• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/mm_inline.h>
10 #include <linux/writeback.h>
11 #include <linux/shmem_fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/atomic.h>
14 #include <linux/module.h>
15 #include <linux/swap.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 
20 /*
21  *		Double CLOCK lists
22  *
23  * Per node, two clock lists are maintained for file pages: the
24  * inactive and the active list.  Freshly faulted pages start out at
25  * the head of the inactive list and page reclaim scans pages from the
26  * tail.  Pages that are accessed multiple times on the inactive list
27  * are promoted to the active list, to protect them from reclaim,
28  * whereas active pages are demoted to the inactive list when the
29  * active list grows too big.
30  *
31  *   fault ------------------------+
32  *                                 |
33  *              +--------------+   |            +-------------+
34  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
35  *              +--------------+                +-------------+    |
36  *                     |                                           |
37  *                     +-------------- promotion ------------------+
38  *
39  *
40  *		Access frequency and refault distance
41  *
42  * A workload is thrashing when its pages are frequently used but they
43  * are evicted from the inactive list every time before another access
44  * would have promoted them to the active list.
45  *
46  * In cases where the average access distance between thrashing pages
47  * is bigger than the size of memory there is nothing that can be
48  * done - the thrashing set could never fit into memory under any
49  * circumstance.
50  *
51  * However, the average access distance could be bigger than the
52  * inactive list, yet smaller than the size of memory.  In this case,
53  * the set could fit into memory if it weren't for the currently
54  * active pages - which may be used more, hopefully less frequently:
55  *
56  *      +-memory available to cache-+
57  *      |                           |
58  *      +-inactive------+-active----+
59  *  a b | c d e f g h i | J K L M N |
60  *      +---------------+-----------+
61  *
62  * It is prohibitively expensive to accurately track access frequency
63  * of pages.  But a reasonable approximation can be made to measure
64  * thrashing on the inactive list, after which refaulting pages can be
65  * activated optimistically to compete with the existing active pages.
66  *
67  * Approximating inactive page access frequency - Observations:
68  *
69  * 1. When a page is accessed for the first time, it is added to the
70  *    head of the inactive list, slides every existing inactive page
71  *    towards the tail by one slot, and pushes the current tail page
72  *    out of memory.
73  *
74  * 2. When a page is accessed for the second time, it is promoted to
75  *    the active list, shrinking the inactive list by one slot.  This
76  *    also slides all inactive pages that were faulted into the cache
77  *    more recently than the activated page towards the tail of the
78  *    inactive list.
79  *
80  * Thus:
81  *
82  * 1. The sum of evictions and activations between any two points in
83  *    time indicate the minimum number of inactive pages accessed in
84  *    between.
85  *
86  * 2. Moving one inactive page N page slots towards the tail of the
87  *    list requires at least N inactive page accesses.
88  *
89  * Combining these:
90  *
91  * 1. When a page is finally evicted from memory, the number of
92  *    inactive pages accessed while the page was in cache is at least
93  *    the number of page slots on the inactive list.
94  *
95  * 2. In addition, measuring the sum of evictions and activations (E)
96  *    at the time of a page's eviction, and comparing it to another
97  *    reading (R) at the time the page faults back into memory tells
98  *    the minimum number of accesses while the page was not cached.
99  *    This is called the refault distance.
100  *
101  * Because the first access of the page was the fault and the second
102  * access the refault, we combine the in-cache distance with the
103  * out-of-cache distance to get the complete minimum access distance
104  * of this page:
105  *
106  *      NR_inactive + (R - E)
107  *
108  * And knowing the minimum access distance of a page, we can easily
109  * tell if the page would be able to stay in cache assuming all page
110  * slots in the cache were available:
111  *
112  *   NR_inactive + (R - E) <= NR_inactive + NR_active
113  *
114  * which can be further simplified to
115  *
116  *   (R - E) <= NR_active
117  *
118  * Put into words, the refault distance (out-of-cache) can be seen as
119  * a deficit in inactive list space (in-cache).  If the inactive list
120  * had (R - E) more page slots, the page would not have been evicted
121  * in between accesses, but activated instead.  And on a full system,
122  * the only thing eating into inactive list space is active pages.
123  *
124  *
125  *		Refaulting inactive pages
126  *
127  * All that is known about the active list is that the pages have been
128  * accessed more than once in the past.  This means that at any given
129  * time there is actually a good chance that pages on the active list
130  * are no longer in active use.
