfp_t flags)
2849 {
2850 struct page *page;
2851 void *obj;
2852 void *list = NULL;
2853
2854 if (!gfp_pfmemalloc_allowed(flags))
2855 return NULL;
2856
2857 spin_lock(&n->list_lock);
2858 page = get_first_slab(n, true);
2859 if (!page) {
2860 spin_unlock(&n->list_lock);
2861 return NULL;
2862 }
2863
2864 obj = slab_get_obj(cachep, page);
2865 n->free_objects--;
2866
2867 fixup_slab_list(cachep, n, page, &list);
2868
2869 spin_unlock(&n->list_lock);
2870 fixup_objfreelist_debug(cachep, &list);
2871
2872 return obj;
2873 }
2874
2875 /*
2876 * Slab list should be fixed up by fixup_slab_list() for existing slab
2877 * or cache_grow_end() for new slab
2878 */
alloc_block(struct kmem_cache * cachep,struct array_cache * ac,struct page * page,int batchcount)2879 static __always_inline int alloc_block(struct kmem_cache *cachep,
2880 struct array_cache *ac, struct page *page, int batchcount)
2881 {
2882 /*
2883 * There must be at least one object available for
2884 * allocation.
2885 */
2886 BUG_ON(page->active >= cachep->num);
2887
2888 while (page->active < cachep->num && batchcount--) {
2889 STATS_INC_ALLOCED(cachep);
2890 STATS_INC_ACTIVE(cachep);
2891 STATS_SET_HIGH(cachep);
2892
2893 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2894 }
2895
2896 return batchcount;
2897 }
2898
cache_alloc_refill(struct kmem_cache * cachep,gfp_t flags)2899 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2900 {
2901 int batchcount;
2902 struct kmem_cache_node *n;
2903 struct array_cache *ac, *shared;
2904 int node;
2905 void *list = NULL;
2906 struct page *page;
2907
2908 check_irq_off();
2909 node = numa_mem_id();
2910
2911 ac = cpu_cache_get(cachep);
2912 batchcount = ac->batchcount;
2913 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2914 /*
2915 * If there was little recent activity on this cache, then
2916 * perform only a partial refill. Otherwise we could generate
2917 * refill bouncing.
2918 */
2919 batchcount = BATCHREFILL_LIMIT;
2920 }
2921 n = get_node(cachep, node);
2922
2923 BUG_ON(ac->avail > 0 || !n);
2924 shared = READ_ONCE(n->shared);
2925 if (!n->free_objects && (!shared || !shared->avail))
2926 goto direct_grow;
2927
2928 spin_lock(&n->list_lock);
2929 shared = READ_ONCE(n->shared);
2930
2931 /* See if we can refill from the shared array */
2932 if (shared && transfer_objects(ac, shared, batchcount)) {
2933 shared->touched = 1;
2934 goto alloc_done;
2935 }
2936
2937 while (batchcount > 0) {
2938 /* Get slab alloc is to come from. */
2939 page = get_first_slab(n, false);
2940 if (!page)
2941 goto must_grow;
2942
2943 check_spinlock_acquired(cachep);
2944
2945 batchcount = alloc_block(cachep, ac, page, batchcount);
2946 fixup_slab_list(cachep, n, page, &list);
2947 }
2948
2949 must_grow:
2950 n->free_objects -= ac->avail;
2951 alloc_done:
2952 spin_unlock(&n->list_lock);
2953 fixup_objfreelist_debug(cachep, &list);
2954
2955 direct_grow:
2956 if (unlikely(!ac->avail)) {
2957 /* Check if we can use obj in pfmemalloc slab */
2958 if (sk_memalloc_socks()) {
2959 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2960
2961 if (obj)
2962 return obj;
2963 }
2964
2965 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2966
2967 /*
2968 * cache_grow_begin() can reenable interrupts,
2969 * then ac could change.
2970 */
2971 ac = cpu_cache_get(cachep);
2972 if (!ac->avail && page)
2973 alloc_block(cachep, ac, page, batchcount);
2974 cache_grow_end(cachep, page);
2975
2976 if (!ac->avail)
2977 return NULL;
2978 }
2979 ac->touched = 1;
2980
2981 return ac->entry[--ac->avail];
2982 }
2983
cache_alloc_debugcheck_before(struct kmem_cache * cachep,gfp_t flags)2984 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2985 gfp_t flags)
2986 {
2987 might_sleep_if(gfpflags_allow_blocking(flags));
2988 }
2989
2990 #if DEBUG
cache_alloc_debugcheck_after(struct kmem_cache * cachep,gfp_t flags,void * objp,unsigned long caller)2991 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2992 gfp_t flags, void *objp, unsigned long caller)
2993 {
2994 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2995 if (!objp || is_kfence_address(objp))
2996 return objp;
2997 if (cachep->flags & SLAB_POISON) {
2998 check_poison_obj(cachep, objp);
2999 slab_kernel_map(cachep, objp, 1);
3000 poison_obj(cachep, objp, POISON_INUSE);
3001 }
3002 if (cachep->flags & SLAB_STORE_USER)
3003 *dbg_userword(cachep, objp) = (void *)caller;
3004
3005 if (cachep->flags & SLAB_RED_ZONE) {
3006 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3007 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3008 slab_error(cachep, "double free, or memory outside object was overwritten");
3009 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3010 objp, *dbg_redzone1(cachep, objp),
3011 *dbg_redzone2(cachep, objp));
3012 }
3013 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3014 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3015 }
3016
3017 objp += obj_offset(cachep);
3018 if (cachep->ctor && cachep->flags & SLAB_POISON)
3019 cachep->ctor(objp);
3020 if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
3021 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
3022 arch_slab_minalign());
3023 }
3024 return objp;
3025 }
3026 #else
3027 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3028 #endif
3029
____cache_alloc(struct kmem_cache * cachep,gfp_t flags)3030 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3031 {
3032 void *objp;
3033 struct array_cache *ac;
3034
3035 check_irq_off();
3036
3037 ac = cpu_cache_get(cachep);
3038 if (likely(ac->avail)) {
3039 ac->touched = 1;
3040 objp = ac->entry[--ac->avail];
3041
3042 STATS_INC_ALLOCHIT(cachep);
3043 goto out;
3044 }
3045
3046 STATS_INC_ALLOCMISS(cachep);
3047 objp = cache_alloc_refill(cachep, flags);
3048 /*
3049 * the 'ac' may be updated by cache_alloc_refill(),
3050 * and kmemleak_erase() requires its correct value.
