1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 #include <linux/btf.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/mptcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 /* Track pending CMSGs. */
285 enum {
286 TCP_CMSG_INQ = 1,
287 TCP_CMSG_TS = 2
288 };
289
290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295
296 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298
299 #if IS_ENABLED(CONFIG_SMC)
300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
301 EXPORT_SYMBOL(tcp_have_smc);
302 #endif
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 unsigned long tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
327
328 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
329 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
330
331 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
332
tcp_enter_memory_pressure(struct sock * sk)333 void tcp_enter_memory_pressure(struct sock *sk)
334 {
335 unsigned long val;
336
337 if (READ_ONCE(tcp_memory_pressure))
338 return;
339 val = jiffies;
340
341 if (!val)
342 val--;
343 if (!cmpxchg(&tcp_memory_pressure, 0, val))
344 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
345 }
346 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
347
tcp_leave_memory_pressure(struct sock * sk)348 void tcp_leave_memory_pressure(struct sock *sk)
349 {
350 unsigned long val;
351
352 if (!READ_ONCE(tcp_memory_pressure))
353 return;
354 val = xchg(&tcp_memory_pressure, 0);
355 if (val)
356 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
357 jiffies_to_msecs(jiffies - val));
358 }
359 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
360
361 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)362 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
363 {
364 u8 res = 0;
365
366 if (seconds > 0) {
367 int period = timeout;
368
369 res = 1;
370 while (seconds > period && res < 255) {
371 res++;
372 timeout <<= 1;
373 if (timeout > rto_max)
374 timeout = rto_max;
375 period += timeout;
376 }
377 }
378 return res;
379 }
380
381 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)382 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
383 {
384 int period = 0;
385
386 if (retrans > 0) {
387 period = timeout;
388 while (--retrans) {
389 timeout <<= 1;
390 if (timeout > rto_max)
391 timeout = rto_max;
392 period += timeout;
393 }
394 }
395 return period;
396 }
397
tcp_compute_delivery_rate(const struct tcp_sock * tp)398 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
399 {
400 u32 rate = READ_ONCE(tp->rate_delivered);
401 u32 intv = READ_ONCE(tp->rate_interval_us);
402 u64 rate64 = 0;
403
404 if (rate && intv) {
405 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
406 do_div(rate64, intv);
407 }
408 return rate64;
409 }
410
411 /* Address-family independent initialization for a tcp_sock.
412 *
413 * NOTE: A lot of things set to zero explicitly by call to
414 * sk_alloc() so need not be done here.
415 */
tcp_init_sock(struct sock * sk)416 void tcp_init_sock(struct sock *sk)
417 {
418 struct inet_connection_sock *icsk = inet_csk(sk);
419 struct tcp_sock *tp = tcp_sk(sk);
420
421 tp->out_of_order_queue = RB_ROOT;
422 sk->tcp_rtx_queue = RB_ROOT;
423 tcp_init_xmit_timers(sk);
424 INIT_LIST_HEAD(&tp->tsq_node);
425 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
426
427 icsk->icsk_rto = TCP_TIMEOUT_INIT;
428 icsk->icsk_rto_min = TCP_RTO_MIN;
429 icsk->icsk_delack_max = TCP_DELACK_MAX;
430 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
431 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
432
433 /* So many TCP implementations out there (incorrectly) count the
434 * initial SYN frame in their delayed-ACK and congestion control
435 * algorithms that we must have the following bandaid to talk
436 * efficiently to them. -DaveM
437 */
438 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
439
440 /* There's a bubble in the pipe until at least the first ACK. */
441 tp->app_limited = ~0U;
442 tp->rate_app_limited = 1;
443
444 /* See draft-stevens-tcpca-spec-01 for discussion of the
445 * initialization of these values.
446 */
447 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
448 tp->snd_cwnd_clamp = ~0;
449 tp->mss_cache = TCP_MSS_DEFAULT;
450
451 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
452 tcp_assign_congestion_control(sk);
453
454 tp->tsoffset = 0;
455 tp->rack.reo_wnd_steps = 1;
456
457 sk->sk_write_space = sk_stream_write_space;
458 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
459
460 icsk->icsk_sync_mss = tcp_sync_mss;
461
462 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
463 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
464
465 sk_sockets_allocated_inc(sk);
466 sk->sk_route_forced_caps = NETIF_F_GSO;
467 }
468 EXPORT_SYMBOL(tcp_init_sock);
469
tcp_tx_timestamp(struct sock * sk,u16 tsflags)470 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
471 {
472 struct sk_buff *skb = tcp_write_queue_tail(sk);
473
474 if (tsflags && skb) {
475 struct skb_shared_info *shinfo = skb_shinfo(skb);
476 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
477
478 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
479 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
480 tcb->txstamp_ack = 1;
481 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
482 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
483 }
484 }
485
tcp_stream_is_readable(struct sock * sk,int target)486 static bool tcp_stream_is_readable(struct sock *sk, int target)
487 {
488 if (tcp_epollin_ready(sk, target))
489 return true;
490 return sk_is_readable(sk);
491 }
492
493 /*
494 * Wait for a TCP event.
495 *
496 * Note that we don't need to lock the socket, as the upper poll layers
497 * take care of normal races (between the test and the event) and we don't
498 * go look at any of the socket buffers directly.
499 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)500 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
501 {
502 __poll_t mask;
503 struct sock *sk = sock->sk;
504 const struct tcp_sock *tp = tcp_sk(sk);
505 u8 shutdown;
506 int state;
507
508 sock_poll_wait(file, sock, wait);
509
510 state = inet_sk_state_load(sk);
511 if (state == TCP_LISTEN)
512 return inet_csk_listen_poll(sk);
513
514 /* Socket is not locked. We are protected from async events
515 * by poll logic and correct handling of state changes
516 * made by other threads is impossible in any case.
517 */
518
519 mask = 0;
520
521 /*
522 * EPOLLHUP is certainly not done right. But poll() doesn't
523 * have a notion of HUP in just one direction, and for a
524 * socket the read side is more interesting.
525 *
526 * Some poll() documentation says that EPOLLHUP is incompatible
527 * with the EPOLLOUT/POLLWR flags, so somebody should check this
528 * all. But careful, it tends to be safer to return too many
529 * bits than too few, and you can easily break real applications
530 * if you don't tell them that something has hung up!
531 *
532 * Check-me.
533 *
534 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
535 * our fs/select.c). It means that after we received EOF,
536 * poll always returns immediately, making impossible poll() on write()
537 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
538 * if and only if shutdown has been made in both directions.
539 * Actually, it is interesting to look how Solaris and DUX
540 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
541 * then we could set it on SND_SHUTDOWN. BTW examples given
542 * in Stevens' books assume exactly this behaviour, it explains
543 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
544 *
545 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
546 * blocking on fresh not-connected or disconnected socket. --ANK
547 */
548 shutdown = READ_ONCE(sk->sk_shutdown);
549 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
550 mask |= EPOLLHUP;
551 if (shutdown & RCV_SHUTDOWN)
552 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
553
554 /* Connected or passive Fast Open socket? */
555 if (state != TCP_SYN_SENT &&
556 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
557 int target = sock_rcvlowat(sk, 0, INT_MAX);
558
559 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
560 !sock_flag(sk, SOCK_URGINLINE) &&
561 tp->urg_data)
562 target++;
563
564 if (tcp_stream_is_readable(sk, target))
565 mask |= EPOLLIN | EPOLLRDNORM;
566
567 if (!(shutdown & SEND_SHUTDOWN)) {
568 if (__sk_stream_is_writeable(sk, 1)) {
569 mask |= EPOLLOUT | EPOLLWRNORM;
570 } else { /* send SIGIO later */
571 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
572 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
573
574 /* Race breaker. If space is freed after
575 * wspace test but before the flags are set,
576 * IO signal will be lost. Memory barrier
577 * pairs with the input side.
578 */
579 smp_mb__after_atomic();
580 if (__sk_stream_is_writeable(sk, 1))
581 mask |= EPOLLOUT | EPOLLWRNORM;
582 }
583 } else
584 mask |= EPOLLOUT | EPOLLWRNORM;
585
586 if (tp->urg_data & TCP_URG_VALID)
587 mask |= EPOLLPRI;
588 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
589 /* Active TCP fastopen socket with defer_connect
590 * Return EPOLLOUT so application can call write()
591 * in order for kernel to generate SYN+data
592 */
593 mask |= EPOLLOUT | EPOLLWRNORM;
594 }
595 /* This barrier is coupled with smp_wmb() in tcp_reset() */
596 smp_rmb();
597 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
598 mask |= EPOLLERR;
599
600 return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)604 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607 int answ;
608 bool slow;
609
610 switch (cmd) {
611 case SIOCINQ:
612 if (sk->sk_state == TCP_LISTEN)
613 return -EINVAL;
614
615 slow = lock_sock_fast(sk);
616 answ = tcp_inq(sk);
617 unlock_sock_fast(sk, slow);
618 break;
619 case SIOCATMARK:
620 answ = tp->urg_data &&
621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = READ_ONCE(tp->write_seq) -
640 READ_ONCE(tp->snd_nxt);
641 break;
642 default:
643 return -ENOIOCTLCMD;
644 }
645
646 return put_user(answ, (int __user *)arg);
647 }
648 EXPORT_SYMBOL(tcp_ioctl);
649
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)650 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
651 {
652 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
653 tp->pushed_seq = tp->write_seq;
654 }
655
forced_push(const struct tcp_sock * tp)656 static inline bool forced_push(const struct tcp_sock *tp)
657 {
658 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
659 }
660
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)661 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
662 {
663 struct tcp_sock *tp = tcp_sk(sk);
664 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
665
666 skb->csum = 0;
667 tcb->seq = tcb->end_seq = tp->write_seq;
668 tcb->tcp_flags = TCPHDR_ACK;
669 tcb->sacked = 0;
670 __skb_header_release(skb);
671 tcp_add_write_queue_tail(sk, skb);
672 sk_wmem_queued_add(sk, skb->truesize);
673 sk_mem_charge(sk, skb->truesize);
674 if (tp->nonagle & TCP_NAGLE_PUSH)
675 tp->nonagle &= ~TCP_NAGLE_PUSH;
676
677 tcp_slow_start_after_idle_check(sk);
678 }
679
tcp_mark_urg(struct tcp_sock * tp,int flags)680 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
681 {
682 if (flags & MSG_OOB)
683 tp->snd_up = tp->write_seq;
684 }
685
686 /* If a not yet filled skb is pushed, do not send it if
687 * we have data packets in Qdisc or NIC queues :
688 * Because TX completion will happen shortly, it gives a chance
689 * to coalesce future sendmsg() payload into this skb, without
690 * need for a timer, and with no latency trade off.
691 * As packets containing data payload have a bigger truesize
692 * than pure acks (dataless) packets, the last checks prevent
693 * autocorking if we only have an ACK in Qdisc/NIC queues,
694 * or if TX completion was delayed after we processed ACK packet.
695 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)696 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
697 int size_goal)
698 {
699 return skb->len < size_goal &&
700 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
701 !tcp_rtx_queue_empty(sk) &&
702 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
703 }
704
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 int nonagle, int size_goal)
707 {
708 struct tcp_sock *tp = tcp_sk(sk);
709 struct sk_buff *skb;
710
711 skb = tcp_write_queue_tail(sk);
712 if (!skb)
713 return;
714 if (!(flags & MSG_MORE) || forced_push(tp))
715 tcp_mark_push(tp, skb);
716
717 tcp_mark_urg(tp, flags);
718
719 if (tcp_should_autocork(sk, skb, size_goal)) {
720
721 /* avoid atomic op if TSQ_THROTTLED bit is already set */
722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 smp_mb__after_atomic();
726 }
727 /* It is possible TX completion already happened
728 * before we set TSQ_THROTTLED.
729 */
730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 return;
732 }
733
734 if (flags & MSG_MORE)
735 nonagle = TCP_NAGLE_CORK;
736
737 __tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 unsigned int offset, size_t len)
742 {
743 struct tcp_splice_state *tss = rd_desc->arg.data;
744 int ret;
745
746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 min(rd_desc->count, len), tss->flags);
748 if (ret > 0)
749 rd_desc->count -= ret;
750 return ret;
751 }
752
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 /* Store TCP splice context information in read_descriptor_t. */
756 read_descriptor_t rd_desc = {
757 .arg.data = tss,
758 .count = tss->len,
759 };
760
761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763
764 /**
765 * tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock: socket to splice from
767 * @ppos: position (not valid)
768 * @pipe: pipe to splice to
769 * @len: number of bytes to splice
770 * @flags: splice modifier flags
771 *
772 * Description:
773 * Will read pages from given socket and fill them into a pipe.
774 *
775 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 struct pipe_inode_info *pipe, size_t len,
778 unsigned int flags)
779 {
780 struct sock *sk = sock->sk;
781 struct tcp_splice_state tss = {
782 .pipe = pipe,
783 .len = len,
784 .flags = flags,
785 };
786 long timeo;
787 ssize_t spliced;
788 int ret;
789
790 sock_rps_record_flow(sk);
791 /*
792 * We can't seek on a socket input
793 */
794 if (unlikely(*ppos))
795 return -ESPIPE;
796
797 ret = spliced = 0;
798
799 lock_sock(sk);
800
801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 while (tss.len) {
803 ret = __tcp_splice_read(sk, &tss);
804 if (ret < 0)
805 break;
806 else if (!ret) {
807 if (spliced)
808 break;
809 if (sock_flag(sk, SOCK_DONE))
810 break;
811 if (sk->sk_err) {
812 ret = sock_error(sk);
813 break;
814 }
815 if (sk->sk_shutdown & RCV_SHUTDOWN)
816 break;
817 if (sk->sk_state == TCP_CLOSE) {
818 /*
819 * This occurs when user tries to read
820 * from never connected socket.
821 */
822 ret = -ENOTCONN;
823 break;
824 }
825 if (!timeo) {
826 ret = -EAGAIN;
827 break;
828 }
829 /* if __tcp_splice_read() got nothing while we have
830 * an skb in receive queue, we do not want to loop.
831 * This might happen with URG data.
832 */
833 if (!skb_queue_empty(&sk->sk_receive_queue))
834 break;
835 sk_wait_data(sk, &timeo, NULL);
836 if (signal_pending(current)) {
837 ret = sock_intr_errno(timeo);
838 break;
839 }
840 continue;
841 }
842 tss.len -= ret;
843 spliced += ret;
844
845 if (!timeo)
846 break;
847 release_sock(sk);
848 lock_sock(sk);
849
850 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
851 (sk->sk_shutdown & RCV_SHUTDOWN) ||
852 signal_pending(current))
853 break;
854 }
855
856 release_sock(sk);
857
858 if (spliced)
859 return spliced;
860
861 return ret;
862 }
863 EXPORT_SYMBOL(tcp_splice_read);
864
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)865 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
866 bool force_schedule)
867 {
868 struct sk_buff *skb;
869
870 if (likely(!size)) {
871 skb = sk->sk_tx_skb_cache;
872 if (skb) {
873 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
874 sk->sk_tx_skb_cache = NULL;
875 pskb_trim(skb, 0);
876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 skb_shinfo(skb)->tx_flags = 0;
878 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
879 return skb;
880 }
881 }
882 /* The TCP header must be at least 32-bit aligned. */
883 size = ALIGN(size, 4);
884
885 if (unlikely(tcp_under_memory_pressure(sk)))
886 sk_mem_reclaim_partial(sk);
887
888 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
889 if (likely(skb)) {
890 bool mem_scheduled;
891
892 if (force_schedule) {
893 mem_scheduled = true;
894 sk_forced_mem_schedule(sk, skb->truesize);
895 } else {
896 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
897 }
898 if (likely(mem_scheduled)) {
899 skb_reserve(skb, sk->sk_prot->max_header);
900 /*
901 * Make sure that we have exactly size bytes
902 * available to the caller, no more, no less.
