1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 #include <linux/pgtable.h>
39 #include <linux/uaccess.h>
40 #include <linux/hugetlb.h>
41 #include <linux/io.h>
42 #include <asm/tlbflush.h>
43 #include <asm/shmparam.h>
44
45 #include "internal.h"
46 #include "pgalloc-track.h"
47
48 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
49 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
50
set_nohugeiomap(char * str)51 static int __init set_nohugeiomap(char *str)
52 {
53 ioremap_max_page_shift = PAGE_SHIFT;
54 return 0;
55 }
56 early_param("nohugeiomap", set_nohugeiomap);
57 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
58 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
59 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
60
61 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
62 static bool __ro_after_init vmap_allow_huge = true;
63
set_nohugevmalloc(char * str)64 static int __init set_nohugevmalloc(char *str)
65 {
66 vmap_allow_huge = false;
67 return 0;
68 }
69 early_param("nohugevmalloc", set_nohugevmalloc);
70 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
71 static const bool vmap_allow_huge = false;
72 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
73
is_vmalloc_addr(const void * x)74 bool is_vmalloc_addr(const void *x)
75 {
76 unsigned long addr = (unsigned long)kasan_reset_tag(x);
77
78 return addr >= VMALLOC_START && addr < VMALLOC_END;
79 }
80 EXPORT_SYMBOL(is_vmalloc_addr);
81
82 struct vfree_deferred {
83 struct llist_head list;
84 struct work_struct wq;
85 };
86 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
87
88 static void __vunmap(const void *, int);
89
free_work(struct work_struct * w)90 static void free_work(struct work_struct *w)
91 {
92 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
93 struct llist_node *t, *llnode;
94
95 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
96 __vunmap((void *)llnode, 1);
97 }
98
99 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)100 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
101 phys_addr_t phys_addr, pgprot_t prot,
102 unsigned int max_page_shift, pgtbl_mod_mask *mask)
103 {
104 pte_t *pte;
105 u64 pfn;
106 unsigned long size = PAGE_SIZE;
107
108 pfn = phys_addr >> PAGE_SHIFT;
109 pte = pte_alloc_kernel_track(pmd, addr, mask);
110 if (!pte)
111 return -ENOMEM;
112 do {
113 BUG_ON(!pte_none(*pte));
114
115 #ifdef CONFIG_HUGETLB_PAGE
116 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
117 if (size != PAGE_SIZE) {
118 pte_t entry = pfn_pte(pfn, prot);
119
120 entry = pte_mkhuge(entry);
121 entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 set_huge_pte_at(&init_mm, addr, pte, entry);
123 pfn += PFN_DOWN(size);
124 continue;
125 }
126 #endif
127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 pfn++;
129 } while (pte += PFN_DOWN(size), addr += size, addr != end);
130 *mask |= PGTBL_PTE_MODIFIED;
131 return 0;
132 }
133
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 phys_addr_t phys_addr, pgprot_t prot,
136 unsigned int max_page_shift)
137 {
138 if (max_page_shift < PMD_SHIFT)
139 return 0;
140
141 if (!arch_vmap_pmd_supported(prot))
142 return 0;
143
144 if ((end - addr) != PMD_SIZE)
145 return 0;
146
147 if (!IS_ALIGNED(addr, PMD_SIZE))
148 return 0;
149
150 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 return 0;
152
153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 return 0;
155
156 return pmd_set_huge(pmd, phys_addr, prot);
157 }
158
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 phys_addr_t phys_addr, pgprot_t prot,
161 unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171
172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 max_page_shift)) {
174 *mask |= PGTBL_PMD_MODIFIED;
175 continue;
176 }
177
178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 return -ENOMEM;
180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 return 0;
182 }
183
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 phys_addr_t phys_addr, pgprot_t prot,
186 unsigned int max_page_shift)
187 {
188 if (max_page_shift < PUD_SHIFT)
189 return 0;
190
191 if (!arch_vmap_pud_supported(prot))
192 return 0;
193
194 if ((end - addr) != PUD_SIZE)
195 return 0;
196
197 if (!IS_ALIGNED(addr, PUD_SIZE))
198 return 0;
199
200 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 return 0;
202
203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 return 0;
205
206 return pud_set_huge(pud, phys_addr, prot);
207 }
208
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 phys_addr_t phys_addr, pgprot_t prot,
211 unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 pud_t *pud;
214 unsigned long next;
215
216 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 if (!pud)
218 return -ENOMEM;
219 do {
220 next = pud_addr_end(addr, end);
221
222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 max_page_shift)) {
224 *mask |= PGTBL_PUD_MODIFIED;
225 continue;
226 }
227
228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 max_page_shift, mask))
230 return -ENOMEM;
231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 return 0;
233 }
234
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 phys_addr_t phys_addr, pgprot_t prot,
237 unsigned int max_page_shift)
238 {
239 if (max_page_shift < P4D_SHIFT)
240 return 0;
241
242 if (!arch_vmap_p4d_supported(prot))
243 return 0;
244
245 if ((end - addr) != P4D_SIZE)
246 return 0;
247
248 if (!IS_ALIGNED(addr, P4D_SIZE))
249 return 0;
250
251 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 return 0;
253
254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 return 0;
256
257 return p4d_set_huge(p4d, phys_addr, prot);
258 }
259
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 phys_addr_t phys_addr, pgprot_t prot,
262 unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 p4d_t *p4d;
265 unsigned long next;
266
267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 if (!p4d)
269 return -ENOMEM;
270 do {
271 next = p4d_addr_end(addr, end);
272
273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 max_page_shift)) {
275 *mask |= PGTBL_P4D_MODIFIED;
276 continue;
277 }
278
279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 max_page_shift, mask))
281 return -ENOMEM;
282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 return 0;
284 }
285
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 phys_addr_t phys_addr, pgprot_t prot,
288 unsigned int max_page_shift)
289 {
290 pgd_t *pgd;
291 unsigned long start;
292 unsigned long next;
293 int err;
294 pgtbl_mod_mask mask = 0;
295
296 might_sleep();
297 BUG_ON(addr >= end);
298
299 start = addr;
300 pgd = pgd_offset_k(addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 max_page_shift, &mask);
305 if (err)
306 break;
307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308
309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 arch_sync_kernel_mappings(start, end);
311
312 return err;
313 }
314
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)315 int ioremap_page_range(unsigned long addr, unsigned long end,
316 phys_addr_t phys_addr, pgprot_t prot)
317 {
318 int err;
319
320 prot = pgprot_nx(prot);
321 err = vmap_range_noflush(addr, end, phys_addr, prot,
322 ioremap_max_page_shift);
323 flush_cache_vmap(addr, end);
324
325 if (IS_ENABLED(CONFIG_ARCH_HAS_IOREMAP_PHYS_HOOKS) && !err)
326 ioremap_phys_range_hook(phys_addr, end - addr, prot);
327
328 return err;
329 }
330
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)331 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
332 pgtbl_mod_mask *mask)
333 {
334 pte_t *pte;
335
336 pte = pte_offset_kernel(pmd, addr);
337 do {
338 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
339 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
340 } while (pte++, addr += PAGE_SIZE, addr != end);
341 *mask |= PGTBL_PTE_MODIFIED;
342 }
343
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)344 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
345 pgtbl_mod_mask *mask)
346 {
347 pmd_t *pmd;
348 unsigned long next;
349 int cleared;
350
351 pmd = pmd_offset(pud, addr);
352 do {
353 next = pmd_addr_end(addr, end);
354
355 cleared = pmd_clear_huge(pmd);
356 if (cleared || pmd_bad(*pmd))
357 *mask |= PGTBL_PMD_MODIFIED;
358
359 if (cleared)
360 continue;
361 if (pmd_none_or_clear_bad(pmd))
362 continue;
363 vunmap_pte_range(pmd, addr, next, mask);
364
365 cond_resched();
366 } while (pmd++, addr = next, addr != end);
367 }
368
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)369 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
370 pgtbl_mod_mask *mask)
371 {
372 pud_t *pud;
373 unsigned long next;
374 int cleared;
375
376 pud = pud_offset(p4d, addr);
377 do {
378 next = pud_addr_end(addr, end);
379
380 cleared = pud_clear_huge(pud);
381 if (cleared || pud_bad(*pud))
382 *mask |= PGTBL_PUD_MODIFIED;
383
384 if (cleared)
385 continue;
386 if (pud_none_or_clear_bad(pud))
387 continue;
388 vunmap_pmd_range(pud, addr, next, mask);
389 } while (pud++, addr = next, addr != end);
390 }
391
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)392 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
393 pgtbl_mod_mask *mask)
394 {
395 p4d_t *p4d;
396 unsigned long next;
397 int cleared;
398
399 p4d = p4d_offset(pgd, addr);
400 do {
401 next = p4d_addr_end(addr, end);
402
403 cleared = p4d_clear_huge(p4d);
404 if (cleared || p4d_bad(*p4d))
405 *mask |= PGTBL_P4D_MODIFIED;
406
407 if (cleared)
408 continue;
409 if (p4d_none_or_clear_bad(p4d))
410 continue;
411 vunmap_pud_range(p4d, addr, next, mask);
412 } while (p4d++, addr = next, addr != end);
413 }
414
415 /*
416 * vunmap_range_noflush is similar to vunmap_range, but does not
417 * flush caches or TLBs.
418 *
419 * The caller is responsible for calling flush_cache_vmap() before calling
420 * this function, and flush_tlb_kernel_range after it has returned
421 * successfully (and before the addresses are expected to cause a page fault
422 * or be re-mapped for something else, if TLB flushes are being delayed or
423 * coalesced).
424 *
425 * This is an internal function only. Do not use outside mm/.
426 */
vunmap_range_noflush(unsigned long start,unsigned long end)427 void vunmap_range_noflush(unsigned long start, unsigned long end)
428 {
429 unsigned long next;
430 pgd_t *pgd;
431 unsigned long addr = start;
432 pgtbl_mod_mask mask = 0;
433
434 BUG_ON(addr >= end);
435 pgd = pgd_offset_k(addr);
436 do {
437 next = pgd_addr_end(addr, end);
438 if (pgd_bad(*pgd))
439 mask |= PGTBL_PGD_MODIFIED;
440 if (pgd_none_or_clear_bad(pgd))
441 continue;
442 vunmap_p4d_range(pgd, addr, next, &mask);
443 } while (pgd++, addr = next, addr != end);
444
445 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
446 arch_sync_kernel_mappings(start, end);
447 }
448
449 /**
450 * vunmap_range - unmap kernel virtual addresses
451 * @addr: start of the VM area to unmap
452 * @end: end of the VM area to unmap (non-inclusive)
453 *
454 * Clears any present PTEs in the virtual address range, flushes TLBs and
455 * caches. Any subsequent access to the address before it has been re-mapped
456 * is a kernel bug.
457 */
vunmap_range(unsigned long addr,unsigned long end)458 void vunmap_range(unsigned long addr, unsigned long end)
459 {
460 flush_cache_vunmap(addr, end);
461 vunmap_range_noflush(addr, end);
462 flush_tlb_kernel_range(addr, end);
463 }
464
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)465 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
466 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
467 pgtbl_mod_mask *mask)
468 {
469 pte_t *pte;
470
471 /*
472 * nr is a running index into the array which helps higher level
473 * callers keep track of where we're up to.
474 */
475
476 pte = pte_alloc_kernel_track(pmd, addr, mask);
477 if (!pte)
478 return -ENOMEM;
479 do {
480 struct page *page = pages[*nr];
481
482 if (WARN_ON(!pte_none(*pte)))
483 return -EBUSY;
484 if (WARN_ON(!page))
485 return -ENOMEM;
486 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
487 (*nr)++;
488 } while (pte++, addr += PAGE_SIZE, addr != end);
489 *mask |= PGTBL_PTE_MODIFIED;
490 return 0;
491 }
492
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)493 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
494 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
495 pgtbl_mod_mask *mask)
496 {
497 pmd_t *pmd;
498 unsigned long next;
499
500 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
501 if (!pmd)
502 return -ENOMEM;
503 do {
504 next = pmd_addr_end(addr, end);
505 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
506 return -ENOMEM;
507 } while (pmd++, addr = next, addr != end);
508 return 0;
509 }
510
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)511 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
512 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
513 pgtbl_mod_mask *mask)
514 {
515 pud_t *pud;
516 unsigned long next;
517
518 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
519 if (!pud)
520 return -ENOMEM;
521 do {
522 next = pud_addr_end(addr, end);
523 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
524 return -ENOMEM;
525 } while (pud++, addr = next, addr != end);
526 return 0;
527 }
528
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)529 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
530 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
531 pgtbl_mod_mask *mask)
532 {
533 p4d_t *p4d;
534 unsigned long next;
535
536 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
537 if (!p4d)
538 return -ENOMEM;
539 do {
540 next = p4d_addr_end(addr, end);
541 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
542 return -ENOMEM;
543 } while (p4d++, addr = next, addr != end);
544 return 0;
545 }
546
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)547 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
548 pgprot_t prot, struct page **pages)
549 {
550 unsigned long start = addr;
551 pgd_t *pgd;
552 unsigned long next;
553 int err = 0;
554 int nr = 0;
555 pgtbl_mod_mask mask = 0;
556
557 BUG_ON(addr >= end);
558 pgd = pgd_offset_k(addr);
559 do {
560 next = pgd_addr_end(addr, end);
561 if (pgd_bad(*pgd))
562 mask |= PGTBL_PGD_MODIFIED;
563 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
564 if (err)
565 return err;
566 } while (pgd++, addr = next, addr != end);
567
568 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
569 arch_sync_kernel_mappings(start, end);
570
571 return 0;
572 }
573
574 /*
575 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
576 * flush caches.
577 *
578 * The caller is responsible for calling flush_cache_vmap() after this
579 * function returns successfully and before the addresses are accessed.
580 *
581 * This is an internal function only. Do not use outside mm/.
582 */
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)583 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
584 pgprot_t prot, struct page **pages, unsigned int page_shift)
585 {
586 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
587
588 WARN_ON(page_shift < PAGE_SHIFT);
589
590 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
591 page_shift == PAGE_SHIFT)
592 return vmap_small_pages_range_noflush(addr, end, prot, pages);
593
594 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
595 int err;
596
597 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
598 __pa(page_address(pages[i])), prot,
599 page_shift);
600 if (err)
601 return err;
602
603 addr += 1UL << page_shift;
604 }
605
606 return 0;
607 }
608
609 /**
610 * vmap_pages_range - map pages to a kernel virtual address
611 * @addr: start of the VM area to map
612 * @end: end of the VM area to map (non-inclusive)
613 * @prot: page protection flags to use
614 * @pages: pages to map (always PAGE_SIZE pages)
615 * @page_shift: maximum shift that the pages may be mapped with, @pages must
616 * be aligned and contiguous up to at least this shift.
617 *
618 * RETURNS:
619 * 0 on success, -errno on failure.