3051 */
3052 ac = cpu_cache_get(cachep);
3053
3054 out:
3055 /*
3056 * To avoid a false negative, if an object that is in one of the
3057 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3058 * treat the array pointers as a reference to the object.
3059 */
3060 if (objp)
3061 kmemleak_erase(&ac->entry[ac->avail]);
3062 return objp;
3063 }
3064
3065 #ifdef CONFIG_NUMA
3066 /*
3067 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3068 *
3069 * If we are in_interrupt, then process context, including cpusets and
3070 * mempolicy, may not apply and should not be used for allocation policy.
3071 */
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)3072 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3073 {
3074 int nid_alloc, nid_here;
3075
3076 if (in_interrupt() || (flags & __GFP_THISNODE))
3077 return NULL;
3078 nid_alloc = nid_here = numa_mem_id();
3079 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3080 nid_alloc = cpuset_slab_spread_node();
3081 else if (current->mempolicy)
3082 nid_alloc = mempolicy_slab_node();
3083 if (nid_alloc != nid_here)
3084 return ____cache_alloc_node(cachep, flags, nid_alloc);
3085 return NULL;
3086 }
3087
3088 /*
3089 * Fallback function if there was no memory available and no objects on a
3090 * certain node and fall back is permitted. First we scan all the
3091 * available node for available objects. If that fails then we
3092 * perform an allocation without specifying a node. This allows the page
3093 * allocator to do its reclaim / fallback magic. We then insert the
3094 * slab into the proper nodelist and then allocate from it.
3095 */
fallback_alloc(struct kmem_cache * cache,gfp_t flags)3096 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3097 {
3098 struct zonelist *zonelist;
3099 struct zoneref *z;
3100 struct zone *zone;
3101 enum zone_type highest_zoneidx = gfp_zone(flags);
3102 void *obj = NULL;
3103 struct page *page;
3104 int nid;
3105 unsigned int cpuset_mems_cookie;
3106
3107 if (flags & __GFP_THISNODE)
3108 return NULL;
3109
3110 retry_cpuset:
3111 cpuset_mems_cookie = read_mems_allowed_begin();
3112 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3113
3114 retry:
3115 /*
3116 * Look through allowed nodes for objects available
3117 * from existing per node queues.
3118 */
3119 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3120 nid = zone_to_nid(zone);
3121
3122 if (cpuset_zone_allowed(zone, flags) &&
3123 get_node(cache, nid) &&
3124 get_node(cache, nid)->free_objects) {
3125 obj = ____cache_alloc_node(cache,
3126 gfp_exact_node(flags), nid);
3127 if (obj)
3128 break;
3129 }
3130 }
3131
3132 if (!obj) {
3133 /*
3134 * This allocation will be performed within the constraints
3135 * of the current cpuset / memory policy requirements.
3136 * We may trigger various forms of reclaim on the allowed
3137 * set and go into memory reserves if necessary.
3138 */
3139 page = cache_grow_begin(cache, flags, numa_mem_id());
3140 cache_grow_end(cache, page);
3141 if (page) {
3142 nid = page_to_nid(page);
3143 obj = ____cache_alloc_node(cache,
3144 gfp_exact_node(flags), nid);
3145
3146 /*
3147 * Another processor may allocate the objects in
3148 * the slab since we are not holding any locks.