903 */
904 skb->reserved_tailroom = skb->end - skb->tail - size;
905 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
906 return skb;
907 }
908 __kfree_skb(skb);
909 } else {
910 sk->sk_prot->enter_memory_pressure(sk);
911 sk_stream_moderate_sndbuf(sk);
912 }
913 return NULL;
914 }
915
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)916 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
917 int large_allowed)
918 {
919 struct tcp_sock *tp = tcp_sk(sk);
920 u32 new_size_goal, size_goal;
921
922 if (!large_allowed)
923 return mss_now;
924
925 /* Note : tcp_tso_autosize() will eventually split this later */
926 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
927 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
928
929 /* We try hard to avoid divides here */
930 size_goal = tp->gso_segs * mss_now;
931 if (unlikely(new_size_goal < size_goal ||
932 new_size_goal >= size_goal + mss_now)) {
933 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
934 sk->sk_gso_max_segs);
935 size_goal = tp->gso_segs * mss_now;
936 }
937
938 return max(size_goal, mss_now);
939 }
940
tcp_send_mss(struct sock * sk,int * size_goal,int flags)941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
942 {
943 int mss_now;
944
945 mss_now = tcp_current_mss(sk);
946 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
947
948 return mss_now;
949 }
950
951 /* In some cases, both sendpage() and sendmsg() could have added
952 * an skb to the write queue, but failed adding payload on it.
953 * We need to remove it to consume less memory, but more
954 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
955 * users.
956 */
tcp_remove_empty_skb(struct sock * sk)957 void tcp_remove_empty_skb(struct sock *sk)
958 {
959 struct sk_buff *skb = tcp_write_queue_tail(sk);
960
961 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
962 tcp_unlink_write_queue(skb, sk);
963 if (tcp_write_queue_empty(sk))
964 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
965 sk_wmem_free_skb(sk, skb);
966 }
967 }
968
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)969 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
970 struct page *page, int offset, size_t *size)
971 {
972 struct sk_buff *skb = tcp_write_queue_tail(sk);
973 struct tcp_sock *tp = tcp_sk(sk);
974 bool can_coalesce;
975 int copy, i;
976
977 if (!skb || (copy = size_goal - skb->len) <= 0 ||
978 !tcp_skb_can_collapse_to(skb)) {
979 new_segment:
980 if (!sk_stream_memory_free(sk))
981 return NULL;
982
983 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
984 tcp_rtx_and_write_queues_empty(sk));
985 if (!skb)
986 return NULL;
987
988 #ifdef CONFIG_TLS_DEVICE
989 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
990 #endif
991 tcp_skb_entail(sk, skb);
992 copy = size_goal;
993 }
994
995 if (copy > *size)
996 copy = *size;
997
998 i = skb_shinfo(skb)->nr_frags;
999 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1000 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1001 tcp_mark_push(tp, skb);
1002 goto new_segment;
1003 }
1004 if (!sk_wmem_schedule(sk, copy))
1005 return NULL;
1006
1007 if (can_coalesce) {
1008 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1009 } else {
1010 get_page(page);
1011 skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1012 }
1013
1014 if (!(flags & MSG_NO_SHARED_FRAGS))
1015 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1016
1017 skb->len += copy;
1018 skb->data_len += copy;
1019 skb->truesize += copy;
1020 sk_wmem_queued_add(sk, copy);
1021 sk_mem_charge(sk, copy);
1022 skb->ip_summed = CHECKSUM_PARTIAL;
1023 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1024 TCP_SKB_CB(skb)->end_seq += copy;
1025 tcp_skb_pcount_set(skb, 0);
1026
1027 *size = copy;
1028 return skb;
1029 }
1030
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1031 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1032 size_t size, int flags)
1033 {
1034 struct tcp_sock *tp = tcp_sk(sk);
1035 int mss_now, size_goal;
1036 int err;
1037 ssize_t copied;
1038 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1039
1040 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1041 WARN_ONCE(!sendpage_ok(page),
1042 "page must not be a Slab one and have page_count > 0"))
1043 return -EINVAL;
1044
1045 /* Wait for a connection to finish. One exception is TCP Fast Open
1046 * (passive side) where data is allowed to be sent before a connection
1047 * is fully established.
1048 */
1049 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1050 !tcp_passive_fastopen(sk)) {
1051 err = sk_stream_wait_connect(sk, &timeo);
1052 if (err != 0)
1053 goto out_err;
1054 }
1055
1056 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1057
1058 mss_now = tcp_send_mss(sk, &size_goal, flags);
1059 copied = 0;
1060
1061 err = -EPIPE;
1062 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1063 goto out_err;
1064
1065 while (size > 0) {
1066 struct sk_buff *skb;
1067 size_t copy = size;
1068
1069 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©);
1070 if (!skb)
1071 goto wait_for_space;
1072
1073 if (!copied)
1074 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1075
1076 copied += copy;
1077 offset += copy;
1078 size -= copy;
1079 if (!size)
1080 goto out;
1081
1082 if (skb->len < size_goal || (flags & MSG_OOB))
1083 continue;
1084
1085 if (forced_push(tp)) {
1086 tcp_mark_push(tp, skb);
1087 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1088 } else if (skb == tcp_send_head(sk))
1089 tcp_push_one(sk, mss_now);
1090 continue;
1091
1092 wait_for_space:
1093 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1094 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1095 TCP_NAGLE_PUSH, size_goal);
1096
1097 err = sk_stream_wait_memory(sk, &timeo);
1098 if (err != 0)
1099 goto do_error;
1100
1101 mss_now = tcp_send_mss(sk, &size_goal, flags);
1102 }
1103
1104 out:
1105 if (copied) {
1106 tcp_tx_timestamp(sk, sk->sk_tsflags);
1107 if (!(flags & MSG_SENDPAGE_NOTLAST))
1108 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1109 }
1110 return copied;
1111
1112 do_error:
1113 tcp_remove_empty_skb(sk);
1114 if (copied)
1115 goto out;
1116 out_err:
1117 /* make sure we wake any epoll edge trigger waiter */
1118 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1119 sk->sk_write_space(sk);
1120 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1121 }
1122 return sk_stream_error(sk, flags, err);
1123 }
1124 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1125
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1126 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1127 size_t size, int flags)
1128 {
1129 if (!(sk->sk_route_caps & NETIF_F_SG))
1130 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1131
1132 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1133
1134 return do_tcp_sendpages(sk, page, offset, size, flags);
1135 }
1136 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1137
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1138 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1139 size_t size, int flags)
1140 {
1141 int ret;
1142
1143 lock_sock(sk);
1144 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1145 release_sock(sk);
1146
1147 return ret;
1148 }
1149 EXPORT_SYMBOL(tcp_sendpage);
1150
tcp_free_fastopen_req(struct tcp_sock * tp)1151 void tcp_free_fastopen_req(struct tcp_sock *tp)
1152 {
1153 if (tp->fastopen_req) {
1154 kfree(tp->fastopen_req);
1155 tp->fastopen_req = NULL;
1156 }
1157 }
1158
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1159 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1160 int *copied, size_t size,
1161 struct ubuf_info *uarg)
1162 {
1163 struct tcp_sock *tp = tcp_sk(sk);
1164 struct inet_sock *inet = inet_sk(sk);
1165 struct sockaddr *uaddr = msg->msg_name;
1166 int err, flags;
1167
1168 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1169 TFO_CLIENT_ENABLE) ||
1170 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1171 uaddr->sa_family == AF_UNSPEC))
1172 return -EOPNOTSUPP;
1173 if (tp->fastopen_req)
1174 return -EALREADY; /* Another Fast Open is in progress */
1175
1176 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1177 sk->sk_allocation);
1178 if (unlikely(!tp->fastopen_req))
1179 return -ENOBUFS;
1180 tp->fastopen_req->data = msg;
1181 tp->fastopen_req->size = size;
1182 tp->fastopen_req->uarg = uarg;
1183
1184 if (inet->defer_connect) {
1185 err = tcp_connect(sk);
1186 /* Same failure procedure as in tcp_v4/6_connect */
1187 if (err) {
1188 tcp_set_state(sk, TCP_CLOSE);
1189 inet->inet_dport = 0;
1190 sk->sk_route_caps = 0;
1191 }
1192 }
1193 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1194 err = __inet_stream_connect(sk->sk_socket, uaddr,
1195 msg->msg_namelen, flags, 1);
1196 /* fastopen_req could already be freed in __inet_stream_connect
1197 * if the connection times out or gets rst
1198 */
1199 if (tp->fastopen_req) {
1200 *copied = tp->fastopen_req->copied;
1201 tcp_free_fastopen_req(tp);
1202 inet->defer_connect = 0;
1203 }
1204 return err;
1205 }
1206
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1207 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1208 {
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 struct ubuf_info *uarg = NULL;
1211 struct sk_buff *skb;
1212 struct sockcm_cookie sockc;
1213 int flags, err, copied = 0;
1214 int mss_now = 0, size_goal, copied_syn = 0;
1215 int process_backlog = 0;
1216 bool zc = false;
1217 long timeo;
1218
1219 flags = msg->msg_flags;
1220
1221 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1222 skb = tcp_write_queue_tail(sk);
1223 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1224 if (!uarg) {
1225 err = -ENOBUFS;
1226 goto out_err;
1227 }
1228
1229 zc = sk->sk_route_caps & NETIF_F_SG;
1230 if (!zc)
1231 uarg->zerocopy = 0;
1232 }
1233
1234 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1235 !tp->repair) {
1236 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1237 if (err == -EINPROGRESS && copied_syn > 0)
1238 goto out;
1239 else if (err)
1240 goto out_err;
1241 }
1242
1243 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1244
1245 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1246
1247 /* Wait for a connection to finish. One exception is TCP Fast Open
1248 * (passive side) where data is allowed to be sent before a connection
1249 * is fully established.
1250 */
1251 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1252 !tcp_passive_fastopen(sk)) {
1253 err = sk_stream_wait_connect(sk, &timeo);
1254 if (err != 0)
1255 goto do_error;
1256 }
1257
1258 if (unlikely(tp->repair)) {
1259 if (tp->repair_queue == TCP_RECV_QUEUE) {
1260 copied = tcp_send_rcvq(sk, msg, size);
1261 goto out_nopush;
1262 }
1263
1264 err = -EINVAL;
1265 if (tp->repair_queue == TCP_NO_QUEUE)
1266 goto out_err;
1267
1268 /* 'common' sending to sendq */
1269 }
1270
1271 sockcm_init(&sockc, sk);
1272 if (msg->msg_controllen) {
1273 err = sock_cmsg_send(sk, msg, &sockc);
1274 if (unlikely(err)) {
1275 err = -EINVAL;
1276 goto out_err;
1277 }
1278 }
1279
1280 /* This should be in poll */
1281 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1282
1283 /* Ok commence sending. */
1284 copied = 0;
1285
1286 restart:
1287 mss_now = tcp_send_mss(sk, &size_goal, flags);
1288
1289 err = -EPIPE;
1290 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1291 goto do_error;
1292
1293 while (msg_data_left(msg)) {
1294 int copy = 0;
1295
1296 skb = tcp_write_queue_tail(sk);
1297 if (skb)
1298 copy = size_goal - skb->len;
1299
1300 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1301 bool first_skb;
1302
1303 new_segment:
1304 if (!sk_stream_memory_free(sk))
1305 goto wait_for_space;
1306
1307 if (unlikely(process_backlog >= 16)) {
1308 process_backlog = 0;
1309 if (sk_flush_backlog(sk))
1310 goto restart;
1311 }
1312 first_skb = tcp_rtx_and_write_queues_empty(sk);
1313 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1314 first_skb);
1315 if (!skb)
1316 goto wait_for_space;
1317
1318 process_backlog++;
1319 skb->ip_summed = CHECKSUM_PARTIAL;
1320
1321 tcp_skb_entail(sk, skb);
1322 copy = size_goal;
1323
1324 /* All packets are restored as if they have
1325 * already been sent. skb_mstamp_ns isn't set to
1326 * avoid wrong rtt estimation.
1327 */
1328 if (tp->repair)
1329 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1330 }
1331
1332 /* Try to append data to the end of skb. */
1333 if (copy > msg_data_left(msg))
1334 copy = msg_data_left(msg);
1335
1336 if (!zc) {
1337 bool merge = true;
1338 int i = skb_shinfo(skb)->nr_frags;
1339 struct page_frag *pfrag = sk_page_frag(sk);
1340
1341 if (!sk_page_frag_refill(sk, pfrag))
1342 goto wait_for_space;
1343
1344 if (!skb_can_coalesce(skb, i, pfrag->page,
1345 pfrag->offset)) {
1346 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1347 tcp_mark_push(tp, skb);
1348 goto new_segment;
1349 }
1350 merge = false;
1351 }
1352
1353 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1354
1355 if (!sk_wmem_schedule(sk, copy))
1356 goto wait_for_space;
1357
1358 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1359 pfrag->page,
1360 pfrag->offset,
1361 copy);
1362 if (err)
1363 goto do_error;
1364
1365 /* Update the skb. */
1366 if (merge) {
1367 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1368 } else {
1369 skb_fill_page_desc(skb, i, pfrag->page,
1370 pfrag->offset, copy);
1371 page_ref_inc(pfrag->page);
1372 }
1373 pfrag->offset += copy;
1374 } else {
1375 if (!sk_wmem_schedule(sk, copy))
1376 goto wait_for_space;
1377
1378 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1379 if (err == -EMSGSIZE || err == -EEXIST) {
1380 tcp_mark_push(tp, skb);
1381 goto new_segment;
1382 }
1383 if (err < 0)
1384 goto do_error;
1385 copy = err;
1386 }
1387
1388 if (!copied)
1389 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1390
1391 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1392 TCP_SKB_CB(skb)->end_seq += copy;
1393 tcp_skb_pcount_set(skb, 0);
1394
1395 copied += copy;
1396 if (!msg_data_left(msg)) {
1397 if (unlikely(flags & MSG_EOR))
1398 TCP_SKB_CB(skb)->eor = 1;
1399 goto out;
1400 }
1401
1402 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1403 continue;
1404
1405 if (forced_push(tp)) {
1406 tcp_mark_push(tp, skb);
1407 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1408 } else if (skb == tcp_send_head(sk))
1409 tcp_push_one(sk, mss_now);
1410 continue;
1411
1412 wait_for_space:
1413 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1414 if (copied)
1415 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1416 TCP_NAGLE_PUSH, size_goal);
1417
1418 err = sk_stream_wait_memory(sk, &timeo);
1419 if (err != 0)
1420 goto do_error;
1421
1422 mss_now = tcp_send_mss(sk, &size_goal, flags);
1423 }
1424
1425 out:
1426 if (copied) {
1427 tcp_tx_timestamp(sk, sockc.tsflags);
1428 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1429 }
1430 out_nopush:
1431 net_zcopy_put(uarg);
1432 return copied + copied_syn;
1433
1434 do_error:
1435 tcp_remove_empty_skb(sk);
1436
1437 if (copied + copied_syn)
1438 goto out;
1439 out_err:
1440 net_zcopy_put_abort(uarg, true);
1441 err = sk_stream_error(sk, flags, err);
1442 /* make sure we wake any epoll edge trigger waiter */
1443 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1444 sk->sk_write_space(sk);
1445 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1446 }
1447 return err;
1448 }
1449 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1450
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1451 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1452 {
1453 int ret;
1454
1455 lock_sock(sk);
1456 ret = tcp_sendmsg_locked(sk, msg, size);
1457 release_sock(sk);
1458
1459 return ret;
1460 }
1461 EXPORT_SYMBOL(tcp_sendmsg);
1462
1463 /*
1464 * Handle reading urgent data. BSD has very simple semantics for
1465 * this, no blocking and very strange errors 8)
1466 */
1467
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1468 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1469 {
1470 struct tcp_sock *tp = tcp_sk(sk);
1471
1472 /* No URG data to read. */
1473 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1474 tp->urg_data == TCP_URG_READ)
1475 return -EINVAL; /* Yes this is right ! */
1476
1477 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1478 return -ENOTCONN;
1479
1480 if (tp->urg_data & TCP_URG_VALID) {
1481 int err = 0;
1482 char c = tp->urg_data;
1483
1484 if (!(flags & MSG_PEEK))
1485 tp->urg_data = TCP_URG_READ;
1486
1487 /* Read urgent data. */
1488 msg->msg_flags |= MSG_OOB;
1489
1490 if (len > 0) {
1491 if (!(flags & MSG_TRUNC))
1492 err = memcpy_to_msg(msg, &c, 1);
1493 len = 1;
1494 } else
1495 msg->msg_flags |= MSG_TRUNC;
1496
1497 return err ? -EFAULT : len;
1498 }
1499
1500 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1501 return 0;
1502
1503 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1504 * the available implementations agree in this case:
1505 * this call should never block, independent of the
1506 * blocking state of the socket.