131  *
132  * So when a refault distance of (R - E) is observed and there are at
133  * least (R - E) active pages, the refaulting page is activated
134  * optimistically in the hope that (R - E) active pages are actually
135  * used less frequently than the refaulting page - or even not used at
136  * all anymore.
137  *
138  * That means if inactive cache is refaulting with a suitable refault
139  * distance, we assume the cache workingset is transitioning and put
140  * pressure on the current active list.
141  *
142  * If this is wrong and demotion kicks in, the pages which are truly
143  * used more frequently will be reactivated while the less frequently
144  * used once will be evicted from memory.
145  *
146  * But if this is right, the stale pages will be pushed out of memory
147  * and the used pages get to stay in cache.
148  *
149  *		Refaulting active pages
150  *
151  * If on the other hand the refaulting pages have recently been
152  * deactivated, it means that the active list is no longer protecting
153  * actively used cache from reclaim. The cache is NOT transitioning to
154  * a different workingset; the existing workingset is thrashing in the
155  * space allocated to the page cache.
156  *
157  *
158  *		Implementation
159  *
160  * For each node's LRU lists, a counter for inactive evictions and
161  * activations is maintained (node->nonresident_age).
162  *
163  * On eviction, a snapshot of this counter (along with some bits to
164  * identify the node) is stored in the now empty page cache
165  * slot of the evicted page.  This is called a shadow entry.
166  *
167  * On cache misses for which there are shadow entries, an eligible
168  * refault distance will immediately activate the refaulting page.
169  */
170 
171 #define WORKINGSET_SHIFT 1
172 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
173 			 WORKINGSET_SHIFT + NODES_SHIFT + \
174 			 MEM_CGROUP_ID_SHIFT)
175 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
176 
177 /*
178  * Eviction timestamps need to be able to cover the full range of
179  * actionable refaults. However, bits are tight in the xarray
180  * entry, and after storing the identifier for the lruvec there might
181  * not be enough left to represent every single actionable refault. In
182  * that case, we have to sacrifice granularity for distance, and group
183  * evictions into coarser buckets by shaving off lower timestamp bits.
184  */
185 static unsigned int bucket_order __read_mostly;
186 
pack_shadow(int memcgid,pg_data_t * pgdat,unsigned long eviction,bool workingset)187 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
188 			 bool workingset)
189 {
190 	eviction &= EVICTION_MASK;
191 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
192 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
193 	eviction = (eviction << WORKINGSET_SHIFT) | workingset;
194 
195 	return xa_mk_value(eviction);
196 }
197 
unpack_shadow(void * shadow,int * memcgidp,pg_data_t ** pgdat,unsigned long * evictionp,bool * workingsetp)198 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
199 			  unsigned long *evictionp, bool *workingsetp)
200 {
201 	unsigned long entry = xa_to_value(shadow);
202 	int memcgid, nid;
203 	bool workingset;
204 
205 	workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
206 	entry >>= WORKINGSET_SHIFT;
207 	nid = entry & ((1UL << NODES_SHIFT) - 1);
208 	entry >>= NODES_SHIFT;
209 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
210 	entry >>= MEM_CGROUP_ID_SHIFT;
211 
212 	*memcgidp = memcgid;
213 	*pgdat = NODE_DATA(nid);
214 	*evictionp = entry;
215 	*workingsetp = workingset;
216 }
217 
218 #ifdef CONFIG_LRU_GEN
219 
lru_gen_eviction(struct page * page)220 static void *lru_gen_eviction(struct page *page)
221 {
222 	int hist;
223 	unsigned long token;
224 	unsigned long min_seq;
225 	struct lruvec *lruvec;
226 	struct lru_gen_struct *lrugen;
227 	int type = page_is_file_lru(page);
228 	int delta = thp_nr_pages(page);
229 	int refs = page_lru_refs(page);
230 	int tier = lru_tier_from_refs(refs);
231 	struct mem_cgroup *memcg = page_memcg(page);
232 	struct pglist_data *pgdat = page_pgdat(page);
233 
234 	BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
