• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Linux VM pressure
4  *
5  * Copyright 2012 Linaro Ltd.
6  *		  Anton Vorontsov <anton.vorontsov@linaro.org>
7  *
8  * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
9  * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
10  */
11 
12 #include <linux/cgroup.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/sched.h>
16 #include <linux/mm.h>
17 #include <linux/vmstat.h>
18 #include <linux/eventfd.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/printk.h>
22 #include <linux/vmpressure.h>
23 
24 #include <trace/hooks/mm.h>
25 
26 /*
27  * The window size (vmpressure_win) is the number of scanned pages before
28  * we try to analyze scanned/reclaimed ratio. So the window is used as a
29  * rate-limit tunable for the "low" level notification, and also for
30  * averaging the ratio for medium/critical levels. Using small window
31  * sizes can cause lot of false positives, but too big window size will
32  * delay the notifications.
33  *
34  * As the vmscan reclaimer logic works with chunks which are multiple of
35  * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
36  *
37  * TODO: Make the window size depend on machine size, as we do for vmstat
38  * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
39  */
40 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
41 
42 /*
43  * These thresholds are used when we account memory pressure through
44  * scanned/reclaimed ratio. The current values were chosen empirically. In
45  * essence, they are percents: the higher the value, the more number
46  * unsuccessful reclaims there were.
47  */
48 static const unsigned int vmpressure_level_med = 60;
49 static const unsigned int vmpressure_level_critical = 95;
50 
51 /*
52  * When there are too little pages left to scan, vmpressure() may miss the
53  * critical pressure as number of pages will be less than "window size".
54  * However, in that case the vmscan priority will raise fast as the
55  * reclaimer will try to scan LRUs more deeply.
56  *
57  * The vmscan logic considers these special priorities:
58  *
59  * prio == DEF_PRIORITY (12): reclaimer starts with that value
60  * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
61  * prio == 0                : close to OOM, kernel scans every page in an lru
62  *
63  * Any value in this range is acceptable for this tunable (i.e. from 12 to
64  * 0). Current value for the vmpressure_level_critical_prio is chosen
65  * empirically, but the number, in essence, means that we consider
66  * critical level when scanning depth is ~10% of the lru size (vmscan
67  * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
68  * eights).
69  */
70 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
71 
work_to_vmpressure(struct work_struct * work)72 static struct vmpressure *work_to_vmpressure(struct work_struct *work)
73 {
74 	return container_of(work, struct vmpressure, work);
75 }
76 
vmpressure_parent(struct vmpressure * vmpr)77 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
78 {
79 	struct mem_cgroup *memcg = vmpressure_to_memcg(vmpr);
80 
81 	memcg = parent_mem_cgroup(memcg);
82 	if (!memcg)
83 		return NULL;
84 	return memcg_to_vmpressure(memcg);
85 }
86 
87 enum vmpressure_levels {
88 	VMPRESSURE_LOW = 0,
89 	VMPRESSURE_MEDIUM,
90 	VMPRESSURE_CRITICAL,
91 	VMPRESSURE_NUM_LEVELS,
92 };
93 
94 enum vmpressure_modes {
95 	VMPRESSURE_NO_PASSTHROUGH = 0,
96 	VMPRESSURE_HIERARCHY,
97 	VMPRESSURE_LOCAL,
98 	VMPRESSURE_NUM_MODES,
99 };
100 
101 static const char * const vmpressure_str_levels[] = {
102 	[VMPRESSURE_LOW] = "low",
103 	[VMPRESSURE_MEDIUM] = "medium",
104 	[VMPRESSURE_CRITICAL] = "critical",
105 };
106 
107 static const char * const vmpressure_str_modes[] = {
108 	[VMPRESSURE_NO_PASSTHROUGH] = "default",
109 	[VMPRESSURE_HIERARCHY] = "hierarchy",
110 	[VMPRESSURE_LOCAL] = "local",
111 };
112 
vmpressure_level(unsigned long pressure)113 static enum vmpressure_levels vmpressure_level(unsigned long pressure)
114 {
115 	if (pressure >= vmpressure_level_critical)
116 		return VMPRESSURE_CRITICAL;
117 	else if (pressure >= vmpressure_level_med)
118 		return VMPRESSURE_MEDIUM;
119 	return VMPRESSURE_LOW;
120 }
121 
vmpressure_calc_level(unsigned long scanned,unsigned long reclaimed)122 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
123 						    unsigned long reclaimed)
124 {
125 	unsigned long scale = scanned + reclaimed;
126 	unsigned long pressure = 0;
127 
128 	/*
129 	 * reclaimed can be greater than scanned for things such as reclaimed
130 	 * slab pages. shrink_node() just adds reclaimed pages without a
131 	 * related increment to scanned pages.
