1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2021 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 /*
37 * monitor mode reception
38 *
39 * This function cleans up the SKB, i.e. it removes all the stuff
40 * only useful for monitoring.
41 */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 unsigned int present_fcs_len,
44 unsigned int rtap_space)
45 {
46 struct ieee80211_hdr *hdr;
47 unsigned int hdrlen;
48 __le16 fc;
49
50 if (present_fcs_len)
51 __pskb_trim(skb, skb->len - present_fcs_len);
52 __pskb_pull(skb, rtap_space);
53
54 hdr = (void *)skb->data;
55 fc = hdr->frame_control;
56
57 /*
58 * Remove the HT-Control field (if present) on management
59 * frames after we've sent the frame to monitoring. We
60 * (currently) don't need it, and don't properly parse
61 * frames with it present, due to the assumption of a
62 * fixed management header length.
63 */
64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 return skb;
66
67 hdrlen = ieee80211_hdrlen(fc);
68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69
70 if (!pskb_may_pull(skb, hdrlen)) {
71 dev_kfree_skb(skb);
72 return NULL;
73 }
74
75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 hdrlen - IEEE80211_HT_CTL_LEN);
77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78
79 return skb;
80 }
81
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 unsigned int rtap_space)
84 {
85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 struct ieee80211_hdr *hdr;
87
88 hdr = (void *)(skb->data + rtap_space);
89
90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 RX_FLAG_FAILED_PLCP_CRC |
92 RX_FLAG_ONLY_MONITOR |
93 RX_FLAG_NO_PSDU))
94 return true;
95
96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 return true;
98
99 if (ieee80211_is_ctl(hdr->frame_control) &&
100 !ieee80211_is_pspoll(hdr->frame_control) &&
101 !ieee80211_is_back_req(hdr->frame_control))
102 return true;
103
104 return false;
105 }
106
107 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 struct ieee80211_rx_status *status,
110 struct sk_buff *skb)
111 {
112 int len;
113
114 /* always present fields */
115 len = sizeof(struct ieee80211_radiotap_header) + 8;
116
117 /* allocate extra bitmaps */
118 if (status->chains)
119 len += 4 * hweight8(status->chains);
120 /* vendor presence bitmap */
121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 len += 4;
123
124 if (ieee80211_have_rx_timestamp(status)) {
125 len = ALIGN(len, 8);
126 len += 8;
127 }
128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 len += 1;
130
131 /* antenna field, if we don't have per-chain info */
132 if (!status->chains)
133 len += 1;
134
135 /* padding for RX_FLAGS if necessary */
136 len = ALIGN(len, 2);
137
138 if (status->encoding == RX_ENC_HT) /* HT info */
139 len += 3;
140
141 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 len = ALIGN(len, 4);
143 len += 8;
144 }
145
146 if (status->encoding == RX_ENC_VHT) {
147 len = ALIGN(len, 2);
148 len += 12;
149 }
150
151 if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 len = ALIGN(len, 8);
153 len += 12;
154 }
155
156 if (status->encoding == RX_ENC_HE &&
157 status->flag & RX_FLAG_RADIOTAP_HE) {
158 len = ALIGN(len, 2);
159 len += 12;
160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 }
162
163 if (status->encoding == RX_ENC_HE &&
164 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 len = ALIGN(len, 2);
166 len += 12;
167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 }
169
170 if (status->flag & RX_FLAG_NO_PSDU)
171 len += 1;
172
173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 len = ALIGN(len, 2);
175 len += 4;
176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 }
178
179 if (status->chains) {
180 /* antenna and antenna signal fields */
181 len += 2 * hweight8(status->chains);
182 }
183
184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 struct ieee80211_vendor_radiotap *rtap;
186 int vendor_data_offset = 0;
187
188 /*
189 * The position to look at depends on the existence (or non-
190 * existence) of other elements, so take that into account...
191 */
192 if (status->flag & RX_FLAG_RADIOTAP_HE)
193 vendor_data_offset +=
194 sizeof(struct ieee80211_radiotap_he);
195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 vendor_data_offset +=
197 sizeof(struct ieee80211_radiotap_he_mu);
198 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 vendor_data_offset +=
200 sizeof(struct ieee80211_radiotap_lsig);
201
202 rtap = (void *)&skb->data[vendor_data_offset];
203
204 /* alignment for fixed 6-byte vendor data header */
205 len = ALIGN(len, 2);
206 /* vendor data header */
207 len += 6;
208 if (WARN_ON(rtap->align == 0))
209 rtap->align = 1;
210 len = ALIGN(len, rtap->align);
211 len += rtap->len + rtap->pad;
212 }
213
214 return len;
215 }
216
__ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 struct sta_info *sta,
219 struct sk_buff *skb)
220 {
221 skb_queue_tail(&sdata->skb_queue, skb);
222 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
223 if (sta)
224 sta->rx_stats.packets++;
225 }
226
ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
228 struct sta_info *sta,
229 struct sk_buff *skb)
230 {
231 skb->protocol = 0;
232 __ieee80211_queue_skb_to_iface(sdata, sta, skb);
233 }
234
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
236 struct sk_buff *skb,
237 int rtap_space)
238 {
239 struct {
240 struct ieee80211_hdr_3addr hdr;
241 u8 category;
242 u8 action_code;
243 } __packed __aligned(2) action;
244
245 if (!sdata)
246 return;
247
248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
249
250 if (skb->len < rtap_space + sizeof(action) +
251 VHT_MUMIMO_GROUPS_DATA_LEN)
252 return;
253
254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
255 return;
256
257 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
258
259 if (!ieee80211_is_action(action.hdr.frame_control))
260 return;
261
262 if (action.category != WLAN_CATEGORY_VHT)
263 return;
264
265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
266 return;
267
268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
269 return;
270
271 skb = skb_copy(skb, GFP_ATOMIC);
272 if (!skb)
273 return;
274
275 ieee80211_queue_skb_to_iface(sdata, NULL, skb);
276 }
277
278 /*
279 * ieee80211_add_rx_radiotap_header - add radiotap header
280 *
281 * add a radiotap header containing all the fields which the hardware provided.
282 */
283 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
285 struct sk_buff *skb,
286 struct ieee80211_rate *rate,
287 int rtap_len, bool has_fcs)
288 {
289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
290 struct ieee80211_radiotap_header *rthdr;
291 unsigned char *pos;
292 __le32 *it_present;
293 u32 it_present_val;
294 u16 rx_flags = 0;
295 u16 channel_flags = 0;
296 int mpdulen, chain;
297 unsigned long chains = status->chains;
298 struct ieee80211_vendor_radiotap rtap = {};
299 struct ieee80211_radiotap_he he = {};
300 struct ieee80211_radiotap_he_mu he_mu = {};
301 struct ieee80211_radiotap_lsig lsig = {};
302
303 if (status->flag & RX_FLAG_RADIOTAP_HE) {
304 he = *(struct ieee80211_radiotap_he *)skb->data;
305 skb_pull(skb, sizeof(he));
306 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
307 }
308
309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
311 skb_pull(skb, sizeof(he_mu));
312 }
313
314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
316 skb_pull(skb, sizeof(lsig));
317 }
318
319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
321 /* rtap.len and rtap.pad are undone immediately */
322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
323 }
324
325 mpdulen = skb->len;
326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
327 mpdulen += FCS_LEN;
328
329 rthdr = skb_push(skb, rtap_len);
330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
331 it_present = &rthdr->it_present;
332
333 /* radiotap header, set always present flags */
334 rthdr->it_len = cpu_to_le16(rtap_len);
335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
336 BIT(IEEE80211_RADIOTAP_CHANNEL) |
337 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
338
339 if (!status->chains)
340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
341
342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
343 it_present_val |=
344 BIT(IEEE80211_RADIOTAP_EXT) |
345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
346 put_unaligned_le32(it_present_val, it_present);
347 it_present++;
348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
350 }
351
352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
354 BIT(IEEE80211_RADIOTAP_EXT);
355 put_unaligned_le32(it_present_val, it_present);
356 it_present++;
357 it_present_val = rtap.present;
358 }
359
360 put_unaligned_le32(it_present_val, it_present);
361
362 /* This references through an offset into it_optional[] rather
363 * than via it_present otherwise later uses of pos will cause
364 * the compiler to think we have walked past the end of the
365 * struct member.
