1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56 };
57
58 /*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62 struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74 };
75
76 /*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
__page_cache_release(struct page * page)80 static void __page_cache_release(struct page *page)
81 {
82 if (PageLRU(page)) {
83 struct lruvec *lruvec;
84 unsigned long flags;
85
86 lruvec = lock_page_lruvec_irqsave(page, &flags);
87 del_page_from_lru_list(page, lruvec);
88 __clear_page_lru_flags(page);
89 unlock_page_lruvec_irqrestore(lruvec, flags);
90 }
91 __ClearPageWaiters(page);
92 }
93
__put_single_page(struct page * page)94 static void __put_single_page(struct page *page)
95 {
96 __page_cache_release(page);
97 mem_cgroup_uncharge(page);
98 free_unref_page(page, 0);
99 }
100
__put_compound_page(struct page * page)101 static void __put_compound_page(struct page *page)
102 {
103 /*
104 * __page_cache_release() is supposed to be called for thp, not for
105 * hugetlb. This is because hugetlb page does never have PageLRU set
106 * (it's never listed to any LRU lists) and no memcg routines should
107 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 */
109 if (!PageHuge(page))
110 __page_cache_release(page);
111 destroy_compound_page(page);
112 }
113
__put_page(struct page * page)114 void __put_page(struct page *page)
115 {
116 if (is_zone_device_page(page)) {
117 put_dev_pagemap(page->pgmap);
118
119 /*
120 * The page belongs to the device that created pgmap. Do
121 * not return it to page allocator.
122 */
123 return;
124 }
125
126 if (unlikely(PageCompound(page)))
127 __put_compound_page(page);
128 else
129 __put_single_page(page);
130 }
131 EXPORT_SYMBOL(__put_page);
132
133 /**
134 * put_pages_list() - release a list of pages
135 * @pages: list of pages threaded on page->lru
136 *
137 * Release a list of pages which are strung together on page.lru. Currently
138 * used by read_cache_pages() and related error recovery code.
139 */
put_pages_list(struct list_head * pages)140 void put_pages_list(struct list_head *pages)
141 {
142 while (!list_empty(pages)) {
143 struct page *victim;
144
145 victim = lru_to_page(pages);
146 list_del(&victim->lru);
147 put_page(victim);
148 }
149 }
150 EXPORT_SYMBOL(put_pages_list);
151
152 /*
153 * get_kernel_pages() - pin kernel pages in memory
154 * @kiov: An array of struct kvec structures
155 * @nr_segs: number of segments to pin
156 * @write: pinning for read/write, currently ignored
157 * @pages: array that receives pointers to the pages pinned.
158 * Should be at least nr_segs long.
159 *
160 * Returns number of pages pinned. This may be fewer than the number
161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
162 * were pinned, returns -errno. Each page returned must be released
163 * with a put_page() call when it is finished with.
164 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
166 struct page **pages)
167 {
168 int seg;
169
170 for (seg = 0; seg < nr_segs; seg++) {
171 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
172 return seg;
173
174 pages[seg] = kmap_to_page(kiov[seg].iov_base);
175 get_page(pages[seg]);
176 }
177
178 return seg;
179 }
180 EXPORT_SYMBOL_GPL(get_kernel_pages);
181
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec))182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183 void (*move_fn)(struct page *page, struct lruvec *lruvec))
184 {
185 int i;
186 struct lruvec *lruvec = NULL;
187 unsigned long flags = 0;
188
189 for (i = 0; i < pagevec_count(pvec); i++) {
190 struct page *page = pvec->pages[i];
191
192 /* block memcg migration during page moving between lru */
193 if (!TestClearPageLRU(page))
194 continue;
195
196 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
197 (*move_fn)(page, lruvec);
198
199 SetPageLRU(page);
200 }
201 if (lruvec)
202 unlock_page_lruvec_irqrestore(lruvec, flags);
203 release_pages(pvec->pages, pvec->nr);
204 pagevec_reinit(pvec);
205 }
206
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec)207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
208 {
209 if (!PageUnevictable(page)) {
210 del_page_from_lru_list(page, lruvec);
211 ClearPageActive(page);
212 add_page_to_lru_list_tail(page, lruvec);
213 __count_vm_events(PGROTATED, thp_nr_pages(page));
214 }
215 }
216
217 /* return true if pagevec needs to drain */
pagevec_add_and_need_flush(struct pagevec * pvec,struct page * page)218 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
219 {
220 bool ret = false;
221
222 if (!pagevec_add(pvec, page) || PageCompound(page) ||
223 lru_cache_disabled())
224 ret = true;
225
226 return ret;
227 }
228
229 /*
230 * Writeback is about to end against a page which has been marked for immediate
231 * reclaim. If it still appears to be reclaimable, move it to the tail of the
232 * inactive list.