1507 * Mike <pall@rz.uni-karlsruhe.de>
1508 */
1509 return -EAGAIN;
1510 }
1511
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1512 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1513 {
1514 struct sk_buff *skb;
1515 int copied = 0, err = 0;
1516
1517 /* XXX -- need to support SO_PEEK_OFF */
1518
1519 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1520 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1521 if (err)
1522 return err;
1523 copied += skb->len;
1524 }
1525
1526 skb_queue_walk(&sk->sk_write_queue, skb) {
1527 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1528 if (err)
1529 break;
1530
1531 copied += skb->len;
1532 }
1533
1534 return err ?: copied;
1535 }
1536
1537 /* Clean up the receive buffer for full frames taken by the user,
1538 * then send an ACK if necessary. COPIED is the number of bytes
1539 * tcp_recvmsg has given to the user so far, it speeds up the
1540 * calculation of whether or not we must ACK for the sake of
1541 * a window update.
1542 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1543 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1544 {
1545 struct tcp_sock *tp = tcp_sk(sk);
1546 bool time_to_ack = false;
1547
1548 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1549
1550 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1551 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1552 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1553
1554 if (inet_csk_ack_scheduled(sk)) {
1555 const struct inet_connection_sock *icsk = inet_csk(sk);
1556
1557 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1558 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1559 /*
1560 * If this read emptied read buffer, we send ACK, if
1561 * connection is not bidirectional, user drained
1562 * receive buffer and there was a small segment
1563 * in queue.
1564 */
1565 (copied > 0 &&
1566 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1567 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1568 !inet_csk_in_pingpong_mode(sk))) &&
1569 !atomic_read(&sk->sk_rmem_alloc)))
1570 time_to_ack = true;
1571 }
1572
1573 /* We send an ACK if we can now advertise a non-zero window
1574 * which has been raised "significantly".
1575 *
1576 * Even if window raised up to infinity, do not send window open ACK
1577 * in states, where we will not receive more. It is useless.
1578 */
1579 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1580 __u32 rcv_window_now = tcp_receive_window(tp);
1581
1582 /* Optimize, __tcp_select_window() is not cheap. */
1583 if (2*rcv_window_now <= tp->window_clamp) {
1584 __u32 new_window = __tcp_select_window(sk);
1585
1586 /* Send ACK now, if this read freed lots of space
1587 * in our buffer. Certainly, new_window is new window.
1588 * We can advertise it now, if it is not less than current one.
1589 * "Lots" means "at least twice" here.
1590 */
1591 if (new_window && new_window >= 2 * rcv_window_now)
1592 time_to_ack = true;
1593 }
1594 }
1595 if (time_to_ack)
1596 tcp_send_ack(sk);
1597 }
1598
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1599 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1600 {
1601 struct sk_buff *skb;
1602 u32 offset;
1603
1604 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1605 offset = seq - TCP_SKB_CB(skb)->seq;
1606 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1607 pr_err_once("%s: found a SYN, please report !\n", __func__);
1608 offset--;
1609 }
1610 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1611 *off = offset;
1612 return skb;
1613 }
1614 /* This looks weird, but this can happen if TCP collapsing
1615 * splitted a fat GRO packet, while we released socket lock
1616 * in skb_splice_bits()
1617 */
1618 sk_eat_skb(sk, skb);
1619 }
1620 return NULL;
1621 }
1622
1623 /*
1624 * This routine provides an alternative to tcp_recvmsg() for routines
1625 * that would like to handle copying from skbuffs directly in 'sendfile'
1626 * fashion.
1627 * Note:
1628 * - It is assumed that the socket was locked by the caller.
1629 * - The routine does not block.
1630 * - At present, there is no support for reading OOB data
1631 * or for 'peeking' the socket using this routine
1632 * (although both would be easy to implement).
1633 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1634 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1635 sk_read_actor_t recv_actor)
1636 {
1637 struct sk_buff *skb;
1638 struct tcp_sock *tp = tcp_sk(sk);
1639 u32 seq = tp->copied_seq;
1640 u32 offset;
1641 int copied = 0;
1642
1643 if (sk->sk_state == TCP_LISTEN)
1644 return -ENOTCONN;
1645 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1646 if (offset < skb->len) {
1647 int used;
1648 size_t len;
1649
1650 len = skb->len - offset;
1651 /* Stop reading if we hit a patch of urgent data */
1652 if (tp->urg_data) {
1653 u32 urg_offset = tp->urg_seq - seq;
1654 if (urg_offset < len)
1655 len = urg_offset;
1656 if (!len)
1657 break;
1658 }
1659 used = recv_actor(desc, skb, offset, len);
1660 if (used <= 0) {
1661 if (!copied)
1662 copied = used;
1663 break;
1664 }
1665 if (WARN_ON_ONCE(used > len))
1666 used = len;
1667 seq += used;
1668 copied += used;
1669 offset += used;
1670
1671 /* If recv_actor drops the lock (e.g. TCP splice
1672 * receive) the skb pointer might be invalid when
1673 * getting here: tcp_collapse might have deleted it
1674 * while aggregating skbs from the socket queue.
1675 */
1676 skb = tcp_recv_skb(sk, seq - 1, &offset);
1677 if (!skb)
1678 break;
1679 /* TCP coalescing might have appended data to the skb.
1680 * Try to splice more frags
1681 */
1682 if (offset + 1 != skb->len)
1683 continue;
1684 }
1685 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1686 sk_eat_skb(sk, skb);
1687 ++seq;
1688 break;
1689 }
1690 sk_eat_skb(sk, skb);
1691 if (!desc->count)
1692 break;
1693 WRITE_ONCE(tp->copied_seq, seq);
1694 }
1695 WRITE_ONCE(tp->copied_seq, seq);
1696
1697 tcp_rcv_space_adjust(sk);
1698
1699 /* Clean up data we have read: This will do ACK frames. */
1700 if (copied > 0) {
1701 tcp_recv_skb(sk, seq, &offset);
1702 tcp_cleanup_rbuf(sk, copied);
1703 }
1704 return copied;
1705 }
1706 EXPORT_SYMBOL(tcp_read_sock);
1707
tcp_peek_len(struct socket * sock)1708 int tcp_peek_len(struct socket *sock)
1709 {
1710 return tcp_inq(sock->sk);
1711 }
1712 EXPORT_SYMBOL(tcp_peek_len);
1713
1714 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1715 int tcp_set_rcvlowat(struct sock *sk, int val)
1716 {
1717 int cap;
1718
1719 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1720 cap = sk->sk_rcvbuf >> 1;
1721 else
1722 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1723 val = min(val, cap);
1724 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1725
1726 /* Check if we need to signal EPOLLIN right now */
1727 tcp_data_ready(sk);
1728
1729 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1730 return 0;
1731
1732 val <<= 1;
1733 if (val > sk->sk_rcvbuf) {
1734 WRITE_ONCE(sk->sk_rcvbuf, val);
1735 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1736 }
1737 return 0;
1738 }
1739 EXPORT_SYMBOL(tcp_set_rcvlowat);
1740
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1741 void tcp_update_recv_tstamps(struct sk_buff *skb,
1742 struct scm_timestamping_internal *tss)
1743 {
1744 if (skb->tstamp)
1745 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1746 else
1747 tss->ts[0] = (struct timespec64) {0};
1748
1749 if (skb_hwtstamps(skb)->hwtstamp)
1750 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1751 else
1752 tss->ts[2] = (struct timespec64) {0};
1753 }
1754
1755 #ifdef CONFIG_MMU
1756 static const struct vm_operations_struct tcp_vm_ops = {
1757 };
1758
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1759 int tcp_mmap(struct file *file, struct socket *sock,
1760 struct vm_area_struct *vma)
1761 {
1762 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1763 return -EPERM;
1764 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1765
1766 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1767 vma->vm_flags |= VM_MIXEDMAP;
1768
1769 vma->vm_ops = &tcp_vm_ops;
1770 return 0;
1771 }
1772 EXPORT_SYMBOL(tcp_mmap);
1773
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1774 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1775 u32 *offset_frag)
1776 {
1777 skb_frag_t *frag;
1778
1779 if (unlikely(offset_skb >= skb->len))
1780 return NULL;
1781
1782 offset_skb -= skb_headlen(skb);
1783 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1784 return NULL;
1785
1786 frag = skb_shinfo(skb)->frags;
1787 while (offset_skb) {
1788 if (skb_frag_size(frag) > offset_skb) {
1789 *offset_frag = offset_skb;
1790 return frag;
1791 }
1792 offset_skb -= skb_frag_size(frag);
1793 ++frag;
1794 }
1795 *offset_frag = 0;
1796 return frag;
1797 }
1798
can_map_frag(const skb_frag_t * frag)1799 static bool can_map_frag(const skb_frag_t *frag)
1800 {
1801 struct page *page;
1802
1803 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1804 return false;
1805
1806 page = skb_frag_page(frag);
1807
1808 if (PageCompound(page) || page->mapping)
1809 return false;
1810
1811 return true;
1812 }
1813
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1814 static int find_next_mappable_frag(const skb_frag_t *frag,
1815 int remaining_in_skb)
1816 {
1817 int offset = 0;
1818
1819 if (likely(can_map_frag(frag)))
1820 return 0;
1821
1822 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1823 offset += skb_frag_size(frag);
1824 ++frag;
1825 }
1826 return offset;
1827 }
1828
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1829 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1830 struct tcp_zerocopy_receive *zc,
1831 struct sk_buff *skb, u32 offset)
1832 {
1833 u32 frag_offset, partial_frag_remainder = 0;
1834 int mappable_offset;
1835 skb_frag_t *frag;
1836
1837 /* worst case: skip to next skb. try to improve on this case below */
1838 zc->recv_skip_hint = skb->len - offset;
1839
1840 /* Find the frag containing this offset (and how far into that frag) */
1841 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1842 if (!frag)
1843 return;
1844
1845 if (frag_offset) {
1846 struct skb_shared_info *info = skb_shinfo(skb);
1847
1848 /* We read part of the last frag, must recvmsg() rest of skb. */
1849 if (frag == &info->frags[info->nr_frags - 1])
1850 return;
1851
1852 /* Else, we must at least read the remainder in this frag. */
1853 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1854 zc->recv_skip_hint -= partial_frag_remainder;
1855 ++frag;
1856 }
1857
1858 /* partial_frag_remainder: If part way through a frag, must read rest.
1859 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1860 * in partial_frag_remainder.
1861 */
1862 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1863 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1864 }
1865
1866 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1867 int nonblock, int flags,
1868 struct scm_timestamping_internal *tss,
1869 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1870 static int receive_fallback_to_copy(struct sock *sk,
1871 struct tcp_zerocopy_receive *zc, int inq,
1872 struct scm_timestamping_internal *tss)
1873 {
1874 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1875 struct msghdr msg = {};
1876 struct iovec iov;
1877 int err;
1878
1879 zc->length = 0;
1880 zc->recv_skip_hint = 0;
1881
1882 if (copy_address != zc->copybuf_address)
1883 return -EINVAL;
1884
1885 err = import_single_range(READ, (void __user *)copy_address,
1886 inq, &iov, &msg.msg_iter);
1887 if (err)
1888 return err;
1889
1890 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1891 tss, &zc->msg_flags);
1892 if (err < 0)
1893 return err;
1894
1895 zc->copybuf_len = err;
1896 if (likely(zc->copybuf_len)) {
1897 struct sk_buff *skb;
1898 u32 offset;
1899
1900 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1901 if (skb)
1902 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1903 }
1904 return 0;
1905 }
1906
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1907 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1908 struct sk_buff *skb, u32 copylen,
1909 u32 *offset, u32 *seq)
1910 {
1911 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1912 struct msghdr msg = {};
1913 struct iovec iov;
1914 int err;
1915
1916 if (copy_address != zc->copybuf_address)
1917 return -EINVAL;
1918
1919 err = import_single_range(READ, (void __user *)copy_address,
1920 copylen, &iov, &msg.msg_iter);
1921 if (err)
1922 return err;
1923 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1924 if (err)
1925 return err;
1926 zc->recv_skip_hint -= copylen;
1927 *offset += copylen;
1928 *seq += copylen;
1929 return (__s32)copylen;
1930 }
1931
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1932 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1933 struct sock *sk,
1934 struct sk_buff *skb,
1935 u32 *seq,
1936 s32 copybuf_len,
1937 struct scm_timestamping_internal *tss)
1938 {
1939 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1940
1941 if (!copylen)
1942 return 0;
1943 /* skb is null if inq < PAGE_SIZE. */
1944 if (skb) {
1945 offset = *seq - TCP_SKB_CB(skb)->seq;
1946 } else {
1947 skb = tcp_recv_skb(sk, *seq, &offset);
1948 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1949 tcp_update_recv_tstamps(skb, tss);
1950 zc->msg_flags |= TCP_CMSG_TS;
1951 }
1952 }
1953
1954 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1955 seq);
1956 return zc->copybuf_len < 0 ? 0 : copylen;
1957 }
1958
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1959 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1960 struct page **pending_pages,
1961 unsigned long pages_remaining,
1962 unsigned long *address,
1963 u32 *length,
1964 u32 *seq,
1965 struct tcp_zerocopy_receive *zc,
1966 u32 total_bytes_to_map,
1967 int err)
1968 {
1969 /* At least one page did not map. Try zapping if we skipped earlier. */
1970 if (err == -EBUSY &&
1971 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1972 u32 maybe_zap_len;
1973
1974 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1975 *length + /* Mapped or pending */
1976 (pages_remaining * PAGE_SIZE); /* Failed map. */
1977 zap_page_range(vma, *address, maybe_zap_len);
1978 err = 0;
1979 }
1980
1981 if (!err) {
1982 unsigned long leftover_pages = pages_remaining;
1983 int bytes_mapped;
1984
1985 /* We called zap_page_range, try to reinsert. */
1986 err = vm_insert_pages(vma, *address,
1987 pending_pages,
1988 &pages_remaining);
1989 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1990 *seq += bytes_mapped;
1991 *address += bytes_mapped;
1992 }
1993 if (err) {
1994 /* Either we were unable to zap, OR we zapped, retried an
1995 * insert, and still had an issue. Either ways, pages_remaining
1996 * is the number of pages we were unable to map, and we unroll
1997 * some state we speculatively touched before.
1998 */
1999 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2000
2001 *length -= bytes_not_mapped;
2002 zc->recv_skip_hint += bytes_not_mapped;
2003 }
2004 return err;
2005 }
2006
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2007 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2008 struct page **pages,
2009 unsigned int pages_to_map,
2010 unsigned long *address,
2011 u32 *length,
2012 u32 *seq,
2013 struct tcp_zerocopy_receive *zc,
2014 u32 total_bytes_to_map)
2015 {
2016 unsigned long pages_remaining = pages_to_map;
2017 unsigned int pages_mapped;
2018 unsigned int bytes_mapped;
2019 int err;
2020
2021 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2022 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2023 bytes_mapped = PAGE_SIZE * pages_mapped;
2024 /* Even if vm_insert_pages fails, it may have partially succeeded in
2025 * mapping (some but not all of the pages).