235 
236 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
237 	lrugen = &lruvec->lrugen;
238 	min_seq = READ_ONCE(lrugen->min_seq[type]);
239 	token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
240 
241 	hist = lru_hist_from_seq(min_seq);
242 	atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
243 
244 	return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
245 }
246 
lru_gen_refault(struct page * page,void * shadow)247 static void lru_gen_refault(struct page *page, void *shadow)
248 {
249 	int hist, tier, refs;
250 	int memcg_id;
251 	bool workingset;
252 	unsigned long token;
253 	unsigned long min_seq;
254 	struct lruvec *lruvec;
255 	struct lru_gen_struct *lrugen;
256 	struct mem_cgroup *memcg;
257 	struct pglist_data *pgdat;
258 	int type = page_is_file_lru(page);
259 	int delta = thp_nr_pages(page);
260 
261 	unpack_shadow(shadow, &memcg_id, &pgdat, &token, &workingset);
262 
263 	if (pgdat != page_pgdat(page))
264 		return;
265 
266 	rcu_read_lock();
267 
268 	memcg = page_memcg_rcu(page);
269 	if (memcg_id != mem_cgroup_id(memcg))
270 		goto unlock;
271 
272 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
273 	lrugen = &lruvec->lrugen;
274 
275 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
276 
277 	min_seq = READ_ONCE(lrugen->min_seq[type]);
278 	if ((token >> LRU_REFS_WIDTH) != (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH)))
279 		goto unlock;
280 
281 	hist = lru_hist_from_seq(min_seq);
282 	/* see the comment in page_lru_refs() */
283 	refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
284 	tier = lru_tier_from_refs(refs);
285 
286 	atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
287 	mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
288 
289 	/*
290 	 * Count the following two cases as stalls:
291 	 * 1. For pages accessed through page tables, hotter pages pushed out
292 	 *    hot pages which refaulted immediately.
293 	 * 2. For pages accessed multiple times through file descriptors,
294 	 *    numbers of accesses might have been out of the range.
295 	 */
296 	if (lru_gen_in_fault() || refs == BIT(LRU_REFS_WIDTH)) {
297 		SetPageWorkingset(page);
298 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
299 	}
300 unlock:
301 	rcu_read_unlock();
302 }
303 
304 #else /* !CONFIG_LRU_GEN */
305 
lru_gen_eviction(struct page * page)306 static void *lru_gen_eviction(struct page *page)
307 {
308 	return NULL;
309 }
310 
lru_gen_refault(struct page * page,void * shadow)311 static void lru_gen_refault(struct page *page, void *shadow)
312 {
313 }
314 
315 #endif /* CONFIG_LRU_GEN */
316 
317 /**
318  * workingset_age_nonresident - age non-resident entries as LRU ages
319  * @lruvec: the lruvec that was aged
320  * @nr_pages: the number of pages to count
321  *
322  * As in-memory pages are aged, non-resident pages need to be aged as
323  * well, in order for the refault distances later on to be comparable
324  * to the in-memory dimensions. This function allows reclaim and LRU
325  * operations to drive the non-resident aging along in parallel.
326  */
workingset_age_nonresident(struct lruvec * lruvec,unsigned long nr_pages)327 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
328 {
329 	/*
330 	 * Reclaiming a cgroup means reclaiming all its children in a
331 	 * round-robin fashion. That means that each cgroup has an LRU
332 	 * order that is composed of the LRU orders of its child
333 	 * cgroups; and every page has an LRU position not just in the
334 	 * cgroup that owns it, but in all of that group's ancestors.
335 	 *
336 	 * So when the physical inactive list of a leaf cgroup ages,
337 	 * the virtual inactive lists of all its parents, including
338 	 * the root cgroup's, age as well.
339 	 */
340 	do {
341 		atomic_long_add(nr_pages, &lruvec->nonresident_age);
342 	} while ((lruvec = parent_lruvec(lruvec)));
343 }
344 
345 /**
346  * workingset_eviction - note the eviction of a page from memory
347  * @target_memcg: the cgroup that is causing the reclaim
348  * @page: the page being evicted
349  *
350  * Return: a shadow entry to be stored in @page->mapping->i_pages in place
351  * of the evicted @page so that a later refault can be detected.