233 *
234 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
235 */
rotate_reclaimable_page(struct page * page)236 void rotate_reclaimable_page(struct page *page)
237 {
238 if (!PageLocked(page) && !PageDirty(page) &&
239 !PageUnevictable(page) && PageLRU(page)) {
240 struct pagevec *pvec;
241 unsigned long flags;
242
243 get_page(page);
244 local_lock_irqsave(&lru_rotate.lock, flags);
245 pvec = this_cpu_ptr(&lru_rotate.pvec);
246 if (pagevec_add_and_need_flush(pvec, page))
247 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
248 local_unlock_irqrestore(&lru_rotate.lock, flags);
249 }
250 }
251
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_pages)252 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
253 {
254 do {
255 unsigned long lrusize;
256
257 /*
258 * Hold lruvec->lru_lock is safe here, since
259 * 1) The pinned lruvec in reclaim, or
260 * 2) From a pre-LRU page during refault (which also holds the
261 * rcu lock, so would be safe even if the page was on the LRU
262 * and could move simultaneously to a new lruvec).
263 */
264 spin_lock_irq(&lruvec->lru_lock);
265 /* Record cost event */
266 if (file)
267 lruvec->file_cost += nr_pages;
268 else
269 lruvec->anon_cost += nr_pages;
270
271 /*
272 * Decay previous events
273 *
274 * Because workloads change over time (and to avoid
275 * overflow) we keep these statistics as a floating
276 * average, which ends up weighing recent refaults
277 * more than old ones.
278 */
279 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
280 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
281 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
282 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
283
284 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
285 lruvec->file_cost /= 2;
286 lruvec->anon_cost /= 2;
287 }
288 spin_unlock_irq(&lruvec->lru_lock);
289 } while ((lruvec = parent_lruvec(lruvec)));
290 }
291
lru_note_cost_page(struct page * page)292 void lru_note_cost_page(struct page *page)
293 {
294 lru_note_cost(mem_cgroup_page_lruvec(page),
295 page_is_file_lru(page), thp_nr_pages(page));
296 }
297
__activate_page(struct page * page,struct lruvec * lruvec)298 static void __activate_page(struct page *page, struct lruvec *lruvec)
299 {
300 if (!PageActive(page) && !PageUnevictable(page)) {
301 int nr_pages = thp_nr_pages(page);
302
303 del_page_from_lru_list(page, lruvec);
304 SetPageActive(page);
305 add_page_to_lru_list(page, lruvec);
306 trace_mm_lru_activate(page);
307
308 __count_vm_events(PGACTIVATE, nr_pages);
309 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
310 nr_pages);
311 }
312 }
313
314 #ifdef CONFIG_SMP
activate_page_drain(int cpu)315 static void activate_page_drain(int cpu)
316 {
317 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
318
319 if (pagevec_count(pvec))
320 pagevec_lru_move_fn(pvec, __activate_page);
321 }
322
need_activate_page_drain(int cpu)323 static bool need_activate_page_drain(int cpu)
324 {
325 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
326 }
327
activate_page(struct page * page)328 void activate_page(struct page *page)
329 {
330 page = compound_head(page);
331 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
332 struct pagevec *pvec;
333
334 local_lock(&lru_pvecs.lock);
335 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
336 get_page(page);
337 if (pagevec_add_and_need_flush(pvec, page))
338 pagevec_lru_move_fn(pvec, __activate_page);
339 local_unlock(&lru_pvecs.lock);
340 }
341 }
342
343 #else
activate_page_drain(int cpu)344 static inline void activate_page_drain(int cpu)
345 {
346 }
347
activate_page(struct page * page)348 void activate_page(struct page *page)
349 {
350 struct lruvec *lruvec;
351
352 page = compound_head(page);
353 if (TestClearPageLRU(page)) {
354 lruvec = lock_page_lruvec_irq(page);
355 __activate_page(page, lruvec);
356 unlock_page_lruvec_irq(lruvec);
357 SetPageLRU(page);
358 }
359 }
360 #endif
361
__lru_cache_activate_page(struct page * page)362 static void __lru_cache_activate_page(struct page *page)
363 {
364 struct pagevec *pvec;
365 int i;
366
367 local_lock(&lru_pvecs.lock);
368 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
369
370 /*
371 * Search backwards on the optimistic assumption that the page being
372 * activated has just been added to this pagevec. Note that only
373 * the local pagevec is examined as a !PageLRU page could be in the
374 * process of being released, reclaimed, migrated or on a remote
375 * pagevec that is currently being drained. Furthermore, marking
376 * a remote pagevec's page PageActive potentially hits a race where
377 * a page is marked PageActive just after it is added to the inactive
378 * list causing accounting errors and BUG_ON checks to trigger.