2026 */
2027 *seq += bytes_mapped;
2028 *address += bytes_mapped;
2029
2030 if (likely(!err))
2031 return 0;
2032
2033 /* Error: maybe zap and retry + rollback state for failed inserts. */
2034 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2035 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2036 err);
2037 }
2038
2039 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2040 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2041 struct tcp_zerocopy_receive *zc,
2042 struct scm_timestamping_internal *tss)
2043 {
2044 unsigned long msg_control_addr;
2045 struct msghdr cmsg_dummy;
2046
2047 msg_control_addr = (unsigned long)zc->msg_control;
2048 cmsg_dummy.msg_control = (void *)msg_control_addr;
2049 cmsg_dummy.msg_controllen =
2050 (__kernel_size_t)zc->msg_controllen;
2051 cmsg_dummy.msg_flags = in_compat_syscall()
2052 ? MSG_CMSG_COMPAT : 0;
2053 cmsg_dummy.msg_control_is_user = true;
2054 zc->msg_flags = 0;
2055 if (zc->msg_control == msg_control_addr &&
2056 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2057 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2058 zc->msg_control = (__u64)
2059 ((uintptr_t)cmsg_dummy.msg_control);
2060 zc->msg_controllen =
2061 (__u64)cmsg_dummy.msg_controllen;
2062 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2063 }
2064 }
2065
2066 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2067 static int tcp_zerocopy_receive(struct sock *sk,
2068 struct tcp_zerocopy_receive *zc,
2069 struct scm_timestamping_internal *tss)
2070 {
2071 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2072 unsigned long address = (unsigned long)zc->address;
2073 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2074 s32 copybuf_len = zc->copybuf_len;
2075 struct tcp_sock *tp = tcp_sk(sk);
2076 const skb_frag_t *frags = NULL;
2077 unsigned int pages_to_map = 0;
2078 struct vm_area_struct *vma;
2079 struct sk_buff *skb = NULL;
2080 u32 seq = tp->copied_seq;
2081 u32 total_bytes_to_map;
2082 int inq = tcp_inq(sk);
2083 int ret;
2084
2085 zc->copybuf_len = 0;
2086 zc->msg_flags = 0;
2087
2088 if (address & (PAGE_SIZE - 1) || address != zc->address)
2089 return -EINVAL;
2090
2091 if (sk->sk_state == TCP_LISTEN)
2092 return -ENOTCONN;
2093
2094 sock_rps_record_flow(sk);
2095
2096 if (inq && inq <= copybuf_len)
2097 return receive_fallback_to_copy(sk, zc, inq, tss);
2098
2099 if (inq < PAGE_SIZE) {
2100 zc->length = 0;
2101 zc->recv_skip_hint = inq;
2102 if (!inq && sock_flag(sk, SOCK_DONE))
2103 return -EIO;
2104 return 0;
2105 }
2106
2107 mmap_read_lock(current->mm);
2108
2109 vma = vma_lookup(current->mm, address);
2110 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2111 mmap_read_unlock(current->mm);
2112 return -EINVAL;
2113 }
2114 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2115 avail_len = min_t(u32, vma_len, inq);
2116 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2117 if (total_bytes_to_map) {
2118 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2119 zap_page_range(vma, address, total_bytes_to_map);
2120 zc->length = total_bytes_to_map;
2121 zc->recv_skip_hint = 0;
2122 } else {
2123 zc->length = avail_len;
2124 zc->recv_skip_hint = avail_len;
2125 }
2126 ret = 0;
2127 while (length + PAGE_SIZE <= zc->length) {
2128 int mappable_offset;
2129 struct page *page;
2130
2131 if (zc->recv_skip_hint < PAGE_SIZE) {
2132 u32 offset_frag;
2133
2134 if (skb) {
2135 if (zc->recv_skip_hint > 0)
2136 break;
2137 skb = skb->next;
2138 offset = seq - TCP_SKB_CB(skb)->seq;
2139 } else {
2140 skb = tcp_recv_skb(sk, seq, &offset);
2141 }
2142
2143 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2144 tcp_update_recv_tstamps(skb, tss);
2145 zc->msg_flags |= TCP_CMSG_TS;
2146 }
2147 zc->recv_skip_hint = skb->len - offset;
2148 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2149 if (!frags || offset_frag)
2150 break;
2151 }
2152
2153 mappable_offset = find_next_mappable_frag(frags,
2154 zc->recv_skip_hint);
2155 if (mappable_offset) {
2156 zc->recv_skip_hint = mappable_offset;
2157 break;
2158 }
2159 page = skb_frag_page(frags);
2160 prefetchw(page);
2161 pages[pages_to_map++] = page;
2162 length += PAGE_SIZE;
2163 zc->recv_skip_hint -= PAGE_SIZE;
2164 frags++;
2165 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2166 zc->recv_skip_hint < PAGE_SIZE) {
2167 /* Either full batch, or we're about to go to next skb
2168 * (and we cannot unroll failed ops across skbs).
2169 */
2170 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2171 pages_to_map,
2172 &address, &length,
2173 &seq, zc,
2174 total_bytes_to_map);
2175 if (ret)
2176 goto out;
2177 pages_to_map = 0;
2178 }
2179 }
2180 if (pages_to_map) {
2181 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2182 &address, &length, &seq,
2183 zc, total_bytes_to_map);
2184 }
2185 out:
2186 mmap_read_unlock(current->mm);
2187 /* Try to copy straggler data. */
2188 if (!ret)
2189 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2190
2191 if (length + copylen) {
2192 WRITE_ONCE(tp->copied_seq, seq);
2193 tcp_rcv_space_adjust(sk);
2194
2195 /* Clean up data we have read: This will do ACK frames. */
2196 tcp_recv_skb(sk, seq, &offset);
2197 tcp_cleanup_rbuf(sk, length + copylen);
2198 ret = 0;
2199 if (length == zc->length)
2200 zc->recv_skip_hint = 0;
2201 } else {
2202 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2203 ret = -EIO;
2204 }
2205 zc->length = length;
2206 return ret;
2207 }
2208 #endif
2209
2210 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2211 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2212 struct scm_timestamping_internal *tss)
2213 {
2214 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2215 bool has_timestamping = false;
2216
2217 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2218 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2219 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2220 if (new_tstamp) {
2221 struct __kernel_timespec kts = {
2222 .tv_sec = tss->ts[0].tv_sec,
2223 .tv_nsec = tss->ts[0].tv_nsec,
2224 };
2225 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2226 sizeof(kts), &kts);
2227 } else {
2228 struct __kernel_old_timespec ts_old = {
2229 .tv_sec = tss->ts[0].tv_sec,
2230 .tv_nsec = tss->ts[0].tv_nsec,
2231 };
2232 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2233 sizeof(ts_old), &ts_old);
2234 }
2235 } else {
2236 if (new_tstamp) {
2237 struct __kernel_sock_timeval stv = {
2238 .tv_sec = tss->ts[0].tv_sec,
2239 .tv_usec = tss->ts[0].tv_nsec / 1000,
2240 };
2241 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2242 sizeof(stv), &stv);
2243 } else {
2244 struct __kernel_old_timeval tv = {
2245 .tv_sec = tss->ts[0].tv_sec,
2246 .tv_usec = tss->ts[0].tv_nsec / 1000,
2247 };
2248 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2249 sizeof(tv), &tv);
2250 }
2251 }
2252 }
2253
2254 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2255 has_timestamping = true;
2256 else
2257 tss->ts[0] = (struct timespec64) {0};
2258 }
2259
2260 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2261 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2262 has_timestamping = true;
2263 else
2264 tss->ts[2] = (struct timespec64) {0};
2265 }
2266
2267 if (has_timestamping) {
2268 tss->ts[1] = (struct timespec64) {0};
2269 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2270 put_cmsg_scm_timestamping64(msg, tss);
2271 else
2272 put_cmsg_scm_timestamping(msg, tss);
2273 }
2274 }
2275
tcp_inq_hint(struct sock * sk)2276 static int tcp_inq_hint(struct sock *sk)
2277 {
2278 const struct tcp_sock *tp = tcp_sk(sk);
2279 u32 copied_seq = READ_ONCE(tp->copied_seq);
2280 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2281 int inq;
2282
2283 inq = rcv_nxt - copied_seq;
2284 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2285 lock_sock(sk);
2286 inq = tp->rcv_nxt - tp->copied_seq;
2287 release_sock(sk);
2288 }
2289 /* After receiving a FIN, tell the user-space to continue reading
2290 * by returning a non-zero inq.
2291 */
2292 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2293 inq = 1;
2294 return inq;
2295 }
2296
2297 /*
2298 * This routine copies from a sock struct into the user buffer.
2299 *
2300 * Technical note: in 2.3 we work on _locked_ socket, so that
2301 * tricks with *seq access order and skb->users are not required.
2302 * Probably, code can be easily improved even more.
2303 */
2304
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2305 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2306 int nonblock, int flags,
2307 struct scm_timestamping_internal *tss,
2308 int *cmsg_flags)
2309 {
2310 struct tcp_sock *tp = tcp_sk(sk);
2311 int copied = 0;
2312 u32 peek_seq;
2313 u32 *seq;
2314 unsigned long used;
2315 int err;
2316 int target; /* Read at least this many bytes */
2317 long timeo;
2318 struct sk_buff *skb, *last;
2319 u32 urg_hole = 0;
2320
2321 err = -ENOTCONN;
2322 if (sk->sk_state == TCP_LISTEN)
2323 goto out;
2324
2325 if (tp->recvmsg_inq)
2326 *cmsg_flags = TCP_CMSG_INQ;
2327 timeo = sock_rcvtimeo(sk, nonblock);
2328
2329 /* Urgent data needs to be handled specially. */
2330 if (flags & MSG_OOB)
2331 goto recv_urg;
2332
2333 if (unlikely(tp->repair)) {
2334 err = -EPERM;
2335 if (!(flags & MSG_PEEK))
2336 goto out;
2337
2338 if (tp->repair_queue == TCP_SEND_QUEUE)
2339 goto recv_sndq;
2340
2341 err = -EINVAL;
2342 if (tp->repair_queue == TCP_NO_QUEUE)
2343 goto out;
2344
2345 /* 'common' recv queue MSG_PEEK-ing */
2346 }
2347
2348 seq = &tp->copied_seq;
2349 if (flags & MSG_PEEK) {
2350 peek_seq = tp->copied_seq;
2351 seq = &peek_seq;
2352 }
2353
2354 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2355
2356 do {
2357 u32 offset;
2358
2359 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2360 if (tp->urg_data && tp->urg_seq == *seq) {
2361 if (copied)
2362 break;
2363 if (signal_pending(current)) {
2364 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2365 break;
2366 }
2367 }
2368
2369 /* Next get a buffer. */
2370
2371 last = skb_peek_tail(&sk->sk_receive_queue);
2372 skb_queue_walk(&sk->sk_receive_queue, skb) {
2373 last = skb;
2374 /* Now that we have two receive queues this
2375 * shouldn't happen.
2376 */
2377 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2378 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2379 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2380 flags))
2381 break;
2382
2383 offset = *seq - TCP_SKB_CB(skb)->seq;
2384 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2385 pr_err_once("%s: found a SYN, please report !\n", __func__);
2386 offset--;
2387 }
2388 if (offset < skb->len)
2389 goto found_ok_skb;
2390 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2391 goto found_fin_ok;
2392 WARN(!(flags & MSG_PEEK),
2393 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2394 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2395 }
2396
2397 /* Well, if we have backlog, try to process it now yet. */
2398
2399 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2400 break;
2401
2402 if (copied) {
2403 if (sk->sk_err ||
2404 sk->sk_state == TCP_CLOSE ||
2405 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2406 !timeo ||
2407 signal_pending(current))
2408 break;
2409 } else {
2410 if (sock_flag(sk, SOCK_DONE))
2411 break;
2412
2413 if (sk->sk_err) {
2414 copied = sock_error(sk);
2415 break;
2416 }
2417
2418 if (sk->sk_shutdown & RCV_SHUTDOWN)
2419 break;
2420
2421 if (sk->sk_state == TCP_CLOSE) {
2422 /* This occurs when user tries to read
2423 * from never connected socket.
2424 */
2425 copied = -ENOTCONN;
2426 break;
2427 }
2428
2429 if (!timeo) {
2430 copied = -EAGAIN;
2431 break;
2432 }
2433
2434 if (signal_pending(current)) {
2435 copied = sock_intr_errno(timeo);
2436 break;
2437 }
2438 }
2439
2440 tcp_cleanup_rbuf(sk, copied);
2441
2442 if (copied >= target) {
2443 /* Do not sleep, just process backlog. */
2444 release_sock(sk);
2445 lock_sock(sk);
2446 } else {
2447 sk_wait_data(sk, &timeo, last);
2448 }
2449
2450 if ((flags & MSG_PEEK) &&
2451 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2452 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2453 current->comm,
2454 task_pid_nr(current));
2455 peek_seq = tp->copied_seq;
2456 }
2457 continue;
2458
2459 found_ok_skb:
2460 /* Ok so how much can we use? */
2461 used = skb->len - offset;
2462 if (len < used)
2463 used = len;
2464
2465 /* Do we have urgent data here? */
2466 if (tp->urg_data) {
2467 u32 urg_offset = tp->urg_seq - *seq;
2468 if (urg_offset < used) {
2469 if (!urg_offset) {
2470 if (!sock_flag(sk, SOCK_URGINLINE)) {
2471 WRITE_ONCE(*seq, *seq + 1);
2472 urg_hole++;
2473 offset++;
2474 used--;
2475 if (!used)
2476 goto skip_copy;
2477 }
2478 } else
2479 used = urg_offset;
2480 }
2481 }
2482
2483 if (!(flags & MSG_TRUNC)) {
2484 err = skb_copy_datagram_msg(skb, offset, msg, used);
2485 if (err) {
2486 /* Exception. Bailout! */
2487 if (!copied)
2488 copied = -EFAULT;
2489 break;
2490 }
2491 }
2492
2493 WRITE_ONCE(*seq, *seq + used);
2494 copied += used;
2495 len -= used;
2496
2497 tcp_rcv_space_adjust(sk);
2498
2499 skip_copy:
2500 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2501 tp->urg_data = 0;
2502 tcp_fast_path_check(sk);
2503 }
2504
2505 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2506 tcp_update_recv_tstamps(skb, tss);
2507 *cmsg_flags |= TCP_CMSG_TS;
2508 }
2509
2510 if (used + offset < skb->len)
2511 continue;
2512
2513 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2514 goto found_fin_ok;
2515 if (!(flags & MSG_PEEK))
2516 sk_eat_skb(sk, skb);
2517 continue;
2518
2519 found_fin_ok:
2520 /* Process the FIN. */
2521 WRITE_ONCE(*seq, *seq + 1);
2522 if (!(flags & MSG_PEEK))
2523 sk_eat_skb(sk, skb);
2524 break;
2525 } while (len > 0);
2526
2527 /* According to UNIX98, msg_name/msg_namelen are ignored
2528 * on connected socket. I was just happy when found this 8) --ANK
2529 */
2530
2531 /* Clean up data we have read: This will do ACK frames. */
2532 tcp_cleanup_rbuf(sk, copied);
2533 return copied;
2534
2535 out:
2536 return err;
2537
2538 recv_urg:
2539 err = tcp_recv_urg(sk, msg, len, flags);
2540 goto out;
2541
2542 recv_sndq:
2543 err = tcp_peek_sndq(sk, msg, len);
2544 goto out;
2545 }
2546
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2547 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2548 int flags, int *addr_len)
2549 {
2550 int cmsg_flags = 0, ret, inq;
2551 struct scm_timestamping_internal tss;
2552
2553 if (unlikely(flags & MSG_ERRQUEUE))
2554 return inet_recv_error(sk, msg, len, addr_len);
2555
2556 if (sk_can_busy_loop(sk) &&
2557 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2558 sk->sk_state == TCP_ESTABLISHED)
2559 sk_busy_loop(sk, nonblock);
2560
2561 lock_sock(sk);
2562 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2563 &cmsg_flags);
2564 release_sock(sk);
2565
2566 if (cmsg_flags && ret >= 0) {
2567 if (cmsg_flags & TCP_CMSG_TS)
2568 tcp_recv_timestamp(msg, sk, &tss);
2569 if (cmsg_flags & TCP_CMSG_INQ) {
2570 inq = tcp_inq_hint(sk);
2571 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2572 }
2573 }
2574 return ret;
2575 }
2576 EXPORT_SYMBOL(tcp_recvmsg);
2577
tcp_set_state(struct sock * sk,int state)2578 void tcp_set_state(struct sock *sk, int state)
2579 {
2580 int oldstate = sk->sk_state;
2581
2582 /* We defined a new enum for TCP states that are exported in BPF
2583 * so as not force the internal TCP states to be frozen. The
2584 * following checks will detect if an internal state value ever
2585 * differs from the BPF value. If this ever happens, then we will
2586 * need to remap the internal value to the BPF value before calling
2587 * tcp_call_bpf_2arg.