352  */
workingset_eviction(struct page * page,struct mem_cgroup * target_memcg)353 void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg)
354 {
355 	struct pglist_data *pgdat = page_pgdat(page);
356 	unsigned long eviction;
357 	struct lruvec *lruvec;
358 	int memcgid;
359 
360 	/* Page is fully exclusive and pins page's memory cgroup pointer */
361 	VM_BUG_ON_PAGE(PageLRU(page), page);
362 	VM_BUG_ON_PAGE(page_count(page), page);
363 	VM_BUG_ON_PAGE(!PageLocked(page), page);
364 
365 	if (lru_gen_enabled())
366 		return lru_gen_eviction(page);
367 
368 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
369 	/* XXX: target_memcg can be NULL, go through lruvec */
370 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
371 	eviction = atomic_long_read(&lruvec->nonresident_age);
372 	eviction >>= bucket_order;
373 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
374 	return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
375 }
376 
377 /**
378  * workingset_refault - evaluate the refault of a previously evicted page
379  * @page: the freshly allocated replacement page
380  * @shadow: shadow entry of the evicted page
381  *
382  * Calculates and evaluates the refault distance of the previously
383  * evicted page in the context of the node and the memcg whose memory
384  * pressure caused the eviction.
385  */
workingset_refault(struct page * page,void * shadow)386 void workingset_refault(struct page *page, void *shadow)
387 {
388 	bool file = page_is_file_lru(page);
389 	struct mem_cgroup *eviction_memcg;
390 	struct lruvec *eviction_lruvec;
391 	unsigned long refault_distance;
392 	unsigned long workingset_size;
393 	struct pglist_data *pgdat;
394 	struct mem_cgroup *memcg;
395 	unsigned long eviction;
396 	struct lruvec *lruvec;
397 	unsigned long refault;
398 	bool workingset;
399 	int memcgid;
400 
401 	if (lru_gen_enabled()) {
402 		lru_gen_refault(page, shadow);
403 		return;
404 	}
405 
406 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
407 	eviction <<= bucket_order;
408 
409 	rcu_read_lock();
410 	/*
411 	 * Look up the memcg associated with the stored ID. It might
412 	 * have been deleted since the page's eviction.
413 	 *
414 	 * Note that in rare events the ID could have been recycled
415 	 * for a new cgroup that refaults a shared page. This is
416 	 * impossible to tell from the available data. However, this
417 	 * should be a rare and limited disturbance, and activations
418 	 * are always speculative anyway. Ultimately, it's the aging
419 	 * algorithm's job to shake out the minimum access frequency
420 	 * for the active cache.
421 	 *
422 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
423 	 * would be better if the root_mem_cgroup existed in all
424 	 * configurations instead.
425 	 */
426 	eviction_memcg = mem_cgroup_from_id(memcgid);
427 	if (!mem_cgroup_disabled() && !eviction_memcg)
428 		goto out;
429 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
430 	refault = atomic_long_read(&eviction_lruvec->nonresident_age);
431 
432 	/*
433 	 * Calculate the refault distance
434 	 *
435 	 * The unsigned subtraction here gives an accurate distance
436 	 * across nonresident_age overflows in most cases. There is a
437 	 * special case: usually, shadow entries have a short lifetime
438 	 * and are either refaulted or reclaimed along with the inode
439 	 * before they get too old.  But it is not impossible for the
440 	 * nonresident_age to lap a shadow entry in the field, which
441 	 * can then result in a false small refault distance, leading
442 	 * to a false activation should this old entry actually
443 	 * refault again.  However, earlier kernels used to deactivate
444 	 * unconditionally with *every* reclaim invocation for the
445 	 * longest time, so the occasional inappropriate activation
446 	 * leading to pressure on the active list is not a problem.
447 	 */
448 	refault_distance = (refault - eviction) & EVICTION_MASK;
449 
450 	/*
451 	 * The activation decision for this page is made at the level
452 	 * where the eviction occurred, as that is where the LRU order
453 	 * during page reclaim is being determined.
454 	 *
455 	 * However, the cgroup that will own the page is the one that
456 	 * is actually experiencing the refault event.
457 	 */
458 	memcg = page_memcg(page);
459 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
460 
461 	inc_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file);
462 
463 	mem_cgroup_flush_stats_delayed();
464 	/*
465 	 * Compare the distance to the existing workingset size. We
466 	 * don't activate pages that couldn't stay resident even if
467 	 * all the memory was available to the workingset. Whether
468 	 * workingset competition needs to consider anon or not depends
469 	 * on having swap.