379 */
380 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
381 struct page *pagevec_page = pvec->pages[i];
382
383 if (pagevec_page == page) {
384 SetPageActive(page);
385 break;
386 }
387 }
388
389 local_unlock(&lru_pvecs.lock);
390 }
391
392 #ifdef CONFIG_LRU_GEN
page_inc_refs(struct page * page)393 static void page_inc_refs(struct page *page)
394 {
395 unsigned long new_flags, old_flags = READ_ONCE(page->flags);
396
397 if (PageUnevictable(page))
398 return;
399
400 if (!PageReferenced(page)) {
401 SetPageReferenced(page);
402 return;
403 }
404
405 if (!PageWorkingset(page)) {
406 SetPageWorkingset(page);
407 return;
408 }
409
410 /* see the comment on MAX_NR_TIERS */
411 do {
412 new_flags = old_flags & LRU_REFS_MASK;
413 if (new_flags == LRU_REFS_MASK)
414 break;
415
416 new_flags += BIT(LRU_REFS_PGOFF);
417 new_flags |= old_flags & ~LRU_REFS_MASK;
418 } while (!try_cmpxchg(&page->flags, &old_flags, new_flags));
419 }
420 #else
page_inc_refs(struct page * page)421 static void page_inc_refs(struct page *page)
422 {
423 }
424 #endif /* CONFIG_LRU_GEN */
425
426 /*
427 * Mark a page as having seen activity.
428 *
429 * inactive,unreferenced -> inactive,referenced
430 * inactive,referenced -> active,unreferenced
431 * active,unreferenced -> active,referenced
432 *
433 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
434 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
435 */
mark_page_accessed(struct page * page)436 void mark_page_accessed(struct page *page)
437 {
438 page = compound_head(page);
439
440 if (lru_gen_enabled()) {
441 page_inc_refs(page);
442 return;
443 }
444
445 trace_android_vh_mark_page_accessed(page);
446 if (!PageReferenced(page)) {
447 SetPageReferenced(page);
448 } else if (PageUnevictable(page)) {
449 /*
450 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
451 * this list is never rotated or maintained, so marking an
452 * evictable page accessed has no effect.
453 */
454 } else if (!PageActive(page)) {
455 /*
456 * If the page is on the LRU, queue it for activation via
457 * lru_pvecs.activate_page. Otherwise, assume the page is on a
458 * pagevec, mark it active and it'll be moved to the active
459 * LRU on the next drain.
460 */
461 if (PageLRU(page))
462 activate_page(page);
463 else
464 __lru_cache_activate_page(page);
465 ClearPageReferenced(page);
466 workingset_activation(page);
467 }
468 if (page_is_idle(page))
469 clear_page_idle(page);
470 }
471 EXPORT_SYMBOL(mark_page_accessed);
472
473 /**
474 * lru_cache_add - add a page to a page list
475 * @page: the page to be added to the LRU.
476 *
477 * Queue the page for addition to the LRU via pagevec. The decision on whether
478 * to add the page to the [in]active [file|anon] list is deferred until the
479 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
480 * have the page added to the active list using mark_page_accessed().
481 */
lru_cache_add(struct page * page)482 void lru_cache_add(struct page *page)
483 {
484 struct pagevec *pvec;
485
486 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
487 VM_BUG_ON_PAGE(PageLRU(page), page);
488
489 /* see the comment in lru_gen_add_page() */
490 if (lru_gen_enabled() && !PageUnevictable(page) &&
491 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
492 SetPageActive(page);
493
494 get_page(page);
495 local_lock(&lru_pvecs.lock);
496 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
497 if (pagevec_add_and_need_flush(pvec, page))
498 __pagevec_lru_add(pvec);
499 local_unlock(&lru_pvecs.lock);
500 }
501 EXPORT_SYMBOL(lru_cache_add);
502
503 /**
504 * lru_cache_add_inactive_or_unevictable
505 * @page: the page to be added to LRU
506 * @vma: vma in which page is mapped for determining reclaimability
507 *
508 * Place @page on the inactive or unevictable LRU list, depending on its
509 * evictability.