3149 */
3150 if (!obj)
3151 goto retry;
3152 }
3153 }
3154
3155 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3156 goto retry_cpuset;
3157 return obj;
3158 }
3159
3160 /*
3161 * A interface to enable slab creation on nodeid
3162 */
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3163 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3164 int nodeid)
3165 {
3166 struct page *page;
3167 struct kmem_cache_node *n;
3168 void *obj = NULL;
3169 void *list = NULL;
3170
3171 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3172 n = get_node(cachep, nodeid);
3173 BUG_ON(!n);
3174
3175 check_irq_off();
3176 spin_lock(&n->list_lock);
3177 page = get_first_slab(n, false);
3178 if (!page)
3179 goto must_grow;
3180
3181 check_spinlock_acquired_node(cachep, nodeid);
3182
3183 STATS_INC_NODEALLOCS(cachep);
3184 STATS_INC_ACTIVE(cachep);
3185 STATS_SET_HIGH(cachep);
3186
3187 BUG_ON(page->active == cachep->num);
3188
3189 obj = slab_get_obj(cachep, page);
3190 n->free_objects--;
3191
3192 fixup_slab_list(cachep, n, page, &list);
3193
3194 spin_unlock(&n->list_lock);
3195 fixup_objfreelist_debug(cachep, &list);
3196 return obj;
3197
3198 must_grow:
3199 spin_unlock(&n->list_lock);
3200 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3201 if (page) {
3202 /* This slab isn't counted yet so don't update free_objects */
3203 obj = slab_get_obj(cachep, page);
3204 }
3205 cache_grow_end(cachep, page);
3206
3207 return obj ? obj : fallback_alloc(cachep, flags);
3208 }
3209
3210 static __always_inline void *
slab_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid,size_t orig_size,unsigned long caller)3211 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
3212 unsigned long caller)
3213 {
3214 unsigned long save_flags;
3215 void *ptr;
3216 int slab_node = numa_mem_id();
3217 struct obj_cgroup *objcg = NULL;
3218 bool init = false;
3219
3220 flags &= gfp_allowed_mask;
3221 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3222 if (unlikely(!cachep))
3223 return NULL;
3224
3225 ptr = kfence_alloc(cachep, orig_size, flags);
3226 if (unlikely(ptr))
3227 goto out_hooks;
3228
3229 cache_alloc_debugcheck_before(cachep, flags);
3230 local_irq_save(save_flags);
3231
3232 if (nodeid == NUMA_NO_NODE)
3233 nodeid = slab_node;
3234
3235 if (unlikely(!get_node(cachep, nodeid))) {
3236 /* Node not bootstrapped yet */
3237 ptr = fallback_alloc(cachep, flags);
3238 goto out;
3239 }
3240
3241 if (nodeid == slab_node) {
3242 /*
3243 * Use the locally cached objects if possible.
3244 * However ____cache_alloc does not allow fallback
3245 * to other nodes. It may fail while we still have
3246 * objects on other nodes available.
3247 */
3248 ptr = ____cache_alloc(cachep, flags);
3249 if (ptr)
3250 goto out;
3251 }
3252 /* ___cache_alloc_node can fall back to other nodes */
3253 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3254 out:
3255 local_irq_restore(save_flags);
3256 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3257 init = slab_want_init_on_alloc(flags, cachep);
3258
3259 out_hooks:
3260 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
3261 return ptr;
3262 }
3263
3264 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cache,gfp_t flags)3265 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3266 {
3267 void *objp;
3268
3269 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3270 objp = alternate_node_alloc(cache, flags);
3271 if (objp)
3272 goto out;
3273 }
3274 objp = ____cache_alloc(cache, flags);
3275
3276 /*
3277 * We may just have run out of memory on the local node.
3278 * ____cache_alloc_node() knows how to locate memory on other nodes
3279 */
3280 if (!objp)
3281 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3282
3283 out:
3284 return objp;
3285 }
3286 #else
3287
3288 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3289 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3290 {
3291 return ____cache_alloc(cachep, flags);
3292 }
3293
3294 #endif /* CONFIG_NUMA */
3295
3296 static __always_inline void *
slab_alloc(struct kmem_cache * cachep,gfp_t flags,size_t orig_size,unsigned long caller)3297 slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller)
3298 {
3299 unsigned long save_flags;
3300 void *objp;
3301 struct obj_cgroup *objcg = NULL;
3302 bool init = false;
3303
3304 flags &= gfp_allowed_mask;
3305 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3306 if (unlikely(!cachep))
3307 return NULL;
3308
3309 objp = kfence_alloc(cachep, orig_size, flags);
3310 if (unlikely(objp))
3311 goto out;
3312
3313 cache_alloc_debugcheck_before(cachep, flags);
3314 local_irq_save(save_flags);
3315 objp = __do_cache_alloc(cachep, flags);
3316 local_irq_restore(save_flags);
3317 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3318 prefetchw(objp);
3319 init = slab_want_init_on_alloc(flags, cachep);
3320
3321 out:
3322 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
3323 return objp;
3324 }
3325
3326 /*
3327 * Caller needs to acquire correct kmem_cache_node's list_lock
3328 * @list: List of detached free slabs should be freed by caller
3329 */
free_block(struct kmem_cache * cachep,void ** objpp,int nr_objects,int node,struct list_head * list)3330 static void free_block(struct kmem_cache *cachep, void **objpp,
3331 int nr_objects, int node, struct list_head *list)
3332 {
3333 int i;
3334 struct kmem_cache_node *n = get_node(cachep, node);
3335 struct page *page;
3336
3337 n->free_objects += nr_objects;
3338
3339 for (i = 0; i < nr_objects; i++) {
3340 void *objp;
3341 struct page *page;
3342
3343 objp = objpp[i];
3344
3345 page = virt_to_head_page(objp);
3346 list_del(&page->slab_list);
3347 check_spinlock_acquired_node(cachep, node);
3348 slab_put_obj(cachep, page, objp);
3349 STATS_DEC_ACTIVE(cachep);
3350
3351 /* fixup slab chains */
3352 if (page->active == 0) {
3353 list_add(&page->slab_list, &n->slabs_free);
3354 n->free_slabs++;
3355 } else {
3356 /* Unconditionally move a slab to the end of the
3357 * partial list on free - maximum time for the
3358 * other objects to be freed, too.