366 */
367 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
368
369 /* the order of the following fields is important */
370
371 /* IEEE80211_RADIOTAP_TSFT */
372 if (ieee80211_have_rx_timestamp(status)) {
373 /* padding */
374 while ((pos - (u8 *)rthdr) & 7)
375 *pos++ = 0;
376 put_unaligned_le64(
377 ieee80211_calculate_rx_timestamp(local, status,
378 mpdulen, 0),
379 pos);
380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
381 pos += 8;
382 }
383
384 /* IEEE80211_RADIOTAP_FLAGS */
385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
386 *pos |= IEEE80211_RADIOTAP_F_FCS;
387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
388 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
391 pos++;
392
393 /* IEEE80211_RADIOTAP_RATE */
394 if (!rate || status->encoding != RX_ENC_LEGACY) {
395 /*
396 * Without rate information don't add it. If we have,
397 * MCS information is a separate field in radiotap,
398 * added below. The byte here is needed as padding
399 * for the channel though, so initialise it to 0.
400 */
401 *pos = 0;
402 } else {
403 int shift = 0;
404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
405 if (status->bw == RATE_INFO_BW_10)
406 shift = 1;
407 else if (status->bw == RATE_INFO_BW_5)
408 shift = 2;
409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
410 }
411 pos++;
412
413 /* IEEE80211_RADIOTAP_CHANNEL */
414 /* TODO: frequency offset in KHz */
415 put_unaligned_le16(status->freq, pos);
416 pos += 2;
417 if (status->bw == RATE_INFO_BW_10)
418 channel_flags |= IEEE80211_CHAN_HALF;
419 else if (status->bw == RATE_INFO_BW_5)
420 channel_flags |= IEEE80211_CHAN_QUARTER;
421
422 if (status->band == NL80211_BAND_5GHZ ||
423 status->band == NL80211_BAND_6GHZ)
424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
425 else if (status->encoding != RX_ENC_LEGACY)
426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
429 else if (rate)
430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
431 else
432 channel_flags |= IEEE80211_CHAN_2GHZ;
433 put_unaligned_le16(channel_flags, pos);
434 pos += 2;
435
436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
439 *pos = status->signal;
440 rthdr->it_present |=
441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
442 pos++;
443 }
444
445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446
447 if (!status->chains) {
448 /* IEEE80211_RADIOTAP_ANTENNA */
449 *pos = status->antenna;
450 pos++;
451 }
452
453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454
455 /* IEEE80211_RADIOTAP_RX_FLAGS */
456 /* ensure 2 byte alignment for the 2 byte field as required */
457 if ((pos - (u8 *)rthdr) & 1)
458 *pos++ = 0;
459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
461 put_unaligned_le16(rx_flags, pos);
462 pos += 2;
463
464 if (status->encoding == RX_ENC_HT) {
465 unsigned int stbc;
466
467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
468 *pos++ = local->hw.radiotap_mcs_details;
469 *pos = 0;
470 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
471 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
472 if (status->bw == RATE_INFO_BW_40)
473 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
474 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
475 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
476 if (status->enc_flags & RX_ENC_FLAG_LDPC)
477 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
478 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
479 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
480 pos++;
481 *pos++ = status->rate_idx;
482 }
483
484 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
485 u16 flags = 0;
486
487 /* ensure 4 byte alignment */
488 while ((pos - (u8 *)rthdr) & 3)
489 pos++;
490 rthdr->it_present |=
491 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
492 put_unaligned_le32(status->ampdu_reference, pos);
493 pos += 4;
494 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
495 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
496 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
497 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
498 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
499 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
500 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
501 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
502 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
503 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
504 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
505 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
506 put_unaligned_le16(flags, pos);
507 pos += 2;
508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
509 *pos++ = status->ampdu_delimiter_crc;
510 else
511 *pos++ = 0;
512 *pos++ = 0;
513 }
514
515 if (status->encoding == RX_ENC_VHT) {
516 u16 known = local->hw.radiotap_vht_details;
517
518 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
519 put_unaligned_le16(known, pos);
520 pos += 2;
521 /* flags */
522 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
523 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
524 /* in VHT, STBC is binary */
525 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
526 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
527 if (status->enc_flags & RX_ENC_FLAG_BF)
528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
529 pos++;
530 /* bandwidth */
531 switch (status->bw) {
532 case RATE_INFO_BW_80:
533 *pos++ = 4;
534 break;
535 case RATE_INFO_BW_160:
536 *pos++ = 11;
537 break;
538 case RATE_INFO_BW_40:
539 *pos++ = 1;
540 break;
541 default:
542 *pos++ = 0;
543 }
544 /* MCS/NSS */
545 *pos = (status->rate_idx << 4) | status->nss;
546 pos += 4;
547 /* coding field */
548 if (status->enc_flags & RX_ENC_FLAG_LDPC)
549 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
550 pos++;
551 /* group ID */
552 pos++;
553 /* partial_aid */
554 pos += 2;
555 }
556
557 if (local->hw.radiotap_timestamp.units_pos >= 0) {
558 u16 accuracy = 0;
559 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
560
561 rthdr->it_present |=
562 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
563
564 /* ensure 8 byte alignment */
565 while ((pos - (u8 *)rthdr) & 7)
566 pos++;
567
568 put_unaligned_le64(status->device_timestamp, pos);
569 pos += sizeof(u64);
570
571 if (local->hw.radiotap_timestamp.accuracy >= 0) {
572 accuracy = local->hw.radiotap_timestamp.accuracy;
573 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
574 }
575 put_unaligned_le16(accuracy, pos);
576 pos += sizeof(u16);
577
578 *pos++ = local->hw.radiotap_timestamp.units_pos;
579 *pos++ = flags;
580 }
581
582 if (status->encoding == RX_ENC_HE &&
583 status->flag & RX_FLAG_RADIOTAP_HE) {
584 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
585
586 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
587 he.data6 |= HE_PREP(DATA6_NSTS,
588 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
589 status->enc_flags));
590 he.data3 |= HE_PREP(DATA3_STBC, 1);
591 } else {
592 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
593 }
594
595 #define CHECK_GI(s) \
596 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
597 (int)NL80211_RATE_INFO_HE_GI_##s)
598
599 CHECK_GI(0_8);
600 CHECK_GI(1_6);
601 CHECK_GI(3_2);
602
603 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
604 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
605 he.data3 |= HE_PREP(DATA3_CODING,
606 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
607
608 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
609
610 switch (status->bw) {
611 case RATE_INFO_BW_20:
612 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
613 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
614 break;
615 case RATE_INFO_BW_40:
616 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
617 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
618 break;
619 case RATE_INFO_BW_80:
620 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
621 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
622 break;
623 case RATE_INFO_BW_160:
624 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
625 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
626 break;
627 case RATE_INFO_BW_HE_RU:
628 #define CHECK_RU_ALLOC(s) \
629 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
630 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
631
632 CHECK_RU_ALLOC(26);
633 CHECK_RU_ALLOC(52);
634 CHECK_RU_ALLOC(106);
635 CHECK_RU_ALLOC(242);
636 CHECK_RU_ALLOC(484);
637 CHECK_RU_ALLOC(996);
638 CHECK_RU_ALLOC(2x996);
639
640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
641 status->he_ru + 4);
642 break;
643 default:
644 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
645 }
646
647 /* ensure 2 byte alignment */
648 while ((pos - (u8 *)rthdr) & 1)
649 pos++;
650 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
651 memcpy(pos, &he, sizeof(he));
652 pos += sizeof(he);
653 }
654
655 if (status->encoding == RX_ENC_HE &&
656 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
657 /* ensure 2 byte alignment */
658 while ((pos - (u8 *)rthdr) & 1)
659 pos++;
660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
661 memcpy(pos, &he_mu, sizeof(he_mu));
662 pos += sizeof(he_mu);
663 }
664
665 if (status->flag & RX_FLAG_NO_PSDU) {
666 rthdr->it_present |=
667 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
668 *pos++ = status->zero_length_psdu_type;
669 }
670
671 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
672 /* ensure 2 byte alignment */
673 while ((pos - (u8 *)rthdr) & 1)
674 pos++;
675 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
676 memcpy(pos, &lsig, sizeof(lsig));
677 pos += sizeof(lsig);
678 }
679
680 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
681 *pos++ = status->chain_signal[chain];
682 *pos++ = chain;
683 }
684
685 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
686 /* ensure 2 byte alignment for the vendor field as required */
687 if ((pos - (u8 *)rthdr) & 1)
688 *pos++ = 0;
689 *pos++ = rtap.oui[0];
690 *pos++ = rtap.oui[1];
691 *pos++ = rtap.oui[2];
692 *pos++ = rtap.subns;
693 put_unaligned_le16(rtap.len, pos);
694 pos += 2;
695 /* align the actual payload as requested */
696 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
697 *pos++ = 0;
698 /* data (and possible padding) already follows */
699 }
700 }
701
702 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)703 ieee80211_make_monitor_skb(struct ieee80211_local *local,
704 struct sk_buff **origskb,
705 struct ieee80211_rate *rate,
706 int rtap_space, bool use_origskb)
707 {
708 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
709 int rt_hdrlen, needed_headroom;
710 struct sk_buff *skb;
711
712 /* room for the radiotap header based on driver features */
713 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
714 needed_headroom = rt_hdrlen - rtap_space;
715
716 if (use_origskb) {
717 /* only need to expand headroom if necessary */
718 skb = *origskb;
719 *origskb = NULL;
720
721 /*
722 * This shouldn't trigger often because most devices have an
723 * RX header they pull before we get here, and that should
724 * be big enough for our radiotap information. We should
725 * probably export the length to drivers so that we can have
726 * them allocate enough headroom to start with.