510 */
lru_cache_add_inactive_or_unevictable(struct page * page,struct vm_area_struct * vma)511 void lru_cache_add_inactive_or_unevictable(struct page *page,
512 struct vm_area_struct *vma)
513 {
514 bool unevictable;
515
516 VM_BUG_ON_PAGE(PageLRU(page), page);
517
518 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
519 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
520 int nr_pages = thp_nr_pages(page);
521 /*
522 * We use the irq-unsafe __mod_zone_page_state because this
523 * counter is not modified from interrupt context, and the pte
524 * lock is held(spinlock), which implies preemption disabled.
525 */
526 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
527 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
528 }
529 lru_cache_add(page);
530 }
531
532 /*
533 * If the page can not be invalidated, it is moved to the
534 * inactive list to speed up its reclaim. It is moved to the
535 * head of the list, rather than the tail, to give the flusher
536 * threads some time to write it out, as this is much more
537 * effective than the single-page writeout from reclaim.
538 *
539 * If the page isn't page_mapped and dirty/writeback, the page
540 * could reclaim asap using PG_reclaim.
541 *
542 * 1. active, mapped page -> none
543 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
544 * 3. inactive, mapped page -> none
545 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
546 * 5. inactive, clean -> inactive, tail
547 * 6. Others -> none
548 *
549 * In 4, why it moves inactive's head, the VM expects the page would
550 * be write it out by flusher threads as this is much more effective
551 * than the single-page writeout from reclaim.
552 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec)553 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
554 {
555 bool active = PageActive(page);
556 int nr_pages = thp_nr_pages(page);
557
558 if (PageUnevictable(page))
559 return;
560
561 /* Some processes are using the page */
562 if (page_mapped(page))
563 return;
564
565 del_page_from_lru_list(page, lruvec);
566 ClearPageActive(page);
567 ClearPageReferenced(page);
568
569 if (PageWriteback(page) || PageDirty(page)) {
570 /*
571 * PG_reclaim could be raced with end_page_writeback
572 * It can make readahead confusing. But race window
573 * is _really_ small and it's non-critical problem.
574 */
575 add_page_to_lru_list(page, lruvec);
576 SetPageReclaim(page);
577 } else {
578 /*
579 * The page's writeback ends up during pagevec
580 * We move that page into tail of inactive.
581 */
582 add_page_to_lru_list_tail(page, lruvec);
583 __count_vm_events(PGROTATED, nr_pages);
584 }
585
586 if (active) {
587 __count_vm_events(PGDEACTIVATE, nr_pages);
588 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
589 nr_pages);
590 }
591 }
592
lru_deactivate_fn(struct page * page,struct lruvec * lruvec)593 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
594 {
595 if (!PageUnevictable(page) && (PageActive(page) || lru_gen_enabled())) {
596 int nr_pages = thp_nr_pages(page);
597
598 del_page_from_lru_list(page, lruvec);
599 ClearPageActive(page);
600 ClearPageReferenced(page);
601 add_page_to_lru_list(page, lruvec);
602
603 __count_vm_events(PGDEACTIVATE, nr_pages);
604 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
605 nr_pages);
606 }
607 }
608
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec)609 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
610 {
611 if (PageAnon(page) && PageSwapBacked(page) &&
612 !PageSwapCache(page) && !PageUnevictable(page)) {
613 int nr_pages = thp_nr_pages(page);
614
615 del_page_from_lru_list(page, lruvec);
616 ClearPageActive(page);
617 ClearPageReferenced(page);
618 /*
619 * Lazyfree pages are clean anonymous pages. They have
620 * PG_swapbacked flag cleared, to distinguish them from normal
621 * anonymous pages
622 */
623 ClearPageSwapBacked(page);
624 add_page_to_lru_list(page, lruvec);
625
626 __count_vm_events(PGLAZYFREE, nr_pages);
627 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
628 nr_pages);
629 }
630 }
631
632 /*
633 * Drain pages out of the cpu's pagevecs.
634 * Either "cpu" is the current CPU, and preemption has already been
635 * disabled; or "cpu" is being hot-unplugged, and is already dead.