132 	 */
133 	if (reclaimed >= scanned)
134 		goto out;
135 	/*
136 	 * We calculate the ratio (in percents) of how many pages were
137 	 * scanned vs. reclaimed in a given time frame (window). Note that
138 	 * time is in VM reclaimer's "ticks", i.e. number of pages
139 	 * scanned. This makes it possible to set desired reaction time
140 	 * and serves as a ratelimit.
141 	 */
142 	pressure = scale - (reclaimed * scale / scanned);
143 	pressure = pressure * 100 / scale;
144 
145 out:
146 	pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
147 		 scanned, reclaimed);
148 
149 	return vmpressure_level(pressure);
150 }
151 
152 struct vmpressure_event {
153 	struct eventfd_ctx *efd;
154 	enum vmpressure_levels level;
155 	enum vmpressure_modes mode;
156 	struct list_head node;
157 };
158 
vmpressure_event(struct vmpressure * vmpr,const enum vmpressure_levels level,bool ancestor,bool signalled)159 static bool vmpressure_event(struct vmpressure *vmpr,
160 			     const enum vmpressure_levels level,
161 			     bool ancestor, bool signalled)
162 {
163 	struct vmpressure_event *ev;
164 	bool ret = false;
165 
166 	mutex_lock(&vmpr->events_lock);
167 	list_for_each_entry(ev, &vmpr->events, node) {
168 		if (ancestor && ev->mode == VMPRESSURE_LOCAL)
169 			continue;
170 		if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH)
171 			continue;
172 		if (level < ev->level)
173 			continue;
174 		eventfd_signal(ev->efd, 1);
175 		ret = true;
176 	}
177 	mutex_unlock(&vmpr->events_lock);
178 
179 	return ret;
180 }
181 
vmpressure_work_fn(struct work_struct * work)182 static void vmpressure_work_fn(struct work_struct *work)
183 {
184 	struct vmpressure *vmpr = work_to_vmpressure(work);
185 	unsigned long scanned;
186 	unsigned long reclaimed;
187 	enum vmpressure_levels level;
188 	bool ancestor = false;
189 	bool signalled = false;
190 
191 	spin_lock(&vmpr->sr_lock);
192 	/*
193 	 * Several contexts might be calling vmpressure(), so it is
194 	 * possible that the work was rescheduled again before the old
195 	 * work context cleared the counters. In that case we will run
196 	 * just after the old work returns, but then scanned might be zero
197 	 * here. No need for any locks here since we don't care if
198 	 * vmpr->reclaimed is in sync.
199 	 */
200 	scanned = vmpr->tree_scanned;
201 	if (!scanned) {
202 		spin_unlock(&vmpr->sr_lock);
203 		return;
204 	}
205 
206 	reclaimed = vmpr->tree_reclaimed;
207 	vmpr->tree_scanned = 0;
208 	vmpr->tree_reclaimed = 0;
209 	spin_unlock(&vmpr->sr_lock);
210 
211 	level = vmpressure_calc_level(scanned, reclaimed);
212 
213 	do {
214 		if (vmpressure_event(vmpr, level, ancestor, signalled))
215 			signalled = true;
216 		ancestor = true;
217 	} while ((vmpr = vmpressure_parent(vmpr)));
218 }
219 
220 /**
221  * vmpressure() - Account memory pressure through scanned/reclaimed ratio
222  * @gfp:	reclaimer's gfp mask
223  * @memcg:	cgroup memory controller handle
224  * @tree:	legacy subtree mode
225  * @scanned:	number of pages scanned
226  * @reclaimed:	number of pages reclaimed
227  *
228  * This function should be called from the vmscan reclaim path to account
229  * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
230  * pressure index is then further refined and averaged over time.
231  *
232  * If @tree is set, vmpressure is in traditional userspace reporting
233  * mode: @memcg is considered the pressure root and userspace is
234  * notified of the entire subtree's reclaim efficiency.
235  *
236  * If @tree is not set, reclaim efficiency is recorded for @memcg, and
237  * only in-kernel users are notified.
238  *
239  * This function does not return any value.