620 */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)621 static int vmap_pages_range(unsigned long addr, unsigned long end,
622 pgprot_t prot, struct page **pages, unsigned int page_shift)
623 {
624 int err;
625
626 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
627 flush_cache_vmap(addr, end);
628 return err;
629 }
630
is_vmalloc_or_module_addr(const void * x)631 int is_vmalloc_or_module_addr(const void *x)
632 {
633 /*
634 * ARM, x86-64 and sparc64 put modules in a special place,
635 * and fall back on vmalloc() if that fails. Others
636 * just put it in the vmalloc space.
637 */
638 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
639 unsigned long addr = (unsigned long)kasan_reset_tag(x);
640 if (addr >= MODULES_VADDR && addr < MODULES_END)
641 return 1;
642 #endif
643 return is_vmalloc_addr(x);
644 }
645
646 /*
647 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
648 * return the tail page that corresponds to the base page address, which
649 * matches small vmap mappings.
650 */
vmalloc_to_page(const void * vmalloc_addr)651 struct page *vmalloc_to_page(const void *vmalloc_addr)
652 {
653 unsigned long addr = (unsigned long) vmalloc_addr;
654 struct page *page = NULL;
655 pgd_t *pgd = pgd_offset_k(addr);
656 p4d_t *p4d;
657 pud_t *pud;
658 pmd_t *pmd;
659 pte_t *ptep, pte;
660
661 /*
662 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
663 * architectures that do not vmalloc module space
664 */
665 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
666
667 if (pgd_none(*pgd))
668 return NULL;
669 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
670 return NULL; /* XXX: no allowance for huge pgd */
671 if (WARN_ON_ONCE(pgd_bad(*pgd)))
672 return NULL;
673
674 p4d = p4d_offset(pgd, addr);
675 if (p4d_none(*p4d))
676 return NULL;
677 if (p4d_leaf(*p4d))
678 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
679 if (WARN_ON_ONCE(p4d_bad(*p4d)))
680 return NULL;
681
682 pud = pud_offset(p4d, addr);
683 if (pud_none(*pud))
684 return NULL;
685 if (pud_leaf(*pud))
686 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
687 if (WARN_ON_ONCE(pud_bad(*pud)))
688 return NULL;
689
690 pmd = pmd_offset(pud, addr);
691 if (pmd_none(*pmd))
692 return NULL;
693 if (pmd_leaf(*pmd))
694 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
695 if (WARN_ON_ONCE(pmd_bad(*pmd)))
696 return NULL;
697
698 ptep = pte_offset_map(pmd, addr);
699 pte = *ptep;
700 if (pte_present(pte))
701 page = pte_page(pte);
702 pte_unmap(ptep);
703
704 return page;
705 }
706 EXPORT_SYMBOL(vmalloc_to_page);
707
708 /*
709 * Map a vmalloc()-space virtual address to the physical page frame number.
710 */
vmalloc_to_pfn(const void * vmalloc_addr)711 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
712 {
713 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
714 }
715 EXPORT_SYMBOL(vmalloc_to_pfn);
716
717
718 /*** Global kva allocator ***/
719
720 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
721 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
722
723
724 static DEFINE_SPINLOCK(vmap_area_lock);
725 static DEFINE_SPINLOCK(free_vmap_area_lock);
726 /* Export for kexec only */
727 LIST_HEAD(vmap_area_list);
728 static struct rb_root vmap_area_root = RB_ROOT;
729 static bool vmap_initialized __read_mostly;
730
731 static struct rb_root purge_vmap_area_root = RB_ROOT;
732 static LIST_HEAD(purge_vmap_area_list);
733 static DEFINE_SPINLOCK(purge_vmap_area_lock);
734
735 /*
736 * This kmem_cache is used for vmap_area objects. Instead of
737 * allocating from slab we reuse an object from this cache to
738 * make things faster. Especially in "no edge" splitting of
739 * free block.
740 */
741 static struct kmem_cache *vmap_area_cachep;
742
743 /*
744 * This linked list is used in pair with free_vmap_area_root.
745 * It gives O(1) access to prev/next to perform fast coalescing.
746 */
747 static LIST_HEAD(free_vmap_area_list);
748
749 /*
750 * This augment red-black tree represents the free vmap space.
751 * All vmap_area objects in this tree are sorted by va->va_start
752 * address. It is used for allocation and merging when a vmap
753 * object is released.
754 *
755 * Each vmap_area node contains a maximum available free block
756 * of its sub-tree, right or left. Therefore it is possible to
757 * find a lowest match of free area.
758 */
759 static struct rb_root free_vmap_area_root = RB_ROOT;
760
761 /*
762 * Preload a CPU with one object for "no edge" split case. The
763 * aim is to get rid of allocations from the atomic context, thus
764 * to use more permissive allocation masks.
765 */
766 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
767
768 static __always_inline unsigned long
va_size(struct vmap_area * va)769 va_size(struct vmap_area *va)
770 {
771 return (va->va_end - va->va_start);
772 }
773
774 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)775 get_subtree_max_size(struct rb_node *node)
776 {
777 struct vmap_area *va;
778
779 va = rb_entry_safe(node, struct vmap_area, rb_node);
780 return va ? va->subtree_max_size : 0;
781 }
782
783 /*
784 * Gets called when remove the node and rotate.
785 */
786 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)787 compute_subtree_max_size(struct vmap_area *va)
788 {
789 return max3(va_size(va),
790 get_subtree_max_size(va->rb_node.rb_left),
791 get_subtree_max_size(va->rb_node.rb_right));
792 }
793
794 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
795 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
796
797 static void purge_vmap_area_lazy(void);
798 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
799 static unsigned long lazy_max_pages(void);
800
801 static atomic_long_t nr_vmalloc_pages;
802
vmalloc_nr_pages(void)803 unsigned long vmalloc_nr_pages(void)
804 {
805 return atomic_long_read(&nr_vmalloc_pages);
806 }
807 EXPORT_SYMBOL_GPL(vmalloc_nr_pages);
808
find_vmap_area_exceed_addr(unsigned long addr)809 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
810 {
811 struct vmap_area *va = NULL;
812 struct rb_node *n = vmap_area_root.rb_node;
813
814 addr = (unsigned long)kasan_reset_tag((void *)addr);
815
816 while (n) {
817 struct vmap_area *tmp;
818
819 tmp = rb_entry(n, struct vmap_area, rb_node);
820 if (tmp->va_end > addr) {
821 va = tmp;
822 if (tmp->va_start <= addr)
823 break;
824
825 n = n->rb_left;
826 } else
827 n = n->rb_right;
828 }
829
830 return va;
831 }
832
__find_vmap_area(unsigned long addr)833 static struct vmap_area *__find_vmap_area(unsigned long addr)
834 {
835 struct rb_node *n = vmap_area_root.rb_node;
836
837 addr = (unsigned long)kasan_reset_tag((void *)addr);
838
839 while (n) {
840 struct vmap_area *va;
841
842 va = rb_entry(n, struct vmap_area, rb_node);
843 if (addr < va->va_start)
844 n = n->rb_left;
845 else if (addr >= va->va_end)
846 n = n->rb_right;
847 else
848 return va;
849 }
850
851 return NULL;
852 }
853
854 /*
855 * This function returns back addresses of parent node
856 * and its left or right link for further processing.
857 *
858 * Otherwise NULL is returned. In that case all further
859 * steps regarding inserting of conflicting overlap range
860 * have to be declined and actually considered as a bug.
861 */
862 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)863 find_va_links(struct vmap_area *va,
864 struct rb_root *root, struct rb_node *from,
865 struct rb_node **parent)
866 {
867 struct vmap_area *tmp_va;
868 struct rb_node **link;
869
870 if (root) {
871 link = &root->rb_node;
872 if (unlikely(!*link)) {
873 *parent = NULL;
874 return link;
875 }
876 } else {
877 link = &from;
878 }
879
880 /*
881 * Go to the bottom of the tree. When we hit the last point
882 * we end up with parent rb_node and correct direction, i name
883 * it link, where the new va->rb_node will be attached to.
884 */
885 do {
886 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
887
888 /*
889 * During the traversal we also do some sanity check.
890 * Trigger the BUG() if there are sides(left/right)
891 * or full overlaps.
892 */
893 if (va->va_start < tmp_va->va_end &&
894 va->va_end <= tmp_va->va_start)
895 link = &(*link)->rb_left;
896 else if (va->va_end > tmp_va->va_start &&
897 va->va_start >= tmp_va->va_end)
898 link = &(*link)->rb_right;
899 else {
900 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
901 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
902
903 return NULL;
904 }
905 } while (*link);
906
907 *parent = &tmp_va->rb_node;
908 return link;
909 }
910
911 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)912 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
913 {
914 struct list_head *list;
915
916 if (unlikely(!parent))
917 /*
918 * The red-black tree where we try to find VA neighbors
919 * before merging or inserting is empty, i.e. it means
920 * there is no free vmap space. Normally it does not
921 * happen but we handle this case anyway.
922 */
923 return NULL;
924
925 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
926 return (&parent->rb_right == link ? list->next : list);
927 }
928
929 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)930 link_va(struct vmap_area *va, struct rb_root *root,
931 struct rb_node *parent, struct rb_node **link, struct list_head *head)
932 {
933 /*
934 * VA is still not in the list, but we can
935 * identify its future previous list_head node.
936 */
937 if (likely(parent)) {
938 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
939 if (&parent->rb_right != link)
940 head = head->prev;
941 }
942
943 /* Insert to the rb-tree */
944 rb_link_node(&va->rb_node, parent, link);
945 if (root == &free_vmap_area_root) {
946 /*
947 * Some explanation here. Just perform simple insertion
948 * to the tree. We do not set va->subtree_max_size to
949 * its current size before calling rb_insert_augmented().
950 * It is because of we populate the tree from the bottom
951 * to parent levels when the node _is_ in the tree.
952 *
953 * Therefore we set subtree_max_size to zero after insertion,
954 * to let __augment_tree_propagate_from() puts everything to
955 * the correct order later on.
956 */
957 rb_insert_augmented(&va->rb_node,
958 root, &free_vmap_area_rb_augment_cb);
959 va->subtree_max_size = 0;
960 } else {
961 rb_insert_color(&va->rb_node, root);
962 }
963
964 /* Address-sort this list */
965 list_add(&va->list, head);
966 }
967
968 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)969 unlink_va(struct vmap_area *va, struct rb_root *root)
970 {
971 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
972 return;
973
974 if (root == &free_vmap_area_root)
975 rb_erase_augmented(&va->rb_node,
976 root, &free_vmap_area_rb_augment_cb);
977 else
978 rb_erase(&va->rb_node, root);
979
980 list_del(&va->list);
981 RB_CLEAR_NODE(&va->rb_node);
982 }
983
984 #if DEBUG_AUGMENT_PROPAGATE_CHECK
985 static void
augment_tree_propagate_check(void)986 augment_tree_propagate_check(void)
987 {
988 struct vmap_area *va;
989 unsigned long computed_size;
990
991 list_for_each_entry(va, &free_vmap_area_list, list) {
992 computed_size = compute_subtree_max_size(va);
993 if (computed_size != va->subtree_max_size)
994 pr_emerg("tree is corrupted: %lu, %lu\n",
995 va_size(va), va->subtree_max_size);
996 }
997 }
998 #endif
999
1000 /*
1001 * This function populates subtree_max_size from bottom to upper
1002 * levels starting from VA point. The propagation must be done
1003 * when VA size is modified by changing its va_start/va_end. Or
1004 * in case of newly inserting of VA to the tree.
1005 *
1006 * It means that __augment_tree_propagate_from() must be called:
1007 * - After VA has been inserted to the tree(free path);
1008 * - After VA has been shrunk(allocation path);
1009 * - After VA has been increased(merging path).
1010 *
1011 * Please note that, it does not mean that upper parent nodes
1012 * and their subtree_max_size are recalculated all the time up
1013 * to the root node.
1014 *
1015 * 4--8
1016 * /\
1017 * / \
1018 * / \
1019 * 2--2 8--8
1020 *
1021 * For example if we modify the node 4, shrinking it to 2, then
1022 * no any modification is required. If we shrink the node 2 to 1
1023 * its subtree_max_size is updated only, and set to 1. If we shrink
1024 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1025 * node becomes 4--6.
1026 */
1027 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1028 augment_tree_propagate_from(struct vmap_area *va)
1029 {
1030 /*
1031 * Populate the tree from bottom towards the root until
1032 * the calculated maximum available size of checked node
1033 * is equal to its current one.
1034 */
1035 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1036
1037 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1038 augment_tree_propagate_check();
1039 #endif
1040 }
1041
1042 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1043 insert_vmap_area(struct vmap_area *va,
1044 struct rb_root *root, struct list_head *head)
1045 {
1046 struct rb_node **link;
1047 struct rb_node *parent;
1048
1049 link = find_va_links(va, root, NULL, &parent);
1050 if (link)
1051 link_va(va, root, parent, link, head);
1052 }
1053
1054 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1055 insert_vmap_area_augment(struct vmap_area *va,
1056 struct rb_node *from, struct rb_root *root,
1057 struct list_head *head)
1058 {
1059 struct rb_node **link;
1060 struct rb_node *parent;
1061
1062 if (from)
1063 link = find_va_links(va, NULL, from, &parent);
1064 else
1065 link = find_va_links(va, root, NULL, &parent);
1066
1067 if (link) {
1068 link_va(va, root, parent, link, head);
1069 augment_tree_propagate_from(va);
1070 }
1071 }
1072
1073 /*
1074 * Merge de-allocated chunk of VA memory with previous
1075 * and next free blocks. If coalesce is not done a new
1076 * free area is inserted. If VA has been merged, it is
1077 * freed.
1078 *
1079 * Please note, it can return NULL in case of overlap
1080 * ranges, followed by WARN() report. Despite it is a
1081 * buggy behaviour, a system can be alive and keep
1082 * ongoing.
1083 */
1084 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1085 merge_or_add_vmap_area(struct vmap_area *va,
1086 struct rb_root *root, struct list_head *head)
1087 {
1088 struct vmap_area *sibling;
1089 struct list_head *next;
1090 struct rb_node **link;
1091 struct rb_node *parent;
1092 bool merged = false;
1093
1094 /*
1095 * Find a place in the tree where VA potentially will be
1096 * inserted, unless it is merged with its sibling/siblings.
1097 */
1098 link = find_va_links(va, root, NULL, &parent);
1099 if (!link)
1100 return NULL;
1101
1102 /*
1103 * Get next node of VA to check if merging can be done.
1104 */
1105 next = get_va_next_sibling(parent, link);
1106 if (unlikely(next == NULL))
1107 goto insert;
1108
1109 /*
1110 * start end
1111 * | |
1112 * |<------VA------>|<-----Next----->|
1113 * | |
1114 * start end
1115 */
1116 if (next != head) {
1117 sibling = list_entry(next, struct vmap_area, list);
1118 if (sibling->va_start == va->va_end) {
1119 sibling->va_start = va->va_start;
1120
1121 /* Free vmap_area object. */
1122 kmem_cache_free(vmap_area_cachep, va);
1123
1124 /* Point to the new merged area. */
1125 va = sibling;
1126 merged = true;
1127 }
1128 }
1129
1130 /*
1131 * start end
1132 * | |
1133 * |<-----Prev----->|<------VA------>|
1134 * | |
1135 * start end
1136 */
1137 if (next->prev != head) {
1138 sibling = list_entry(next->prev, struct vmap_area, list);
1139 if (sibling->va_end == va->va_start) {
1140 /*
1141 * If both neighbors are coalesced, it is important
1142 * to unlink the "next" node first, followed by merging
1143 * with "previous" one. Otherwise the tree might not be
1144 * fully populated if a sibling's augmented value is
1145 * "normalized" because of rotation operations.