636 */
lru_add_drain_cpu(int cpu)637 void lru_add_drain_cpu(int cpu)
638 {
639 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
640
641 if (pagevec_count(pvec))
642 __pagevec_lru_add(pvec);
643
644 pvec = &per_cpu(lru_rotate.pvec, cpu);
645 /* Disabling interrupts below acts as a compiler barrier. */
646 if (data_race(pagevec_count(pvec))) {
647 unsigned long flags;
648
649 /* No harm done if a racing interrupt already did this */
650 local_lock_irqsave(&lru_rotate.lock, flags);
651 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
652 local_unlock_irqrestore(&lru_rotate.lock, flags);
653 }
654
655 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
656 if (pagevec_count(pvec))
657 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
658
659 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
660 if (pagevec_count(pvec))
661 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
662
663 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
664 if (pagevec_count(pvec))
665 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
666
667 activate_page_drain(cpu);
668 }
669
670 /**
671 * deactivate_file_page - forcefully deactivate a file page
672 * @page: page to deactivate
673 *
674 * This function hints the VM that @page is a good reclaim candidate,
675 * for example if its invalidation fails due to the page being dirty
676 * or under writeback.
677 */
deactivate_file_page(struct page * page)678 void deactivate_file_page(struct page *page)
679 {
680 /*
681 * In a workload with many unevictable page such as mprotect,
682 * unevictable page deactivation for accelerating reclaim is pointless.
683 */
684 if (PageUnevictable(page))
685 return;
686
687 if (likely(get_page_unless_zero(page))) {
688 struct pagevec *pvec;
689
690 local_lock(&lru_pvecs.lock);
691 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
692
693 if (pagevec_add_and_need_flush(pvec, page))
694 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
695 local_unlock(&lru_pvecs.lock);
696 }
697 }
698
699 /*
700 * deactivate_page - deactivate a page
701 * @page: page to deactivate
702 *
703 * deactivate_page() moves @page to the inactive list if @page was on the active
704 * list and was not an unevictable page. This is done to accelerate the reclaim
705 * of @page.
706 */
deactivate_page(struct page * page)707 void deactivate_page(struct page *page)
708 {
709 if (PageLRU(page) && !PageUnevictable(page) &&
710 (PageActive(page) || lru_gen_enabled())) {
711 struct pagevec *pvec;
712
713 local_lock(&lru_pvecs.lock);
714 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
715 get_page(page);
716 if (pagevec_add_and_need_flush(pvec, page))
717 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
718 local_unlock(&lru_pvecs.lock);
719 }
720 }
721
722 /**
723 * mark_page_lazyfree - make an anon page lazyfree
724 * @page: page to deactivate
725 *
726 * mark_page_lazyfree() moves @page to the inactive file list.
727 * This is done to accelerate the reclaim of @page.
728 */
mark_page_lazyfree(struct page * page)729 void mark_page_lazyfree(struct page *page)
730 {
731 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
732 !PageSwapCache(page) && !PageUnevictable(page)) {
733 struct pagevec *pvec;
734
735 local_lock(&lru_pvecs.lock);
736 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
737 get_page(page);
738 if (pagevec_add_and_need_flush(pvec, page))
739 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
740 local_unlock(&lru_pvecs.lock);
741 }
742 }
743
lru_add_drain(void)744 void lru_add_drain(void)
745 {
746 local_lock(&lru_pvecs.lock);
747 lru_add_drain_cpu(smp_processor_id());
748 local_unlock(&lru_pvecs.lock);
749 }
750
751 /*
752 * It's called from per-cpu workqueue context in SMP case so
753 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
754 * the same cpu. It shouldn't be a problem in !SMP case since
755 * the core is only one and the locks will disable preemption.
756 */
lru_add_and_bh_lrus_drain(void)757 static void lru_add_and_bh_lrus_drain(void)
758 {
759 local_lock(&lru_pvecs.lock);
760 lru_add_drain_cpu(smp_processor_id());
761 local_unlock(&lru_pvecs.lock);
762 invalidate_bh_lrus_cpu();
763 }
764
lru_add_drain_cpu_zone(struct zone * zone)765 void lru_add_drain_cpu_zone(struct zone *zone)
766 {
767 local_lock(&lru_pvecs.lock);
768 lru_add_drain_cpu(smp_processor_id());
769 drain_local_pages(zone);
770 local_unlock(&lru_pvecs.lock);
771 }
772
773 #ifdef CONFIG_SMP
774
775 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
776
lru_add_drain_per_cpu(struct work_struct * dummy)777 static void lru_add_drain_per_cpu(struct work_struct *dummy)
778 {
779 lru_add_and_bh_lrus_drain();
780 }
781
782 /*
783 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
784 * kworkers being shut down before our page_alloc_cpu_dead callback is
785 * executed on the offlined cpu.
786 * Calling this function with cpu hotplug locks held can actually lead
787 * to obscure indirect dependencies via WQ context.