727 */
728 if (skb_headroom(skb) < needed_headroom &&
729 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
730 dev_kfree_skb(skb);
731 return NULL;
732 }
733 } else {
734 /*
735 * Need to make a copy and possibly remove radiotap header
736 * and FCS from the original.
737 */
738 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
739 0, GFP_ATOMIC);
740
741 if (!skb)
742 return NULL;
743 }
744
745 /* prepend radiotap information */
746 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
747
748 skb_reset_mac_header(skb);
749 skb->ip_summed = CHECKSUM_UNNECESSARY;
750 skb->pkt_type = PACKET_OTHERHOST;
751 skb->protocol = htons(ETH_P_802_2);
752
753 return skb;
754 }
755
756 /*
757 * This function copies a received frame to all monitor interfaces and
758 * returns a cleaned-up SKB that no longer includes the FCS nor the
759 * radiotap header the driver might have added.
760 */
761 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)762 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
763 struct ieee80211_rate *rate)
764 {
765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
766 struct ieee80211_sub_if_data *sdata;
767 struct sk_buff *monskb = NULL;
768 int present_fcs_len = 0;
769 unsigned int rtap_space = 0;
770 struct ieee80211_sub_if_data *monitor_sdata =
771 rcu_dereference(local->monitor_sdata);
772 bool only_monitor = false;
773 unsigned int min_head_len;
774
775 if (status->flag & RX_FLAG_RADIOTAP_HE)
776 rtap_space += sizeof(struct ieee80211_radiotap_he);
777
778 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
779 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
780
781 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
782 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
783
784 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
785 struct ieee80211_vendor_radiotap *rtap =
786 (void *)(origskb->data + rtap_space);
787
788 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
789 }
790
791 min_head_len = rtap_space;
792
793 /*
794 * First, we may need to make a copy of the skb because
795 * (1) we need to modify it for radiotap (if not present), and
796 * (2) the other RX handlers will modify the skb we got.
797 *
798 * We don't need to, of course, if we aren't going to return
799 * the SKB because it has a bad FCS/PLCP checksum.
800 */
801
802 if (!(status->flag & RX_FLAG_NO_PSDU)) {
803 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
804 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
805 /* driver bug */
806 WARN_ON(1);
807 dev_kfree_skb(origskb);
808 return NULL;
809 }
810 present_fcs_len = FCS_LEN;
811 }
812
813 /* also consider the hdr->frame_control */
814 min_head_len += 2;
815 }
816
817 /* ensure that the expected data elements are in skb head */
818 if (!pskb_may_pull(origskb, min_head_len)) {
819 dev_kfree_skb(origskb);
820 return NULL;
821 }
822
823 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
824
825 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
826 if (only_monitor) {
827 dev_kfree_skb(origskb);
828 return NULL;
829 }
830
831 return ieee80211_clean_skb(origskb, present_fcs_len,
832 rtap_space);
833 }
834
835 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
836
837 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
838 bool last_monitor = list_is_last(&sdata->u.mntr.list,
839 &local->mon_list);
840
841 if (!monskb)
842 monskb = ieee80211_make_monitor_skb(local, &origskb,
843 rate, rtap_space,
844 only_monitor &&
845 last_monitor);
846
847 if (monskb) {
848 struct sk_buff *skb;
849
850 if (last_monitor) {
851 skb = monskb;
852 monskb = NULL;
853 } else {
854 skb = skb_clone(monskb, GFP_ATOMIC);
855 }
856
857 if (skb) {
858 skb->dev = sdata->dev;
859 dev_sw_netstats_rx_add(skb->dev, skb->len);
860 netif_receive_skb(skb);
861 }
862 }
863
864 if (last_monitor)
865 break;
866 }
867
868 /* this happens if last_monitor was erroneously false */
869 dev_kfree_skb(monskb);
870
871 /* ditto */
872 if (!origskb)
873 return NULL;
874
875 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
876 }
877
ieee80211_parse_qos(struct ieee80211_rx_data * rx)878 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
879 {
880 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
881 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
882 int tid, seqno_idx, security_idx;
883
884 /* does the frame have a qos control field? */
885 if (ieee80211_is_data_qos(hdr->frame_control)) {
886 u8 *qc = ieee80211_get_qos_ctl(hdr);
887 /* frame has qos control */
888 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
889 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
890 status->rx_flags |= IEEE80211_RX_AMSDU;
891
892 seqno_idx = tid;
893 security_idx = tid;
894 } else {
895 /*
896 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
897 *
898 * Sequence numbers for management frames, QoS data
899 * frames with a broadcast/multicast address in the
900 * Address 1 field, and all non-QoS data frames sent
901 * by QoS STAs are assigned using an additional single
902 * modulo-4096 counter, [...]
903 *
904 * We also use that counter for non-QoS STAs.
905 */
906 seqno_idx = IEEE80211_NUM_TIDS;
907 security_idx = 0;
908 if (ieee80211_is_mgmt(hdr->frame_control))
909 security_idx = IEEE80211_NUM_TIDS;
910 tid = 0;
911 }
912
913 rx->seqno_idx = seqno_idx;
914 rx->security_idx = security_idx;
915 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
916 * For now, set skb->priority to 0 for other cases. */
917 rx->skb->priority = (tid > 7) ? 0 : tid;
918 }
919
920 /**
921 * DOC: Packet alignment
922 *
923 * Drivers always need to pass packets that are aligned to two-byte boundaries
924 * to the stack.
925 *
926 * Additionally, should, if possible, align the payload data in a way that
927 * guarantees that the contained IP header is aligned to a four-byte
928 * boundary. In the case of regular frames, this simply means aligning the
929 * payload to a four-byte boundary (because either the IP header is directly
930 * contained, or IV/RFC1042 headers that have a length divisible by four are
931 * in front of it). If the payload data is not properly aligned and the
932 * architecture doesn't support efficient unaligned operations, mac80211
933 * will align the data.
934 *
935 * With A-MSDU frames, however, the payload data address must yield two modulo
936 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
937 * push the IP header further back to a multiple of four again. Thankfully, the
938 * specs were sane enough this time around to require padding each A-MSDU
939 * subframe to a length that is a multiple of four.
940 *
941 * Padding like Atheros hardware adds which is between the 802.11 header and
942 * the payload is not supported, the driver is required to move the 802.11
943 * header to be directly in front of the payload in that case.