470 	 */
471 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
472 	if (!file) {
473 		workingset_size += lruvec_page_state(eviction_lruvec,
474 						     NR_INACTIVE_FILE);
475 	}
476 	if (mem_cgroup_get_nr_swap_pages(memcg) > 0) {
477 		workingset_size += lruvec_page_state(eviction_lruvec,
478 						     NR_ACTIVE_ANON);
479 		if (file) {
480 			workingset_size += lruvec_page_state(eviction_lruvec,
481 						     NR_INACTIVE_ANON);
482 		}
483 	}
484 	if (refault_distance > workingset_size)
485 		goto out;
486 
487 	SetPageActive(page);
488 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
489 	inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file);
490 
491 	/* Page was active prior to eviction */
492 	if (workingset) {
493 		SetPageWorkingset(page);
494 		/* XXX: Move to lru_cache_add() when it supports new vs putback */
495 		lru_note_cost_page(page);
496 		inc_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file);
497 	}
498 out:
499 	rcu_read_unlock();
500 }
501 
502 /**
503  * workingset_activation - note a page activation
504  * @page: page that is being activated
505  */
workingset_activation(struct page * page)506 void workingset_activation(struct page *page)
507 {
508 	struct mem_cgroup *memcg;
509 	struct lruvec *lruvec;
510 
511 	rcu_read_lock();
512 	/*
513 	 * Filter non-memcg pages here, e.g. unmap can call
514 	 * mark_page_accessed() on VDSO pages.
515 	 *
516 	 * XXX: See workingset_refault() - this should return
517 	 * root_mem_cgroup even for !CONFIG_MEMCG.
518 	 */
519 	memcg = page_memcg_rcu(page);
520 	if (!mem_cgroup_disabled() && !memcg)
521 		goto out;
522 	lruvec = mem_cgroup_page_lruvec(page);
523 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
524 out:
525 	rcu_read_unlock();
526 }
527 
528 /*
529  * Shadow entries reflect the share of the working set that does not
530  * fit into memory, so their number depends on the access pattern of
531  * the workload.  In most cases, they will refault or get reclaimed
532  * along with the inode, but a (malicious) workload that streams
533  * through files with a total size several times that of available
534  * memory, while preventing the inodes from being reclaimed, can
535  * create excessive amounts of shadow nodes.  To keep a lid on this,
536  * track shadow nodes and reclaim them when they grow way past the
537  * point where they would still be useful.
538  */
539 
540 static struct list_lru shadow_nodes;
541 
workingset_update_node(struct xa_node * node)542 void workingset_update_node(struct xa_node *node)
543 {
544 	/*
545 	 * Track non-empty nodes that contain only shadow entries;
546 	 * unlink those that contain pages or are being freed.
547 	 *
548 	 * Avoid acquiring the list_lru lock when the nodes are
549 	 * already where they should be. The list_empty() test is safe
550 	 * as node->private_list is protected by the i_pages lock.
551 	 */
552 	VM_WARN_ON_ONCE(!irqs_disabled());  /* For __inc_lruvec_page_state */
553 
554 	if (node->count && node->count == node->nr_values) {
555 		if (list_empty(&node->private_list)) {
556 			list_lru_add(&shadow_nodes, &node->private_list);
557 			__inc_lruvec_kmem_state(node, WORKINGSET_NODES);
558 		}
559 	} else {
560 		if (!list_empty(&node->private_list)) {
561 			list_lru_del(&shadow_nodes, &node->private_list);
562 			__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
563 		}
564 	}
565 }
566 
count_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)567 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
568 					struct shrink_control *sc)
569 {
570 	unsigned long max_nodes;
571 	unsigned long nodes;
572 	unsigned long pages;
573 
574 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
575 	if (!nodes)
576 		return SHRINK_EMPTY;
577 
578 	/*
579 	 * Approximate a reasonable limit for the nodes
580 	 * containing shadow entries. We don't need to keep more
581 	 * shadow entries than possible pages on the active list,
582 	 * since refault distances bigger than that are dismissed.
583 	 *
584 	 * The size of the active list converges toward 100% of
585 	 * overall page cache as memory grows, with only a tiny
586 	 * inactive list. Assume the total cache size for that.
587 	 *
588 	 * Nodes might be sparsely populated, with only one shadow
589 	 * entry in the extreme case. Obviously, we cannot keep one
590 	 * node for every eligible shadow entry, so compromise on a
591 	 * worst-case density of 1/8th. Below that, not all eligible
592 	 * refaults can be detected anymore.