1146 */
1147 if (merged)
1148 unlink_va(va, root);
1149
1150 sibling->va_end = va->va_end;
1151
1152 /* Free vmap_area object. */
1153 kmem_cache_free(vmap_area_cachep, va);
1154
1155 /* Point to the new merged area. */
1156 va = sibling;
1157 merged = true;
1158 }
1159 }
1160
1161 insert:
1162 if (!merged)
1163 link_va(va, root, parent, link, head);
1164
1165 return va;
1166 }
1167
1168 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1169 merge_or_add_vmap_area_augment(struct vmap_area *va,
1170 struct rb_root *root, struct list_head *head)
1171 {
1172 va = merge_or_add_vmap_area(va, root, head);
1173 if (va)
1174 augment_tree_propagate_from(va);
1175
1176 return va;
1177 }
1178
1179 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1180 is_within_this_va(struct vmap_area *va, unsigned long size,
1181 unsigned long align, unsigned long vstart)
1182 {
1183 unsigned long nva_start_addr;
1184
1185 if (va->va_start > vstart)
1186 nva_start_addr = ALIGN(va->va_start, align);
1187 else
1188 nva_start_addr = ALIGN(vstart, align);
1189
1190 /* Can be overflowed due to big size or alignment. */
1191 if (nva_start_addr + size < nva_start_addr ||
1192 nva_start_addr < vstart)
1193 return false;
1194
1195 return (nva_start_addr + size <= va->va_end);
1196 }
1197
1198 /*
1199 * Find the first free block(lowest start address) in the tree,
1200 * that will accomplish the request corresponding to passing
1201 * parameters.
1202 */
1203 static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,unsigned long align,unsigned long vstart)1204 find_vmap_lowest_match(unsigned long size,
1205 unsigned long align, unsigned long vstart)
1206 {
1207 struct vmap_area *va;
1208 struct rb_node *node;
1209 unsigned long length;
1210
1211 /* Start from the root. */
1212 node = free_vmap_area_root.rb_node;
1213
1214 /* Adjust the search size for alignment overhead. */
1215 length = size + align - 1;
1216
1217 while (node) {
1218 va = rb_entry(node, struct vmap_area, rb_node);
1219
1220 if (get_subtree_max_size(node->rb_left) >= length &&
1221 vstart < va->va_start) {
1222 node = node->rb_left;
1223 } else {
1224 if (is_within_this_va(va, size, align, vstart))
1225 return va;
1226
1227 /*
1228 * Does not make sense to go deeper towards the right
1229 * sub-tree if it does not have a free block that is
1230 * equal or bigger to the requested search length.
1231 */
1232 if (get_subtree_max_size(node->rb_right) >= length) {
1233 node = node->rb_right;
1234 continue;
1235 }
1236
1237 /*
1238 * OK. We roll back and find the first right sub-tree,
1239 * that will satisfy the search criteria. It can happen
1240 * only once due to "vstart" restriction.
1241 */
1242 while ((node = rb_parent(node))) {
1243 va = rb_entry(node, struct vmap_area, rb_node);
1244 if (is_within_this_va(va, size, align, vstart))
1245 return va;
1246
1247 if (get_subtree_max_size(node->rb_right) >= length &&
1248 vstart <= va->va_start) {
1249 node = node->rb_right;
1250 break;
1251 }
1252 }
1253 }
1254 }
1255
1256 return NULL;
1257 }
1258
1259 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1260 #include <linux/random.h>
1261
1262 static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,unsigned long align,unsigned long vstart)1263 find_vmap_lowest_linear_match(unsigned long size,
1264 unsigned long align, unsigned long vstart)
1265 {
1266 struct vmap_area *va;
1267
1268 list_for_each_entry(va, &free_vmap_area_list, list) {
1269 if (!is_within_this_va(va, size, align, vstart))
1270 continue;
1271
1272 return va;
1273 }
1274
1275 return NULL;
1276 }
1277
1278 static void
find_vmap_lowest_match_check(unsigned long size)1279 find_vmap_lowest_match_check(unsigned long size)
1280 {
1281 struct vmap_area *va_1, *va_2;
1282 unsigned long vstart;
1283 unsigned int rnd;
1284
1285 get_random_bytes(&rnd, sizeof(rnd));
1286 vstart = VMALLOC_START + rnd;
1287
1288 va_1 = find_vmap_lowest_match(size, 1, vstart);
1289 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1290
1291 if (va_1 != va_2)
1292 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1293 va_1, va_2, vstart);
1294 }
1295 #endif
1296
1297 enum fit_type {
1298 NOTHING_FIT = 0,
1299 FL_FIT_TYPE = 1, /* full fit */
1300 LE_FIT_TYPE = 2, /* left edge fit */
1301 RE_FIT_TYPE = 3, /* right edge fit */
1302 NE_FIT_TYPE = 4 /* no edge fit */
1303 };
1304
1305 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1306 classify_va_fit_type(struct vmap_area *va,
1307 unsigned long nva_start_addr, unsigned long size)
1308 {
1309 enum fit_type type;
1310
1311 /* Check if it is within VA. */
1312 if (nva_start_addr < va->va_start ||
1313 nva_start_addr + size > va->va_end)
1314 return NOTHING_FIT;
1315
1316 /* Now classify. */
1317 if (va->va_start == nva_start_addr) {
1318 if (va->va_end == nva_start_addr + size)
1319 type = FL_FIT_TYPE;
1320 else
1321 type = LE_FIT_TYPE;
1322 } else if (va->va_end == nva_start_addr + size) {
1323 type = RE_FIT_TYPE;
1324 } else {
1325 type = NE_FIT_TYPE;
1326 }
1327
1328 return type;
1329 }
1330
1331 static __always_inline int
adjust_va_to_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size,enum fit_type type)1332 adjust_va_to_fit_type(struct vmap_area *va,
1333 unsigned long nva_start_addr, unsigned long size,
1334 enum fit_type type)
1335 {
1336 struct vmap_area *lva = NULL;
1337
1338 if (type == FL_FIT_TYPE) {
1339 /*
1340 * No need to split VA, it fully fits.
1341 *
1342 * | |
1343 * V NVA V
1344 * |---------------|
1345 */
1346 unlink_va(va, &free_vmap_area_root);
1347 kmem_cache_free(vmap_area_cachep, va);
1348 } else if (type == LE_FIT_TYPE) {
1349 /*
1350 * Split left edge of fit VA.
1351 *
1352 * | |
1353 * V NVA V R
1354 * |-------|-------|
1355 */
1356 va->va_start += size;
1357 } else if (type == RE_FIT_TYPE) {
1358 /*
1359 * Split right edge of fit VA.
1360 *
1361 * | |
1362 * L V NVA V
1363 * |-------|-------|
1364 */
1365 va->va_end = nva_start_addr;
1366 } else if (type == NE_FIT_TYPE) {
1367 /*
1368 * Split no edge of fit VA.
1369 *
1370 * | |
1371 * L V NVA V R
1372 * |---|-------|---|
1373 */
1374 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1375 if (unlikely(!lva)) {
1376 /*
1377 * For percpu allocator we do not do any pre-allocation
1378 * and leave it as it is. The reason is it most likely
1379 * never ends up with NE_FIT_TYPE splitting. In case of
1380 * percpu allocations offsets and sizes are aligned to
1381 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1382 * are its main fitting cases.
1383 *
1384 * There are a few exceptions though, as an example it is
1385 * a first allocation (early boot up) when we have "one"
1386 * big free space that has to be split.
1387 *
1388 * Also we can hit this path in case of regular "vmap"
1389 * allocations, if "this" current CPU was not preloaded.
1390 * See the comment in alloc_vmap_area() why. If so, then
1391 * GFP_NOWAIT is used instead to get an extra object for
1392 * split purpose. That is rare and most time does not
1393 * occur.
1394 *
1395 * What happens if an allocation gets failed. Basically,
1396 * an "overflow" path is triggered to purge lazily freed
1397 * areas to free some memory, then, the "retry" path is
1398 * triggered to repeat one more time. See more details
1399 * in alloc_vmap_area() function.
1400 */
1401 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1402 if (!lva)
1403 return -1;
1404 }
1405
1406 /*
1407 * Build the remainder.
1408 */
1409 lva->va_start = va->va_start;
1410 lva->va_end = nva_start_addr;
1411
1412 /*
1413 * Shrink this VA to remaining size.
1414 */
1415 va->va_start = nva_start_addr + size;
1416 } else {
1417 return -1;
1418 }
1419
1420 if (type != FL_FIT_TYPE) {
1421 augment_tree_propagate_from(va);
1422
1423 if (lva) /* type == NE_FIT_TYPE */
1424 insert_vmap_area_augment(lva, &va->rb_node,
1425 &free_vmap_area_root, &free_vmap_area_list);
1426 }
1427
1428 return 0;
1429 }
1430
1431 /*
1432 * Returns a start address of the newly allocated area, if success.
1433 * Otherwise a vend is returned that indicates failure.
1434 */
1435 static __always_inline unsigned long
__alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1436 __alloc_vmap_area(unsigned long size, unsigned long align,
1437 unsigned long vstart, unsigned long vend)
1438 {
1439 unsigned long nva_start_addr;
1440 struct vmap_area *va;
1441 enum fit_type type;
1442 int ret;
1443
1444 va = find_vmap_lowest_match(size, align, vstart);
1445 if (unlikely(!va))
1446 return vend;
1447
1448 if (va->va_start > vstart)
1449 nva_start_addr = ALIGN(va->va_start, align);
1450 else
1451 nva_start_addr = ALIGN(vstart, align);
1452
1453 /* Check the "vend" restriction. */
1454 if (nva_start_addr + size > vend)
1455 return vend;
1456
1457 /* Classify what we have found. */
1458 type = classify_va_fit_type(va, nva_start_addr, size);
1459 if (WARN_ON_ONCE(type == NOTHING_FIT))
1460 return vend;
1461
1462 /* Update the free vmap_area. */
1463 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1464 if (ret)
1465 return vend;
1466
1467 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1468 find_vmap_lowest_match_check(size);
1469 #endif
1470
1471 return nva_start_addr;
1472 }
1473
1474 /*
1475 * Free a region of KVA allocated by alloc_vmap_area
1476 */
free_vmap_area(struct vmap_area * va)1477 static void free_vmap_area(struct vmap_area *va)
1478 {
1479 /*
1480 * Remove from the busy tree/list.
1481 */
1482 spin_lock(&vmap_area_lock);
1483 unlink_va(va, &vmap_area_root);
1484 spin_unlock(&vmap_area_lock);
1485
1486 /*
1487 * Insert/Merge it back to the free tree/list.
1488 */
1489 spin_lock(&free_vmap_area_lock);
1490 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1491 spin_unlock(&free_vmap_area_lock);
1492 }
1493
1494 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1495 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1496 {
1497 struct vmap_area *va = NULL;
1498
1499 /*
1500 * Preload this CPU with one extra vmap_area object. It is used
1501 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1502 * a CPU that does an allocation is preloaded.
1503 *
1504 * We do it in non-atomic context, thus it allows us to use more
1505 * permissive allocation masks to be more stable under low memory
1506 * condition and high memory pressure.
1507 */
1508 if (!this_cpu_read(ne_fit_preload_node))
1509 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1510
1511 spin_lock(lock);
1512
1513 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1514 kmem_cache_free(vmap_area_cachep, va);
1515 }
1516
1517 /*
1518 * Allocate a region of KVA of the specified size and alignment, within the
1519 * vstart and vend.
1520 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)1521 static struct vmap_area *alloc_vmap_area(unsigned long size,
1522 unsigned long align,
1523 unsigned long vstart, unsigned long vend,
1524 int node, gfp_t gfp_mask)
1525 {
1526 struct vmap_area *va;
1527 unsigned long freed;
1528 unsigned long addr;
1529 int purged = 0;
1530 int ret;
1531
1532 BUG_ON(!size);
1533 BUG_ON(offset_in_page(size));
1534 BUG_ON(!is_power_of_2(align));
1535
1536 if (unlikely(!vmap_initialized))
1537 return ERR_PTR(-EBUSY);
1538
1539 might_sleep();
1540 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1541
1542 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1543 if (unlikely(!va))
1544 return ERR_PTR(-ENOMEM);
1545
1546 /*
1547 * Only scan the relevant parts containing pointers to other objects
1548 * to avoid false negatives.
1549 */
1550 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1551
1552 retry:
1553 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1554 addr = __alloc_vmap_area(size, align, vstart, vend);
1555 spin_unlock(&free_vmap_area_lock);
1556
1557 /*
1558 * If an allocation fails, the "vend" address is
1559 * returned. Therefore trigger the overflow path.
1560 */
1561 if (unlikely(addr == vend))
1562 goto overflow;
1563
1564 va->va_start = addr;
1565 va->va_end = addr + size;
1566 va->vm = NULL;
1567
1568 spin_lock(&vmap_area_lock);
1569 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1570 spin_unlock(&vmap_area_lock);
1571
1572 BUG_ON(!IS_ALIGNED(va->va_start, align));
1573 BUG_ON(va->va_start < vstart);
1574 BUG_ON(va->va_end > vend);
1575
1576 ret = kasan_populate_vmalloc(addr, size);
1577 if (ret) {
1578 free_vmap_area(va);
1579 return ERR_PTR(ret);
1580 }
1581
1582 return va;
1583
1584 overflow:
1585 if (!purged) {
1586 purge_vmap_area_lazy();
1587 purged = 1;
1588 goto retry;
1589 }
1590
1591 freed = 0;
1592 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1593
1594 if (freed > 0) {
1595 purged = 0;
1596 goto retry;
1597 }
1598
1599 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1600 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1601 size);
1602
1603 kmem_cache_free(vmap_area_cachep, va);
1604 return ERR_PTR(-EBUSY);
1605 }
1606
register_vmap_purge_notifier(struct notifier_block * nb)1607 int register_vmap_purge_notifier(struct notifier_block *nb)
1608 {
1609 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1610 }
1611 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1612
unregister_vmap_purge_notifier(struct notifier_block * nb)1613 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1614 {
1615 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1616 }
1617 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1618
1619 /*
1620 * lazy_max_pages is the maximum amount of virtual address space we gather up
1621 * before attempting to purge with a TLB flush.
1622 *
1623 * There is a tradeoff here: a larger number will cover more kernel page tables
1624 * and take slightly longer to purge, but it will linearly reduce the number of
1625 * global TLB flushes that must be performed. It would seem natural to scale
1626 * this number up linearly with the number of CPUs (because vmapping activity
1627 * could also scale linearly with the number of CPUs), however it is likely
1628 * that in practice, workloads might be constrained in other ways that mean
1629 * vmap activity will not scale linearly with CPUs. Also, I want to be
1630 * conservative and not introduce a big latency on huge systems, so go with
1631 * a less aggressive log scale. It will still be an improvement over the old
1632 * code, and it will be simple to change the scale factor if we find that it
1633 * becomes a problem on bigger systems.