2588 */
2589 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2590 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2591 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2592 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2593 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2594 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2595 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2596 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2597 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2598 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2599 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2600 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2601 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2602
2603 /* bpf uapi header bpf.h defines an anonymous enum with values
2604 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2605 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2606 * But clang built vmlinux does not have this enum in DWARF
2607 * since clang removes the above code before generating IR/debuginfo.
2608 * Let us explicitly emit the type debuginfo to ensure the
2609 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2610 * regardless of which compiler is used.
2611 */
2612 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2613
2614 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2615 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2616
2617 switch (state) {
2618 case TCP_ESTABLISHED:
2619 if (oldstate != TCP_ESTABLISHED)
2620 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2621 break;
2622
2623 case TCP_CLOSE:
2624 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2625 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2626
2627 sk->sk_prot->unhash(sk);
2628 if (inet_csk(sk)->icsk_bind_hash &&
2629 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2630 inet_put_port(sk);
2631 fallthrough;
2632 default:
2633 if (oldstate == TCP_ESTABLISHED)
2634 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2635 }
2636
2637 /* Change state AFTER socket is unhashed to avoid closed
2638 * socket sitting in hash tables.
2639 */
2640 inet_sk_state_store(sk, state);
2641 }
2642 EXPORT_SYMBOL_GPL(tcp_set_state);
2643
2644 /*
2645 * State processing on a close. This implements the state shift for
2646 * sending our FIN frame. Note that we only send a FIN for some
2647 * states. A shutdown() may have already sent the FIN, or we may be
2648 * closed.
2649 */
2650
2651 static const unsigned char new_state[16] = {
2652 /* current state: new state: action: */
2653 [0 /* (Invalid) */] = TCP_CLOSE,
2654 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2655 [TCP_SYN_SENT] = TCP_CLOSE,
2656 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2657 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2658 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2659 [TCP_TIME_WAIT] = TCP_CLOSE,
2660 [TCP_CLOSE] = TCP_CLOSE,
2661 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2662 [TCP_LAST_ACK] = TCP_LAST_ACK,
2663 [TCP_LISTEN] = TCP_CLOSE,
2664 [TCP_CLOSING] = TCP_CLOSING,
2665 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2666 };
2667
tcp_close_state(struct sock * sk)2668 static int tcp_close_state(struct sock *sk)
2669 {
2670 int next = (int)new_state[sk->sk_state];
2671 int ns = next & TCP_STATE_MASK;
2672
2673 tcp_set_state(sk, ns);
2674
2675 return next & TCP_ACTION_FIN;
2676 }
2677
2678 /*
2679 * Shutdown the sending side of a connection. Much like close except
2680 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2681 */
2682
tcp_shutdown(struct sock * sk,int how)2683 void tcp_shutdown(struct sock *sk, int how)
2684 {
2685 /* We need to grab some memory, and put together a FIN,
2686 * and then put it into the queue to be sent.
2687 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2688 */
2689 if (!(how & SEND_SHUTDOWN))
2690 return;
2691
2692 /* If we've already sent a FIN, or it's a closed state, skip this. */
2693 if ((1 << sk->sk_state) &
2694 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2695 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2696 /* Clear out any half completed packets. FIN if needed. */
2697 if (tcp_close_state(sk))
2698 tcp_send_fin(sk);
2699 }
2700 }
2701 EXPORT_SYMBOL(tcp_shutdown);
2702
tcp_orphan_count_sum(void)2703 int tcp_orphan_count_sum(void)
2704 {
2705 int i, total = 0;
2706
2707 for_each_possible_cpu(i)
2708 total += per_cpu(tcp_orphan_count, i);
2709
2710 return max(total, 0);
2711 }
2712
2713 static int tcp_orphan_cache;
2714 static struct timer_list tcp_orphan_timer;
2715 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2716
tcp_orphan_update(struct timer_list * unused)2717 static void tcp_orphan_update(struct timer_list *unused)
2718 {
2719 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2720 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2721 }
2722
tcp_too_many_orphans(int shift)2723 static bool tcp_too_many_orphans(int shift)
2724 {
2725 return READ_ONCE(tcp_orphan_cache) << shift >
2726 READ_ONCE(sysctl_tcp_max_orphans);
2727 }
2728
tcp_check_oom(struct sock * sk,int shift)2729 bool tcp_check_oom(struct sock *sk, int shift)
2730 {
2731 bool too_many_orphans, out_of_socket_memory;
2732
2733 too_many_orphans = tcp_too_many_orphans(shift);
2734 out_of_socket_memory = tcp_out_of_memory(sk);
2735
2736 if (too_many_orphans)
2737 net_info_ratelimited("too many orphaned sockets\n");
2738 if (out_of_socket_memory)
2739 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2740 return too_many_orphans || out_of_socket_memory;
2741 }
2742
__tcp_close(struct sock * sk,long timeout)2743 void __tcp_close(struct sock *sk, long timeout)
2744 {
2745 struct sk_buff *skb;
2746 int data_was_unread = 0;
2747 int state;
2748
2749 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2750
2751 if (sk->sk_state == TCP_LISTEN) {
2752 tcp_set_state(sk, TCP_CLOSE);
2753
2754 /* Special case. */
2755 inet_csk_listen_stop(sk);
2756
2757 goto adjudge_to_death;
2758 }
2759
2760 /* We need to flush the recv. buffs. We do this only on the
2761 * descriptor close, not protocol-sourced closes, because the
2762 * reader process may not have drained the data yet!
2763 */
2764 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2765 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2766
2767 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2768 len--;
2769 data_was_unread += len;
2770 __kfree_skb(skb);
2771 }
2772
2773 sk_mem_reclaim(sk);
2774
2775 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2776 if (sk->sk_state == TCP_CLOSE)
2777 goto adjudge_to_death;
2778
2779 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2780 * data was lost. To witness the awful effects of the old behavior of
2781 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2782 * GET in an FTP client, suspend the process, wait for the client to
2783 * advertise a zero window, then kill -9 the FTP client, wheee...
2784 * Note: timeout is always zero in such a case.
2785 */
2786 if (unlikely(tcp_sk(sk)->repair)) {
2787 sk->sk_prot->disconnect(sk, 0);
2788 } else if (data_was_unread) {
2789 /* Unread data was tossed, zap the connection. */
2790 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2791 tcp_set_state(sk, TCP_CLOSE);
2792 tcp_send_active_reset(sk, sk->sk_allocation);
2793 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2794 /* Check zero linger _after_ checking for unread data. */
2795 sk->sk_prot->disconnect(sk, 0);
2796 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2797 } else if (tcp_close_state(sk)) {
2798 /* We FIN if the application ate all the data before
2799 * zapping the connection.
2800 */
2801
2802 /* RED-PEN. Formally speaking, we have broken TCP state
2803 * machine. State transitions:
2804 *
2805 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2806 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2807 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2808 *
2809 * are legal only when FIN has been sent (i.e. in window),
2810 * rather than queued out of window. Purists blame.
2811 *
2812 * F.e. "RFC state" is ESTABLISHED,
2813 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2814 *
2815 * The visible declinations are that sometimes
2816 * we enter time-wait state, when it is not required really
2817 * (harmless), do not send active resets, when they are
2818 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2819 * they look as CLOSING or LAST_ACK for Linux)
2820 * Probably, I missed some more holelets.
2821 * --ANK
2822 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2823 * in a single packet! (May consider it later but will
2824 * probably need API support or TCP_CORK SYN-ACK until
2825 * data is written and socket is closed.)
2826 */
2827 tcp_send_fin(sk);
2828 }
2829
2830 sk_stream_wait_close(sk, timeout);
2831
2832 adjudge_to_death:
2833 state = sk->sk_state;
2834 sock_hold(sk);
2835 sock_orphan(sk);
2836
2837 local_bh_disable();
2838 bh_lock_sock(sk);
2839 /* remove backlog if any, without releasing ownership. */
2840 __release_sock(sk);
2841
2842 this_cpu_inc(tcp_orphan_count);
2843
2844 /* Have we already been destroyed by a softirq or backlog? */
2845 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2846 goto out;
2847
2848 /* This is a (useful) BSD violating of the RFC. There is a
2849 * problem with TCP as specified in that the other end could
2850 * keep a socket open forever with no application left this end.
2851 * We use a 1 minute timeout (about the same as BSD) then kill
2852 * our end. If they send after that then tough - BUT: long enough
2853 * that we won't make the old 4*rto = almost no time - whoops
2854 * reset mistake.
2855 *
2856 * Nope, it was not mistake. It is really desired behaviour
2857 * f.e. on http servers, when such sockets are useless, but
2858 * consume significant resources. Let's do it with special
2859 * linger2 option. --ANK
2860 */
2861
2862 if (sk->sk_state == TCP_FIN_WAIT2) {
2863 struct tcp_sock *tp = tcp_sk(sk);
2864 if (tp->linger2 < 0) {
2865 tcp_set_state(sk, TCP_CLOSE);
2866 tcp_send_active_reset(sk, GFP_ATOMIC);
2867 __NET_INC_STATS(sock_net(sk),
2868 LINUX_MIB_TCPABORTONLINGER);
2869 } else {
2870 const int tmo = tcp_fin_time(sk);
2871
2872 if (tmo > TCP_TIMEWAIT_LEN) {
2873 inet_csk_reset_keepalive_timer(sk,
2874 tmo - TCP_TIMEWAIT_LEN);
2875 } else {
2876 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2877 goto out;
2878 }
2879 }
2880 }
2881 if (sk->sk_state != TCP_CLOSE) {
2882 sk_mem_reclaim(sk);
2883 if (tcp_check_oom(sk, 0)) {
2884 tcp_set_state(sk, TCP_CLOSE);
2885 tcp_send_active_reset(sk, GFP_ATOMIC);
2886 __NET_INC_STATS(sock_net(sk),
2887 LINUX_MIB_TCPABORTONMEMORY);
2888 } else if (!check_net(sock_net(sk))) {
2889 /* Not possible to send reset; just close */
2890 tcp_set_state(sk, TCP_CLOSE);
2891 }
2892 }
2893
2894 if (sk->sk_state == TCP_CLOSE) {
2895 struct request_sock *req;
2896
2897 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2898 lockdep_sock_is_held(sk));
2899 /* We could get here with a non-NULL req if the socket is
2900 * aborted (e.g., closed with unread data) before 3WHS
2901 * finishes.