944 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)945 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
946 {
947 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
948 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
949 #endif
950 }
951
952
953 /* rx handlers */
954
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)955 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
956 {
957 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
958
959 if (is_multicast_ether_addr(hdr->addr1))
960 return 0;
961
962 return ieee80211_is_robust_mgmt_frame(skb);
963 }
964
965
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)966 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
967 {
968 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
969
970 if (!is_multicast_ether_addr(hdr->addr1))
971 return 0;
972
973 return ieee80211_is_robust_mgmt_frame(skb);
974 }
975
976
977 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)978 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
979 {
980 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
981 struct ieee80211_mmie *mmie;
982 struct ieee80211_mmie_16 *mmie16;
983
984 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
985 return -1;
986
987 if (!ieee80211_is_robust_mgmt_frame(skb) &&
988 !ieee80211_is_beacon(hdr->frame_control))
989 return -1; /* not a robust management frame */
990
991 mmie = (struct ieee80211_mmie *)
992 (skb->data + skb->len - sizeof(*mmie));
993 if (mmie->element_id == WLAN_EID_MMIE &&
994 mmie->length == sizeof(*mmie) - 2)
995 return le16_to_cpu(mmie->key_id);
996
997 mmie16 = (struct ieee80211_mmie_16 *)
998 (skb->data + skb->len - sizeof(*mmie16));
999 if (skb->len >= 24 + sizeof(*mmie16) &&
1000 mmie16->element_id == WLAN_EID_MMIE &&
1001 mmie16->length == sizeof(*mmie16) - 2)
1002 return le16_to_cpu(mmie16->key_id);
1003
1004 return -1;
1005 }
1006
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)1007 static int ieee80211_get_keyid(struct sk_buff *skb,
1008 const struct ieee80211_cipher_scheme *cs)
1009 {
1010 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1011 __le16 fc;
1012 int hdrlen;
1013 int minlen;
1014 u8 key_idx_off;
1015 u8 key_idx_shift;
1016 u8 keyid;
1017
1018 fc = hdr->frame_control;
1019 hdrlen = ieee80211_hdrlen(fc);
1020
1021 if (cs) {
1022 minlen = hdrlen + cs->hdr_len;
1023 key_idx_off = hdrlen + cs->key_idx_off;
1024 key_idx_shift = cs->key_idx_shift;
1025 } else {
1026 /* WEP, TKIP, CCMP and GCMP */
1027 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1028 key_idx_off = hdrlen + 3;
1029 key_idx_shift = 6;
1030 }
1031
1032 if (unlikely(skb->len < minlen))
1033 return -EINVAL;
1034
1035 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1036
1037 if (cs)
1038 keyid &= cs->key_idx_mask;
1039 keyid >>= key_idx_shift;
1040
1041 /* cs could use more than the usual two bits for the keyid */
1042 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1043 return -EINVAL;
1044
1045 return keyid;
1046 }
1047
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1048 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1049 {
1050 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1051 char *dev_addr = rx->sdata->vif.addr;
1052
1053 if (ieee80211_is_data(hdr->frame_control)) {
1054 if (is_multicast_ether_addr(hdr->addr1)) {
1055 if (ieee80211_has_tods(hdr->frame_control) ||
1056 !ieee80211_has_fromds(hdr->frame_control))
1057 return RX_DROP_MONITOR;
1058 if (ether_addr_equal(hdr->addr3, dev_addr))
1059 return RX_DROP_MONITOR;
1060 } else {
1061 if (!ieee80211_has_a4(hdr->frame_control))
1062 return RX_DROP_MONITOR;
1063 if (ether_addr_equal(hdr->addr4, dev_addr))
1064 return RX_DROP_MONITOR;
1065 }
1066 }
1067
1068 /* If there is not an established peer link and this is not a peer link
1069 * establisment frame, beacon or probe, drop the frame.
1070 */
1071
1072 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1073 struct ieee80211_mgmt *mgmt;
1074
1075 if (!ieee80211_is_mgmt(hdr->frame_control))
1076 return RX_DROP_MONITOR;
1077
1078 if (ieee80211_is_action(hdr->frame_control)) {
1079 u8 category;
1080
1081 /* make sure category field is present */
1082 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1083 return RX_DROP_MONITOR;
1084
1085 mgmt = (struct ieee80211_mgmt *)hdr;
1086 category = mgmt->u.action.category;
1087 if (category != WLAN_CATEGORY_MESH_ACTION &&
1088 category != WLAN_CATEGORY_SELF_PROTECTED)
1089 return RX_DROP_MONITOR;
1090 return RX_CONTINUE;
1091 }
1092
1093 if (ieee80211_is_probe_req(hdr->frame_control) ||
1094 ieee80211_is_probe_resp(hdr->frame_control) ||
1095 ieee80211_is_beacon(hdr->frame_control) ||
1096 ieee80211_is_auth(hdr->frame_control))
1097 return RX_CONTINUE;
1098
1099 return RX_DROP_MONITOR;
1100 }
1101
1102 return RX_CONTINUE;
1103 }
1104
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1105 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1106 int index)
1107 {
1108 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1109 struct sk_buff *tail = skb_peek_tail(frames);
1110 struct ieee80211_rx_status *status;
1111
1112 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1113 return true;
1114
1115 if (!tail)
1116 return false;
1117
1118 status = IEEE80211_SKB_RXCB(tail);
1119 if (status->flag & RX_FLAG_AMSDU_MORE)
1120 return false;
1121
1122 return true;
1123 }
1124
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1125 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1126 struct tid_ampdu_rx *tid_agg_rx,
1127 int index,
1128 struct sk_buff_head *frames)
1129 {
1130 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1131 struct sk_buff *skb;
1132 struct ieee80211_rx_status *status;
1133
1134 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1135
1136 if (skb_queue_empty(skb_list))
1137 goto no_frame;
1138
1139 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1140 __skb_queue_purge(skb_list);
1141 goto no_frame;
1142 }
1143
1144 /* release frames from the reorder ring buffer */
1145 tid_agg_rx->stored_mpdu_num--;
1146 while ((skb = __skb_dequeue(skb_list))) {
1147 status = IEEE80211_SKB_RXCB(skb);
1148 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1149 __skb_queue_tail(frames, skb);
1150 }
1151
1152 no_frame:
1153 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1154 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1155 }
1156
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1157 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1158 struct tid_ampdu_rx *tid_agg_rx,
1159 u16 head_seq_num,
1160 struct sk_buff_head *frames)
1161 {
1162 int index;
1163
1164 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1165
1166 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1167 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1168 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1169 frames);
1170 }
1171 }
1172
1173 /*
1174 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1175 * the skb was added to the buffer longer than this time ago, the earlier
1176 * frames that have not yet been received are assumed to be lost and the skb
1177 * can be released for processing. This may also release other skb's from the
1178 * reorder buffer if there are no additional gaps between the frames.
1179 *
1180 * Callers must hold tid_agg_rx->reorder_lock.
1181 */
1182 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1183
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1184 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1185 struct tid_ampdu_rx *tid_agg_rx,
1186 struct sk_buff_head *frames)
1187 {
1188 int index, i, j;
1189
1190 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1191
1192 /* release the buffer until next missing frame */
1193 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1194 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1195 tid_agg_rx->stored_mpdu_num) {
1196 /*
1197 * No buffers ready to be released, but check whether any
1198 * frames in the reorder buffer have timed out.
1199 */
1200 int skipped = 1;
1201 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1202 j = (j + 1) % tid_agg_rx->buf_size) {
1203 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1204 skipped++;
1205 continue;
1206 }
1207 if (skipped &&
1208 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1209 HT_RX_REORDER_BUF_TIMEOUT))
1210 goto set_release_timer;
1211
1212 /* don't leave incomplete A-MSDUs around */
1213 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1214 i = (i + 1) % tid_agg_rx->buf_size)
1215 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1216
1217 ht_dbg_ratelimited(sdata,
1218 "release an RX reorder frame due to timeout on earlier frames\n");
1219 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1220 frames);
1221
1222 /*
1223 * Increment the head seq# also for the skipped slots.