1634 */
lazy_max_pages(void)1635 static unsigned long lazy_max_pages(void)
1636 {
1637 unsigned int log;
1638
1639 log = fls(num_online_cpus());
1640
1641 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1642 }
1643
1644 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1645
1646 /*
1647 * Serialize vmap purging. There is no actual critical section protected
1648 * by this look, but we want to avoid concurrent calls for performance
1649 * reasons and to make the pcpu_get_vm_areas more deterministic.
1650 */
1651 static DEFINE_MUTEX(vmap_purge_lock);
1652
1653 /* for per-CPU blocks */
1654 static void purge_fragmented_blocks_allcpus(void);
1655
1656 #ifdef CONFIG_X86_64
1657 /*
1658 * called before a call to iounmap() if the caller wants vm_area_struct's
1659 * immediately freed.
1660 */
set_iounmap_nonlazy(void)1661 void set_iounmap_nonlazy(void)
1662 {
1663 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1664 }
1665 #endif /* CONFIG_X86_64 */
1666
1667 /*
1668 * Purges all lazily-freed vmap areas.
1669 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)1670 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1671 {
1672 unsigned long resched_threshold;
1673 struct list_head local_pure_list;
1674 struct vmap_area *va, *n_va;
1675
1676 lockdep_assert_held(&vmap_purge_lock);
1677
1678 spin_lock(&purge_vmap_area_lock);
1679 purge_vmap_area_root = RB_ROOT;
1680 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1681 spin_unlock(&purge_vmap_area_lock);
1682
1683 if (unlikely(list_empty(&local_pure_list)))
1684 return false;
1685
1686 start = min(start,
1687 list_first_entry(&local_pure_list,
1688 struct vmap_area, list)->va_start);
1689
1690 end = max(end,
1691 list_last_entry(&local_pure_list,
1692 struct vmap_area, list)->va_end);
1693
1694 flush_tlb_kernel_range(start, end);
1695 resched_threshold = lazy_max_pages() << 1;
1696
1697 spin_lock(&free_vmap_area_lock);
1698 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1699 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1700 unsigned long orig_start = va->va_start;
1701 unsigned long orig_end = va->va_end;
1702
1703 /*
1704 * Finally insert or merge lazily-freed area. It is
1705 * detached and there is no need to "unlink" it from
1706 * anything.
1707 */
1708 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1709 &free_vmap_area_list);
1710
1711 if (!va)
1712 continue;
1713
1714 if (is_vmalloc_or_module_addr((void *)orig_start))
1715 kasan_release_vmalloc(orig_start, orig_end,
1716 va->va_start, va->va_end);
1717
1718 atomic_long_sub(nr, &vmap_lazy_nr);
1719
1720 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1721 cond_resched_lock(&free_vmap_area_lock);
1722 }
1723 spin_unlock(&free_vmap_area_lock);
1724 return true;
1725 }
1726
1727 /*
1728 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1729 * is already purging.
1730 */
try_purge_vmap_area_lazy(void)1731 static void try_purge_vmap_area_lazy(void)
1732 {
1733 if (mutex_trylock(&vmap_purge_lock)) {
1734 __purge_vmap_area_lazy(ULONG_MAX, 0);
1735 mutex_unlock(&vmap_purge_lock);
1736 }
1737 }
1738
1739 /*
1740 * Kick off a purge of the outstanding lazy areas.
1741 */
purge_vmap_area_lazy(void)1742 static void purge_vmap_area_lazy(void)
1743 {
1744 mutex_lock(&vmap_purge_lock);
1745 purge_fragmented_blocks_allcpus();
1746 __purge_vmap_area_lazy(ULONG_MAX, 0);
1747 mutex_unlock(&vmap_purge_lock);
1748 }
1749
1750 /*
1751 * Free a vmap area, caller ensuring that the area has been unmapped
1752 * and flush_cache_vunmap had been called for the correct range
1753 * previously.
1754 */
free_vmap_area_noflush(struct vmap_area * va)1755 static void free_vmap_area_noflush(struct vmap_area *va)
1756 {
1757 unsigned long nr_lazy;
1758
1759 spin_lock(&vmap_area_lock);
1760 unlink_va(va, &vmap_area_root);
1761 spin_unlock(&vmap_area_lock);
1762
1763 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1764 PAGE_SHIFT, &vmap_lazy_nr);
1765
1766 /*
1767 * Merge or place it to the purge tree/list.
1768 */
1769 spin_lock(&purge_vmap_area_lock);
1770 merge_or_add_vmap_area(va,
1771 &purge_vmap_area_root, &purge_vmap_area_list);
1772 spin_unlock(&purge_vmap_area_lock);
1773
1774 /* After this point, we may free va at any time */
1775 if (unlikely(nr_lazy > lazy_max_pages()))
1776 try_purge_vmap_area_lazy();
1777 }
1778
1779 /*
1780 * Free and unmap a vmap area
1781 */
free_unmap_vmap_area(struct vmap_area * va)1782 static void free_unmap_vmap_area(struct vmap_area *va)
1783 {
1784 flush_cache_vunmap(va->va_start, va->va_end);
1785 vunmap_range_noflush(va->va_start, va->va_end);
1786 if (debug_pagealloc_enabled_static())
1787 flush_tlb_kernel_range(va->va_start, va->va_end);
1788
1789 free_vmap_area_noflush(va);
1790 }
1791
find_vmap_area(unsigned long addr)1792 static struct vmap_area *find_vmap_area(unsigned long addr)
1793 {
1794 struct vmap_area *va;
1795
1796 spin_lock(&vmap_area_lock);
1797 va = __find_vmap_area(addr);
1798 spin_unlock(&vmap_area_lock);
1799
1800 return va;
1801 }
1802
1803 /*** Per cpu kva allocator ***/
1804
1805 /*
1806 * vmap space is limited especially on 32 bit architectures. Ensure there is
1807 * room for at least 16 percpu vmap blocks per CPU.
1808 */
1809 /*
1810 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1811 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1812 * instead (we just need a rough idea)
1813 */
1814 #if BITS_PER_LONG == 32
1815 #define VMALLOC_SPACE (128UL*1024*1024)
1816 #else
1817 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1818 #endif
1819
1820 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1821 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1822 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1823 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1824 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1825 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1826 #define VMAP_BBMAP_BITS \
1827 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1828 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1829 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1830
1831 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1832
1833 struct vmap_block_queue {
1834 spinlock_t lock;
1835 struct list_head free;
1836 };
1837
1838 struct vmap_block {
1839 spinlock_t lock;
1840 struct vmap_area *va;
1841 unsigned long free, dirty;
1842 unsigned long dirty_min, dirty_max; /*< dirty range */
1843 struct list_head free_list;
1844 struct rcu_head rcu_head;
1845 struct list_head purge;
1846 };
1847
1848 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1849 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1850
1851 /*
1852 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1853 * in the free path. Could get rid of this if we change the API to return a
1854 * "cookie" from alloc, to be passed to free. But no big deal yet.
1855 */
1856 static DEFINE_XARRAY(vmap_blocks);
1857
1858 /*
1859 * We should probably have a fallback mechanism to allocate virtual memory
1860 * out of partially filled vmap blocks. However vmap block sizing should be
1861 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1862 * big problem.
1863 */
1864
addr_to_vb_idx(unsigned long addr)1865 static unsigned long addr_to_vb_idx(unsigned long addr)
1866 {
1867 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1868 addr /= VMAP_BLOCK_SIZE;
1869 return addr;
1870 }
1871
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)1872 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1873 {
1874 unsigned long addr;
1875
1876 addr = va_start + (pages_off << PAGE_SHIFT);
1877 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1878 return (void *)addr;
1879 }
1880
1881 /**
1882 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1883 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1884 * @order: how many 2^order pages should be occupied in newly allocated block
1885 * @gfp_mask: flags for the page level allocator
1886 *
1887 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1888 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)1889 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1890 {
1891 struct vmap_block_queue *vbq;
1892 struct vmap_block *vb;
1893 struct vmap_area *va;
1894 unsigned long vb_idx;
1895 int node, err;
1896 void *vaddr;
1897
1898 node = numa_node_id();
1899
1900 vb = kmalloc_node(sizeof(struct vmap_block),
1901 gfp_mask & GFP_RECLAIM_MASK, node);
1902 if (unlikely(!vb))
1903 return ERR_PTR(-ENOMEM);
1904
1905 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1906 VMALLOC_START, VMALLOC_END,
1907 node, gfp_mask);
1908 if (IS_ERR(va)) {
1909 kfree(vb);
1910 return ERR_CAST(va);
1911 }
1912
1913 vaddr = vmap_block_vaddr(va->va_start, 0);
1914 spin_lock_init(&vb->lock);
1915 vb->va = va;
1916 /* At least something should be left free */
1917 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1918 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1919 vb->dirty = 0;
1920 vb->dirty_min = VMAP_BBMAP_BITS;
1921 vb->dirty_max = 0;
1922 INIT_LIST_HEAD(&vb->free_list);
1923
1924 vb_idx = addr_to_vb_idx(va->va_start);
1925 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1926 if (err) {
1927 kfree(vb);
1928 free_vmap_area(va);
1929 return ERR_PTR(err);
1930 }
1931
1932 vbq = &get_cpu_var(vmap_block_queue);
1933 spin_lock(&vbq->lock);
1934 list_add_tail_rcu(&vb->free_list, &vbq->free);
1935 spin_unlock(&vbq->lock);
1936 put_cpu_var(vmap_block_queue);
1937
1938 return vaddr;
1939 }
1940
free_vmap_block(struct vmap_block * vb)1941 static void free_vmap_block(struct vmap_block *vb)
1942 {
1943 struct vmap_block *tmp;
1944
1945 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1946 BUG_ON(tmp != vb);
1947
1948 free_vmap_area_noflush(vb->va);
1949 kfree_rcu(vb, rcu_head);
1950 }
1951
purge_fragmented_blocks(int cpu)1952 static void purge_fragmented_blocks(int cpu)
1953 {
1954 LIST_HEAD(purge);
1955 struct vmap_block *vb;
1956 struct vmap_block *n_vb;
1957 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1958
1959 rcu_read_lock();
1960 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1961
1962 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1963 continue;
1964
1965 spin_lock(&vb->lock);
1966 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1967 vb->free = 0; /* prevent further allocs after releasing lock */
1968 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1969 vb->dirty_min = 0;
1970 vb->dirty_max = VMAP_BBMAP_BITS;
1971 spin_lock(&vbq->lock);
1972 list_del_rcu(&vb->free_list);
1973 spin_unlock(&vbq->lock);
1974 spin_unlock(&vb->lock);
1975 list_add_tail(&vb->purge, &purge);
1976 } else
1977 spin_unlock(&vb->lock);
1978 }
1979 rcu_read_unlock();
1980
1981 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1982 list_del(&vb->purge);
1983 free_vmap_block(vb);
1984 }
1985 }
1986
purge_fragmented_blocks_allcpus(void)1987 static void purge_fragmented_blocks_allcpus(void)
1988 {
1989 int cpu;
1990
1991 for_each_possible_cpu(cpu)
1992 purge_fragmented_blocks(cpu);
1993 }
1994
vb_alloc(unsigned long size,gfp_t gfp_mask)1995 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1996 {
1997 struct vmap_block_queue *vbq;
1998 struct vmap_block *vb;
1999 void *vaddr = NULL;
2000 unsigned int order;
2001
2002 BUG_ON(offset_in_page(size));
2003 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2004 if (WARN_ON(size == 0)) {
2005 /*
2006 * Allocating 0 bytes isn't what caller wants since
2007 * get_order(0) returns funny result. Just warn and terminate
2008 * early.
2009 */
2010 return NULL;
2011 }
2012 order = get_order(size);
2013
2014 rcu_read_lock();
2015 vbq = &get_cpu_var(vmap_block_queue);
2016 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2017 unsigned long pages_off;
2018
2019 spin_lock(&vb->lock);
2020 if (vb->free < (1UL << order)) {
2021 spin_unlock(&vb->lock);
2022 continue;
2023 }
2024
2025 pages_off = VMAP_BBMAP_BITS - vb->free;
2026 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2027 vb->free -= 1UL << order;
2028 if (vb->free == 0) {
2029 spin_lock(&vbq->lock);
2030 list_del_rcu(&vb->free_list);
2031 spin_unlock(&vbq->lock);
2032 }
2033
2034 spin_unlock(&vb->lock);
2035 break;
2036 }
2037
2038 put_cpu_var(vmap_block_queue);
2039 rcu_read_unlock();
2040
2041 /* Allocate new block if nothing was found */
2042 if (!vaddr)
2043 vaddr = new_vmap_block(order, gfp_mask);
2044
2045 return vaddr;
2046 }
2047
vb_free(unsigned long addr,unsigned long size)2048 static void vb_free(unsigned long addr, unsigned long size)
2049 {
2050 unsigned long offset;
2051 unsigned int order;
2052 struct vmap_block *vb;
2053
2054 BUG_ON(offset_in_page(size));
2055 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2056
2057 flush_cache_vunmap(addr, addr + size);
2058
2059 order = get_order(size);
2060 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2061 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2062
2063 vunmap_range_noflush(addr, addr + size);
2064
2065 if (debug_pagealloc_enabled_static())
2066 flush_tlb_kernel_range(addr, addr + size);
2067
2068 spin_lock(&vb->lock);
2069
2070 /* Expand dirty range */
2071 vb->dirty_min = min(vb->dirty_min, offset);
2072 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2073
2074 vb->dirty += 1UL << order;
2075 if (vb->dirty == VMAP_BBMAP_BITS) {
2076 BUG_ON(vb->free);
2077 spin_unlock(&vb->lock);
2078 free_vmap_block(vb);
2079 } else
2080 spin_unlock(&vb->lock);
2081 }
2082
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2083 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2084 {
2085 int cpu;
2086
2087 if (unlikely(!vmap_initialized))
2088 return;
2089
2090 might_sleep();
2091
2092 for_each_possible_cpu(cpu) {
2093 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2094 struct vmap_block *vb;
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2098 spin_lock(&vb->lock);
2099 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2100 unsigned long va_start = vb->va->va_start;
2101 unsigned long s, e;
2102
2103 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2104 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2105
2106 start = min(s, start);
2107 end = max(e, end);
2108
2109 flush = 1;
2110 }
2111 spin_unlock(&vb->lock);
2112 }
2113 rcu_read_unlock();
2114 }
2115
2116 mutex_lock(&vmap_purge_lock);
2117 purge_fragmented_blocks_allcpus();
2118 if (!__purge_vmap_area_lazy(start, end) && flush)
2119 flush_tlb_kernel_range(start, end);
2120 mutex_unlock(&vmap_purge_lock);
2121 }
2122
2123 /**
2124 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2125 *
2126 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2127 * to amortize TLB flushing overheads. What this means is that any page you
2128 * have now, may, in a former life, have been mapped into kernel virtual
2129 * address by the vmap layer and so there might be some CPUs with TLB entries
2130 * still referencing that page (additional to the regular 1:1 kernel mapping).