2902 */
2903 if (req)
2904 reqsk_fastopen_remove(sk, req, false);
2905 inet_csk_destroy_sock(sk);
2906 }
2907 /* Otherwise, socket is reprieved until protocol close. */
2908
2909 out:
2910 bh_unlock_sock(sk);
2911 local_bh_enable();
2912 }
2913
tcp_close(struct sock * sk,long timeout)2914 void tcp_close(struct sock *sk, long timeout)
2915 {
2916 lock_sock(sk);
2917 __tcp_close(sk, timeout);
2918 release_sock(sk);
2919 sock_put(sk);
2920 }
2921 EXPORT_SYMBOL(tcp_close);
2922
2923 /* These states need RST on ABORT according to RFC793 */
2924
tcp_need_reset(int state)2925 static inline bool tcp_need_reset(int state)
2926 {
2927 return (1 << state) &
2928 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2929 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2930 }
2931
tcp_rtx_queue_purge(struct sock * sk)2932 static void tcp_rtx_queue_purge(struct sock *sk)
2933 {
2934 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2935
2936 tcp_sk(sk)->highest_sack = NULL;
2937 while (p) {
2938 struct sk_buff *skb = rb_to_skb(p);
2939
2940 p = rb_next(p);
2941 /* Since we are deleting whole queue, no need to
2942 * list_del(&skb->tcp_tsorted_anchor)
2943 */
2944 tcp_rtx_queue_unlink(skb, sk);
2945 sk_wmem_free_skb(sk, skb);
2946 }
2947 }
2948
tcp_write_queue_purge(struct sock * sk)2949 void tcp_write_queue_purge(struct sock *sk)
2950 {
2951 struct sk_buff *skb;
2952
2953 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2954 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2955 tcp_skb_tsorted_anchor_cleanup(skb);
2956 sk_wmem_free_skb(sk, skb);
2957 }
2958 tcp_rtx_queue_purge(sk);
2959 skb = sk->sk_tx_skb_cache;
2960 if (skb) {
2961 __kfree_skb(skb);
2962 sk->sk_tx_skb_cache = NULL;
2963 }
2964 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2965 sk_mem_reclaim(sk);
2966 tcp_clear_all_retrans_hints(tcp_sk(sk));
2967 tcp_sk(sk)->packets_out = 0;
2968 inet_csk(sk)->icsk_backoff = 0;
2969 }
2970
tcp_disconnect(struct sock * sk,int flags)2971 int tcp_disconnect(struct sock *sk, int flags)
2972 {
2973 struct inet_sock *inet = inet_sk(sk);
2974 struct inet_connection_sock *icsk = inet_csk(sk);
2975 struct tcp_sock *tp = tcp_sk(sk);
2976 int old_state = sk->sk_state;
2977 u32 seq;
2978
2979 if (old_state != TCP_CLOSE)
2980 tcp_set_state(sk, TCP_CLOSE);
2981
2982 /* ABORT function of RFC793 */
2983 if (old_state == TCP_LISTEN) {
2984 inet_csk_listen_stop(sk);
2985 } else if (unlikely(tp->repair)) {
2986 sk->sk_err = ECONNABORTED;
2987 } else if (tcp_need_reset(old_state) ||
2988 (tp->snd_nxt != tp->write_seq &&
2989 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2990 /* The last check adjusts for discrepancy of Linux wrt. RFC
2991 * states
2992 */
2993 tcp_send_active_reset(sk, gfp_any());
2994 sk->sk_err = ECONNRESET;
2995 } else if (old_state == TCP_SYN_SENT)
2996 sk->sk_err = ECONNRESET;
2997
2998 tcp_clear_xmit_timers(sk);
2999 __skb_queue_purge(&sk->sk_receive_queue);
3000 if (sk->sk_rx_skb_cache) {
3001 __kfree_skb(sk->sk_rx_skb_cache);
3002 sk->sk_rx_skb_cache = NULL;
3003 }
3004 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3005 tp->urg_data = 0;
3006 tcp_write_queue_purge(sk);
3007 tcp_fastopen_active_disable_ofo_check(sk);
3008 skb_rbtree_purge(&tp->out_of_order_queue);
3009
3010 inet->inet_dport = 0;
3011
3012 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3013 inet_reset_saddr(sk);
3014
3015 WRITE_ONCE(sk->sk_shutdown, 0);
3016 sock_reset_flag(sk, SOCK_DONE);
3017 tp->srtt_us = 0;
3018 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3019 tp->rcv_rtt_last_tsecr = 0;
3020
3021 seq = tp->write_seq + tp->max_window + 2;
3022 if (!seq)
3023 seq = 1;
3024 WRITE_ONCE(tp->write_seq, seq);
3025
3026 icsk->icsk_backoff = 0;
3027 icsk->icsk_probes_out = 0;
3028 icsk->icsk_probes_tstamp = 0;
3029 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3030 icsk->icsk_rto_min = TCP_RTO_MIN;
3031 icsk->icsk_delack_max = TCP_DELACK_MAX;
3032 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3033 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3034 tp->snd_cwnd_cnt = 0;
3035 tp->is_cwnd_limited = 0;
3036 tp->max_packets_out = 0;
3037 tp->window_clamp = 0;
3038 tp->delivered = 0;
3039 tp->delivered_ce = 0;
3040 if (icsk->icsk_ca_ops->release)
3041 icsk->icsk_ca_ops->release(sk);
3042 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3043 icsk->icsk_ca_initialized = 0;
3044 tcp_set_ca_state(sk, TCP_CA_Open);
3045 tp->is_sack_reneg = 0;
3046 tcp_clear_retrans(tp);
3047 tp->total_retrans = 0;
3048 inet_csk_delack_init(sk);
3049 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3050 * issue in __tcp_select_window()
3051 */
3052 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3053 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3054 __sk_dst_reset(sk);
3055 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3056 tcp_saved_syn_free(tp);
3057 tp->compressed_ack = 0;
3058 tp->segs_in = 0;
3059 tp->segs_out = 0;
3060 tp->bytes_sent = 0;
3061 tp->bytes_acked = 0;
3062 tp->bytes_received = 0;
3063 tp->bytes_retrans = 0;
3064 tp->data_segs_in = 0;
3065 tp->data_segs_out = 0;
3066 tp->duplicate_sack[0].start_seq = 0;
3067 tp->duplicate_sack[0].end_seq = 0;
3068 tp->dsack_dups = 0;
3069 tp->reord_seen = 0;
3070 tp->retrans_out = 0;
3071 tp->sacked_out = 0;
3072 tp->tlp_high_seq = 0;
3073 tp->last_oow_ack_time = 0;
3074 /* There's a bubble in the pipe until at least the first ACK. */
3075 tp->app_limited = ~0U;
3076 tp->rate_app_limited = 1;
3077 tp->rack.mstamp = 0;
3078 tp->rack.advanced = 0;
3079 tp->rack.reo_wnd_steps = 1;
3080 tp->rack.last_delivered = 0;
3081 tp->rack.reo_wnd_persist = 0;
3082 tp->rack.dsack_seen = 0;
3083 tp->syn_data_acked = 0;
3084 tp->rx_opt.saw_tstamp = 0;
3085 tp->rx_opt.dsack = 0;
3086 tp->rx_opt.num_sacks = 0;
3087 tp->rcv_ooopack = 0;
3088
3089
3090 /* Clean up fastopen related fields */
3091 tcp_free_fastopen_req(tp);
3092 inet->defer_connect = 0;
3093 tp->fastopen_client_fail = 0;
3094
3095 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3096
3097 if (sk->sk_frag.page) {
3098 put_page(sk->sk_frag.page);
3099 sk->sk_frag.page = NULL;
3100 sk->sk_frag.offset = 0;
3101 }
3102
3103 sk_error_report(sk);
3104 return 0;
3105 }
3106 EXPORT_SYMBOL(tcp_disconnect);
3107
tcp_can_repair_sock(const struct sock * sk)3108 static inline bool tcp_can_repair_sock(const struct sock *sk)
3109 {
3110 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3111 (sk->sk_state != TCP_LISTEN);
3112 }
3113
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3114 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3115 {
3116 struct tcp_repair_window opt;
3117
3118 if (!tp->repair)
3119 return -EPERM;
3120
3121 if (len != sizeof(opt))
3122 return -EINVAL;
3123
3124 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3125 return -EFAULT;
3126
3127 if (opt.max_window < opt.snd_wnd)
3128 return -EINVAL;
3129
3130 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3131 return -EINVAL;
3132
3133 if (after(opt.rcv_wup, tp->rcv_nxt))
3134 return -EINVAL;
3135
3136 tp->snd_wl1 = opt.snd_wl1;
3137 tp->snd_wnd = opt.snd_wnd;
3138 tp->max_window = opt.max_window;
3139
3140 tp->rcv_wnd = opt.rcv_wnd;
3141 tp->rcv_wup = opt.rcv_wup;
3142
3143 return 0;
3144 }
3145
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3146 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3147 unsigned int len)
3148 {
3149 struct tcp_sock *tp = tcp_sk(sk);
3150 struct tcp_repair_opt opt;
3151 size_t offset = 0;
3152
3153 while (len >= sizeof(opt)) {
3154 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3155 return -EFAULT;
3156
3157 offset += sizeof(opt);
3158 len -= sizeof(opt);
3159
3160 switch (opt.opt_code) {
3161 case TCPOPT_MSS:
3162 tp->rx_opt.mss_clamp = opt.opt_val;
3163 tcp_mtup_init(sk);
3164 break;
3165 case TCPOPT_WINDOW:
3166 {
3167 u16 snd_wscale = opt.opt_val & 0xFFFF;
3168 u16 rcv_wscale = opt.opt_val >> 16;
3169
3170 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3171 return -EFBIG;
3172
3173 tp->rx_opt.snd_wscale = snd_wscale;
3174 tp->rx_opt.rcv_wscale = rcv_wscale;
3175 tp->rx_opt.wscale_ok = 1;
3176 }
3177 break;
3178 case TCPOPT_SACK_PERM:
3179 if (opt.opt_val != 0)
3180 return -EINVAL;
3181
3182 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3183 break;
3184 case TCPOPT_TIMESTAMP:
3185 if (opt.opt_val != 0)
3186 return -EINVAL;
3187
3188 tp->rx_opt.tstamp_ok = 1;
3189 break;
3190 }
3191 }
3192
3193 return 0;
3194 }
3195
3196 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3197 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3198
tcp_enable_tx_delay(void)3199 static void tcp_enable_tx_delay(void)
3200 {
3201 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3202 static int __tcp_tx_delay_enabled = 0;
3203
3204 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3205 static_branch_enable(&tcp_tx_delay_enabled);
3206 pr_info("TCP_TX_DELAY enabled\n");
3207 }
3208 }
3209 }
3210
3211 /* When set indicates to always queue non-full frames. Later the user clears
3212 * this option and we transmit any pending partial frames in the queue. This is
3213 * meant to be used alongside sendfile() to get properly filled frames when the
3214 * user (for example) must write out headers with a write() call first and then
3215 * use sendfile to send out the data parts.
3216 *
3217 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3218 * TCP_NODELAY.
3219 */
__tcp_sock_set_cork(struct sock * sk,bool on)3220 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3221 {
3222 struct tcp_sock *tp = tcp_sk(sk);
3223
3224 if (on) {
3225 tp->nonagle |= TCP_NAGLE_CORK;
3226 } else {
3227 tp->nonagle &= ~TCP_NAGLE_CORK;
3228 if (tp->nonagle & TCP_NAGLE_OFF)
3229 tp->nonagle |= TCP_NAGLE_PUSH;
3230 tcp_push_pending_frames(sk);
3231 }
3232 }
3233
tcp_sock_set_cork(struct sock * sk,bool on)3234 void tcp_sock_set_cork(struct sock *sk, bool on)
3235 {
3236 lock_sock(sk);
3237 __tcp_sock_set_cork(sk, on);
3238 release_sock(sk);
3239 }
3240 EXPORT_SYMBOL(tcp_sock_set_cork);
3241
3242 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3243 * remembered, but it is not activated until cork is cleared.
3244 *
3245 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3246 * even TCP_CORK for currently queued segments.
3247 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3248 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3249 {
3250 if (on) {
3251 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3252 tcp_push_pending_frames(sk);
3253 } else {
3254 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3255 }
3256 }
3257
tcp_sock_set_nodelay(struct sock * sk)3258 void tcp_sock_set_nodelay(struct sock *sk)
3259 {
3260 lock_sock(sk);
3261 __tcp_sock_set_nodelay(sk, true);
3262 release_sock(sk);
3263 }
3264 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3265
__tcp_sock_set_quickack(struct sock * sk,int val)3266 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3267 {
3268 if (!val) {
3269 inet_csk_enter_pingpong_mode(sk);
3270 return;
3271 }
3272
3273 inet_csk_exit_pingpong_mode(sk);
3274 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3275 inet_csk_ack_scheduled(sk)) {
3276 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3277 tcp_cleanup_rbuf(sk, 1);
3278 if (!(val & 1))
3279 inet_csk_enter_pingpong_mode(sk);
3280 }
3281 }
3282
tcp_sock_set_quickack(struct sock * sk,int val)3283 void tcp_sock_set_quickack(struct sock *sk, int val)
3284 {
3285 lock_sock(sk);
3286 __tcp_sock_set_quickack(sk, val);
3287 release_sock(sk);
3288 }
3289 EXPORT_SYMBOL(tcp_sock_set_quickack);
3290
tcp_sock_set_syncnt(struct sock * sk,int val)3291 int tcp_sock_set_syncnt(struct sock *sk, int val)
3292 {
3293 if (val < 1 || val > MAX_TCP_SYNCNT)
3294 return -EINVAL;
3295
3296 lock_sock(sk);
3297 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3298 release_sock(sk);
3299 return 0;
3300 }
3301 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3302
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3303 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3304 {
3305 lock_sock(sk);
3306 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3307 release_sock(sk);
3308 }
3309 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3310
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3311 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3312 {
3313 struct tcp_sock *tp = tcp_sk(sk);
3314
3315 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3316 return -EINVAL;
3317
3318 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3319 WRITE_ONCE(tp->keepalive_time, val * HZ);
3320 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3321 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3322 u32 elapsed = keepalive_time_elapsed(tp);
3323
3324 if (tp->keepalive_time > elapsed)
3325 elapsed = tp->keepalive_time - elapsed;
3326 else
3327 elapsed = 0;
3328 inet_csk_reset_keepalive_timer(sk, elapsed);
3329 }
3330
3331 return 0;
3332 }
3333
tcp_sock_set_keepidle(struct sock * sk,int val)3334 int tcp_sock_set_keepidle(struct sock *sk, int val)
3335 {
3336 int err;
3337
3338 lock_sock(sk);
3339 err = tcp_sock_set_keepidle_locked(sk, val);
3340 release_sock(sk);
3341 return err;
3342 }
3343 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3344
tcp_sock_set_keepintvl(struct sock * sk,int val)3345 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3346 {
3347 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3348 return -EINVAL;
3349
3350 lock_sock(sk);
3351 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3352 release_sock(sk);
3353 return 0;
3354 }
3355 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3356
tcp_sock_set_keepcnt(struct sock * sk,int val)3357 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3358 {
3359 if (val < 1 || val > MAX_TCP_KEEPCNT)
3360 return -EINVAL;
3361
3362 lock_sock(sk);
3363 /* Paired with READ_ONCE() in keepalive_probes() */
3364 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3365 release_sock(sk);
3366 return 0;
3367 }
3368 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3369
tcp_set_window_clamp(struct sock * sk,int val)3370 int tcp_set_window_clamp(struct sock *sk, int val)
3371 {
3372 struct tcp_sock *tp = tcp_sk(sk);
3373
3374 if (!val) {
3375 if (sk->sk_state != TCP_CLOSE)
3376 return -EINVAL;
3377 tp->window_clamp = 0;
3378 } else {
3379 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3380 SOCK_MIN_RCVBUF / 2 : val;
3381 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3382 }
3383 return 0;
3384 }
3385
3386 /*
3387 * Socket option code for TCP.
3388 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3389 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3390 sockptr_t optval, unsigned int optlen)
3391 {
3392 struct tcp_sock *tp = tcp_sk(sk);
3393 struct inet_connection_sock *icsk = inet_csk(sk);
3394 struct net *net = sock_net(sk);
3395 int val;
3396 int err = 0;
3397
3398 /* These are data/string values, all the others are ints */
3399 switch (optname) {
3400 case TCP_CONGESTION: {
3401 char name[TCP_CA_NAME_MAX];
3402
3403 if (optlen < 1)
3404 return -EINVAL;
3405
3406 val = strncpy_from_sockptr(name, optval,
3407 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3408 if (val < 0)
3409 return -EFAULT;
3410 name[val] = 0;
3411
3412 lock_sock(sk);
3413 err = tcp_set_congestion_control(sk, name, true,
3414 ns_capable(sock_net(sk)->user_ns,
3415 CAP_NET_ADMIN));
3416 release_sock(sk);
3417 return err;
3418 }
3419 case TCP_ULP: {
3420 char name[TCP_ULP_NAME_MAX];
3421
3422 if (optlen < 1)
3423 return -EINVAL;
3424
3425 val = strncpy_from_sockptr(name, optval,
3426 min_t(long, TCP_ULP_NAME_MAX - 1,
3427 optlen));
3428 if (val < 0)
3429 return -EFAULT;
3430 name[val] = 0;
3431
3432 lock_sock(sk);
3433 err = tcp_set_ulp(sk, name);
3434 release_sock(sk);
3435 return err;
3436 }
3437 case TCP_FASTOPEN_KEY: {
3438 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3439 __u8 *backup_key = NULL;
3440
3441 /* Allow a backup key as well to facilitate key rotation
3442 * First key is the active one.
3443 */
3444 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3445 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3446 return -EINVAL;
3447
3448 if (copy_from_sockptr(key, optval, optlen))
3449 return -EFAULT;
3450
3451 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3452 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3453
3454 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3455 }
3456 default:
3457 /* fallthru */
3458 break;
3459 }
3460
3461 if (optlen < sizeof(int))
3462 return -EINVAL;
3463
3464 if (copy_from_sockptr(&val, optval, sizeof(val)))
3465 return -EFAULT;
3466
3467 lock_sock(sk);
3468
3469 switch (optname) {
3470 case TCP_MAXSEG:
3471 /* Values greater than interface MTU won't take effect. However
3472 * at the point when this call is done we typically don't yet
3473 * know which interface is going to be used
3474 */
3475 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3476 err = -EINVAL;
3477 break;
3478 }
3479 tp->rx_opt.user_mss = val;
3480 break;
3481
3482 case TCP_NODELAY:
3483 __tcp_sock_set_nodelay(sk, val);
3484 break;
3485
3486 case TCP_THIN_LINEAR_TIMEOUTS:
3487 if (val < 0 || val > 1)
3488 err = -EINVAL;
3489 else
3490 tp->thin_lto = val;
3491 break;
3492
3493 case TCP_THIN_DUPACK:
3494 if (val < 0 || val > 1)
3495 err = -EINVAL;
3496 break;
3497
3498 case TCP_REPAIR:
3499 if (!tcp_can_repair_sock(sk))
3500 err = -EPERM;
3501 else if (val == TCP_REPAIR_ON) {
3502 tp->repair = 1;
3503 sk->sk_reuse = SK_FORCE_REUSE;
3504 tp->repair_queue = TCP_NO_QUEUE;
3505 } else if (val == TCP_REPAIR_OFF) {
3506 tp->repair = 0;
3507 sk->sk_reuse = SK_NO_REUSE;
3508 tcp_send_window_probe(sk);
3509 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3510 tp->repair = 0;
3511 sk->sk_reuse = SK_NO_REUSE;
3512 } else
3513 err = -EINVAL;
3514
3515 break;
3516
3517 case TCP_REPAIR_QUEUE:
3518 if (!tp->repair)
3519 err = -EPERM;
3520 else if ((unsigned int)val < TCP_QUEUES_NR)
3521 tp->repair_queue = val;
3522 else
3523 err = -EINVAL;
3524 break;
3525
3526 case TCP_QUEUE_SEQ:
3527 if (sk->sk_state != TCP_CLOSE) {
3528 err = -EPERM;
3529 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3530 if (!tcp_rtx_queue_empty(sk))
3531 err = -EPERM;
3532 else
3533 WRITE_ONCE(tp->write_seq, val);
3534 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3535 if (tp->rcv_nxt != tp->copied_seq) {
3536 err = -EPERM;
3537 } else {
3538 WRITE_ONCE(tp->rcv_nxt, val);
3539 WRITE_ONCE(tp->copied_seq, val);
3540 }
3541 } else {
3542 err = -EINVAL;
3543 }
3544 break;
3545
3546 case TCP_REPAIR_OPTIONS:
3547 if (!tp->repair)
3548 err = -EINVAL;
3549 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3550 err = tcp_repair_options_est(sk, optval, optlen);
3551 else
3552 err = -EPERM;
3553 break;
3554
3555 case TCP_CORK:
3556 __tcp_sock_set_cork(sk, val);
3557 break;
3558
3559 case TCP_KEEPIDLE:
3560 err = tcp_sock_set_keepidle_locked(sk, val);
3561 break;
3562 case TCP_KEEPINTVL:
3563 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3564 err = -EINVAL;
3565 else
3566 WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3567 break;
3568 case TCP_KEEPCNT:
3569 if (val < 1 || val > MAX_TCP_KEEPCNT)
3570 err = -EINVAL;
3571 else
3572 WRITE_ONCE(tp->keepalive_probes, val);
3573 break;
3574 case TCP_SYNCNT:
3575 if (val < 1 || val > MAX_TCP_SYNCNT)
3576 err = -EINVAL;
3577 else
3578 WRITE_ONCE(icsk->icsk_syn_retries, val);
3579 break;
3580
3581 case TCP_SAVE_SYN:
3582 /* 0: disable, 1: enable, 2: start from ether_header */
3583 if (val < 0 || val > 2)
3584 err = -EINVAL;
3585 else
3586 tp->save_syn = val;
3587 break;
3588
3589 case TCP_LINGER2:
3590 if (val < 0)
3591 WRITE_ONCE(tp->linger2, -1);
3592 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3593 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3594 else
3595 WRITE_ONCE(tp->linger2, val * HZ);
3596 break;
3597
3598 case TCP_DEFER_ACCEPT:
3599 /* Translate value in seconds to number of retransmits */
3600 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3601 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3602 TCP_RTO_MAX / HZ));
3603 break;
3604
3605 case TCP_WINDOW_CLAMP:
3606 err = tcp_set_window_clamp(sk, val);
3607 break;
3608
3609 case TCP_QUICKACK:
3610 __tcp_sock_set_quickack(sk, val);
3611 break;
3612
3613 #ifdef CONFIG_TCP_MD5SIG
3614 case TCP_MD5SIG:
3615 case TCP_MD5SIG_EXT:
3616 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3617 break;
3618 #endif
3619 case TCP_USER_TIMEOUT:
3620 /* Cap the max time in ms TCP will retry or probe the window
3621 * before giving up and aborting (ETIMEDOUT) a connection.