1224 */
1225 tid_agg_rx->head_seq_num =
1226 (tid_agg_rx->head_seq_num +
1227 skipped) & IEEE80211_SN_MASK;
1228 skipped = 0;
1229 }
1230 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1231 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1232 frames);
1233 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1234 }
1235
1236 if (tid_agg_rx->stored_mpdu_num) {
1237 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1238
1239 for (; j != (index - 1) % tid_agg_rx->buf_size;
1240 j = (j + 1) % tid_agg_rx->buf_size) {
1241 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1242 break;
1243 }
1244
1245 set_release_timer:
1246
1247 if (!tid_agg_rx->removed)
1248 mod_timer(&tid_agg_rx->reorder_timer,
1249 tid_agg_rx->reorder_time[j] + 1 +
1250 HT_RX_REORDER_BUF_TIMEOUT);
1251 } else {
1252 del_timer(&tid_agg_rx->reorder_timer);
1253 }
1254 }
1255
1256 /*
1257 * As this function belongs to the RX path it must be under
1258 * rcu_read_lock protection. It returns false if the frame
1259 * can be processed immediately, true if it was consumed.
1260 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1261 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1262 struct tid_ampdu_rx *tid_agg_rx,
1263 struct sk_buff *skb,
1264 struct sk_buff_head *frames)
1265 {
1266 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1267 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1268 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1269 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1270 u16 head_seq_num, buf_size;
1271 int index;
1272 bool ret = true;
1273
1274 spin_lock(&tid_agg_rx->reorder_lock);
1275
1276 /*
1277 * Offloaded BA sessions have no known starting sequence number so pick
1278 * one from first Rxed frame for this tid after BA was started.
1279 */
1280 if (unlikely(tid_agg_rx->auto_seq)) {
1281 tid_agg_rx->auto_seq = false;
1282 tid_agg_rx->ssn = mpdu_seq_num;
1283 tid_agg_rx->head_seq_num = mpdu_seq_num;
1284 }
1285
1286 buf_size = tid_agg_rx->buf_size;
1287 head_seq_num = tid_agg_rx->head_seq_num;
1288
1289 /*
1290 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1291 * be reordered.
1292 */
1293 if (unlikely(!tid_agg_rx->started)) {
1294 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1295 ret = false;
1296 goto out;
1297 }
1298 tid_agg_rx->started = true;
1299 }
1300
1301 /* frame with out of date sequence number */
1302 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1303 dev_kfree_skb(skb);
1304 goto out;
1305 }
1306
1307 /*
1308 * If frame the sequence number exceeds our buffering window
1309 * size release some previous frames to make room for this one.
1310 */
1311 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1312 head_seq_num = ieee80211_sn_inc(
1313 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1314 /* release stored frames up to new head to stack */
1315 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1316 head_seq_num, frames);
1317 }
1318
1319 /* Now the new frame is always in the range of the reordering buffer */
1320
1321 index = mpdu_seq_num % tid_agg_rx->buf_size;
1322
1323 /* check if we already stored this frame */
1324 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1325 dev_kfree_skb(skb);
1326 goto out;
1327 }
1328
1329 /*
1330 * If the current MPDU is in the right order and nothing else
1331 * is stored we can process it directly, no need to buffer it.
1332 * If it is first but there's something stored, we may be able
1333 * to release frames after this one.
1334 */
1335 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1336 tid_agg_rx->stored_mpdu_num == 0) {
1337 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1338 tid_agg_rx->head_seq_num =
1339 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1340 ret = false;
1341 goto out;
1342 }
1343
1344 /* put the frame in the reordering buffer */
1345 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1346 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1347 tid_agg_rx->reorder_time[index] = jiffies;
1348 tid_agg_rx->stored_mpdu_num++;
1349 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1350 }
1351
1352 out:
1353 spin_unlock(&tid_agg_rx->reorder_lock);
1354 return ret;
1355 }
1356
1357 /*
1358 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1359 * true if the MPDU was buffered, false if it should be processed.
1360 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1361 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1362 struct sk_buff_head *frames)
1363 {
1364 struct sk_buff *skb = rx->skb;
1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1366 struct sta_info *sta = rx->sta;
1367 struct tid_ampdu_rx *tid_agg_rx;
1368 u16 sc;
1369 u8 tid, ack_policy;
1370
1371 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1372 is_multicast_ether_addr(hdr->addr1))
1373 goto dont_reorder;
1374
1375 /*
1376 * filter the QoS data rx stream according to
1377 * STA/TID and check if this STA/TID is on aggregation
1378 */
1379
1380 if (!sta)
1381 goto dont_reorder;
1382
1383 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1385 tid = ieee80211_get_tid(hdr);
1386
1387 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1388 if (!tid_agg_rx) {
1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1390 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1391 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1392 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1393 WLAN_BACK_RECIPIENT,
1394 WLAN_REASON_QSTA_REQUIRE_SETUP);
1395 goto dont_reorder;
1396 }
1397
1398 /* qos null data frames are excluded */
1399 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1400 goto dont_reorder;
1401
1402 /* not part of a BA session */
1403 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1404 goto dont_reorder;
1405
1406 /* new, potentially un-ordered, ampdu frame - process it */
1407
1408 /* reset session timer */
1409 if (tid_agg_rx->timeout)
1410 tid_agg_rx->last_rx = jiffies;
1411
1412 /* if this mpdu is fragmented - terminate rx aggregation session */
1413 sc = le16_to_cpu(hdr->seq_ctrl);
1414 if (sc & IEEE80211_SCTL_FRAG) {
1415 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb);
1416 return;
1417 }
1418
1419 /*
1420 * No locking needed -- we will only ever process one
1421 * RX packet at a time, and thus own tid_agg_rx. All
1422 * other code manipulating it needs to (and does) make
1423 * sure that we cannot get to it any more before doing
1424 * anything with it.
1425 */
1426 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1427 frames))
1428 return;
1429
1430 dont_reorder:
1431 __skb_queue_tail(frames, skb);
1432 }
1433
1434 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1435 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1436 {
1437 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1438 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1439
1440 if (status->flag & RX_FLAG_DUP_VALIDATED)
1441 return RX_CONTINUE;
1442
1443 /*
1444 * Drop duplicate 802.11 retransmissions
1445 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1446 */
1447
1448 if (rx->skb->len < 24)
1449 return RX_CONTINUE;
1450
1451 if (ieee80211_is_ctl(hdr->frame_control) ||
1452 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1453 is_multicast_ether_addr(hdr->addr1))
1454 return RX_CONTINUE;
1455
1456 if (!rx->sta)
1457 return RX_CONTINUE;
1458
1459 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1460 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1461 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1462 rx->sta->rx_stats.num_duplicates++;
1463 return RX_DROP_UNUSABLE;
1464 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1465 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1466 }
1467
1468 return RX_CONTINUE;
1469 }
1470
1471 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1472 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1473 {
1474 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1475
1476 /* Drop disallowed frame classes based on STA auth/assoc state;
1477 * IEEE 802.11, Chap 5.5.
1478 *
1479 * mac80211 filters only based on association state, i.e. it drops
1480 * Class 3 frames from not associated stations. hostapd sends
1481 * deauth/disassoc frames when needed. In addition, hostapd is
1482 * responsible for filtering on both auth and assoc states.