788 */
__lru_add_drain_all(bool force_all_cpus)789 inline void __lru_add_drain_all(bool force_all_cpus)
790 {
791 /*
792 * lru_drain_gen - Global pages generation number
793 *
794 * (A) Definition: global lru_drain_gen = x implies that all generations
795 * 0 < n <= x are already *scheduled* for draining.
796 *
797 * This is an optimization for the highly-contended use case where a
798 * user space workload keeps constantly generating a flow of pages for
799 * each CPU.
800 */
801 static unsigned int lru_drain_gen;
802 static struct cpumask has_work;
803 static DEFINE_MUTEX(lock);
804 unsigned cpu, this_gen;
805
806 /*
807 * Make sure nobody triggers this path before mm_percpu_wq is fully
808 * initialized.
809 */
810 if (WARN_ON(!mm_percpu_wq))
811 return;
812
813 /*
814 * Guarantee pagevec counter stores visible by this CPU are visible to
815 * other CPUs before loading the current drain generation.
816 */
817 smp_mb();
818
819 /*
820 * (B) Locally cache global LRU draining generation number
821 *
822 * The read barrier ensures that the counter is loaded before the mutex
823 * is taken. It pairs with smp_mb() inside the mutex critical section
824 * at (D).
825 */
826 this_gen = smp_load_acquire(&lru_drain_gen);
827
828 mutex_lock(&lock);
829
830 /*
831 * (C) Exit the draining operation if a newer generation, from another
832 * lru_add_drain_all(), was already scheduled for draining. Check (A).
833 */
834 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
835 goto done;
836
837 /*
838 * (D) Increment global generation number
839 *
840 * Pairs with smp_load_acquire() at (B), outside of the critical
841 * section. Use a full memory barrier to guarantee that the new global
842 * drain generation number is stored before loading pagevec counters.
843 *
844 * This pairing must be done here, before the for_each_online_cpu loop
845 * below which drains the page vectors.
846 *
847 * Let x, y, and z represent some system CPU numbers, where x < y < z.
848 * Assume CPU #z is in the middle of the for_each_online_cpu loop
849 * below and has already reached CPU #y's per-cpu data. CPU #x comes
850 * along, adds some pages to its per-cpu vectors, then calls
851 * lru_add_drain_all().
852 *
853 * If the paired barrier is done at any later step, e.g. after the
854 * loop, CPU #x will just exit at (C) and miss flushing out all of its
855 * added pages.
856 */
857 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
858 smp_mb();
859
860 cpumask_clear(&has_work);
861 for_each_online_cpu(cpu) {
862 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
863
864 if (force_all_cpus ||
865 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
866 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
867 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
868 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
869 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
870 need_activate_page_drain(cpu) ||
871 has_bh_in_lru(cpu, NULL)) {
872 INIT_WORK(work, lru_add_drain_per_cpu);
873 queue_work_on(cpu, mm_percpu_wq, work);
874 __cpumask_set_cpu(cpu, &has_work);
875 }
876 }
877
878 for_each_cpu(cpu, &has_work)
879 flush_work(&per_cpu(lru_add_drain_work, cpu));
880
881 done:
882 mutex_unlock(&lock);
883 }
884
lru_add_drain_all(void)885 void lru_add_drain_all(void)
886 {
887 __lru_add_drain_all(false);
888 }
889 #else
lru_add_drain_all(void)890 void lru_add_drain_all(void)
891 {
892 lru_add_drain();
893 }
894 #endif /* CONFIG_SMP */
895
896 atomic_t lru_disable_count = ATOMIC_INIT(0);
897
898 /*
899 * lru_cache_disable() needs to be called before we start compiling
900 * a list of pages to be migrated using isolate_lru_page().
901 * It drains pages on LRU cache and then disable on all cpus until
902 * lru_cache_enable is called.
903 *
904 * Must be paired with a call to lru_cache_enable().
905 */
lru_cache_disable(void)906 void lru_cache_disable(void)
907 {
908 atomic_inc(&lru_disable_count);
909 #ifdef CONFIG_SMP
910 /*
911 * lru_add_drain_all in the force mode will schedule draining on
912 * all online CPUs so any calls of lru_cache_disabled wrapped by
913 * local_lock or preemption disabled would be ordered by that.
914 * The atomic operation doesn't need to have stronger ordering
915 * requirements because that is enforeced by the scheduling
916 * guarantees.
917 */
918 __lru_add_drain_all(true);
919 #else
920 lru_add_and_bh_lrus_drain();
921 #endif
922 }
923
924 /**
925 * release_pages - batched put_page()
926 * @pages: array of pages to release
927 * @nr: number of pages
928 *
929 * Decrement the reference count on all the pages in @pages. If it
930 * fell to zero, remove the page from the LRU and free it.