2131 *
2132 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2133 * be sure that none of the pages we have control over will have any aliases
2134 * from the vmap layer.
2135 */
vm_unmap_aliases(void)2136 void vm_unmap_aliases(void)
2137 {
2138 unsigned long start = ULONG_MAX, end = 0;
2139 int flush = 0;
2140
2141 _vm_unmap_aliases(start, end, flush);
2142 }
2143 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2144
2145 /**
2146 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2147 * @mem: the pointer returned by vm_map_ram
2148 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2149 */
vm_unmap_ram(const void * mem,unsigned int count)2150 void vm_unmap_ram(const void *mem, unsigned int count)
2151 {
2152 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2153 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2154 struct vmap_area *va;
2155
2156 might_sleep();
2157 BUG_ON(!addr);
2158 BUG_ON(addr < VMALLOC_START);
2159 BUG_ON(addr > VMALLOC_END);
2160 BUG_ON(!PAGE_ALIGNED(addr));
2161
2162 kasan_poison_vmalloc(mem, size);
2163
2164 if (likely(count <= VMAP_MAX_ALLOC)) {
2165 debug_check_no_locks_freed(mem, size);
2166 vb_free(addr, size);
2167 return;
2168 }
2169
2170 va = find_vmap_area(addr);
2171 BUG_ON(!va);
2172 debug_check_no_locks_freed((void *)va->va_start,
2173 (va->va_end - va->va_start));
2174 free_unmap_vmap_area(va);
2175 }
2176 EXPORT_SYMBOL(vm_unmap_ram);
2177
2178 /**
2179 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2180 * @pages: an array of pointers to the pages to be mapped
2181 * @count: number of pages
2182 * @node: prefer to allocate data structures on this node
2183 *
2184 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2185 * faster than vmap so it's good. But if you mix long-life and short-life
2186 * objects with vm_map_ram(), it could consume lots of address space through
2187 * fragmentation (especially on a 32bit machine). You could see failures in
2188 * the end. Please use this function for short-lived objects.
2189 *
2190 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2191 */
vm_map_ram(struct page ** pages,unsigned int count,int node)2192 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2193 {
2194 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2195 unsigned long addr;
2196 void *mem;
2197
2198 if (likely(count <= VMAP_MAX_ALLOC)) {
2199 mem = vb_alloc(size, GFP_KERNEL);
2200 if (IS_ERR(mem))
2201 return NULL;
2202 addr = (unsigned long)mem;
2203 } else {
2204 struct vmap_area *va;
2205 va = alloc_vmap_area(size, PAGE_SIZE,
2206 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2207 if (IS_ERR(va))
2208 return NULL;
2209
2210 addr = va->va_start;
2211 mem = (void *)addr;
2212 }
2213
2214 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2215 pages, PAGE_SHIFT) < 0) {
2216 vm_unmap_ram(mem, count);
2217 return NULL;
2218 }
2219
2220 /*
2221 * Mark the pages as accessible, now that they are mapped.
2222 * With hardware tag-based KASAN, marking is skipped for
2223 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2224 */
2225 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2226
2227 return mem;
2228 }
2229 EXPORT_SYMBOL(vm_map_ram);
2230
2231 static struct vm_struct *vmlist __initdata;
2232
vm_area_page_order(struct vm_struct * vm)2233 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2234 {
2235 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2236 return vm->page_order;
2237 #else
2238 return 0;
2239 #endif
2240 }
2241
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)2242 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2243 {
2244 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2245 vm->page_order = order;
2246 #else
2247 BUG_ON(order != 0);
2248 #endif
2249 }
2250
2251 /**
2252 * vm_area_add_early - add vmap area early during boot
2253 * @vm: vm_struct to add
2254 *
2255 * This function is used to add fixed kernel vm area to vmlist before
2256 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2257 * should contain proper values and the other fields should be zero.
2258 *
2259 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2260 */
vm_area_add_early(struct vm_struct * vm)2261 void __init vm_area_add_early(struct vm_struct *vm)
2262 {
2263 struct vm_struct *tmp, **p;
2264
2265 BUG_ON(vmap_initialized);
2266 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2267 if (tmp->addr >= vm->addr) {
2268 BUG_ON(tmp->addr < vm->addr + vm->size);
2269 break;
2270 } else
2271 BUG_ON(tmp->addr + tmp->size > vm->addr);
2272 }
2273 vm->next = *p;
2274 *p = vm;
2275 }
2276
2277 /**
2278 * vm_area_register_early - register vmap area early during boot
2279 * @vm: vm_struct to register
2280 * @align: requested alignment
2281 *
2282 * This function is used to register kernel vm area before
2283 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2284 * proper values on entry and other fields should be zero. On return,
2285 * vm->addr contains the allocated address.
2286 *
2287 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2288 */
vm_area_register_early(struct vm_struct * vm,size_t align)2289 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2290 {
2291 static size_t vm_init_off __initdata;
2292 unsigned long addr;
2293
2294 addr = ALIGN(VMALLOC_START + vm_init_off, align);
2295 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
2296
2297 vm->addr = (void *)addr;
2298
2299 vm_area_add_early(vm);
2300 }
2301
vmap_init_free_space(void)2302 static void vmap_init_free_space(void)
2303 {
2304 unsigned long vmap_start = 1;
2305 const unsigned long vmap_end = ULONG_MAX;
2306 struct vmap_area *busy, *free;
2307
2308 /*
2309 * B F B B B F
2310 * -|-----|.....|-----|-----|-----|.....|-
2311 * | The KVA space |
2312 * |<--------------------------------->|
2313 */
2314 list_for_each_entry(busy, &vmap_area_list, list) {
2315 if (busy->va_start - vmap_start > 0) {
2316 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2317 if (!WARN_ON_ONCE(!free)) {
2318 free->va_start = vmap_start;
2319 free->va_end = busy->va_start;
2320
2321 insert_vmap_area_augment(free, NULL,
2322 &free_vmap_area_root,
2323 &free_vmap_area_list);
2324 }
2325 }
2326
2327 vmap_start = busy->va_end;
2328 }
2329
2330 if (vmap_end - vmap_start > 0) {
2331 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2332 if (!WARN_ON_ONCE(!free)) {
2333 free->va_start = vmap_start;
2334 free->va_end = vmap_end;
2335
2336 insert_vmap_area_augment(free, NULL,
2337 &free_vmap_area_root,
2338 &free_vmap_area_list);
2339 }
2340 }
2341 }
2342
vmalloc_init(void)2343 void __init vmalloc_init(void)
2344 {
2345 struct vmap_area *va;
2346 struct vm_struct *tmp;
2347 int i;
2348
2349 /*
2350 * Create the cache for vmap_area objects.
2351 */
2352 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2353
2354 for_each_possible_cpu(i) {
2355 struct vmap_block_queue *vbq;
2356 struct vfree_deferred *p;
2357
2358 vbq = &per_cpu(vmap_block_queue, i);
2359 spin_lock_init(&vbq->lock);
2360 INIT_LIST_HEAD(&vbq->free);
2361 p = &per_cpu(vfree_deferred, i);
2362 init_llist_head(&p->list);
2363 INIT_WORK(&p->wq, free_work);
2364 }
2365
2366 /* Import existing vmlist entries. */
2367 for (tmp = vmlist; tmp; tmp = tmp->next) {
2368 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2369 if (WARN_ON_ONCE(!va))
2370 continue;
2371
2372 va->va_start = (unsigned long)tmp->addr;
2373 va->va_end = va->va_start + tmp->size;
2374 va->vm = tmp;
2375 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2376 }
2377
2378 /*
2379 * Now we can initialize a free vmap space.
2380 */
2381 vmap_init_free_space();
2382 vmap_initialized = true;
2383 }
2384
setup_vmalloc_vm_locked(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2385 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2386 struct vmap_area *va, unsigned long flags, const void *caller)
2387 {
2388 vm->flags = flags;
2389 vm->addr = (void *)va->va_start;
2390 vm->size = va->va_end - va->va_start;
2391 vm->caller = caller;
2392 va->vm = vm;
2393 }
2394
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2395 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2396 unsigned long flags, const void *caller)
2397 {
2398 spin_lock(&vmap_area_lock);
2399 setup_vmalloc_vm_locked(vm, va, flags, caller);
2400 spin_unlock(&vmap_area_lock);
2401 }
2402
clear_vm_uninitialized_flag(struct vm_struct * vm)2403 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2404 {
2405 /*
2406 * Before removing VM_UNINITIALIZED,
2407 * we should make sure that vm has proper values.
2408 * Pair with smp_rmb() in show_numa_info().
2409 */
2410 smp_wmb();
2411 vm->flags &= ~VM_UNINITIALIZED;
2412 }
2413
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)2414 static struct vm_struct *__get_vm_area_node(unsigned long size,
2415 unsigned long align, unsigned long shift, unsigned long flags,
2416 unsigned long start, unsigned long end, int node,
2417 gfp_t gfp_mask, const void *caller)
2418 {
2419 struct vmap_area *va;
2420 struct vm_struct *area;
2421 unsigned long requested_size = size;
2422
2423 BUG_ON(in_interrupt());
2424 size = ALIGN(size, 1ul << shift);
2425 if (unlikely(!size))
2426 return NULL;
2427
2428 if (flags & VM_IOREMAP)
2429 align = 1ul << clamp_t(int, get_count_order_long(size),
2430 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2431
2432 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2433 if (unlikely(!area))
2434 return NULL;
2435
2436 if (!(flags & VM_NO_GUARD))
2437 size += PAGE_SIZE;
2438
2439 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2440 if (IS_ERR(va)) {
2441 kfree(area);
2442 return NULL;
2443 }
2444
2445 setup_vmalloc_vm(area, va, flags, caller);
2446
2447 /*
2448 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2449 * best-effort approach, as they can be mapped outside of vmalloc code.
2450 * For VM_ALLOC mappings, the pages are marked as accessible after
2451 * getting mapped in __vmalloc_node_range().
2452 * With hardware tag-based KASAN, marking is skipped for
2453 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2454 */
2455 if (!(flags & VM_ALLOC))
2456 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2457 KASAN_VMALLOC_PROT_NORMAL);
2458
2459 return area;
2460 }
2461
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)2462 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2463 unsigned long start, unsigned long end,
2464 const void *caller)
2465 {
2466 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2467 NUMA_NO_NODE, GFP_KERNEL, caller);
2468 }
2469
2470 /**
2471 * get_vm_area - reserve a contiguous kernel virtual area
2472 * @size: size of the area
2473 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2474 *
2475 * Search an area of @size in the kernel virtual mapping area,
2476 * and reserved it for out purposes. Returns the area descriptor
2477 * on success or %NULL on failure.
2478 *
2479 * Return: the area descriptor on success or %NULL on failure.
2480 */
get_vm_area(unsigned long size,unsigned long flags)2481 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2482 {
2483 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2484 VMALLOC_START, VMALLOC_END,
2485 NUMA_NO_NODE, GFP_KERNEL,
2486 __builtin_return_address(0));
2487 }
2488
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)2489 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2490 const void *caller)
2491 {
2492 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2493 VMALLOC_START, VMALLOC_END,
2494 NUMA_NO_NODE, GFP_KERNEL, caller);
2495 }
2496
2497 /**
2498 * find_vm_area - find a continuous kernel virtual area
2499 * @addr: base address
2500 *
2501 * Search for the kernel VM area starting at @addr, and return it.
2502 * It is up to the caller to do all required locking to keep the returned
2503 * pointer valid.
2504 *
2505 * Return: the area descriptor on success or %NULL on failure.
2506 */
find_vm_area(const void * addr)2507 struct vm_struct *find_vm_area(const void *addr)
2508 {
2509 struct vmap_area *va;
2510
2511 va = find_vmap_area((unsigned long)addr);
2512 if (!va)
2513 return NULL;
2514
2515 return va->vm;
2516 }
2517 EXPORT_SYMBOL_GPL(find_vm_area);
2518
2519 /**
2520 * remove_vm_area - find and remove a continuous kernel virtual area
2521 * @addr: base address
2522 *
2523 * Search for the kernel VM area starting at @addr, and remove it.
2524 * This function returns the found VM area, but using it is NOT safe
2525 * on SMP machines, except for its size or flags.
2526 *
2527 * Return: the area descriptor on success or %NULL on failure.
2528 */
remove_vm_area(const void * addr)2529 struct vm_struct *remove_vm_area(const void *addr)
2530 {
2531 struct vmap_area *va;
2532
2533 might_sleep();
2534
2535 spin_lock(&vmap_area_lock);
2536 va = __find_vmap_area((unsigned long)addr);
2537 if (va && va->vm) {
2538 struct vm_struct *vm = va->vm;
2539
2540 va->vm = NULL;
2541 spin_unlock(&vmap_area_lock);
2542
2543 kasan_free_module_shadow(vm);
2544 free_unmap_vmap_area(va);
2545
2546 return vm;
2547 }
2548
2549 spin_unlock(&vmap_area_lock);
2550 return NULL;
2551 }
2552
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))2553 static inline void set_area_direct_map(const struct vm_struct *area,
2554 int (*set_direct_map)(struct page *page))
2555 {
2556 int i;
2557
2558 /* HUGE_VMALLOC passes small pages to set_direct_map */
2559 for (i = 0; i < area->nr_pages; i++)
2560 if (page_address(area->pages[i]))
2561 set_direct_map(area->pages[i]);
2562 }
2563
2564 /* Handle removing and resetting vm mappings related to the vm_struct. */
vm_remove_mappings(struct vm_struct * area,int deallocate_pages)2565 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2566 {
2567 unsigned long start = ULONG_MAX, end = 0;
2568 unsigned int page_order = vm_area_page_order(area);
2569 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2570 int flush_dmap = 0;
2571 int i;
2572
2573 remove_vm_area(area->addr);
2574
2575 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2576 if (!flush_reset)
2577 return;
2578
2579 /*
2580 * If not deallocating pages, just do the flush of the VM area and
2581 * return.
2582 */
2583 if (!deallocate_pages) {
2584 vm_unmap_aliases();
2585 return;
2586 }
2587
2588 /*
2589 * If execution gets here, flush the vm mapping and reset the direct
2590 * map. Find the start and end range of the direct mappings to make sure
2591 * the vm_unmap_aliases() flush includes the direct map.
2592 */
2593 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2594 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2595 if (addr) {
2596 unsigned long page_size;
2597
2598 page_size = PAGE_SIZE << page_order;
2599 start = min(addr, start);
2600 end = max(addr + page_size, end);
2601 flush_dmap = 1;
2602 }
2603 }
2604
2605 /*
2606 * Set direct map to something invalid so that it won't be cached if
2607 * there are any accesses after the TLB flush, then flush the TLB and
2608 * reset the direct map permissions to the default.