1483 */
1484
1485 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1486 return ieee80211_rx_mesh_check(rx);
1487
1488 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1489 ieee80211_is_pspoll(hdr->frame_control)) &&
1490 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1491 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1492 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1493 /*
1494 * accept port control frames from the AP even when it's not
1495 * yet marked ASSOC to prevent a race where we don't set the
1496 * assoc bit quickly enough before it sends the first frame
1497 */
1498 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1499 ieee80211_is_data_present(hdr->frame_control)) {
1500 unsigned int hdrlen;
1501 __be16 ethertype;
1502
1503 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1504
1505 if (rx->skb->len < hdrlen + 8)
1506 return RX_DROP_MONITOR;
1507
1508 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
1509 if (ethertype == rx->sdata->control_port_protocol)
1510 return RX_CONTINUE;
1511 }
1512
1513 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1514 cfg80211_rx_spurious_frame(rx->sdata->dev,
1515 hdr->addr2,
1516 GFP_ATOMIC))
1517 return RX_DROP_UNUSABLE;
1518
1519 return RX_DROP_MONITOR;
1520 }
1521
1522 return RX_CONTINUE;
1523 }
1524
1525
1526 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1527 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1528 {
1529 struct ieee80211_local *local;
1530 struct ieee80211_hdr *hdr;
1531 struct sk_buff *skb;
1532
1533 local = rx->local;
1534 skb = rx->skb;
1535 hdr = (struct ieee80211_hdr *) skb->data;
1536
1537 if (!local->pspolling)
1538 return RX_CONTINUE;
1539
1540 if (!ieee80211_has_fromds(hdr->frame_control))
1541 /* this is not from AP */
1542 return RX_CONTINUE;
1543
1544 if (!ieee80211_is_data(hdr->frame_control))
1545 return RX_CONTINUE;
1546
1547 if (!ieee80211_has_moredata(hdr->frame_control)) {
1548 /* AP has no more frames buffered for us */
1549 local->pspolling = false;
1550 return RX_CONTINUE;
1551 }
1552
1553 /* more data bit is set, let's request a new frame from the AP */
1554 ieee80211_send_pspoll(local, rx->sdata);
1555
1556 return RX_CONTINUE;
1557 }
1558
sta_ps_start(struct sta_info * sta)1559 static void sta_ps_start(struct sta_info *sta)
1560 {
1561 struct ieee80211_sub_if_data *sdata = sta->sdata;
1562 struct ieee80211_local *local = sdata->local;
1563 struct ps_data *ps;
1564 int tid;
1565
1566 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1567 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1568 ps = &sdata->bss->ps;
1569 else
1570 return;
1571
1572 atomic_inc(&ps->num_sta_ps);
1573 set_sta_flag(sta, WLAN_STA_PS_STA);
1574 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1575 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1576 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1577 sta->sta.addr, sta->sta.aid);
1578
1579 ieee80211_clear_fast_xmit(sta);
1580
1581 if (!sta->sta.txq[0])
1582 return;
1583
1584 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1585 struct ieee80211_txq *txq = sta->sta.txq[tid];
1586
1587 ieee80211_unschedule_txq(&local->hw, txq, false);
1588
1589 if (txq_has_queue(txq))
1590 set_bit(tid, &sta->txq_buffered_tids);
1591 else
1592 clear_bit(tid, &sta->txq_buffered_tids);
1593 }
1594 }
1595
sta_ps_end(struct sta_info * sta)1596 static void sta_ps_end(struct sta_info *sta)
1597 {
1598 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1599 sta->sta.addr, sta->sta.aid);
1600
1601 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1602 /*
1603 * Clear the flag only if the other one is still set
1604 * so that the TX path won't start TX'ing new frames
1605 * directly ... In the case that the driver flag isn't
1606 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1607 */
1608 clear_sta_flag(sta, WLAN_STA_PS_STA);
1609 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1610 sta->sta.addr, sta->sta.aid);
1611 return;
1612 }
1613
1614 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1615 clear_sta_flag(sta, WLAN_STA_PS_STA);
1616 ieee80211_sta_ps_deliver_wakeup(sta);
1617 }
1618
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1619 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1620 {
1621 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1622 bool in_ps;
1623
1624 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1625
1626 /* Don't let the same PS state be set twice */
1627 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1628 if ((start && in_ps) || (!start && !in_ps))
1629 return -EINVAL;
1630
1631 if (start)
1632 sta_ps_start(sta);
1633 else
1634 sta_ps_end(sta);
1635
1636 return 0;
1637 }
1638 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1639
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1640 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1641 {
1642 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1643
1644 if (test_sta_flag(sta, WLAN_STA_SP))
1645 return;
1646
1647 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1648 ieee80211_sta_ps_deliver_poll_response(sta);
1649 else
1650 set_sta_flag(sta, WLAN_STA_PSPOLL);
1651 }
1652 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1653
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1654 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1655 {
1656 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1657 int ac = ieee80211_ac_from_tid(tid);
1658
1659 /*
1660 * If this AC is not trigger-enabled do nothing unless the
1661 * driver is calling us after it already checked.
1662 *
1663 * NB: This could/should check a separate bitmap of trigger-
1664 * enabled queues, but for now we only implement uAPSD w/o
1665 * TSPEC changes to the ACs, so they're always the same.
1666 */
1667 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1668 tid != IEEE80211_NUM_TIDS)
1669 return;
1670
1671 /* if we are in a service period, do nothing */
1672 if (test_sta_flag(sta, WLAN_STA_SP))
1673 return;
1674
1675 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1676 ieee80211_sta_ps_deliver_uapsd(sta);
1677 else
1678 set_sta_flag(sta, WLAN_STA_UAPSD);
1679 }
1680 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1681
1682 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1683 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1684 {
1685 struct ieee80211_sub_if_data *sdata = rx->sdata;
1686 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1687 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1688
1689 if (!rx->sta)
1690 return RX_CONTINUE;
1691
1692 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1693 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1694 return RX_CONTINUE;
1695
1696 /*
1697 * The device handles station powersave, so don't do anything about
1698 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1699 * it to mac80211 since they're handled.)
1700 */
1701 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1702 return RX_CONTINUE;
1703
1704 /*
1705 * Don't do anything if the station isn't already asleep. In
1706 * the uAPSD case, the station will probably be marked asleep,
1707 * in the PS-Poll case the station must be confused ...
1708 */
1709 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1710 return RX_CONTINUE;
1711
1712 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1713 ieee80211_sta_pspoll(&rx->sta->sta);
1714
1715 /* Free PS Poll skb here instead of returning RX_DROP that would
1716 * count as an dropped frame. */
1717 dev_kfree_skb(rx->skb);
1718
1719 return RX_QUEUED;
1720 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1721 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1722 ieee80211_has_pm(hdr->frame_control) &&
1723 (ieee80211_is_data_qos(hdr->frame_control) ||
1724 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1725 u8 tid = ieee80211_get_tid(hdr);
1726
1727 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1728 }
1729
1730 return RX_CONTINUE;
1731 }
1732
1733 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1734 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1735 {
1736 struct sta_info *sta = rx->sta;
1737 struct sk_buff *skb = rx->skb;
1738 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1739 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1740 int i;
1741
1742 if (!sta)
1743 return RX_CONTINUE;
1744
1745 /*
1746 * Update last_rx only for IBSS packets which are for the current
1747 * BSSID and for station already AUTHORIZED to avoid keeping the
1748 * current IBSS network alive in cases where other STAs start
1749 * using different BSSID. This will also give the station another
1750 * chance to restart the authentication/authorization in case
1751 * something went wrong the first time.
1752 */
1753 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1754 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1755 NL80211_IFTYPE_ADHOC);
1756 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1757 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1758 sta->rx_stats.last_rx = jiffies;
1759 if (ieee80211_is_data(hdr->frame_control) &&
1760 !is_multicast_ether_addr(hdr->addr1))
1761 sta->rx_stats.last_rate =
1762 sta_stats_encode_rate(status);
1763 }
1764 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1765 sta->rx_stats.last_rx = jiffies;
1766 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1767 !is_multicast_ether_addr(hdr->addr1)) {
1768 /*
1769 * Mesh beacons will update last_rx when if they are found to
1770 * match the current local configuration when processed.