3359 */
3360 list_add_tail(&page->slab_list, &n->slabs_partial);
3361 }
3362 }
3363
3364 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3365 n->free_objects -= cachep->num;
3366
3367 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3368 list_move(&page->slab_list, list);
3369 n->free_slabs--;
3370 n->total_slabs--;
3371 }
3372 }
3373
cache_flusharray(struct kmem_cache * cachep,struct array_cache * ac)3374 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3375 {
3376 int batchcount;
3377 struct kmem_cache_node *n;
3378 int node = numa_mem_id();
3379 LIST_HEAD(list);
3380
3381 batchcount = ac->batchcount;
3382
3383 check_irq_off();
3384 n = get_node(cachep, node);
3385 spin_lock(&n->list_lock);
3386 if (n->shared) {
3387 struct array_cache *shared_array = n->shared;
3388 int max = shared_array->limit - shared_array->avail;
3389 if (max) {
3390 if (batchcount > max)
3391 batchcount = max;
3392 memcpy(&(shared_array->entry[shared_array->avail]),
3393 ac->entry, sizeof(void *) * batchcount);
3394 shared_array->avail += batchcount;
3395 goto free_done;
3396 }
3397 }
3398
3399 free_block(cachep, ac->entry, batchcount, node, &list);
3400 free_done:
3401 #if STATS
3402 {
3403 int i = 0;
3404 struct page *page;
3405
3406 list_for_each_entry(page, &n->slabs_free, slab_list) {
3407 BUG_ON(page->active);
3408
3409 i++;
3410 }
3411 STATS_SET_FREEABLE(cachep, i);
3412 }
3413 #endif
3414 spin_unlock(&n->list_lock);
3415 ac->avail -= batchcount;
3416 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3417 slabs_destroy(cachep, &list);
3418 }
3419
3420 /*
3421 * Release an obj back to its cache. If the obj has a constructed state, it must
3422 * be in this state _before_ it is released. Called with disabled ints.
3423 */
__cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3424 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3425 unsigned long caller)
3426 {
3427 bool init;
3428
3429 if (is_kfence_address(objp)) {
3430 kmemleak_free_recursive(objp, cachep->flags);
3431 memcg_slab_free_hook(cachep, &objp, 1);
3432 __kfence_free(objp);
3433 return;
3434 }
3435
3436 /*
3437 * As memory initialization might be integrated into KASAN,
3438 * kasan_slab_free and initialization memset must be
3439 * kept together to avoid discrepancies in behavior.
3440 */
3441 init = slab_want_init_on_free(cachep);
3442 if (init && !kasan_has_integrated_init())
3443 memset(objp, 0, cachep->object_size);
3444 /* KASAN might put objp into memory quarantine, delaying its reuse. */
3445 if (kasan_slab_free(cachep, objp, init))
3446 return;
3447
3448 /* Use KCSAN to help debug racy use-after-free. */
3449 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3450 __kcsan_check_access(objp, cachep->object_size,
3451 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3452
3453 ___cache_free(cachep, objp, caller);
3454 }
3455
___cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3456 void ___cache_free(struct kmem_cache *cachep, void *objp,
3457 unsigned long caller)
3458 {
3459 struct array_cache *ac = cpu_cache_get(cachep);
3460
3461 check_irq_off();
3462 kmemleak_free_recursive(objp, cachep->flags);
3463 objp = cache_free_debugcheck(cachep, objp, caller);
3464 memcg_slab_free_hook(cachep, &objp, 1);
3465
3466 /*
3467 * Skip calling cache_free_alien() when the platform is not numa.
3468 * This will avoid cache misses that happen while accessing slabp (which
3469 * is per page memory reference) to get nodeid. Instead use a global
3470 * variable to skip the call, which is mostly likely to be present in
3471 * the cache.
3472 */
3473 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3474 return;
3475
3476 if (ac->avail < ac->limit) {
3477 STATS_INC_FREEHIT(cachep);
3478 } else {
3479 STATS_INC_FREEMISS(cachep);
3480 cache_flusharray(cachep, ac);
3481 }
3482
3483 if (sk_memalloc_socks()) {
3484 struct page *page = virt_to_head_page(objp);
3485
3486 if (unlikely(PageSlabPfmemalloc(page))) {
3487 cache_free_pfmemalloc(cachep, page, objp);
3488 return;
3489 }
3490 }
3491
3492 __free_one(ac, objp);
3493 }
3494
3495 /**
3496 * kmem_cache_alloc - Allocate an object
3497 * @cachep: The cache to allocate from.
3498 * @flags: See kmalloc().
3499 *
3500 * Allocate an object from this cache. The flags are only relevant
3501 * if the cache has no available objects.
3502 *
3503 * Return: pointer to the new object or %NULL in case of error
3504 */
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3505 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3506 {
3507 void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_);
3508
3509 trace_kmem_cache_alloc(_RET_IP_, ret,
3510 cachep->object_size, cachep->size, flags);
3511
3512 return ret;
3513 }
3514 EXPORT_SYMBOL(kmem_cache_alloc);
3515
3516 static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,unsigned long caller)3517 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3518 size_t size, void **p, unsigned long caller)
3519 {
3520 size_t i;
3521
3522 for (i = 0; i < size; i++)
3523 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3524 }
3525
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3526 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3527 void **p)
3528 {
3529 size_t i;
3530 struct obj_cgroup *objcg = NULL;
3531
3532 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3533 if (!s)
3534 return 0;
3535
3536 cache_alloc_debugcheck_before(s, flags);
3537
3538 local_irq_disable();
3539 for (i = 0; i < size; i++) {
3540 void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
3541
3542 if (unlikely(!objp))
3543 goto error;
3544 p[i] = objp;
3545 }
3546 local_irq_enable();
3547
3548 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3549
3550 /*
3551 * memcg and kmem_cache debug support and memory initialization.
3552 * Done outside of the IRQ disabled section.