2609 */
2610 set_area_direct_map(area, set_direct_map_invalid_noflush);
2611 _vm_unmap_aliases(start, end, flush_dmap);
2612 set_area_direct_map(area, set_direct_map_default_noflush);
2613 }
2614
__vunmap(const void * addr,int deallocate_pages)2615 static void __vunmap(const void *addr, int deallocate_pages)
2616 {
2617 struct vm_struct *area;
2618
2619 if (!addr)
2620 return;
2621
2622 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2623 addr))
2624 return;
2625
2626 area = find_vm_area(addr);
2627 if (unlikely(!area)) {
2628 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2629 addr);
2630 return;
2631 }
2632
2633 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2634 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2635
2636 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2637
2638 if (IS_ENABLED(CONFIG_ARCH_HAS_IOREMAP_PHYS_HOOKS) &&
2639 area->flags & VM_IOREMAP)
2640 iounmap_phys_range_hook(area->phys_addr, get_vm_area_size(area));
2641
2642 vm_remove_mappings(area, deallocate_pages);
2643
2644 if (deallocate_pages) {
2645 unsigned int page_order = vm_area_page_order(area);
2646 int i;
2647
2648 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2649 struct page *page = area->pages[i];
2650
2651 BUG_ON(!page);
2652 __free_pages(page, page_order);
2653 cond_resched();
2654 }
2655 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2656
2657 kvfree(area->pages);
2658 }
2659
2660 kfree(area);
2661 }
2662
__vfree_deferred(const void * addr)2663 static inline void __vfree_deferred(const void *addr)
2664 {
2665 /*
2666 * Use raw_cpu_ptr() because this can be called from preemptible
2667 * context. Preemption is absolutely fine here, because the llist_add()
2668 * implementation is lockless, so it works even if we are adding to
2669 * another cpu's list. schedule_work() should be fine with this too.
2670 */
2671 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2672
2673 if (llist_add((struct llist_node *)addr, &p->list))
2674 schedule_work(&p->wq);
2675 }
2676
2677 /**
2678 * vfree_atomic - release memory allocated by vmalloc()
2679 * @addr: memory base address
2680 *
2681 * This one is just like vfree() but can be called in any atomic context
2682 * except NMIs.
2683 */
vfree_atomic(const void * addr)2684 void vfree_atomic(const void *addr)
2685 {
2686 BUG_ON(in_nmi());
2687
2688 kmemleak_free(addr);
2689
2690 if (!addr)
2691 return;
2692 __vfree_deferred(addr);
2693 }
2694
__vfree(const void * addr)2695 static void __vfree(const void *addr)
2696 {
2697 if (unlikely(in_interrupt()))
2698 __vfree_deferred(addr);
2699 else
2700 __vunmap(addr, 1);
2701 }
2702
2703 /**
2704 * vfree - Release memory allocated by vmalloc()
2705 * @addr: Memory base address
2706 *
2707 * Free the virtually continuous memory area starting at @addr, as obtained
2708 * from one of the vmalloc() family of APIs. This will usually also free the
2709 * physical memory underlying the virtual allocation, but that memory is
2710 * reference counted, so it will not be freed until the last user goes away.
2711 *
2712 * If @addr is NULL, no operation is performed.
2713 *
2714 * Context:
2715 * May sleep if called *not* from interrupt context.
2716 * Must not be called in NMI context (strictly speaking, it could be
2717 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2718 * conventions for vfree() arch-dependent would be a really bad idea).
2719 */
vfree(const void * addr)2720 void vfree(const void *addr)
2721 {
2722 BUG_ON(in_nmi());
2723
2724 kmemleak_free(addr);
2725
2726 might_sleep_if(!in_interrupt());
2727
2728 if (!addr)
2729 return;
2730
2731 __vfree(addr);
2732 }
2733 EXPORT_SYMBOL(vfree);
2734
2735 /**
2736 * vunmap - release virtual mapping obtained by vmap()
2737 * @addr: memory base address
2738 *
2739 * Free the virtually contiguous memory area starting at @addr,
2740 * which was created from the page array passed to vmap().
2741 *
2742 * Must not be called in interrupt context.
2743 */
vunmap(const void * addr)2744 void vunmap(const void *addr)
2745 {
2746 BUG_ON(in_interrupt());
2747 might_sleep();
2748 if (addr)
2749 __vunmap(addr, 0);
2750 }
2751 EXPORT_SYMBOL(vunmap);
2752
2753 /**
2754 * vmap - map an array of pages into virtually contiguous space
2755 * @pages: array of page pointers
2756 * @count: number of pages to map
2757 * @flags: vm_area->flags
2758 * @prot: page protection for the mapping
2759 *
2760 * Maps @count pages from @pages into contiguous kernel virtual space.
2761 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2762 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2763 * are transferred from the caller to vmap(), and will be freed / dropped when
2764 * vfree() is called on the return value.
2765 *
2766 * Return: the address of the area or %NULL on failure
2767 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)2768 void *vmap(struct page **pages, unsigned int count,
2769 unsigned long flags, pgprot_t prot)
2770 {
2771 struct vm_struct *area;
2772 unsigned long addr;
2773 unsigned long size; /* In bytes */
2774
2775 might_sleep();
2776
2777 if (count > totalram_pages())
2778 return NULL;
2779
2780 size = (unsigned long)count << PAGE_SHIFT;
2781 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2782 if (!area)
2783 return NULL;
2784
2785 addr = (unsigned long)area->addr;
2786 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2787 pages, PAGE_SHIFT) < 0) {
2788 vunmap(area->addr);
2789 return NULL;
2790 }
2791
2792 if (flags & VM_MAP_PUT_PAGES) {
2793 area->pages = pages;
2794 area->nr_pages = count;
2795 }
2796 return area->addr;
2797 }
2798 EXPORT_SYMBOL(vmap);
2799
2800 #ifdef CONFIG_VMAP_PFN
2801 struct vmap_pfn_data {
2802 unsigned long *pfns;
2803 pgprot_t prot;
2804 unsigned int idx;
2805 };
2806
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)2807 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2808 {
2809 struct vmap_pfn_data *data = private;
2810
2811 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2812 return -EINVAL;
2813 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2814 return 0;
2815 }
2816
2817 /**
2818 * vmap_pfn - map an array of PFNs into virtually contiguous space
2819 * @pfns: array of PFNs
2820 * @count: number of pages to map
2821 * @prot: page protection for the mapping
2822 *
2823 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2824 * the start address of the mapping.
2825 */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)2826 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2827 {
2828 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2829 struct vm_struct *area;
2830
2831 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2832 __builtin_return_address(0));
2833 if (!area)
2834 return NULL;
2835 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2836 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2837 free_vm_area(area);
2838 return NULL;
2839 }
2840
2841 flush_cache_vmap((unsigned long)area->addr,
2842 (unsigned long)area->addr + count * PAGE_SIZE);
2843
2844 return area->addr;
2845 }
2846 EXPORT_SYMBOL_GPL(vmap_pfn);
2847 #endif /* CONFIG_VMAP_PFN */
2848
2849 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)2850 vm_area_alloc_pages(gfp_t gfp, int nid,
2851 unsigned int order, unsigned int nr_pages, struct page **pages)
2852 {
2853 unsigned int nr_allocated = 0;
2854 struct page *page;
2855 int i;
2856
2857 /*
2858 * For order-0 pages we make use of bulk allocator, if
2859 * the page array is partly or not at all populated due
2860 * to fails, fallback to a single page allocator that is
2861 * more permissive.
2862 */
2863 if (!order && nid != NUMA_NO_NODE) {
2864 while (nr_allocated < nr_pages) {
2865 unsigned int nr, nr_pages_request;
2866
2867 /*
2868 * A maximum allowed request is hard-coded and is 100
2869 * pages per call. That is done in order to prevent a
2870 * long preemption off scenario in the bulk-allocator
2871 * so the range is [1:100].
2872 */
2873 nr_pages_request = min(100U, nr_pages - nr_allocated);
2874
2875 nr = alloc_pages_bulk_array_node(gfp, nid,
2876 nr_pages_request, pages + nr_allocated);
2877
2878 nr_allocated += nr;
2879 cond_resched();
2880
2881 /*
2882 * If zero or pages were obtained partly,
2883 * fallback to a single page allocator.
2884 */
2885 if (nr != nr_pages_request)
2886 break;
2887 }
2888 } else if (order)
2889 /*
2890 * Compound pages required for remap_vmalloc_page if
2891 * high-order pages.
2892 */
2893 gfp |= __GFP_COMP;
2894
2895 /* High-order pages or fallback path if "bulk" fails. */
2896
2897 while (nr_allocated < nr_pages) {
2898 if (nid == NUMA_NO_NODE)
2899 page = alloc_pages(gfp, order);
2900 else
2901 page = alloc_pages_node(nid, gfp, order);
2902 if (unlikely(!page))
2903 break;
2904
2905 /*
2906 * Careful, we allocate and map page-order pages, but
2907 * tracking is done per PAGE_SIZE page so as to keep the
2908 * vm_struct APIs independent of the physical/mapped size.
2909 */
2910 for (i = 0; i < (1U << order); i++)
2911 pages[nr_allocated + i] = page + i;
2912
2913 cond_resched();
2914 nr_allocated += 1U << order;
2915 }
2916
2917 return nr_allocated;
2918 }
2919
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)2920 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2921 pgprot_t prot, unsigned int page_shift,
2922 int node)
2923 {
2924 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2925 unsigned long addr = (unsigned long)area->addr;
2926 unsigned long size = get_vm_area_size(area);
2927 unsigned long array_size;
2928 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2929 unsigned int page_order;
2930
2931 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2932 gfp_mask |= __GFP_NOWARN;
2933 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2934 gfp_mask |= __GFP_HIGHMEM;
2935
2936 /* Please note that the recursion is strictly bounded. */
2937 if (array_size > PAGE_SIZE) {
2938 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2939 area->caller);
2940 } else {
2941 area->pages = kmalloc_node(array_size, nested_gfp, node);
2942 }
2943
2944 if (!area->pages) {
2945 warn_alloc(gfp_mask, NULL,
2946 "vmalloc error: size %lu, failed to allocated page array size %lu",
2947 nr_small_pages * PAGE_SIZE, array_size);
2948 free_vm_area(area);
2949 return NULL;
2950 }
2951
2952 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2953 page_order = vm_area_page_order(area);
2954
2955 area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2956 page_order, nr_small_pages, area->pages);
2957
2958 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2959
2960 /*
2961 * If not enough pages were obtained to accomplish an
2962 * allocation request, free them via __vfree() if any.
2963 */
2964 if (area->nr_pages != nr_small_pages) {
2965 /* vm_area_alloc_pages() can also fail due to a fatal signal */
2966 if (!fatal_signal_pending(current))
2967 warn_alloc(gfp_mask, NULL,
2968 "vmalloc error: size %lu, page order %u, failed to allocate pages",
2969 area->nr_pages * PAGE_SIZE, page_order);
2970 goto fail;
2971 }
2972
2973 if (vmap_pages_range(addr, addr + size, prot, area->pages,
2974 page_shift) < 0) {
2975 warn_alloc(gfp_mask, NULL,
2976 "vmalloc error: size %lu, failed to map pages",
2977 area->nr_pages * PAGE_SIZE);
2978 goto fail;
2979 }
2980
2981 return area->addr;
2982
2983 fail:
2984 __vfree(area->addr);
2985 return NULL;
2986 }
2987
2988 /**
2989 * __vmalloc_node_range - allocate virtually contiguous memory
2990 * @size: allocation size
2991 * @align: desired alignment
2992 * @start: vm area range start
2993 * @end: vm area range end
2994 * @gfp_mask: flags for the page level allocator
2995 * @prot: protection mask for the allocated pages
2996 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2997 * @node: node to use for allocation or NUMA_NO_NODE
2998 * @caller: caller's return address
2999 *
3000 * Allocate enough pages to cover @size from the page level
3001 * allocator with @gfp_mask flags. Map them into contiguous
3002 * kernel virtual space, using a pagetable protection of @prot.
3003 *
3004 * Return: the address of the area or %NULL on failure
3005 */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3006 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3007 unsigned long start, unsigned long end, gfp_t gfp_mask,
3008 pgprot_t prot, unsigned long vm_flags, int node,
3009 const void *caller)
3010 {
3011 struct vm_struct *area;
3012 void *ret;
3013 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3014 unsigned long real_size = size;
3015 unsigned long real_align = align;
3016 unsigned int shift = PAGE_SHIFT;
3017
3018 if (WARN_ON_ONCE(!size))
3019 return NULL;
3020
3021 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3022 warn_alloc(gfp_mask, NULL,
3023 "vmalloc error: size %lu, exceeds total pages",
3024 real_size);
3025 return NULL;
3026 }
3027
3028 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
3029 unsigned long size_per_node;
3030
3031 /*
3032 * Try huge pages. Only try for PAGE_KERNEL allocations,
3033 * others like modules don't yet expect huge pages in
3034 * their allocations due to apply_to_page_range not
3035 * supporting them.
3036 */
3037
3038 size_per_node = size;
3039 if (node == NUMA_NO_NODE)
3040 size_per_node /= num_online_nodes();
3041 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3042 shift = PMD_SHIFT;
3043 else
3044 shift = arch_vmap_pte_supported_shift(size_per_node);
3045
3046 align = max(real_align, 1UL << shift);
3047 size = ALIGN(real_size, 1UL << shift);
3048 }
3049
3050 again:
3051 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3052 VM_UNINITIALIZED | vm_flags, start, end, node,
3053 gfp_mask, caller);
3054 if (!area) {
3055 warn_alloc(gfp_mask, NULL,
3056 "vmalloc error: size %lu, vm_struct allocation failed",
3057 real_size);
3058 goto fail;
3059 }
3060
3061 /*
3062 * Prepare arguments for __vmalloc_area_node() and
3063 * kasan_unpoison_vmalloc().
3064 */
3065 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3066 if (kasan_hw_tags_enabled()) {
3067 /*
3068 * Modify protection bits to allow tagging.
3069 * This must be done before mapping.
3070 */
3071 prot = arch_vmap_pgprot_tagged(prot);
3072
3073 /*
3074 * Skip page_alloc poisoning and zeroing for physical
3075 * pages backing VM_ALLOC mapping. Memory is instead
3076 * poisoned and zeroed by kasan_unpoison_vmalloc().
3077 */
3078 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3079 }
3080
3081 /* Take note that the mapping is PAGE_KERNEL. */
3082 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3083 }
3084
3085 /* Allocate physical pages and map them into vmalloc space. */
3086 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3087 if (!ret)
3088 goto fail;
3089
3090 /*
3091 * Mark the pages as accessible, now that they are mapped.
3092 * The init condition should match the one in post_alloc_hook()
3093 * (except for the should_skip_init() check) to make sure that memory
3094 * is initialized under the same conditions regardless of the enabled
3095 * KASAN mode.
3096 * Tag-based KASAN modes only assign tags to normal non-executable
3097 * allocations, see __kasan_unpoison_vmalloc().
3098 */
3099 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3100 if (!want_init_on_free() && want_init_on_alloc(gfp_mask))
3101 kasan_flags |= KASAN_VMALLOC_INIT;
3102 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3103 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3104
3105 /*
3106 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3107 * flag. It means that vm_struct is not fully initialized.
3108 * Now, it is fully initialized, so remove this flag here.