931 */
release_pages(struct page ** pages,int nr)932 void release_pages(struct page **pages, int nr)
933 {
934 int i;
935 LIST_HEAD(pages_to_free);
936 struct lruvec *lruvec = NULL;
937 unsigned long flags;
938 unsigned int lock_batch;
939
940 for (i = 0; i < nr; i++) {
941 struct page *page = pages[i];
942
943 /*
944 * Make sure the IRQ-safe lock-holding time does not get
945 * excessive with a continuous string of pages from the
946 * same lruvec. The lock is held only if lruvec != NULL.
947 */
948 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
949 unlock_page_lruvec_irqrestore(lruvec, flags);
950 lruvec = NULL;
951 }
952
953 page = compound_head(page);
954 if (is_huge_zero_page(page))
955 continue;
956
957 if (is_zone_device_page(page)) {
958 if (lruvec) {
959 unlock_page_lruvec_irqrestore(lruvec, flags);
960 lruvec = NULL;
961 }
962 /*
963 * ZONE_DEVICE pages that return 'false' from
964 * page_is_devmap_managed() do not require special
965 * processing, and instead, expect a call to
966 * put_page_testzero().
967 */
968 if (page_is_devmap_managed(page)) {
969 put_devmap_managed_page(page);
970 continue;
971 }
972 if (put_page_testzero(page))
973 put_dev_pagemap(page->pgmap);
974 continue;
975 }
976
977 if (!put_page_testzero(page))
978 continue;
979
980 if (PageCompound(page)) {
981 if (lruvec) {
982 unlock_page_lruvec_irqrestore(lruvec, flags);
983 lruvec = NULL;
984 }
985 __put_compound_page(page);
986 continue;
987 }
988
989 if (PageLRU(page)) {
990 struct lruvec *prev_lruvec = lruvec;
991
992 lruvec = relock_page_lruvec_irqsave(page, lruvec,
993 &flags);
994 if (prev_lruvec != lruvec)
995 lock_batch = 0;
996
997 del_page_from_lru_list(page, lruvec);
998 __clear_page_lru_flags(page);
999 }
1000
1001 __ClearPageWaiters(page);
1002
1003 list_add(&page->lru, &pages_to_free);
1004 }
1005 if (lruvec)
1006 unlock_page_lruvec_irqrestore(lruvec, flags);
1007
1008 mem_cgroup_uncharge_list(&pages_to_free);
1009 free_unref_page_list(&pages_to_free);
1010 }
1011 EXPORT_SYMBOL(release_pages);
1012
1013 /*
1014 * The pages which we're about to release may be in the deferred lru-addition
1015 * queues. That would prevent them from really being freed right now. That's
1016 * OK from a correctness point of view but is inefficient - those pages may be
1017 * cache-warm and we want to give them back to the page allocator ASAP.
1018 *
1019 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
1020 * and __pagevec_lru_add_active() call release_pages() directly to avoid
1021 * mutual recursion.
1022 */
__pagevec_release(struct pagevec * pvec)1023 void __pagevec_release(struct pagevec *pvec)
1024 {
1025 if (!pvec->percpu_pvec_drained) {
1026 lru_add_drain();
1027 pvec->percpu_pvec_drained = true;
1028 }
1029 release_pages(pvec->pages, pagevec_count(pvec));
1030 pagevec_reinit(pvec);
1031 }
1032 EXPORT_SYMBOL(__pagevec_release);
1033
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec)1034 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
1035 {
1036 int was_unevictable = TestClearPageUnevictable(page);
1037 int nr_pages = thp_nr_pages(page);
1038
1039 VM_BUG_ON_PAGE(PageLRU(page), page);
1040
1041 /*
1042 * Page becomes evictable in two ways:
1043 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1044 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1045 * a) do PageLRU check with lock [check_move_unevictable_pages]
1046 * b) do PageLRU check before lock [clear_page_mlock]
1047 *
1048 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1049 * following strict ordering:
1050 *
1051 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1052 *
1053 * SetPageLRU() TestClearPageMlocked()
1054 * smp_mb() // explicit ordering // above provides strict
1055 * // ordering
1056 * PageMlocked() PageLRU()
1057 *
1058 *
1059 * if '#1' does not observe setting of PG_lru by '#0' and fails
1060 * isolation, the explicit barrier will make sure that page_evictable
1061 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1062 * can be reordered after PageMlocked check and can make '#1' to fail
1063 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1064 * looking at the same page) and the evictable page will be stranded
1065 * in an unevictable LRU.