3553 */
3554 slab_post_alloc_hook(s, objcg, flags, size, p,
3555 slab_want_init_on_alloc(flags, s));
3556 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3557 return size;
3558 error:
3559 local_irq_enable();
3560 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3561 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3562 __kmem_cache_free_bulk(s, i, p);
3563 return 0;
3564 }
3565 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3566
3567 #ifdef CONFIG_TRACING
3568 void *
kmem_cache_alloc_trace(struct kmem_cache * cachep,gfp_t flags,size_t size)3569 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3570 {
3571 void *ret;
3572
3573 ret = slab_alloc(cachep, flags, size, _RET_IP_);
3574
3575 ret = kasan_kmalloc(cachep, ret, size, flags);
3576 trace_kmalloc(_RET_IP_, ret,
3577 size, cachep->size, flags);
3578 return ret;
3579 }
3580 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3581 #endif
3582
3583 #ifdef CONFIG_NUMA
3584 /**
3585 * kmem_cache_alloc_node - Allocate an object on the specified node
3586 * @cachep: The cache to allocate from.
3587 * @flags: See kmalloc().
3588 * @nodeid: node number of the target node.
3589 *
3590 * Identical to kmem_cache_alloc but it will allocate memory on the given
3591 * node, which can improve the performance for cpu bound structures.
3592 *
3593 * Fallback to other node is possible if __GFP_THISNODE is not set.
3594 *
3595 * Return: pointer to the new object or %NULL in case of error
3596 */
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3597 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3598 {
3599 void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
3600
3601 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3602 cachep->object_size, cachep->size,
3603 flags, nodeid);
3604
3605 return ret;
3606 }
3607 EXPORT_SYMBOL(kmem_cache_alloc_node);
3608
3609 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * cachep,gfp_t flags,int nodeid,size_t size)3610 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3611 gfp_t flags,
3612 int nodeid,
3613 size_t size)
3614 {
3615 void *ret;
3616
3617 ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
3618
3619 ret = kasan_kmalloc(cachep, ret, size, flags);
3620 trace_kmalloc_node(_RET_IP_, ret,
3621 size, cachep->size,
3622 flags, nodeid);
3623 return ret;
3624 }
3625 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3626 #endif
3627
3628 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t flags,int node,unsigned long caller)3629 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3630 {
3631 struct kmem_cache *cachep;
3632 void *ret;
3633
3634 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3635 return NULL;
3636 cachep = kmalloc_slab(size, flags);
3637 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3638 return cachep;
3639 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3640 ret = kasan_kmalloc(cachep, ret, size, flags);
3641
3642 return ret;
3643 }
3644
__kmalloc_node(size_t size,gfp_t flags,int node)3645 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3646 {
3647 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3648 }
3649 EXPORT_SYMBOL(__kmalloc_node);
3650
__kmalloc_node_track_caller(size_t size,gfp_t flags,int node,unsigned long caller)3651 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3652 int node, unsigned long caller)
3653 {
3654 return __do_kmalloc_node(size, flags, node, caller);
3655 }
3656 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3657 #endif /* CONFIG_NUMA */
3658
3659 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct page * page)3660 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3661 {
3662 struct kmem_cache *cachep;
3663 unsigned int objnr;
3664 void *objp;
3665
3666 kpp->kp_ptr = object;
3667 kpp->kp_page = page;
3668 cachep = page->slab_cache;
3669 kpp->kp_slab_cache = cachep;
3670 objp = object - obj_offset(cachep);
3671 kpp->kp_data_offset = obj_offset(cachep);
3672 page = virt_to_head_page(objp);
3673 objnr = obj_to_index(cachep, page, objp);
3674 objp = index_to_obj(cachep, page, objnr);
3675 kpp->kp_objp = objp;
3676 if (DEBUG && cachep->flags & SLAB_STORE_USER)
3677 kpp->kp_ret = *dbg_userword(cachep, objp);
3678 }
3679 #endif
3680
3681 /**
3682 * __do_kmalloc - allocate memory
3683 * @size: how many bytes of memory are required.
3684 * @flags: the type of memory to allocate (see kmalloc).
3685 * @caller: function caller for debug tracking of the caller
3686 *
3687 * Return: pointer to the allocated memory or %NULL in case of error
3688 */
__do_kmalloc(size_t size,gfp_t flags,unsigned long caller)3689 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3690 unsigned long caller)
3691 {
3692 struct kmem_cache *cachep;
3693 void *ret;
3694
3695 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3696 return NULL;
3697 cachep = kmalloc_slab(size, flags);
3698 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699 return cachep;
3700 ret = slab_alloc(cachep, flags, size, caller);
3701
3702 ret = kasan_kmalloc(cachep, ret, size, flags);
3703 trace_kmalloc(caller, ret,
3704 size, cachep->size, flags);
3705
3706 return ret;
3707 }
3708
__kmalloc(size_t size,gfp_t flags)3709 void *__kmalloc(size_t size, gfp_t flags)
3710 {
3711 return __do_kmalloc(size, flags, _RET_IP_);
3712 }
3713 EXPORT_SYMBOL(__kmalloc);
3714
__kmalloc_track_caller(size_t size,gfp_t flags,unsigned long caller)3715 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3716 {
3717 return __do_kmalloc(size, flags, caller);
3718 }
3719 EXPORT_SYMBOL(__kmalloc_track_caller);
3720
3721 /**
3722 * kmem_cache_free - Deallocate an object
3723 * @cachep: The cache the allocation was from.
3724 * @objp: The previously allocated object.
3725 *
3726 * Free an object which was previously allocated from this
3727 * cache.