3622 */
3623 if (val < 0)
3624 err = -EINVAL;
3625 else
3626 WRITE_ONCE(icsk->icsk_user_timeout, val);
3627 break;
3628
3629 case TCP_FASTOPEN:
3630 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3631 TCPF_LISTEN))) {
3632 tcp_fastopen_init_key_once(net);
3633
3634 fastopen_queue_tune(sk, val);
3635 } else {
3636 err = -EINVAL;
3637 }
3638 break;
3639 case TCP_FASTOPEN_CONNECT:
3640 if (val > 1 || val < 0) {
3641 err = -EINVAL;
3642 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3643 TFO_CLIENT_ENABLE) {
3644 if (sk->sk_state == TCP_CLOSE)
3645 tp->fastopen_connect = val;
3646 else
3647 err = -EINVAL;
3648 } else {
3649 err = -EOPNOTSUPP;
3650 }
3651 break;
3652 case TCP_FASTOPEN_NO_COOKIE:
3653 if (val > 1 || val < 0)
3654 err = -EINVAL;
3655 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3656 err = -EINVAL;
3657 else
3658 tp->fastopen_no_cookie = val;
3659 break;
3660 case TCP_TIMESTAMP:
3661 if (!tp->repair)
3662 err = -EPERM;
3663 else
3664 tp->tsoffset = val - tcp_time_stamp_raw();
3665 break;
3666 case TCP_REPAIR_WINDOW:
3667 err = tcp_repair_set_window(tp, optval, optlen);
3668 break;
3669 case TCP_NOTSENT_LOWAT:
3670 WRITE_ONCE(tp->notsent_lowat, val);
3671 sk->sk_write_space(sk);
3672 break;
3673 case TCP_INQ:
3674 if (val > 1 || val < 0)
3675 err = -EINVAL;
3676 else
3677 tp->recvmsg_inq = val;
3678 break;
3679 case TCP_TX_DELAY:
3680 if (val)
3681 tcp_enable_tx_delay();
3682 WRITE_ONCE(tp->tcp_tx_delay, val);
3683 break;
3684 default:
3685 err = -ENOPROTOOPT;
3686 break;
3687 }
3688
3689 release_sock(sk);
3690 return err;
3691 }
3692
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3693 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3694 unsigned int optlen)
3695 {
3696 const struct inet_connection_sock *icsk = inet_csk(sk);
3697
3698 if (level != SOL_TCP)
3699 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3700 optval, optlen);
3701 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3702 }
3703 EXPORT_SYMBOL(tcp_setsockopt);
3704
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3705 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3706 struct tcp_info *info)
3707 {
3708 u64 stats[__TCP_CHRONO_MAX], total = 0;
3709 enum tcp_chrono i;
3710
3711 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3712 stats[i] = tp->chrono_stat[i - 1];
3713 if (i == tp->chrono_type)
3714 stats[i] += tcp_jiffies32 - tp->chrono_start;
3715 stats[i] *= USEC_PER_SEC / HZ;
3716 total += stats[i];
3717 }
3718
3719 info->tcpi_busy_time = total;
3720 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3721 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3722 }
3723
3724 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3725 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3726 {
3727 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3728 const struct inet_connection_sock *icsk = inet_csk(sk);
3729 unsigned long rate;
3730 u32 now;
3731 u64 rate64;
3732 bool slow;
3733
3734 memset(info, 0, sizeof(*info));
3735 if (sk->sk_type != SOCK_STREAM)
3736 return;
3737
3738 info->tcpi_state = inet_sk_state_load(sk);
3739
3740 /* Report meaningful fields for all TCP states, including listeners */
3741 rate = READ_ONCE(sk->sk_pacing_rate);
3742 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3743 info->tcpi_pacing_rate = rate64;
3744
3745 rate = READ_ONCE(sk->sk_max_pacing_rate);
3746 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3747 info->tcpi_max_pacing_rate = rate64;
3748
3749 info->tcpi_reordering = tp->reordering;
3750 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3751
3752 if (info->tcpi_state == TCP_LISTEN) {
3753 /* listeners aliased fields :
3754 * tcpi_unacked -> Number of children ready for accept()
3755 * tcpi_sacked -> max backlog
3756 */
3757 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3758 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3759 return;
3760 }
3761
3762 slow = lock_sock_fast(sk);
3763
3764 info->tcpi_ca_state = icsk->icsk_ca_state;
3765 info->tcpi_retransmits = icsk->icsk_retransmits;
3766 info->tcpi_probes = icsk->icsk_probes_out;
3767 info->tcpi_backoff = icsk->icsk_backoff;
3768
3769 if (tp->rx_opt.tstamp_ok)
3770 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3771 if (tcp_is_sack(tp))
3772 info->tcpi_options |= TCPI_OPT_SACK;
3773 if (tp->rx_opt.wscale_ok) {
3774 info->tcpi_options |= TCPI_OPT_WSCALE;
3775 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3776 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3777 }
3778
3779 if (tp->ecn_flags & TCP_ECN_OK)
3780 info->tcpi_options |= TCPI_OPT_ECN;
3781 if (tp->ecn_flags & TCP_ECN_SEEN)
3782 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3783 if (tp->syn_data_acked)
3784 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3785
3786 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3787 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3788 info->tcpi_snd_mss = tp->mss_cache;
3789 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3790
3791 info->tcpi_unacked = tp->packets_out;
3792 info->tcpi_sacked = tp->sacked_out;
3793
3794 info->tcpi_lost = tp->lost_out;
3795 info->tcpi_retrans = tp->retrans_out;
3796
3797 now = tcp_jiffies32;
3798 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3799 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3800 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3801
3802 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3803 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3804 info->tcpi_rtt = tp->srtt_us >> 3;
3805 info->tcpi_rttvar = tp->mdev_us >> 2;
3806 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3807 info->tcpi_advmss = tp->advmss;
3808
3809 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3810 info->tcpi_rcv_space = tp->rcvq_space.space;
3811
3812 info->tcpi_total_retrans = tp->total_retrans;
3813
3814 info->tcpi_bytes_acked = tp->bytes_acked;
3815 info->tcpi_bytes_received = tp->bytes_received;
3816 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3817 tcp_get_info_chrono_stats(tp, info);
3818
3819 info->tcpi_segs_out = tp->segs_out;
3820 info->tcpi_segs_in = tp->segs_in;
3821
3822 info->tcpi_min_rtt = tcp_min_rtt(tp);
3823 info->tcpi_data_segs_in = tp->data_segs_in;
3824 info->tcpi_data_segs_out = tp->data_segs_out;
3825
3826 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3827 rate64 = tcp_compute_delivery_rate(tp);
3828 if (rate64)
3829 info->tcpi_delivery_rate = rate64;
3830 info->tcpi_delivered = tp->delivered;
3831 info->tcpi_delivered_ce = tp->delivered_ce;
3832 info->tcpi_bytes_sent = tp->bytes_sent;
3833 info->tcpi_bytes_retrans = tp->bytes_retrans;
3834 info->tcpi_dsack_dups = tp->dsack_dups;
3835 info->tcpi_reord_seen = tp->reord_seen;
3836 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3837 info->tcpi_snd_wnd = tp->snd_wnd;
3838 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3839 unlock_sock_fast(sk, slow);
3840 }
3841 EXPORT_SYMBOL_GPL(tcp_get_info);
3842
tcp_opt_stats_get_size(void)3843 static size_t tcp_opt_stats_get_size(void)
3844 {
3845 return
3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3847 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3848 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3849 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3850 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3851 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3853 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3854 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3855 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3856 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3857 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3858 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3859 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3860 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3862 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3863 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3864 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3865 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3866 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3867 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3868 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3869 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3870 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3871 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3872 0;
3873 }
3874
3875 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3876 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3877 {
3878 if (skb->protocol == htons(ETH_P_IP))
3879 return ip_hdr(skb)->ttl;
3880 else if (skb->protocol == htons(ETH_P_IPV6))
3881 return ipv6_hdr(skb)->hop_limit;
3882 else
3883 return 0;
3884 }
3885
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3886 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3887 const struct sk_buff *orig_skb,
3888 const struct sk_buff *ack_skb)
3889 {
3890 const struct tcp_sock *tp = tcp_sk(sk);
3891 struct sk_buff *stats;
3892 struct tcp_info info;
3893 unsigned long rate;
3894 u64 rate64;
3895
3896 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3897 if (!stats)
3898 return NULL;
3899
3900 tcp_get_info_chrono_stats(tp, &info);
3901 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3902 info.tcpi_busy_time, TCP_NLA_PAD);
3903 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3904 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3905 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3906 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3907 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3908 tp->data_segs_out, TCP_NLA_PAD);
3909 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3910 tp->total_retrans, TCP_NLA_PAD);
3911
3912 rate = READ_ONCE(sk->sk_pacing_rate);
3913 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3914 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3915
3916 rate64 = tcp_compute_delivery_rate(tp);
3917 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3918
3919 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3920 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3921 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3922
3923 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3924 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3925 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3926 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3927 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3928
3929 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3930 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3931
3932 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3933 TCP_NLA_PAD);
3934 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3935 TCP_NLA_PAD);
3936 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3937 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3938 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3939 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3940 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3941 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3942 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3943 TCP_NLA_PAD);
3944 if (ack_skb)
3945 nla_put_u8(stats, TCP_NLA_TTL,
3946 tcp_skb_ttl_or_hop_limit(ack_skb));
3947
3948 return stats;
3949 }
3950
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3951 static int do_tcp_getsockopt(struct sock *sk, int level,
3952 int optname, char __user *optval, int __user *optlen)
3953 {
3954 struct inet_connection_sock *icsk = inet_csk(sk);
3955 struct tcp_sock *tp = tcp_sk(sk);
3956 struct net *net = sock_net(sk);
3957 int val, len;
3958
3959 if (get_user(len, optlen))
3960 return -EFAULT;
3961
3962 len = min_t(unsigned int, len, sizeof(int));
3963
3964 if (len < 0)
3965 return -EINVAL;
3966
3967 switch (optname) {
3968 case TCP_MAXSEG:
3969 val = tp->mss_cache;
3970 if (tp->rx_opt.user_mss &&
3971 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3972 val = tp->rx_opt.user_mss;
3973 if (tp->repair)
3974 val = tp->rx_opt.mss_clamp;
3975 break;
3976 case TCP_NODELAY:
3977 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3978 break;
3979 case TCP_CORK:
3980 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3981 break;
3982 case TCP_KEEPIDLE:
3983 val = keepalive_time_when(tp) / HZ;
3984 break;
3985 case TCP_KEEPINTVL:
3986 val = keepalive_intvl_when(tp) / HZ;
3987 break;
3988 case TCP_KEEPCNT:
3989 val = keepalive_probes(tp);
3990 break;
3991 case TCP_SYNCNT:
3992 val = READ_ONCE(icsk->icsk_syn_retries) ? :
3993 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3994 break;
3995 case TCP_LINGER2:
3996 val = READ_ONCE(tp->linger2);
3997 if (val >= 0)
3998 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3999 break;
4000 case TCP_DEFER_ACCEPT:
4001 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4002 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4003 TCP_RTO_MAX / HZ);
4004 break;
4005 case TCP_WINDOW_CLAMP:
4006 val = tp->window_clamp;
4007 break;
4008 case TCP_INFO: {
4009 struct tcp_info info;
4010
4011 if (get_user(len, optlen))
4012 return -EFAULT;
4013
4014 tcp_get_info(sk, &info);
4015
4016 len = min_t(unsigned int, len, sizeof(info));
4017 if (put_user(len, optlen))
4018 return -EFAULT;
4019 if (copy_to_user(optval, &info, len))
4020 return -EFAULT;
4021 return 0;
4022 }
4023 case TCP_CC_INFO: {
4024 const struct tcp_congestion_ops *ca_ops;
4025 union tcp_cc_info info;
4026 size_t sz = 0;
4027 int attr;
4028
4029 if (get_user(len, optlen))
4030 return -EFAULT;
4031
4032 ca_ops = icsk->icsk_ca_ops;
4033 if (ca_ops && ca_ops->get_info)
4034 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4035
4036 len = min_t(unsigned int, len, sz);
4037 if (put_user(len, optlen))
4038 return -EFAULT;
4039 if (copy_to_user(optval, &info, len))
4040 return -EFAULT;
4041 return 0;
4042 }
4043 case TCP_QUICKACK:
4044 val = !inet_csk_in_pingpong_mode(sk);
4045 break;
4046
4047 case TCP_CONGESTION:
4048 if (get_user(len, optlen))
4049 return -EFAULT;
4050 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4051 if (put_user(len, optlen))
4052 return -EFAULT;
4053 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4054 return -EFAULT;
4055 return 0;
4056
4057 case TCP_ULP:
4058 if (get_user(len, optlen))
4059 return -EFAULT;
4060 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4061 if (!icsk->icsk_ulp_ops) {
4062 if (put_user(0, optlen))
4063 return -EFAULT;
4064 return 0;
4065 }
4066 if (put_user(len, optlen))
4067 return -EFAULT;
4068 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4069 return -EFAULT;
4070 return 0;
4071
4072 case TCP_FASTOPEN_KEY: {
4073 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4074 unsigned int key_len;
4075
4076 if (get_user(len, optlen))
4077 return -EFAULT;
4078
4079 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4080 TCP_FASTOPEN_KEY_LENGTH;
4081 len = min_t(unsigned int, len, key_len);
4082 if (put_user(len, optlen))
4083 return -EFAULT;
4084 if (copy_to_user(optval, key, len))
4085 return -EFAULT;
4086 return 0;
4087 }
4088 case TCP_THIN_LINEAR_TIMEOUTS:
4089 val = tp->thin_lto;
4090 break;
4091
4092 case TCP_THIN_DUPACK:
4093 val = 0;
4094 break;
4095
4096 case TCP_REPAIR:
4097 val = tp->repair;
4098 break;
4099
4100 case TCP_REPAIR_QUEUE:
4101 if (tp->repair)
4102 val = tp->repair_queue;
4103 else
4104 return -EINVAL;
4105 break;
4106
4107 case TCP_REPAIR_WINDOW: {
4108 struct tcp_repair_window opt;