240  */
vmpressure(gfp_t gfp,struct mem_cgroup * memcg,bool tree,unsigned long scanned,unsigned long reclaimed)241 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree,
242 		unsigned long scanned, unsigned long reclaimed)
243 {
244 	struct vmpressure *vmpr;
245 	bool bypass = false;
246 
247 	if (mem_cgroup_disabled())
248 		return;
249 
250 	trace_android_vh_vmpressure(memcg, &bypass);
251 	if (bypass)
252 		return;
253 
254 	/*
255 	 * The in-kernel users only care about the reclaim efficiency
256 	 * for this @memcg rather than the whole subtree, and there
257 	 * isn't and won't be any in-kernel user in a legacy cgroup.
258 	 */
259 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !tree)
260 		return;
261 
262 	vmpr = memcg_to_vmpressure(memcg);
263 
264 	/*
265 	 * Here we only want to account pressure that userland is able to
266 	 * help us with. For example, suppose that DMA zone is under
267 	 * pressure; if we notify userland about that kind of pressure,
268 	 * then it will be mostly a waste as it will trigger unnecessary
269 	 * freeing of memory by userland (since userland is more likely to
270 	 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
271 	 * is why we include only movable, highmem and FS/IO pages.
272 	 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
273 	 * we account it too.
274 	 */
275 	if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
276 		return;
277 
278 	/*
279 	 * If we got here with no pages scanned, then that is an indicator
280 	 * that reclaimer was unable to find any shrinkable LRUs at the
281 	 * current scanning depth. But it does not mean that we should
282 	 * report the critical pressure, yet. If the scanning priority
283 	 * (scanning depth) goes too high (deep), we will be notified
284 	 * through vmpressure_prio(). But so far, keep calm.
285 	 */
286 	if (!scanned)
287 		return;
288 
289 	if (tree) {
290 		spin_lock(&vmpr->sr_lock);
291 		scanned = vmpr->tree_scanned += scanned;
292 		vmpr->tree_reclaimed += reclaimed;
293 		spin_unlock(&vmpr->sr_lock);
294 
295 		if (scanned < vmpressure_win)
296 			return;
297 		schedule_work(&vmpr->work);
298 	} else {
299 		enum vmpressure_levels level;
300 
301 		/* For now, no users for root-level efficiency */
302 		if (!memcg || mem_cgroup_is_root(memcg))
303 			return;
304 
305 		spin_lock(&vmpr->sr_lock);
306 		scanned = vmpr->scanned += scanned;
307 		reclaimed = vmpr->reclaimed += reclaimed;
308 		if (scanned < vmpressure_win) {
309 			spin_unlock(&vmpr->sr_lock);
310 			return;
311 		}
312 		vmpr->scanned = vmpr->reclaimed = 0;
313 		spin_unlock(&vmpr->sr_lock);
314 
315 		level = vmpressure_calc_level(scanned, reclaimed);
316 
317 		if (level > VMPRESSURE_LOW) {
318 			/*
319 			 * Let the socket buffer allocator know that
320 			 * we are having trouble reclaiming LRU pages.
321 			 *
322 			 * For hysteresis keep the pressure state
323 			 * asserted for a second in which subsequent
324 			 * pressure events can occur.
325 			 */
326 			memcg->socket_pressure = jiffies + HZ;
327 		}
328 	}
329 }
330 
331 /**
332  * vmpressure_prio() - Account memory pressure through reclaimer priority level
333  * @gfp:	reclaimer's gfp mask
334  * @memcg:	cgroup memory controller handle
335  * @prio:	reclaimer's priority
336  *
337  * This function should be called from the reclaim path every time when
338  * the vmscan's reclaiming priority (scanning depth) changes.
339  *
340  * This function does not return any value.
341  */
vmpressure_prio(gfp_t gfp,struct mem_cgroup * memcg,int prio)342 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
343 {
344 	/*
345 	 * We only use prio for accounting critical level. For more info
346 	 * see comment for vmpressure_level_critical_prio variable above.
347 	 */
348 	if (prio > vmpressure_level_critical_prio)
349 		return;
350 
351 	/*
352 	 * OK, the prio is below the threshold, updating vmpressure
353 	 * information before shrinker dives into long shrinking of long
354 	 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
355 	 * to the vmpressure() basically means that we signal 'critical'
356 	 * level.