3728 */
kmem_cache_free(struct kmem_cache * cachep,void * objp)3729 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3730 {
3731 unsigned long flags;
3732 cachep = cache_from_obj(cachep, objp);
3733 if (!cachep)
3734 return;
3735
3736 local_irq_save(flags);
3737 debug_check_no_locks_freed(objp, cachep->object_size);
3738 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3739 debug_check_no_obj_freed(objp, cachep->object_size);
3740 __cache_free(cachep, objp, _RET_IP_);
3741 local_irq_restore(flags);
3742
3743 trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
3744 }
3745 EXPORT_SYMBOL(kmem_cache_free);
3746
kmem_cache_free_bulk(struct kmem_cache * orig_s,size_t size,void ** p)3747 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3748 {
3749 struct kmem_cache *s;
3750 size_t i;
3751
3752 local_irq_disable();
3753 for (i = 0; i < size; i++) {
3754 void *objp = p[i];
3755
3756 if (!orig_s) /* called via kfree_bulk */
3757 s = virt_to_cache(objp);
3758 else
3759 s = cache_from_obj(orig_s, objp);
3760 if (!s)
3761 continue;
3762
3763 debug_check_no_locks_freed(objp, s->object_size);
3764 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3765 debug_check_no_obj_freed(objp, s->object_size);
3766
3767 __cache_free(s, objp, _RET_IP_);
3768 }
3769 local_irq_enable();
3770
3771 /* FIXME: add tracing */
3772 }
3773 EXPORT_SYMBOL(kmem_cache_free_bulk);
3774
3775 /**
3776 * kfree - free previously allocated memory
3777 * @objp: pointer returned by kmalloc.
3778 *
3779 * If @objp is NULL, no operation is performed.
3780 *
3781 * Don't free memory not originally allocated by kmalloc()
3782 * or you will run into trouble.
3783 */
kfree(const void * objp)3784 void kfree(const void *objp)
3785 {
3786 struct kmem_cache *c;
3787 unsigned long flags;
3788
3789 trace_kfree(_RET_IP_, objp);
3790
3791 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3792 return;
3793 local_irq_save(flags);
3794 kfree_debugcheck(objp);
3795 c = virt_to_cache(objp);
3796 if (!c) {
3797 local_irq_restore(flags);
3798 return;
3799 }
3800 debug_check_no_locks_freed(objp, c->object_size);
3801
3802 debug_check_no_obj_freed(objp, c->object_size);
3803 __cache_free(c, (void *)objp, _RET_IP_);
3804 local_irq_restore(flags);
3805 }
3806 EXPORT_SYMBOL(kfree);
3807
3808 /*
3809 * This initializes kmem_cache_node or resizes various caches for all nodes.
3810 */
setup_kmem_cache_nodes(struct kmem_cache * cachep,gfp_t gfp)3811 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3812 {
3813 int ret;
3814 int node;
3815 struct kmem_cache_node *n;
3816
3817 for_each_online_node(node) {
3818 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3819 if (ret)
3820 goto fail;
3821
3822 }
3823
3824 return 0;
3825
3826 fail:
3827 if (!cachep->list.next) {
3828 /* Cache is not active yet. Roll back what we did */
3829 node--;
3830 while (node >= 0) {
3831 n = get_node(cachep, node);
3832 if (n) {
3833 kfree(n->shared);
3834 free_alien_cache(n->alien);
3835 kfree(n);
3836 cachep->node[node] = NULL;
3837 }
3838 node--;
3839 }
3840 }
3841 return -ENOMEM;
3842 }
3843
3844 /* Always called with the slab_mutex held */
do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3845 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846 int batchcount, int shared, gfp_t gfp)
3847 {
3848 struct array_cache __percpu *cpu_cache, *prev;
3849 int cpu;
3850
3851 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3852 if (!cpu_cache)
3853 return -ENOMEM;
3854
3855 prev = cachep->cpu_cache;
3856 cachep->cpu_cache = cpu_cache;
3857 /*
3858 * Without a previous cpu_cache there's no need to synchronize remote
3859 * cpus, so skip the IPIs.
3860 */
3861 if (prev)
3862 kick_all_cpus_sync();
3863
3864 check_irq_on();
3865 cachep->batchcount = batchcount;
3866 cachep->limit = limit;
3867 cachep->shared = shared;
3868
3869 if (!prev)
3870 goto setup_node;
3871
3872 for_each_online_cpu(cpu) {
3873 LIST_HEAD(list);
3874 int node;
3875 struct kmem_cache_node *n;
3876 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3877
3878 node = cpu_to_mem(cpu);
3879 n = get_node(cachep, node);
3880 spin_lock_irq(&n->list_lock);
3881 free_block(cachep, ac->entry, ac->avail, node, &list);
3882 spin_unlock_irq(&n->list_lock);
3883 slabs_destroy(cachep, &list);
3884 }
3885 free_percpu(prev);
3886
3887 setup_node:
3888 return setup_kmem_cache_nodes(cachep, gfp);
3889 }
3890
3891 /* Called with slab_mutex held always */
enable_cpucache(struct kmem_cache * cachep,gfp_t gfp)3892 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3893 {
3894 int err;
3895 int limit = 0;
3896 int shared = 0;
3897 int batchcount = 0;
3898
3899 err = cache_random_seq_create(cachep, cachep->num, gfp);
3900 if (err)
3901 goto end;
3902
3903 if (limit && shared && batchcount)
3904 goto skip_setup;
3905 /*
3906 * The head array serves three purposes:
3907 * - create a LIFO ordering, i.e. return objects that are cache-warm
3908 * - reduce the number of spinlock operations.
3909 * - reduce the number of linked list operations on the slab and
3910 * bufctl chains: array operations are cheaper.
3911 * The numbers are guessed, we should auto-tune as described by
3912 * Bonwick.