593 	 *
594 	 * On 64-bit with 7 xa_nodes per page and 64 slots
595 	 * each, this will reclaim shadow entries when they consume
596 	 * ~1.8% of available memory:
597 	 *
598 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
599 	 */
600 #ifdef CONFIG_MEMCG
601 	if (sc->memcg) {
602 		struct lruvec *lruvec;
603 		int i;
604 
605 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
606 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
607 			pages += lruvec_page_state_local(lruvec,
608 							 NR_LRU_BASE + i);
609 		pages += lruvec_page_state_local(
610 			lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
611 		pages += lruvec_page_state_local(
612 			lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
613 	} else
614 #endif
615 		pages = node_present_pages(sc->nid);
616 
617 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
618 
619 	if (nodes <= max_nodes)
620 		return 0;
621 	return nodes - max_nodes;
622 }
623 
shadow_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)624 static enum lru_status shadow_lru_isolate(struct list_head *item,
625 					  struct list_lru_one *lru,
626 					  spinlock_t *lru_lock,
627 					  void *arg) __must_hold(lru_lock)
628 {
629 	struct xa_node *node = container_of(item, struct xa_node, private_list);
630 	struct address_space *mapping;
631 	int ret;
632 
633 	/*
634 	 * Page cache insertions and deletions synchronously maintain
635 	 * the shadow node LRU under the i_pages lock and the
636 	 * lru_lock.  Because the page cache tree is emptied before
637 	 * the inode can be destroyed, holding the lru_lock pins any
638 	 * address_space that has nodes on the LRU.
639 	 *
640 	 * We can then safely transition to the i_pages lock to
641 	 * pin only the address_space of the particular node we want
642 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
643 	 */
644 
645 	mapping = container_of(node->array, struct address_space, i_pages);
646 
647 	/* Coming from the list, invert the lock order */
648 	if (!xa_trylock(&mapping->i_pages)) {
649 		spin_unlock_irq(lru_lock);
650 		ret = LRU_RETRY;
651 		goto out;
652 	}
653 
654 	list_lru_isolate(lru, item);
655 	__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
656 
657 	spin_unlock(lru_lock);
658 
659 	/*
660 	 * The nodes should only contain one or more shadow entries,
661 	 * no pages, so we expect to be able to remove them all and
662 	 * delete and free the empty node afterwards.
663 	 */
664 	if (WARN_ON_ONCE(!node->nr_values))
665 		goto out_invalid;
666 	if (WARN_ON_ONCE(node->count != node->nr_values))
667 		goto out_invalid;
668 	xa_delete_node(node, workingset_update_node);
669 	__inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
670 
671 out_invalid:
672 	xa_unlock_irq(&mapping->i_pages);
673 	ret = LRU_REMOVED_RETRY;
674 out:
675 	cond_resched();
676 	spin_lock_irq(lru_lock);
677 	return ret;
678 }
679 
scan_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)680 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
681 				       struct shrink_control *sc)
682 {
683 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
684 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
685 					NULL);
686 }
687 
688 static struct shrinker workingset_shadow_shrinker = {
689 	.count_objects = count_shadow_nodes,
690 	.scan_objects = scan_shadow_nodes,
691 	.seeks = 0, /* ->count reports only fully expendable nodes */
692 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
693 };
694 
695 /*
696  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
697  * i_pages lock.
698  */
699 static struct lock_class_key shadow_nodes_key;
700 
workingset_init(void)701 static int __init workingset_init(void)
702 {
703 	unsigned int timestamp_bits;
704 	unsigned int max_order;
705 	int ret;
706 
707 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
708 	/*
709 	 * Calculate the eviction bucket size to cover the longest
710 	 * actionable refault distance, which is currently half of
711 	 * memory (totalram_pages/2). However, memory hotplug may add
712 	 * some more pages at runtime, so keep working with up to
713 	 * double the initial memory by using totalram_pages as-is.
714 	 */
715 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
716 	max_order = fls_long(totalram_pages() - 1);
717 	if (max_order > timestamp_bits)
718 		bucket_order = max_order - timestamp_bits;
719 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
720 	       timestamp_bits, max_order, bucket_order);
721 
722 	ret = prealloc_shrinker(&workingset_shadow_shrinker);
723 	if (ret)
724 		goto err;
725 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
726 			      &workingset_shadow_shrinker);
727 	if (ret)
728 		goto err_list_lru;
729 	register_shrinker_prepared(&workingset_shadow_shrinker);
730 	return 0;
731 err_list_lru:
732 	free_prealloced_shrinker(&workingset_shadow_shrinker);
733 err:
734 	return ret;
735 }
736 module_init(workingset_init);
737