3109 */
3110 clear_vm_uninitialized_flag(area);
3111
3112 size = PAGE_ALIGN(size);
3113 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3114 kmemleak_vmalloc(area, size, gfp_mask);
3115
3116 return area->addr;
3117
3118 fail:
3119 if (shift > PAGE_SHIFT) {
3120 shift = PAGE_SHIFT;
3121 align = real_align;
3122 size = real_size;
3123 goto again;
3124 }
3125
3126 return NULL;
3127 }
3128
3129 /**
3130 * __vmalloc_node - allocate virtually contiguous memory
3131 * @size: allocation size
3132 * @align: desired alignment
3133 * @gfp_mask: flags for the page level allocator
3134 * @node: node to use for allocation or NUMA_NO_NODE
3135 * @caller: caller's return address
3136 *
3137 * Allocate enough pages to cover @size from the page level allocator with
3138 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3139 *
3140 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3141 * and __GFP_NOFAIL are not supported
3142 *
3143 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3144 * with mm people.
3145 *
3146 * Return: pointer to the allocated memory or %NULL on error
3147 */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)3148 void *__vmalloc_node(unsigned long size, unsigned long align,
3149 gfp_t gfp_mask, int node, const void *caller)
3150 {
3151 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3152 gfp_mask, PAGE_KERNEL, 0, node, caller);
3153 }
3154 /*
3155 * This is only for performance analysis of vmalloc and stress purpose.
3156 * It is required by vmalloc test module, therefore do not use it other
3157 * than that.
3158 */
3159 #ifdef CONFIG_TEST_VMALLOC_MODULE
3160 EXPORT_SYMBOL_GPL(__vmalloc_node);
3161 #endif
3162
__vmalloc(unsigned long size,gfp_t gfp_mask)3163 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3164 {
3165 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3166 __builtin_return_address(0));
3167 }
3168 EXPORT_SYMBOL(__vmalloc);
3169
3170 /**
3171 * vmalloc - allocate virtually contiguous memory
3172 * @size: allocation size
3173 *
3174 * Allocate enough pages to cover @size from the page level
3175 * allocator and map them into contiguous kernel virtual space.
3176 *
3177 * For tight control over page level allocator and protection flags
3178 * use __vmalloc() instead.
3179 *
3180 * Return: pointer to the allocated memory or %NULL on error
3181 */
vmalloc(unsigned long size)3182 void *vmalloc(unsigned long size)
3183 {
3184 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3185 __builtin_return_address(0));
3186 }
3187 EXPORT_SYMBOL(vmalloc);
3188
3189 /**
3190 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3191 * @size: allocation size
3192 *
3193 * Allocate enough non-huge pages to cover @size from the page level
3194 * allocator and map them into contiguous kernel virtual space.
3195 *
3196 * Return: pointer to the allocated memory or %NULL on error
3197 */
vmalloc_no_huge(unsigned long size)3198 void *vmalloc_no_huge(unsigned long size)
3199 {
3200 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3201 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3202 NUMA_NO_NODE, __builtin_return_address(0));
3203 }
3204 EXPORT_SYMBOL(vmalloc_no_huge);
3205
3206 /**
3207 * vzalloc - allocate virtually contiguous memory with zero fill
3208 * @size: allocation size
3209 *
3210 * Allocate enough pages to cover @size from the page level
3211 * allocator and map them into contiguous kernel virtual space.
3212 * The memory allocated is set to zero.
3213 *
3214 * For tight control over page level allocator and protection flags
3215 * use __vmalloc() instead.
3216 *
3217 * Return: pointer to the allocated memory or %NULL on error
3218 */
vzalloc(unsigned long size)3219 void *vzalloc(unsigned long size)
3220 {
3221 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3222 __builtin_return_address(0));
3223 }
3224 EXPORT_SYMBOL(vzalloc);
3225
3226 /**
3227 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3228 * @size: allocation size
3229 *
3230 * The resulting memory area is zeroed so it can be mapped to userspace
3231 * without leaking data.
3232 *
3233 * Return: pointer to the allocated memory or %NULL on error
3234 */
vmalloc_user(unsigned long size)3235 void *vmalloc_user(unsigned long size)
3236 {
3237 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3238 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3239 VM_USERMAP, NUMA_NO_NODE,
3240 __builtin_return_address(0));
3241 }
3242 EXPORT_SYMBOL(vmalloc_user);
3243
3244 /**
3245 * vmalloc_node - allocate memory on a specific node
3246 * @size: allocation size
3247 * @node: numa node
3248 *
3249 * Allocate enough pages to cover @size from the page level
3250 * allocator and map them into contiguous kernel virtual space.
3251 *
3252 * For tight control over page level allocator and protection flags
3253 * use __vmalloc() instead.
3254 *
3255 * Return: pointer to the allocated memory or %NULL on error
3256 */
vmalloc_node(unsigned long size,int node)3257 void *vmalloc_node(unsigned long size, int node)
3258 {
3259 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3260 __builtin_return_address(0));
3261 }
3262 EXPORT_SYMBOL(vmalloc_node);
3263
3264 /**
3265 * vzalloc_node - allocate memory on a specific node with zero fill
3266 * @size: allocation size
3267 * @node: numa node
3268 *
3269 * Allocate enough pages to cover @size from the page level
3270 * allocator and map them into contiguous kernel virtual space.
3271 * The memory allocated is set to zero.
3272 *
3273 * Return: pointer to the allocated memory or %NULL on error
3274 */
vzalloc_node(unsigned long size,int node)3275 void *vzalloc_node(unsigned long size, int node)
3276 {
3277 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3278 __builtin_return_address(0));
3279 }
3280 EXPORT_SYMBOL(vzalloc_node);
3281
3282 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3283 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3284 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3285 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3286 #else
3287 /*
3288 * 64b systems should always have either DMA or DMA32 zones. For others
3289 * GFP_DMA32 should do the right thing and use the normal zone.
3290 */
3291 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3292 #endif
3293
3294 /**
3295 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3296 * @size: allocation size
3297 *
3298 * Allocate enough 32bit PA addressable pages to cover @size from the
3299 * page level allocator and map them into contiguous kernel virtual space.
3300 *
3301 * Return: pointer to the allocated memory or %NULL on error
3302 */
vmalloc_32(unsigned long size)3303 void *vmalloc_32(unsigned long size)
3304 {
3305 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3306 __builtin_return_address(0));
3307 }
3308 EXPORT_SYMBOL(vmalloc_32);
3309
3310 /**
3311 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3312 * @size: allocation size
3313 *
3314 * The resulting memory area is 32bit addressable and zeroed so it can be
3315 * mapped to userspace without leaking data.
3316 *
3317 * Return: pointer to the allocated memory or %NULL on error
3318 */
vmalloc_32_user(unsigned long size)3319 void *vmalloc_32_user(unsigned long size)
3320 {
3321 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3322 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3323 VM_USERMAP, NUMA_NO_NODE,
3324 __builtin_return_address(0));
3325 }
3326 EXPORT_SYMBOL(vmalloc_32_user);
3327
3328 /*
3329 * small helper routine , copy contents to buf from addr.
3330 * If the page is not present, fill zero.
3331 */
3332
aligned_vread(char * buf,char * addr,unsigned long count)3333 static int aligned_vread(char *buf, char *addr, unsigned long count)
3334 {
3335 struct page *p;
3336 int copied = 0;
3337
3338 while (count) {
3339 unsigned long offset, length;
3340
3341 offset = offset_in_page(addr);
3342 length = PAGE_SIZE - offset;
3343 if (length > count)
3344 length = count;
3345 p = vmalloc_to_page(addr);
3346 /*
3347 * To do safe access to this _mapped_ area, we need
3348 * lock. But adding lock here means that we need to add
3349 * overhead of vmalloc()/vfree() calls for this _debug_
3350 * interface, rarely used. Instead of that, we'll use
3351 * kmap() and get small overhead in this access function.
3352 */
3353 if (p) {
3354 /* We can expect USER0 is not used -- see vread() */
3355 void *map = kmap_atomic(p);
3356 memcpy(buf, map + offset, length);
3357 kunmap_atomic(map);
3358 } else
3359 memset(buf, 0, length);
3360
3361 addr += length;
3362 buf += length;
3363 copied += length;
3364 count -= length;
3365 }
3366 return copied;
3367 }
3368
3369 /**
3370 * vread() - read vmalloc area in a safe way.
3371 * @buf: buffer for reading data
3372 * @addr: vm address.
3373 * @count: number of bytes to be read.
3374 *
3375 * This function checks that addr is a valid vmalloc'ed area, and
3376 * copy data from that area to a given buffer. If the given memory range
3377 * of [addr...addr+count) includes some valid address, data is copied to
3378 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3379 * IOREMAP area is treated as memory hole and no copy is done.
3380 *
3381 * If [addr...addr+count) doesn't includes any intersects with alive
3382 * vm_struct area, returns 0. @buf should be kernel's buffer.
3383 *
3384 * Note: In usual ops, vread() is never necessary because the caller
3385 * should know vmalloc() area is valid and can use memcpy().
3386 * This is for routines which have to access vmalloc area without
3387 * any information, as /proc/kcore.
3388 *
3389 * Return: number of bytes for which addr and buf should be increased
3390 * (same number as @count) or %0 if [addr...addr+count) doesn't
3391 * include any intersection with valid vmalloc area
3392 */
vread(char * buf,char * addr,unsigned long count)3393 long vread(char *buf, char *addr, unsigned long count)
3394 {
3395 struct vmap_area *va;
3396 struct vm_struct *vm;
3397 char *vaddr, *buf_start = buf;
3398 unsigned long buflen = count;
3399 unsigned long n;
3400
3401 addr = kasan_reset_tag(addr);
3402
3403 /* Don't allow overflow */
3404 if ((unsigned long) addr + count < count)
3405 count = -(unsigned long) addr;
3406
3407 spin_lock(&vmap_area_lock);
3408 va = find_vmap_area_exceed_addr((unsigned long)addr);
3409 if (!va)
3410 goto finished;
3411
3412 /* no intersects with alive vmap_area */
3413 if ((unsigned long)addr + count <= va->va_start)
3414 goto finished;
3415
3416 list_for_each_entry_from(va, &vmap_area_list, list) {
3417 if (!count)
3418 break;
3419
3420 if (!va->vm)
3421 continue;
3422
3423 vm = va->vm;
3424 vaddr = (char *) vm->addr;
3425 if (addr >= vaddr + get_vm_area_size(vm))
3426 continue;
3427 while (addr < vaddr) {
3428 if (count == 0)
3429 goto finished;
3430 *buf = '\0';
3431 buf++;
3432 addr++;
3433 count--;
3434 }
3435 n = vaddr + get_vm_area_size(vm) - addr;
3436 if (n > count)
3437 n = count;
3438 if (!(vm->flags & VM_IOREMAP))
3439 aligned_vread(buf, addr, n);
3440 else /* IOREMAP area is treated as memory hole */
3441 memset(buf, 0, n);
3442 buf += n;
3443 addr += n;
3444 count -= n;
3445 }
3446 finished:
3447 spin_unlock(&vmap_area_lock);
3448
3449 if (buf == buf_start)
3450 return 0;
3451 /* zero-fill memory holes */
3452 if (buf != buf_start + buflen)
3453 memset(buf, 0, buflen - (buf - buf_start));
3454
3455 return buflen;
3456 }
3457
3458 /**
3459 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3460 * @vma: vma to cover
3461 * @uaddr: target user address to start at
3462 * @kaddr: virtual address of vmalloc kernel memory
3463 * @pgoff: offset from @kaddr to start at
3464 * @size: size of map area
3465 *
3466 * Returns: 0 for success, -Exxx on failure
3467 *
3468 * This function checks that @kaddr is a valid vmalloc'ed area,
3469 * and that it is big enough to cover the range starting at
3470 * @uaddr in @vma. Will return failure if that criteria isn't
3471 * met.
3472 *
3473 * Similar to remap_pfn_range() (see mm/memory.c)
3474 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)3475 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3476 void *kaddr, unsigned long pgoff,
3477 unsigned long size)
3478 {
3479 struct vm_struct *area;
3480 unsigned long off;
3481 unsigned long end_index;
3482
3483 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3484 return -EINVAL;
3485
3486 size = PAGE_ALIGN(size);
3487
3488 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3489 return -EINVAL;
3490
3491 area = find_vm_area(kaddr);
3492 if (!area)
3493 return -EINVAL;
3494
3495 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3496 return -EINVAL;
3497
3498 if (check_add_overflow(size, off, &end_index) ||
3499 end_index > get_vm_area_size(area))
3500 return -EINVAL;
3501 kaddr += off;
3502
3503 do {
3504 struct page *page = vmalloc_to_page(kaddr);
3505 int ret;
3506
3507 ret = vm_insert_page(vma, uaddr, page);
3508 if (ret)
3509 return ret;
3510
3511 uaddr += PAGE_SIZE;
3512 kaddr += PAGE_SIZE;
3513 size -= PAGE_SIZE;
3514 } while (size > 0);
3515
3516 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3517
3518 return 0;
3519 }
3520
3521 /**
3522 * remap_vmalloc_range - map vmalloc pages to userspace
3523 * @vma: vma to cover (map full range of vma)
3524 * @addr: vmalloc memory
3525 * @pgoff: number of pages into addr before first page to map
3526 *
3527 * Returns: 0 for success, -Exxx on failure
3528 *
3529 * This function checks that addr is a valid vmalloc'ed area, and
3530 * that it is big enough to cover the vma. Will return failure if
3531 * that criteria isn't met.
3532 *
3533 * Similar to remap_pfn_range() (see mm/memory.c)
3534 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)3535 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3536 unsigned long pgoff)
3537 {
3538 return remap_vmalloc_range_partial(vma, vma->vm_start,
3539 addr, pgoff,
3540 vma->vm_end - vma->vm_start);
3541 }
3542 EXPORT_SYMBOL(remap_vmalloc_range);
3543
free_vm_area(struct vm_struct * area)3544 void free_vm_area(struct vm_struct *area)
3545 {
3546 struct vm_struct *ret;
3547 ret = remove_vm_area(area->addr);
3548 BUG_ON(ret != area);
3549 kfree(area);
3550 }
3551 EXPORT_SYMBOL_GPL(free_vm_area);
3552
3553 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)3554 static struct vmap_area *node_to_va(struct rb_node *n)
3555 {
3556 return rb_entry_safe(n, struct vmap_area, rb_node);
3557 }
3558
3559 /**
3560 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3561 * @addr: target address
3562 *
3563 * Returns: vmap_area if it is found. If there is no such area
3564 * the first highest(reverse order) vmap_area is returned
3565 * i.e. va->va_start < addr && va->va_end < addr or NULL
3566 * if there are no any areas before @addr.
3567 */
3568 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)3569 pvm_find_va_enclose_addr(unsigned long addr)
3570 {
3571 struct vmap_area *va, *tmp;
3572 struct rb_node *n;
3573
3574 n = free_vmap_area_root.rb_node;
3575 va = NULL;
3576
3577 while (n) {
3578 tmp = rb_entry(n, struct vmap_area, rb_node);
3579 if (tmp->va_start <= addr) {
3580 va = tmp;
3581 if (tmp->va_end >= addr)
3582 break;
3583
3584 n = n->rb_right;
3585 } else {
3586 n = n->rb_left;
3587 }
3588 }
3589
3590 return va;
3591 }
3592
3593 /**
3594 * pvm_determine_end_from_reverse - find the highest aligned address
3595 * of free block below VMALLOC_END
3596 * @va:
3597 * in - the VA we start the search(reverse order);
3598 * out - the VA with the highest aligned end address.