1066 */
1067 SetPageLRU(page);
1068 smp_mb__after_atomic();
1069
1070 if (page_evictable(page)) {
1071 if (was_unevictable)
1072 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1073 } else {
1074 ClearPageActive(page);
1075 SetPageUnevictable(page);
1076 if (!was_unevictable)
1077 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1078 }
1079
1080 add_page_to_lru_list(page, lruvec);
1081 trace_mm_lru_insertion(page);
1082 }
1083
1084 /*
1085 * Add the passed pages to the LRU, then drop the caller's refcount
1086 * on them. Reinitialises the caller's pagevec.
1087 */
__pagevec_lru_add(struct pagevec * pvec)1088 void __pagevec_lru_add(struct pagevec *pvec)
1089 {
1090 int i;
1091 struct lruvec *lruvec = NULL;
1092 unsigned long flags = 0;
1093
1094 for (i = 0; i < pagevec_count(pvec); i++) {
1095 struct page *page = pvec->pages[i];
1096
1097 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1098 __pagevec_lru_add_fn(page, lruvec);
1099 }
1100 if (lruvec)
1101 unlock_page_lruvec_irqrestore(lruvec, flags);
1102 release_pages(pvec->pages, pvec->nr);
1103 pagevec_reinit(pvec);
1104 }
1105
1106 /**
1107 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1108 * @pvec: The pagevec to prune
1109 *
1110 * find_get_entries() fills both pages and XArray value entries (aka
1111 * exceptional entries) into the pagevec. This function prunes all
1112 * exceptionals from @pvec without leaving holes, so that it can be
1113 * passed on to page-only pagevec operations.
1114 */
pagevec_remove_exceptionals(struct pagevec * pvec)1115 void pagevec_remove_exceptionals(struct pagevec *pvec)
1116 {
1117 int i, j;
1118
1119 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1120 struct page *page = pvec->pages[i];
1121 if (!xa_is_value(page))
1122 pvec->pages[j++] = page;
1123 }
1124 pvec->nr = j;
1125 }
1126
1127 /**
1128 * pagevec_lookup_range - gang pagecache lookup
1129 * @pvec: Where the resulting pages are placed
1130 * @mapping: The address_space to search
1131 * @start: The starting page index
1132 * @end: The final page index
1133 *
1134 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1135 * pages in the mapping starting from index @start and upto index @end
1136 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1137 * reference against the pages in @pvec.
1138 *
1139 * The search returns a group of mapping-contiguous pages with ascending
1140 * indexes. There may be holes in the indices due to not-present pages. We
1141 * also update @start to index the next page for the traversal.
1142 *
1143 * pagevec_lookup_range() returns the number of pages which were found. If this
1144 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1145 * reached.
1146 */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1147 unsigned pagevec_lookup_range(struct pagevec *pvec,
1148 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1149 {
1150 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1151 pvec->pages);
1152 return pagevec_count(pvec);
1153 }
1154 EXPORT_SYMBOL(pagevec_lookup_range);
1155
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1156 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1157 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1158 xa_mark_t tag)
1159 {
1160 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1161 PAGEVEC_SIZE, pvec->pages);
1162 return pagevec_count(pvec);
1163 }
1164 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1165
1166 /*
1167 * Perform any setup for the swap system
1168 */
swap_setup(void)1169 void __init swap_setup(void)
1170 {
1171 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1172
1173 /* Use a smaller cluster for small-memory machines */
1174 if (megs < 16)
1175 page_cluster = 2;
1176 else
1177 page_cluster = 3;
1178 /*
1179 * Right now other parts of the system means that we
1180 * _really_ don't want to cluster much more
1181 */
1182 }
1183
1184 #ifdef CONFIG_DEV_PAGEMAP_OPS
put_devmap_managed_page(struct page * page)1185 void put_devmap_managed_page(struct page *page)
1186 {
1187 int count;
1188
1189 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1190 return;
1191
1192 count = page_ref_dec_return(page);
1193
1194 /*
1195 * devmap page refcounts are 1-based, rather than 0-based: if
1196 * refcount is 1, then the page is free and the refcount is
1197 * stable because nobody holds a reference on the page.
1198 */
1199 if (count == 1)
1200 free_devmap_managed_page(page);
1201 else if (!count)
1202 __put_page(page);
1203 }
1204 EXPORT_SYMBOL(put_devmap_managed_page);
1205 #endif
1206