1771 */
1772 sta->rx_stats.last_rx = jiffies;
1773 if (ieee80211_is_data(hdr->frame_control))
1774 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1775 }
1776
1777 sta->rx_stats.fragments++;
1778
1779 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1780 sta->rx_stats.bytes += rx->skb->len;
1781 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1782
1783 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1784 sta->rx_stats.last_signal = status->signal;
1785 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1786 }
1787
1788 if (status->chains) {
1789 sta->rx_stats.chains = status->chains;
1790 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1791 int signal = status->chain_signal[i];
1792
1793 if (!(status->chains & BIT(i)))
1794 continue;
1795
1796 sta->rx_stats.chain_signal_last[i] = signal;
1797 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1798 -signal);
1799 }
1800 }
1801
1802 if (ieee80211_is_s1g_beacon(hdr->frame_control))
1803 return RX_CONTINUE;
1804
1805 /*
1806 * Change STA power saving mode only at the end of a frame
1807 * exchange sequence, and only for a data or management
1808 * frame as specified in IEEE 802.11-2016 11.2.3.2
1809 */
1810 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1811 !ieee80211_has_morefrags(hdr->frame_control) &&
1812 !is_multicast_ether_addr(hdr->addr1) &&
1813 (ieee80211_is_mgmt(hdr->frame_control) ||
1814 ieee80211_is_data(hdr->frame_control)) &&
1815 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1816 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1817 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1818 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1819 if (!ieee80211_has_pm(hdr->frame_control))
1820 sta_ps_end(sta);
1821 } else {
1822 if (ieee80211_has_pm(hdr->frame_control))
1823 sta_ps_start(sta);
1824 }
1825 }
1826
1827 /* mesh power save support */
1828 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1829 ieee80211_mps_rx_h_sta_process(sta, hdr);
1830
1831 /*
1832 * Drop (qos-)data::nullfunc frames silently, since they
1833 * are used only to control station power saving mode.
1834 */
1835 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1836 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1837
1838 /*
1839 * If we receive a 4-addr nullfunc frame from a STA
1840 * that was not moved to a 4-addr STA vlan yet send
1841 * the event to userspace and for older hostapd drop
1842 * the frame to the monitor interface.
1843 */
1844 if (ieee80211_has_a4(hdr->frame_control) &&
1845 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1846 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1847 !rx->sdata->u.vlan.sta))) {
1848 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1849 cfg80211_rx_unexpected_4addr_frame(
1850 rx->sdata->dev, sta->sta.addr,
1851 GFP_ATOMIC);
1852 return RX_DROP_MONITOR;
1853 }
1854 /*
1855 * Update counter and free packet here to avoid
1856 * counting this as a dropped packed.
1857 */
1858 sta->rx_stats.packets++;
1859 dev_kfree_skb(rx->skb);
1860 return RX_QUEUED;
1861 }
1862
1863 return RX_CONTINUE;
1864 } /* ieee80211_rx_h_sta_process */
1865
1866 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1867 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1868 {
1869 struct ieee80211_key *key = NULL;
1870 struct ieee80211_sub_if_data *sdata = rx->sdata;
1871 int idx2;
1872
1873 /* Make sure key gets set if either BIGTK key index is set so that
1874 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1875 * Beacon frames and Beacon frames that claim to use another BIGTK key
1876 * index (i.e., a key that we do not have).
1877 */
1878
1879 if (idx < 0) {
1880 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1881 idx2 = idx + 1;
1882 } else {
1883 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1884 idx2 = idx + 1;
1885 else
1886 idx2 = idx - 1;
1887 }
1888
1889 if (rx->sta)
1890 key = rcu_dereference(rx->sta->gtk[idx]);
1891 if (!key)
1892 key = rcu_dereference(sdata->keys[idx]);
1893 if (!key && rx->sta)
1894 key = rcu_dereference(rx->sta->gtk[idx2]);
1895 if (!key)
1896 key = rcu_dereference(sdata->keys[idx2]);
1897
1898 return key;
1899 }
1900
1901 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1902 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1903 {
1904 struct sk_buff *skb = rx->skb;
1905 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1906 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1907 int keyidx;
1908 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1909 struct ieee80211_key *sta_ptk = NULL;
1910 struct ieee80211_key *ptk_idx = NULL;
1911 int mmie_keyidx = -1;
1912 __le16 fc;
1913 const struct ieee80211_cipher_scheme *cs = NULL;
1914
1915 if (ieee80211_is_ext(hdr->frame_control))
1916 return RX_CONTINUE;
1917
1918 /*
1919 * Key selection 101
1920 *
1921 * There are five types of keys:
1922 * - GTK (group keys)
1923 * - IGTK (group keys for management frames)
1924 * - BIGTK (group keys for Beacon frames)
1925 * - PTK (pairwise keys)
1926 * - STK (station-to-station pairwise keys)
1927 *
1928 * When selecting a key, we have to distinguish between multicast
1929 * (including broadcast) and unicast frames, the latter can only
1930 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1931 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1932 * then unicast frames can also use key indices like GTKs. Hence, if we
1933 * don't have a PTK/STK we check the key index for a WEP key.
1934 *
1935 * Note that in a regular BSS, multicast frames are sent by the
1936 * AP only, associated stations unicast the frame to the AP first
1937 * which then multicasts it on their behalf.
1938 *
1939 * There is also a slight problem in IBSS mode: GTKs are negotiated
1940 * with each station, that is something we don't currently handle.
1941 * The spec seems to expect that one negotiates the same key with
1942 * every station but there's no such requirement; VLANs could be
1943 * possible.
1944 */
1945
1946 /* start without a key */
1947 rx->key = NULL;
1948 fc = hdr->frame_control;
1949
1950 if (rx->sta) {
1951 int keyid = rx->sta->ptk_idx;
1952 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1953
1954 if (ieee80211_has_protected(fc) &&
1955 !(status->flag & RX_FLAG_IV_STRIPPED)) {
1956 cs = rx->sta->cipher_scheme;
1957 keyid = ieee80211_get_keyid(rx->skb, cs);
1958
1959 if (unlikely(keyid < 0))
1960 return RX_DROP_UNUSABLE;
1961
1962 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1963 }
1964 }
1965
1966 if (!ieee80211_has_protected(fc))
1967 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1968
1969 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1970 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1971 if ((status->flag & RX_FLAG_DECRYPTED) &&
1972 (status->flag & RX_FLAG_IV_STRIPPED))
1973 return RX_CONTINUE;
1974 /* Skip decryption if the frame is not protected. */
1975 if (!ieee80211_has_protected(fc))
1976 return RX_CONTINUE;
1977 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1978 /* Broadcast/multicast robust management frame / BIP */
1979 if ((status->flag & RX_FLAG_DECRYPTED) &&
1980 (status->flag & RX_FLAG_IV_STRIPPED))
1981 return RX_CONTINUE;
1982
1983 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1984 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1985 NUM_DEFAULT_BEACON_KEYS) {
1986 if (rx->sdata->dev)
1987 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1988 skb->data,
1989 skb->len);
1990 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1991 }
1992
1993 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1994 if (!rx->key)
1995 return RX_CONTINUE; /* Beacon protection not in use */
1996 } else if (mmie_keyidx >= 0) {
1997 /* Broadcast/multicast robust management frame / BIP */
1998 if ((status->flag & RX_FLAG_DECRYPTED) &&
1999 (status->flag & RX_FLAG_IV_STRIPPED))
2000 return RX_CONTINUE;
2001
2002 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
2003 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
2004 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
2005 if (rx->sta) {
2006 if (ieee80211_is_group_privacy_action(skb) &&
2007 test_sta_flag(rx->sta, WLAN_STA_MFP))
2008 return RX_DROP_MONITOR;
2009
2010 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2011 }
2012 if (!rx->key)
2013 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2014 } else if (!ieee80211_has_protected(fc)) {
2015 /*
2016 * The frame was not protected, so skip decryption. However, we
2017 * need to set rx->key if there is a key that could have been
2018 * used so that the frame may be dropped if encryption would
2019 * have been expected.
2020 */
2021 struct ieee80211_key *key = NULL;
2022 struct ieee80211_sub_if_data *sdata = rx->sdata;
2023 int i;
2024
2025 if (ieee80211_is_beacon(fc)) {
2026 key = ieee80211_rx_get_bigtk(rx, -1);
2027 } else if (ieee80211_is_mgmt(fc) &&
2028 is_multicast_ether_addr(hdr->addr1)) {
2029 key = rcu_dereference(rx->sdata->default_mgmt_key);
2030 } else {
2031 if (rx->sta) {
2032 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2033 key = rcu_dereference(rx->sta->gtk[i]);
2034 if (key)
2035 break;
2036 }
2037 }
2038 if (!key) {
2039 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2040 key = rcu_dereference(sdata->keys[i]);
2041 if (key)
2042 break;
2043 }
2044 }
2045 }
2046 if (key)
2047 rx->key = key;
2048 return RX_CONTINUE;
2049 } else {
2050 /*
2051 * The device doesn't give us the IV so we won't be
2052 * able to look up the key. That's ok though, we
2053 * don't need to decrypt the frame, we just won't
2054 * be able to keep statistics accurate.