3599 * @align: alignment for required highest address
3600 *
3601 * Returns: determined end address within vmap_area
3602 */
3603 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)3604 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3605 {
3606 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3607 unsigned long addr;
3608
3609 if (likely(*va)) {
3610 list_for_each_entry_from_reverse((*va),
3611 &free_vmap_area_list, list) {
3612 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3613 if ((*va)->va_start < addr)
3614 return addr;
3615 }
3616 }
3617
3618 return 0;
3619 }
3620
3621 /**
3622 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3623 * @offsets: array containing offset of each area
3624 * @sizes: array containing size of each area
3625 * @nr_vms: the number of areas to allocate
3626 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3627 *
3628 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3629 * vm_structs on success, %NULL on failure
3630 *
3631 * Percpu allocator wants to use congruent vm areas so that it can
3632 * maintain the offsets among percpu areas. This function allocates
3633 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3634 * be scattered pretty far, distance between two areas easily going up
3635 * to gigabytes. To avoid interacting with regular vmallocs, these
3636 * areas are allocated from top.
3637 *
3638 * Despite its complicated look, this allocator is rather simple. It
3639 * does everything top-down and scans free blocks from the end looking
3640 * for matching base. While scanning, if any of the areas do not fit the
3641 * base address is pulled down to fit the area. Scanning is repeated till
3642 * all the areas fit and then all necessary data structures are inserted
3643 * and the result is returned.
3644 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)3645 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3646 const size_t *sizes, int nr_vms,
3647 size_t align)
3648 {
3649 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3650 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3651 struct vmap_area **vas, *va;
3652 struct vm_struct **vms;
3653 int area, area2, last_area, term_area;
3654 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3655 bool purged = false;
3656 enum fit_type type;
3657
3658 /* verify parameters and allocate data structures */
3659 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3660 for (last_area = 0, area = 0; area < nr_vms; area++) {
3661 start = offsets[area];
3662 end = start + sizes[area];
3663
3664 /* is everything aligned properly? */
3665 BUG_ON(!IS_ALIGNED(offsets[area], align));
3666 BUG_ON(!IS_ALIGNED(sizes[area], align));
3667
3668 /* detect the area with the highest address */
3669 if (start > offsets[last_area])
3670 last_area = area;
3671
3672 for (area2 = area + 1; area2 < nr_vms; area2++) {
3673 unsigned long start2 = offsets[area2];
3674 unsigned long end2 = start2 + sizes[area2];
3675
3676 BUG_ON(start2 < end && start < end2);
3677 }
3678 }
3679 last_end = offsets[last_area] + sizes[last_area];
3680
3681 if (vmalloc_end - vmalloc_start < last_end) {
3682 WARN_ON(true);
3683 return NULL;
3684 }
3685
3686 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3687 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3688 if (!vas || !vms)
3689 goto err_free2;
3690
3691 for (area = 0; area < nr_vms; area++) {
3692 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3693 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3694 if (!vas[area] || !vms[area])
3695 goto err_free;
3696 }
3697 retry:
3698 spin_lock(&free_vmap_area_lock);
3699
3700 /* start scanning - we scan from the top, begin with the last area */
3701 area = term_area = last_area;
3702 start = offsets[area];
3703 end = start + sizes[area];
3704
3705 va = pvm_find_va_enclose_addr(vmalloc_end);
3706 base = pvm_determine_end_from_reverse(&va, align) - end;
3707
3708 while (true) {
3709 /*
3710 * base might have underflowed, add last_end before
3711 * comparing.
3712 */
3713 if (base + last_end < vmalloc_start + last_end)
3714 goto overflow;
3715
3716 /*
3717 * Fitting base has not been found.
3718 */
3719 if (va == NULL)
3720 goto overflow;
3721
3722 /*
3723 * If required width exceeds current VA block, move
3724 * base downwards and then recheck.
3725 */
3726 if (base + end > va->va_end) {
3727 base = pvm_determine_end_from_reverse(&va, align) - end;
3728 term_area = area;
3729 continue;
3730 }
3731
3732 /*
3733 * If this VA does not fit, move base downwards and recheck.
3734 */
3735 if (base + start < va->va_start) {
3736 va = node_to_va(rb_prev(&va->rb_node));
3737 base = pvm_determine_end_from_reverse(&va, align) - end;
3738 term_area = area;
3739 continue;
3740 }
3741
3742 /*
3743 * This area fits, move on to the previous one. If
3744 * the previous one is the terminal one, we're done.
3745 */
3746 area = (area + nr_vms - 1) % nr_vms;
3747 if (area == term_area)
3748 break;
3749
3750 start = offsets[area];
3751 end = start + sizes[area];
3752 va = pvm_find_va_enclose_addr(base + end);
3753 }
3754
3755 /* we've found a fitting base, insert all va's */
3756 for (area = 0; area < nr_vms; area++) {
3757 int ret;
3758
3759 start = base + offsets[area];
3760 size = sizes[area];
3761
3762 va = pvm_find_va_enclose_addr(start);
3763 if (WARN_ON_ONCE(va == NULL))
3764 /* It is a BUG(), but trigger recovery instead. */
3765 goto recovery;
3766
3767 type = classify_va_fit_type(va, start, size);
3768 if (WARN_ON_ONCE(type == NOTHING_FIT))
3769 /* It is a BUG(), but trigger recovery instead. */
3770 goto recovery;
3771
3772 ret = adjust_va_to_fit_type(va, start, size, type);
3773 if (unlikely(ret))
3774 goto recovery;
3775
3776 /* Allocated area. */
3777 va = vas[area];
3778 va->va_start = start;
3779 va->va_end = start + size;
3780 }
3781
3782 spin_unlock(&free_vmap_area_lock);
3783
3784 /* populate the kasan shadow space */
3785 for (area = 0; area < nr_vms; area++) {
3786 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3787 goto err_free_shadow;
3788 }
3789
3790 /* insert all vm's */
3791 spin_lock(&vmap_area_lock);
3792 for (area = 0; area < nr_vms; area++) {
3793 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3794
3795 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3796 pcpu_get_vm_areas);
3797 }
3798 spin_unlock(&vmap_area_lock);
3799
3800 /*
3801 * Mark allocated areas as accessible. Do it now as a best-effort
3802 * approach, as they can be mapped outside of vmalloc code.
3803 * With hardware tag-based KASAN, marking is skipped for
3804 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3805 */
3806 for (area = 0; area < nr_vms; area++)
3807 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3808 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3809
3810 kfree(vas);
3811 return vms;
3812
3813 recovery:
3814 /*
3815 * Remove previously allocated areas. There is no
3816 * need in removing these areas from the busy tree,
3817 * because they are inserted only on the final step
3818 * and when pcpu_get_vm_areas() is success.
3819 */
3820 while (area--) {
3821 orig_start = vas[area]->va_start;
3822 orig_end = vas[area]->va_end;
3823 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3824 &free_vmap_area_list);
3825 if (va)
3826 kasan_release_vmalloc(orig_start, orig_end,
3827 va->va_start, va->va_end);
3828 vas[area] = NULL;
3829 }
3830
3831 overflow:
3832 spin_unlock(&free_vmap_area_lock);
3833 if (!purged) {
3834 purge_vmap_area_lazy();
3835 purged = true;
3836
3837 /* Before "retry", check if we recover. */
3838 for (area = 0; area < nr_vms; area++) {
3839 if (vas[area])
3840 continue;
3841
3842 vas[area] = kmem_cache_zalloc(
3843 vmap_area_cachep, GFP_KERNEL);
3844 if (!vas[area])
3845 goto err_free;
3846 }
3847
3848 goto retry;
3849 }
3850
3851 err_free:
3852 for (area = 0; area < nr_vms; area++) {
3853 if (vas[area])
3854 kmem_cache_free(vmap_area_cachep, vas[area]);
3855
3856 kfree(vms[area]);
3857 }
3858 err_free2:
3859 kfree(vas);
3860 kfree(vms);
3861 return NULL;
3862
3863 err_free_shadow:
3864 spin_lock(&free_vmap_area_lock);
3865 /*
3866 * We release all the vmalloc shadows, even the ones for regions that
3867 * hadn't been successfully added. This relies on kasan_release_vmalloc
3868 * being able to tolerate this case.
3869 */
3870 for (area = 0; area < nr_vms; area++) {
3871 orig_start = vas[area]->va_start;
3872 orig_end = vas[area]->va_end;
3873 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3874 &free_vmap_area_list);
3875 if (va)
3876 kasan_release_vmalloc(orig_start, orig_end,
3877 va->va_start, va->va_end);
3878 vas[area] = NULL;
3879 kfree(vms[area]);
3880 }
3881 spin_unlock(&free_vmap_area_lock);
3882 kfree(vas);
3883 kfree(vms);
3884 return NULL;
3885 }
3886
3887 /**
3888 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3889 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3890 * @nr_vms: the number of allocated areas
3891 *
3892 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3893 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)3894 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3895 {
3896 int i;
3897
3898 for (i = 0; i < nr_vms; i++)
3899 free_vm_area(vms[i]);
3900 kfree(vms);
3901 }
3902 #endif /* CONFIG_SMP */
3903
3904 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)3905 bool vmalloc_dump_obj(void *object)
3906 {
3907 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3908 const void *caller;
3909 struct vm_struct *vm;
3910 struct vmap_area *va;
3911 unsigned long addr;
3912 unsigned int nr_pages;
3913
3914 if (!spin_trylock(&vmap_area_lock))
3915 return false;
3916 va = __find_vmap_area((unsigned long)objp);
3917 if (!va) {
3918 spin_unlock(&vmap_area_lock);
3919 return false;
3920 }
3921
3922 vm = va->vm;
3923 if (!vm) {
3924 spin_unlock(&vmap_area_lock);
3925 return false;
3926 }
3927 addr = (unsigned long)vm->addr;
3928 caller = vm->caller;
3929 nr_pages = vm->nr_pages;
3930 spin_unlock(&vmap_area_lock);
3931 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3932 nr_pages, addr, caller);
3933 return true;
3934 }
3935 #endif
3936
3937 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)3938 static void *s_start(struct seq_file *m, loff_t *pos)
3939 __acquires(&vmap_purge_lock)
3940 __acquires(&vmap_area_lock)
3941 {
3942 mutex_lock(&vmap_purge_lock);
3943 spin_lock(&vmap_area_lock);
3944
3945 return seq_list_start(&vmap_area_list, *pos);
3946 }
3947
s_next(struct seq_file * m,void * p,loff_t * pos)3948 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3949 {
3950 return seq_list_next(p, &vmap_area_list, pos);
3951 }
3952
s_stop(struct seq_file * m,void * p)3953 static void s_stop(struct seq_file *m, void *p)
3954 __releases(&vmap_area_lock)
3955 __releases(&vmap_purge_lock)
3956 {
3957 spin_unlock(&vmap_area_lock);
3958 mutex_unlock(&vmap_purge_lock);
3959 }
3960
show_numa_info(struct seq_file * m,struct vm_struct * v)3961 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3962 {
3963 if (IS_ENABLED(CONFIG_NUMA)) {
3964 unsigned int nr, *counters = m->private;
3965
3966 if (!counters)
3967 return;
3968
3969 if (v->flags & VM_UNINITIALIZED)
3970 return;
3971 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3972 smp_rmb();
3973
3974 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3975
3976 for (nr = 0; nr < v->nr_pages; nr++)
3977 counters[page_to_nid(v->pages[nr])]++;
3978
3979 for_each_node_state(nr, N_HIGH_MEMORY)
3980 if (counters[nr])
3981 seq_printf(m, " N%u=%u", nr, counters[nr]);
3982 }
3983 }
3984
show_purge_info(struct seq_file * m)3985 static void show_purge_info(struct seq_file *m)
3986 {
3987 struct vmap_area *va;
3988
3989 spin_lock(&purge_vmap_area_lock);
3990 list_for_each_entry(va, &purge_vmap_area_list, list) {
3991 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3992 (void *)va->va_start, (void *)va->va_end,
3993 va->va_end - va->va_start);
3994 }
3995 spin_unlock(&purge_vmap_area_lock);
3996 }
3997
s_show(struct seq_file * m,void * p)3998 static int s_show(struct seq_file *m, void *p)
3999 {
4000 struct vmap_area *va;
4001 struct vm_struct *v;
4002
4003 va = list_entry(p, struct vmap_area, list);
4004
4005 /*
4006 * s_show can encounter race with remove_vm_area, !vm on behalf
4007 * of vmap area is being tear down or vm_map_ram allocation.
4008 */
4009 if (!va->vm) {
4010 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4011 (void *)va->va_start, (void *)va->va_end,
4012 va->va_end - va->va_start);
4013
4014 return 0;
4015 }
4016
4017 v = va->vm;
4018
4019 seq_printf(m, "0x%pK-0x%pK %7ld",
4020 v->addr, v->addr + v->size, v->size);
4021
4022 if (v->caller)
4023 seq_printf(m, " %pS", v->caller);
4024
4025 if (v->nr_pages)
4026 seq_printf(m, " pages=%d", v->nr_pages);
4027
4028 if (v->phys_addr)
4029 seq_printf(m, " phys=%pa", &v->phys_addr);
4030
4031 if (v->flags & VM_IOREMAP)
4032 seq_puts(m, " ioremap");
4033
4034 if (v->flags & VM_ALLOC)
4035 seq_puts(m, " vmalloc");
4036
4037 if (v->flags & VM_MAP)
4038 seq_puts(m, " vmap");
4039
4040 if (v->flags & VM_USERMAP)
4041 seq_puts(m, " user");
4042
4043 if (v->flags & VM_DMA_COHERENT)
4044 seq_puts(m, " dma-coherent");
4045
4046 if (is_vmalloc_addr(v->pages))
4047 seq_puts(m, " vpages");
4048
4049 show_numa_info(m, v);
4050 seq_putc(m, '\n');
4051
4052 /*
4053 * As a final step, dump "unpurged" areas.
4054 */
4055 if (list_is_last(&va->list, &vmap_area_list))
4056 show_purge_info(m);
4057
4058 return 0;
4059 }
4060
4061 static const struct seq_operations vmalloc_op = {
4062 .start = s_start,
4063 .next = s_next,
4064 .stop = s_stop,
4065 .show = s_show,
4066 };
4067
proc_vmalloc_init(void)4068 static int __init proc_vmalloc_init(void)
4069 {
4070 if (IS_ENABLED(CONFIG_NUMA))
4071 proc_create_seq_private("vmallocinfo", 0400, NULL,
4072 &vmalloc_op,
4073 nr_node_ids * sizeof(unsigned int), NULL);
4074 else
4075 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4076 return 0;
4077 }
4078 module_init(proc_vmalloc_init);
4079
4080 #endif
4081