4109
4110 if (get_user(len, optlen))
4111 return -EFAULT;
4112
4113 if (len != sizeof(opt))
4114 return -EINVAL;
4115
4116 if (!tp->repair)
4117 return -EPERM;
4118
4119 opt.snd_wl1 = tp->snd_wl1;
4120 opt.snd_wnd = tp->snd_wnd;
4121 opt.max_window = tp->max_window;
4122 opt.rcv_wnd = tp->rcv_wnd;
4123 opt.rcv_wup = tp->rcv_wup;
4124
4125 if (copy_to_user(optval, &opt, len))
4126 return -EFAULT;
4127 return 0;
4128 }
4129 case TCP_QUEUE_SEQ:
4130 if (tp->repair_queue == TCP_SEND_QUEUE)
4131 val = tp->write_seq;
4132 else if (tp->repair_queue == TCP_RECV_QUEUE)
4133 val = tp->rcv_nxt;
4134 else
4135 return -EINVAL;
4136 break;
4137
4138 case TCP_USER_TIMEOUT:
4139 val = READ_ONCE(icsk->icsk_user_timeout);
4140 break;
4141
4142 case TCP_FASTOPEN:
4143 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4144 break;
4145
4146 case TCP_FASTOPEN_CONNECT:
4147 val = tp->fastopen_connect;
4148 break;
4149
4150 case TCP_FASTOPEN_NO_COOKIE:
4151 val = tp->fastopen_no_cookie;
4152 break;
4153
4154 case TCP_TX_DELAY:
4155 val = READ_ONCE(tp->tcp_tx_delay);
4156 break;
4157
4158 case TCP_TIMESTAMP:
4159 val = tcp_time_stamp_raw() + tp->tsoffset;
4160 break;
4161 case TCP_NOTSENT_LOWAT:
4162 val = READ_ONCE(tp->notsent_lowat);
4163 break;
4164 case TCP_INQ:
4165 val = tp->recvmsg_inq;
4166 break;
4167 case TCP_SAVE_SYN:
4168 val = tp->save_syn;
4169 break;
4170 case TCP_SAVED_SYN: {
4171 if (get_user(len, optlen))
4172 return -EFAULT;
4173
4174 lock_sock(sk);
4175 if (tp->saved_syn) {
4176 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4177 if (put_user(tcp_saved_syn_len(tp->saved_syn),
4178 optlen)) {
4179 release_sock(sk);
4180 return -EFAULT;
4181 }
4182 release_sock(sk);
4183 return -EINVAL;
4184 }
4185 len = tcp_saved_syn_len(tp->saved_syn);
4186 if (put_user(len, optlen)) {
4187 release_sock(sk);
4188 return -EFAULT;
4189 }
4190 if (copy_to_user(optval, tp->saved_syn->data, len)) {
4191 release_sock(sk);
4192 return -EFAULT;
4193 }
4194 tcp_saved_syn_free(tp);
4195 release_sock(sk);
4196 } else {
4197 release_sock(sk);
4198 len = 0;
4199 if (put_user(len, optlen))
4200 return -EFAULT;
4201 }
4202 return 0;
4203 }
4204 #ifdef CONFIG_MMU
4205 case TCP_ZEROCOPY_RECEIVE: {
4206 struct scm_timestamping_internal tss;
4207 struct tcp_zerocopy_receive zc = {};
4208 int err;
4209
4210 if (get_user(len, optlen))
4211 return -EFAULT;
4212 if (len < 0 ||
4213 len < offsetofend(struct tcp_zerocopy_receive, length))
4214 return -EINVAL;
4215 if (unlikely(len > sizeof(zc))) {
4216 err = check_zeroed_user(optval + sizeof(zc),
4217 len - sizeof(zc));
4218 if (err < 1)
4219 return err == 0 ? -EINVAL : err;
4220 len = sizeof(zc);
4221 if (put_user(len, optlen))
4222 return -EFAULT;
4223 }
4224 if (copy_from_user(&zc, optval, len))
4225 return -EFAULT;
4226 if (zc.reserved)
4227 return -EINVAL;
4228 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4229 return -EINVAL;
4230 lock_sock(sk);
4231 err = tcp_zerocopy_receive(sk, &zc, &tss);
4232 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4233 &zc, &len, err);
4234 release_sock(sk);
4235 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4236 goto zerocopy_rcv_cmsg;
4237 switch (len) {
4238 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4239 goto zerocopy_rcv_cmsg;
4240 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4241 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4242 case offsetofend(struct tcp_zerocopy_receive, flags):
4243 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4244 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4245 case offsetofend(struct tcp_zerocopy_receive, err):
4246 goto zerocopy_rcv_sk_err;
4247 case offsetofend(struct tcp_zerocopy_receive, inq):
4248 goto zerocopy_rcv_inq;
4249 case offsetofend(struct tcp_zerocopy_receive, length):
4250 default:
4251 goto zerocopy_rcv_out;
4252 }
4253 zerocopy_rcv_cmsg:
4254 if (zc.msg_flags & TCP_CMSG_TS)
4255 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4256 else
4257 zc.msg_flags = 0;
4258 zerocopy_rcv_sk_err:
4259 if (!err)
4260 zc.err = sock_error(sk);
4261 zerocopy_rcv_inq:
4262 zc.inq = tcp_inq_hint(sk);
4263 zerocopy_rcv_out:
4264 if (!err && copy_to_user(optval, &zc, len))
4265 err = -EFAULT;
4266 return err;
4267 }
4268 #endif
4269 default:
4270 return -ENOPROTOOPT;
4271 }
4272
4273 if (put_user(len, optlen))
4274 return -EFAULT;
4275 if (copy_to_user(optval, &val, len))
4276 return -EFAULT;
4277 return 0;
4278 }
4279
tcp_bpf_bypass_getsockopt(int level,int optname)4280 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4281 {
4282 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4283 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4284 */
4285 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4286 return true;
4287
4288 return false;
4289 }
4290 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4291
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4292 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4293 int __user *optlen)
4294 {
4295 struct inet_connection_sock *icsk = inet_csk(sk);
4296
4297 if (level != SOL_TCP)
4298 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4299 optval, optlen);
4300 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4301 }
4302 EXPORT_SYMBOL(tcp_getsockopt);
4303
4304 #ifdef CONFIG_TCP_MD5SIG
4305 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4306 static DEFINE_MUTEX(tcp_md5sig_mutex);
4307 static bool tcp_md5sig_pool_populated = false;
4308
__tcp_alloc_md5sig_pool(void)4309 static void __tcp_alloc_md5sig_pool(void)
4310 {
4311 struct crypto_ahash *hash;
4312 int cpu;
4313
4314 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4315 if (IS_ERR(hash))
4316 return;
4317
4318 for_each_possible_cpu(cpu) {
4319 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4320 struct ahash_request *req;
4321
4322 if (!scratch) {
4323 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4324 sizeof(struct tcphdr),
4325 GFP_KERNEL,
4326 cpu_to_node(cpu));
4327 if (!scratch)
4328 return;
4329 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4330 }
4331 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4332 continue;
4333
4334 req = ahash_request_alloc(hash, GFP_KERNEL);
4335 if (!req)
4336 return;
4337
4338 ahash_request_set_callback(req, 0, NULL, NULL);
4339
4340 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4341 }
4342 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4343 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4344 */
4345 smp_wmb();
4346 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4347 * and tcp_get_md5sig_pool().
4348 */
4349 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4350 }
4351
tcp_alloc_md5sig_pool(void)4352 bool tcp_alloc_md5sig_pool(void)
4353 {
4354 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4355 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4356 mutex_lock(&tcp_md5sig_mutex);
4357
4358 if (!tcp_md5sig_pool_populated) {
4359 __tcp_alloc_md5sig_pool();
4360 if (tcp_md5sig_pool_populated)
4361 static_branch_inc(&tcp_md5_needed);
4362 }
4363
4364 mutex_unlock(&tcp_md5sig_mutex);
4365 }
4366 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4367 return READ_ONCE(tcp_md5sig_pool_populated);
4368 }
4369 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4370
4371
4372 /**
4373 * tcp_get_md5sig_pool - get md5sig_pool for this user
4374 *
4375 * We use percpu structure, so if we succeed, we exit with preemption
4376 * and BH disabled, to make sure another thread or softirq handling
4377 * wont try to get same context.
4378 */
tcp_get_md5sig_pool(void)4379 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4380 {
4381 local_bh_disable();
4382
4383 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4384 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4385 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4386 smp_rmb();
4387 return this_cpu_ptr(&tcp_md5sig_pool);
4388 }
4389 local_bh_enable();
4390 return NULL;
4391 }
4392 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4393
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4394 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4395 const struct sk_buff *skb, unsigned int header_len)
4396 {
4397 struct scatterlist sg;
4398 const struct tcphdr *tp = tcp_hdr(skb);
4399 struct ahash_request *req = hp->md5_req;
4400 unsigned int i;
4401 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4402 skb_headlen(skb) - header_len : 0;
4403 const struct skb_shared_info *shi = skb_shinfo(skb);
4404 struct sk_buff *frag_iter;
4405
4406 sg_init_table(&sg, 1);
4407
4408 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4409 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4410 if (crypto_ahash_update(req))
4411 return 1;
4412
4413 for (i = 0; i < shi->nr_frags; ++i) {
4414 const skb_frag_t *f = &shi->frags[i];
4415 unsigned int offset = skb_frag_off(f);
4416 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4417
4418 sg_set_page(&sg, page, skb_frag_size(f),
4419 offset_in_page(offset));
4420 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4421 if (crypto_ahash_update(req))
4422 return 1;
4423 }
4424
4425 skb_walk_frags(skb, frag_iter)
4426 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4427 return 1;
4428
4429 return 0;
4430 }
4431 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4432
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4433 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4434 {
4435 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4436 struct scatterlist sg;
4437
4438 sg_init_one(&sg, key->key, keylen);
4439 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4440
4441 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4442 return data_race(crypto_ahash_update(hp->md5_req));
4443 }
4444 EXPORT_SYMBOL(tcp_md5_hash_key);
4445
4446 #endif
4447
tcp_done(struct sock * sk)4448 void tcp_done(struct sock *sk)
4449 {
4450 struct request_sock *req;
4451
4452 /* We might be called with a new socket, after
4453 * inet_csk_prepare_forced_close() has been called
4454 * so we can not use lockdep_sock_is_held(sk)
4455 */
4456 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4457
4458 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4459 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4460
4461 tcp_set_state(sk, TCP_CLOSE);
4462 tcp_clear_xmit_timers(sk);
4463 if (req)
4464 reqsk_fastopen_remove(sk, req, false);
4465
4466 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4467
4468 if (!sock_flag(sk, SOCK_DEAD))
4469 sk->sk_state_change(sk);
4470 else
4471 inet_csk_destroy_sock(sk);
4472 }
4473 EXPORT_SYMBOL_GPL(tcp_done);
4474
tcp_abort(struct sock * sk,int err)4475 int tcp_abort(struct sock *sk, int err)
4476 {
4477 if (!sk_fullsock(sk)) {
4478 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4479 struct request_sock *req = inet_reqsk(sk);
4480
4481 local_bh_disable();
4482 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4483 local_bh_enable();
4484 return 0;
4485 }
4486 return -EOPNOTSUPP;
4487 }
4488
4489 /* Don't race with userspace socket closes such as tcp_close. */
4490 lock_sock(sk);
4491
4492 if (sk->sk_state == TCP_LISTEN) {
4493 tcp_set_state(sk, TCP_CLOSE);
4494 inet_csk_listen_stop(sk);
4495 }
4496
4497 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4498 local_bh_disable();
4499 bh_lock_sock(sk);
4500
4501 if (!sock_flag(sk, SOCK_DEAD)) {
4502 sk->sk_err = err;
4503 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4504 smp_wmb();
4505 sk_error_report(sk);
4506 if (tcp_need_reset(sk->sk_state))
4507 tcp_send_active_reset(sk, GFP_ATOMIC);
4508 tcp_done(sk);
4509 }
4510
4511 bh_unlock_sock(sk);
4512 local_bh_enable();
4513 tcp_write_queue_purge(sk);
4514 release_sock(sk);
4515 return 0;
4516 }
4517 EXPORT_SYMBOL_GPL(tcp_abort);
4518
4519 extern struct tcp_congestion_ops tcp_reno;
4520
4521 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4522 static int __init set_thash_entries(char *str)
4523 {
4524 ssize_t ret;
4525
4526 if (!str)
4527 return 0;
4528
4529 ret = kstrtoul(str, 0, &thash_entries);
4530 if (ret)
4531 return 0;
4532
4533 return 1;
4534 }
4535 __setup("thash_entries=", set_thash_entries);
4536
tcp_init_mem(void)4537 static void __init tcp_init_mem(void)
4538 {
4539 unsigned long limit = nr_free_buffer_pages() / 16;
4540
4541 limit = max(limit, 128UL);
4542 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4543 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4544 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4545 }
4546
tcp_init(void)4547 void __init tcp_init(void)
4548 {
4549 int max_rshare, max_wshare, cnt;
4550 unsigned long limit;
4551 unsigned int i;
4552
4553 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4554 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4555 sizeof_field(struct sk_buff, cb));
4556
4557 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4558
4559 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4560 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4561
4562 inet_hashinfo_init(&tcp_hashinfo);
4563 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4564 thash_entries, 21, /* one slot per 2 MB*/
4565 0, 64 * 1024);
4566 tcp_hashinfo.bind_bucket_cachep =
4567 kmem_cache_create("tcp_bind_bucket",
4568 sizeof(struct inet_bind_bucket), 0,
4569 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4570 SLAB_ACCOUNT,
4571 NULL);
4572
4573 /* Size and allocate the main established and bind bucket
4574 * hash tables.
4575 *
4576 * The methodology is similar to that of the buffer cache.
4577 */
4578 tcp_hashinfo.ehash =
4579 alloc_large_system_hash("TCP established",
4580 sizeof(struct inet_ehash_bucket),
4581 thash_entries,
4582 17, /* one slot per 128 KB of memory */
4583 0,
4584 NULL,
4585 &tcp_hashinfo.ehash_mask,
4586 0,
4587 thash_entries ? 0 : 512 * 1024);
4588 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4589 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4590
4591 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4592 panic("TCP: failed to alloc ehash_locks");
4593 tcp_hashinfo.bhash =
4594 alloc_large_system_hash("TCP bind",
4595 sizeof(struct inet_bind_hashbucket),
4596 tcp_hashinfo.ehash_mask + 1,
4597 17, /* one slot per 128 KB of memory */
4598 0,
4599 &tcp_hashinfo.bhash_size,
4600 NULL,
4601 0,
4602 64 * 1024);
4603 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4604 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4605 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4606 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4607 }
4608
4609
4610 cnt = tcp_hashinfo.ehash_mask + 1;
4611 sysctl_tcp_max_orphans = cnt / 2;
4612
4613 tcp_init_mem();
4614 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4615 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4616 max_wshare = min(4UL*1024*1024, limit);
4617 max_rshare = min(6UL*1024*1024, limit);
4618
4619 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4620 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4621 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4622
4623 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4624 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4625 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4626
4627 pr_info("Hash tables configured (established %u bind %u)\n",
4628 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4629
4630 tcp_v4_init();
4631 tcp_metrics_init();
4632 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4633 tcp_tasklet_init();
4634 mptcp_init();
4635 }
4636