357 	 */
358 	vmpressure(gfp, memcg, true, vmpressure_win, 0);
359 }
360 
361 #define MAX_VMPRESSURE_ARGS_LEN	(strlen("critical") + strlen("hierarchy") + 2)
362 
363 /**
364  * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
365  * @memcg:	memcg that is interested in vmpressure notifications
366  * @eventfd:	eventfd context to link notifications with
367  * @args:	event arguments (pressure level threshold, optional mode)
368  *
369  * This function associates eventfd context with the vmpressure
370  * infrastructure, so that the notifications will be delivered to the
371  * @eventfd. The @args parameter is a comma-delimited string that denotes a
372  * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium",
373  * or "critical") and an optional mode (one of vmpressure_str_modes, i.e.
374  * "hierarchy" or "local").
375  *
376  * To be used as memcg event method.
377  *
378  * Return: 0 on success, -ENOMEM on memory failure or -EINVAL if @args could
379  * not be parsed.
380  */
vmpressure_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)381 int vmpressure_register_event(struct mem_cgroup *memcg,
382 			      struct eventfd_ctx *eventfd, const char *args)
383 {
384 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
385 	struct vmpressure_event *ev;
386 	enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH;
387 	enum vmpressure_levels level;
388 	char *spec, *spec_orig;
389 	char *token;
390 	int ret = 0;
391 
392 	spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL);
393 	if (!spec)
394 		return -ENOMEM;
395 
396 	/* Find required level */
397 	token = strsep(&spec, ",");
398 	ret = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token);
399 	if (ret < 0)
400 		goto out;
401 	level = ret;
402 
403 	/* Find optional mode */
404 	token = strsep(&spec, ",");
405 	if (token) {
406 		ret = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token);
407 		if (ret < 0)
408 			goto out;
409 		mode = ret;
410 	}
411 
412 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
413 	if (!ev) {
414 		ret = -ENOMEM;
415 		goto out;
416 	}
417 
418 	ev->efd = eventfd;
419 	ev->level = level;
420 	ev->mode = mode;
421 
422 	mutex_lock(&vmpr->events_lock);
423 	list_add(&ev->node, &vmpr->events);
424 	mutex_unlock(&vmpr->events_lock);
425 	ret = 0;
426 out:
427 	kfree(spec_orig);
428 	return ret;
429 }
430 
431 /**
432  * vmpressure_unregister_event() - Unbind eventfd from vmpressure
433  * @memcg:	memcg handle
434  * @eventfd:	eventfd context that was used to link vmpressure with the @cg
435  *
436  * This function does internal manipulations to detach the @eventfd from
437  * the vmpressure notifications, and then frees internal resources
438  * associated with the @eventfd (but the @eventfd itself is not freed).
439  *
440  * To be used as memcg event method.
441  */
vmpressure_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)442 void vmpressure_unregister_event(struct mem_cgroup *memcg,
443 				 struct eventfd_ctx *eventfd)
444 {
445 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
446 	struct vmpressure_event *ev;
447 
448 	mutex_lock(&vmpr->events_lock);
449 	list_for_each_entry(ev, &vmpr->events, node) {
450 		if (ev->efd != eventfd)
451 			continue;
452 		list_del(&ev->node);
453 		kfree(ev);
454 		break;
455 	}
456 	mutex_unlock(&vmpr->events_lock);
457 }
458 
459 /**
460  * vmpressure_init() - Initialize vmpressure control structure
461  * @vmpr:	Structure to be initialized
462  *
463  * This function should be called on every allocated vmpressure structure
464  * before any usage.
465  */
vmpressure_init(struct vmpressure * vmpr)466 void vmpressure_init(struct vmpressure *vmpr)
467 {
468 	spin_lock_init(&vmpr->sr_lock);
469 	mutex_init(&vmpr->events_lock);
470 	INIT_LIST_HEAD(&vmpr->events);
471 	INIT_WORK(&vmpr->work, vmpressure_work_fn);
472 }
473 
474 /**
475  * vmpressure_cleanup() - shuts down vmpressure control structure
476  * @vmpr:	Structure to be cleaned up
477  *
478  * This function should be called before the structure in which it is
479  * embedded is cleaned up.
480  */
vmpressure_cleanup(struct vmpressure * vmpr)481 void vmpressure_cleanup(struct vmpressure *vmpr)
482 {
483 	/*
484 	 * Make sure there is no pending work before eventfd infrastructure
485 	 * goes away.
486 	 */
487 	flush_work(&vmpr->work);
488 }
489