3913 */
3914 if (cachep->size > 131072)
3915 limit = 1;
3916 else if (cachep->size > PAGE_SIZE)
3917 limit = 8;
3918 else if (cachep->size > 1024)
3919 limit = 24;
3920 else if (cachep->size > 256)
3921 limit = 54;
3922 else
3923 limit = 120;
3924
3925 /*
3926 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3927 * allocation behaviour: Most allocs on one cpu, most free operations
3928 * on another cpu. For these cases, an efficient object passing between
3929 * cpus is necessary. This is provided by a shared array. The array
3930 * replaces Bonwick's magazine layer.
3931 * On uniprocessor, it's functionally equivalent (but less efficient)
3932 * to a larger limit. Thus disabled by default.
3933 */
3934 shared = 0;
3935 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3936 shared = 8;
3937
3938 #if DEBUG
3939 /*
3940 * With debugging enabled, large batchcount lead to excessively long
3941 * periods with disabled local interrupts. Limit the batchcount
3942 */
3943 if (limit > 32)
3944 limit = 32;
3945 #endif
3946 batchcount = (limit + 1) / 2;
3947 skip_setup:
3948 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3949 end:
3950 if (err)
3951 pr_err("enable_cpucache failed for %s, error %d\n",
3952 cachep->name, -err);
3953 return err;
3954 }
3955
3956 /*
3957 * Drain an array if it contains any elements taking the node lock only if
3958 * necessary. Note that the node listlock also protects the array_cache
3959 * if drain_array() is used on the shared array.
3960 */
drain_array(struct kmem_cache * cachep,struct kmem_cache_node * n,struct array_cache * ac,int node)3961 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3962 struct array_cache *ac, int node)
3963 {
3964 LIST_HEAD(list);
3965
3966 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3967 check_mutex_acquired();
3968
3969 if (!ac || !ac->avail)
3970 return;
3971
3972 if (ac->touched) {
3973 ac->touched = 0;
3974 return;
3975 }
3976
3977 spin_lock_irq(&n->list_lock);
3978 drain_array_locked(cachep, ac, node, false, &list);
3979 spin_unlock_irq(&n->list_lock);
3980
3981 slabs_destroy(cachep, &list);
3982 }
3983
3984 /**
3985 * cache_reap - Reclaim memory from caches.
3986 * @w: work descriptor
3987 *
3988 * Called from workqueue/eventd every few seconds.
3989 * Purpose:
3990 * - clear the per-cpu caches for this CPU.
3991 * - return freeable pages to the main free memory pool.
3992 *
3993 * If we cannot acquire the cache chain mutex then just give up - we'll try
3994 * again on the next iteration.
3995 */
cache_reap(struct work_struct * w)3996 static void cache_reap(struct work_struct *w)
3997 {
3998 struct kmem_cache *searchp;
3999 struct kmem_cache_node *n;
4000 int node = numa_mem_id();
4001 struct delayed_work *work = to_delayed_work(w);
4002
4003 if (!mutex_trylock(&slab_mutex))
4004 /* Give up. Setup the next iteration. */
4005 goto out;
4006
4007 list_for_each_entry(searchp, &slab_caches, list) {
4008 check_irq_on();
4009
4010 /*
4011 * We only take the node lock if absolutely necessary and we
4012 * have established with reasonable certainty that
4013 * we can do some work if the lock was obtained.
4014 */
4015 n = get_node(searchp, node);
4016
4017 reap_alien(searchp, n);
4018
4019 drain_array(searchp, n, cpu_cache_get(searchp), node);
4020
4021 /*
4022 * These are racy checks but it does not matter
4023 * if we skip one check or scan twice.
4024 */
4025 if (time_after(n->next_reap, jiffies))
4026 goto next;
4027
4028 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4029
4030 drain_array(searchp, n, n->shared, node);
4031
4032 if (n->free_touched)
4033 n->free_touched = 0;
4034 else {
4035 int freed;
4036
4037 freed = drain_freelist(searchp, n, (n->free_limit +
4038 5 * searchp->num - 1) / (5 * searchp->num));
4039 STATS_ADD_REAPED(searchp, freed);
4040 }
4041 next:
4042 cond_resched();
4043 }
4044 check_irq_on();
4045 mutex_unlock(&slab_mutex);
4046 next_reap_node();
4047 out:
4048 /* Set up the next iteration */
4049 schedule_delayed_work_on(smp_processor_id(), work,
4050 round_jiffies_relative(REAPTIMEOUT_AC));
4051 }
4052
get_slabinfo(struct kmem_cache * cachep,struct slabinfo * sinfo)4053 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4054 {
4055 unsigned long active_objs, num_objs, active_slabs;
4056 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4057 unsigned long free_slabs = 0;
4058 int node;
4059 struct kmem_cache_node *n;
4060
4061 for_each_kmem_cache_node(cachep, node, n) {
4062 check_irq_on();
4063 spin_lock_irq(&n->list_lock);
4064
4065 total_slabs += n->total_slabs;
4066 free_slabs += n->free_slabs;
4067 free_objs += n->free_objects;
4068
4069 if (n->shared)
4070 shared_avail += n->shared->avail;
4071
4072 spin_unlock_irq(&n->list_lock);
4073 }
4074 num_objs = total_slabs * cachep->num;
4075 active_slabs = total_slabs - free_slabs;
4076 active_objs = num_objs - free_objs;
4077
4078 sinfo->active_objs = active_objs;
4079 sinfo->num_objs = num_objs;
4080 sinfo->active_slabs = active_slabs;
4081 sinfo->num_slabs = total_slabs;
4082 sinfo->shared_avail = shared_avail;
4083 sinfo->limit = cachep->limit;
4084 sinfo->batchcount = cachep->batchcount;
4085 sinfo->shared = cachep->shared;
4086 sinfo->objects_per_slab = cachep->num;
4087 sinfo->cache_order = cachep->gfporder;
4088 }
4089 EXPORT_SYMBOL_NS_GPL(get_slabinfo, MINIDUMP);
4090
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * cachep)4091 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4092 {
4093 #if STATS
4094 { /* node stats */
4095 unsigned long high = cachep->high_mark;
4096 unsigned long allocs = cachep->num_allocations;
4097 unsigned long grown = cachep->grown;
4098 unsigned long reaped = cachep->reaped;
4099 unsigned long errors = cachep->errors;
4100 unsigned long max_freeable = cachep->max_freeable;
4101 unsigned long node_allocs = cachep->node_allocs;
4102 unsigned long node_frees = cachep->node_frees;
4103 unsigned long overflows = cachep->node_overflow;
4104
4105 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4106 allocs, high, grown,
4107 reaped, errors, max_freeable, node_allocs,
4108 node_frees, overflows);
4109 }
4110 /* cpu stats */
4111 {
4112 unsigned long allochit = atomic_read(&cachep->allochit);
4113 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4114 unsigned long freehit = atomic_read(&cachep->freehit);
4115 unsigned long freemiss = atomic_read(&cachep->freemiss);
4116
4117 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4118 allochit, allocmiss, freehit, freemiss);
4119 }
4120 #endif
4121 }
4122
4123 #define MAX_SLABINFO_WRITE 128
4124 /**
4125 * slabinfo_write - Tuning for the slab allocator
4126 * @file: unused
4127 * @buffer: user buffer
4128 * @count: data length
4129 * @ppos: unused
4130 *
4131 * Return: %0 on success, negative error code otherwise.
4132 */
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)4133 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4134 size_t count, loff_t *ppos)
4135 {
4136 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4137 int limit, batchcount, shared, res;
4138 struct kmem_cache *cachep;
4139
4140 if (count > MAX_SLABINFO_WRITE)
4141 return -EINVAL;
4142 if (copy_from_user(&kbuf, buffer, count))
4143 return -EFAULT;
4144 kbuf[MAX_SLABINFO_WRITE] = '\0';
4145
4146 tmp = strchr(kbuf, ' ');
4147 if (!tmp)
4148 return -EINVAL;
4149 *tmp = '\0';
4150 tmp++;
4151 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4152 return -EINVAL;
4153
4154 /* Find the cache in the chain of caches. */
4155 mutex_lock(&slab_mutex);
4156 res = -EINVAL;
4157 list_for_each_entry(cachep, &slab_caches, list) {
4158 if (!strcmp(cachep->name, kbuf)) {
4159 if (limit < 1 || batchcount < 1 ||
4160 batchcount > limit || shared < 0) {
4161 res = 0;
4162 } else {
4163 res = do_tune_cpucache(cachep, limit,
4164 batchcount, shared,
4165 GFP_KERNEL);
4166 }
4167 break;
4168 }
4169 }
4170 mutex_unlock(&slab_mutex);
4171 if (res >= 0)
4172 res = count;
4173 return res;
4174 }
4175
4176 #ifdef CONFIG_HARDENED_USERCOPY
4177 /*
4178 * Rejects incorrectly sized objects and objects that are to be copied
4179 * to/from userspace but do not fall entirely within the containing slab
4180 * cache's usercopy region.
4181 *
4182 * Returns NULL if check passes, otherwise const char * to name of cache
4183 * to indicate an error.
4184 */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)4185 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4186 bool to_user)
4187 {
4188 struct kmem_cache *cachep;
4189 unsigned int objnr;
4190 unsigned long offset;
4191
4192 ptr = kasan_reset_tag(ptr);
4193
4194 /* Find and validate object. */
4195 cachep = page->slab_cache;
4196 objnr = obj_to_index(cachep, page, (void *)ptr);
4197 BUG_ON(objnr >= cachep->num);
4198
4199 /* Find offset within object. */
4200 if (is_kfence_address(ptr))
4201 offset = ptr - kfence_object_start(ptr);
4202 else
4203 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4204
4205 /* Allow address range falling entirely within usercopy region. */
4206 if (offset >= cachep->useroffset &&
4207 offset - cachep->useroffset <= cachep->usersize &&
4208 n <= cachep->useroffset - offset + cachep->usersize)
4209 return;
4210
4211 /*
4212 * If the copy is still within the allocated object, produce
4213 * a warning instead of rejecting the copy. This is intended
4214 * to be a temporary method to find any missing usercopy
4215 * whitelists.
4216 */
4217 if (usercopy_fallback &&
4218 offset <= cachep->object_size &&
4219 n <= cachep->object_size - offset) {
4220 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4221 return;
4222 }
4223
4224 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4225 }
4226 #endif /* CONFIG_HARDENED_USERCOPY */
4227
4228 /**
4229 * __ksize -- Uninstrumented ksize.
4230 * @objp: pointer to the object
4231 *
4232 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4233 * safety checks as ksize() with KASAN instrumentation enabled.
4234 *
4235 * Return: size of the actual memory used by @objp in bytes
4236 */
__ksize(const void * objp)4237 size_t __ksize(const void *objp)
4238 {
4239 struct kmem_cache *c;
4240 size_t size;
4241
4242 BUG_ON(!objp);
4243 if (unlikely(objp == ZERO_SIZE_PTR))
4244 return 0;
4245
4246 c = virt_to_cache(objp);
4247 size = c ? c->object_size : 0;
4248
4249 return size;
4250 }
4251 EXPORT_SYMBOL(__ksize);
4252