2055 * Except for key threshold notifications, should
2056 * we somehow allow the driver to tell us which key
2057 * the hardware used if this flag is set?
2058 */
2059 if ((status->flag & RX_FLAG_DECRYPTED) &&
2060 (status->flag & RX_FLAG_IV_STRIPPED))
2061 return RX_CONTINUE;
2062
2063 keyidx = ieee80211_get_keyid(rx->skb, cs);
2064
2065 if (unlikely(keyidx < 0))
2066 return RX_DROP_UNUSABLE;
2067
2068 /* check per-station GTK first, if multicast packet */
2069 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2070 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2071
2072 /* if not found, try default key */
2073 if (!rx->key) {
2074 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2075
2076 /*
2077 * RSNA-protected unicast frames should always be
2078 * sent with pairwise or station-to-station keys,
2079 * but for WEP we allow using a key index as well.
2080 */
2081 if (rx->key &&
2082 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2083 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2084 !is_multicast_ether_addr(hdr->addr1))
2085 rx->key = NULL;
2086 }
2087 }
2088
2089 if (rx->key) {
2090 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2091 return RX_DROP_MONITOR;
2092
2093 /* TODO: add threshold stuff again */
2094 } else {
2095 return RX_DROP_MONITOR;
2096 }
2097
2098 switch (rx->key->conf.cipher) {
2099 case WLAN_CIPHER_SUITE_WEP40:
2100 case WLAN_CIPHER_SUITE_WEP104:
2101 result = ieee80211_crypto_wep_decrypt(rx);
2102 break;
2103 case WLAN_CIPHER_SUITE_TKIP:
2104 result = ieee80211_crypto_tkip_decrypt(rx);
2105 break;
2106 case WLAN_CIPHER_SUITE_CCMP:
2107 result = ieee80211_crypto_ccmp_decrypt(
2108 rx, IEEE80211_CCMP_MIC_LEN);
2109 break;
2110 case WLAN_CIPHER_SUITE_CCMP_256:
2111 result = ieee80211_crypto_ccmp_decrypt(
2112 rx, IEEE80211_CCMP_256_MIC_LEN);
2113 break;
2114 case WLAN_CIPHER_SUITE_AES_CMAC:
2115 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2116 break;
2117 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2118 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2119 break;
2120 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2121 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2122 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2123 break;
2124 case WLAN_CIPHER_SUITE_GCMP:
2125 case WLAN_CIPHER_SUITE_GCMP_256:
2126 result = ieee80211_crypto_gcmp_decrypt(rx);
2127 break;
2128 default:
2129 result = ieee80211_crypto_hw_decrypt(rx);
2130 }
2131
2132 /* the hdr variable is invalid after the decrypt handlers */
2133
2134 /* either the frame has been decrypted or will be dropped */
2135 status->flag |= RX_FLAG_DECRYPTED;
2136
2137 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE &&
2138 rx->sdata->dev))
2139 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2140 skb->data, skb->len);
2141
2142 return result;
2143 }
2144
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2145 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2146 {
2147 int i;
2148
2149 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2150 skb_queue_head_init(&cache->entries[i].skb_list);
2151 }
2152
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2153 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2154 {
2155 int i;
2156
2157 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2158 __skb_queue_purge(&cache->entries[i].skb_list);
2159 }
2160
2161 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2162 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2163 unsigned int frag, unsigned int seq, int rx_queue,
2164 struct sk_buff **skb)
2165 {
2166 struct ieee80211_fragment_entry *entry;
2167
2168 entry = &cache->entries[cache->next++];
2169 if (cache->next >= IEEE80211_FRAGMENT_MAX)
2170 cache->next = 0;
2171
2172 __skb_queue_purge(&entry->skb_list);
2173
2174 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2175 *skb = NULL;
2176 entry->first_frag_time = jiffies;
2177 entry->seq = seq;
2178 entry->rx_queue = rx_queue;
2179 entry->last_frag = frag;
2180 entry->check_sequential_pn = false;
2181 entry->extra_len = 0;
2182
2183 return entry;
2184 }
2185
2186 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2187 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2188 unsigned int frag, unsigned int seq,
2189 int rx_queue, struct ieee80211_hdr *hdr)
2190 {
2191 struct ieee80211_fragment_entry *entry;
2192 int i, idx;
2193
2194 idx = cache->next;
2195 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2196 struct ieee80211_hdr *f_hdr;
2197 struct sk_buff *f_skb;
2198
2199 idx--;
2200 if (idx < 0)
2201 idx = IEEE80211_FRAGMENT_MAX - 1;
2202
2203 entry = &cache->entries[idx];
2204 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2205 entry->rx_queue != rx_queue ||
2206 entry->last_frag + 1 != frag)
2207 continue;
2208
2209 f_skb = __skb_peek(&entry->skb_list);
2210 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2211
2212 /*
2213 * Check ftype and addresses are equal, else check next fragment
2214 */
2215 if (((hdr->frame_control ^ f_hdr->frame_control) &
2216 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2217 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2218 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2219 continue;
2220
2221 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2222 __skb_queue_purge(&entry->skb_list);
2223 continue;
2224 }
2225 return entry;
2226 }
2227
2228 return NULL;
2229 }
2230
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2231 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2232 {
2233 return rx->key &&
2234 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2235 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2236 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2237 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2238 ieee80211_has_protected(fc);
2239 }
2240
2241 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2242 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2243 {
2244 struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2245 struct ieee80211_hdr *hdr;
2246 u16 sc;
2247 __le16 fc;
2248 unsigned int frag, seq;
2249 struct ieee80211_fragment_entry *entry;
2250 struct sk_buff *skb;
2251 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2252
2253 hdr = (struct ieee80211_hdr *)rx->skb->data;
2254 fc = hdr->frame_control;
2255
2256 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2257 return RX_CONTINUE;
2258
2259 sc = le16_to_cpu(hdr->seq_ctrl);
2260 frag = sc & IEEE80211_SCTL_FRAG;
2261
2262 if (rx->sta)
2263 cache = &rx->sta->frags;
2264
2265 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2266 goto out;
2267
2268 if (is_multicast_ether_addr(hdr->addr1))
2269 return RX_DROP_MONITOR;
2270
2271 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2272
2273 if (skb_linearize(rx->skb))
2274 return RX_DROP_UNUSABLE;
2275
2276 /*
2277 * skb_linearize() might change the skb->data and
2278 * previously cached variables (in this case, hdr) need to
2279 * be refreshed with the new data.
2280 */
2281 hdr = (struct ieee80211_hdr *)rx->skb->data;
2282 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2283
2284 if (frag == 0) {
2285 /* This is the first fragment of a new frame. */
2286 entry = ieee80211_reassemble_add(cache, frag, seq,
2287 rx->seqno_idx, &(rx->skb));
2288 if (requires_sequential_pn(rx, fc)) {
2289 int queue = rx->security_idx;
2290
2291 /* Store CCMP/GCMP PN so that we can verify that the
2292 * next fragment has a sequential PN value.
2293 */
2294 entry->check_sequential_pn = true;
2295 entry->is_protected = true;
2296 entry->key_color = rx->key->color;
2297 memcpy(entry->last_pn,
2298 rx->key->u.ccmp.rx_pn[queue],
2299 IEEE80211_CCMP_PN_LEN);
2300 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2301 u.ccmp.rx_pn) !=
2302 offsetof(struct ieee80211_key,
2303 u.gcmp.rx_pn));
2304 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2305 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2306 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2307 IEEE80211_GCMP_PN_LEN);
2308 } else if (rx->key &&
2309 (ieee80211_has_protected(fc) ||
2310 (status->flag & RX_FLAG_DECRYPTED))) {
2311 entry->is_protected = true;
2312 entry->key_color = rx->key->color;
2313 }
2314 return RX_QUEUED;
2315 }
2316
2317 /* This is a fragment for a frame that should already be pending in
2318 * fragment cache. Add this fragment to the end of the pending entry.
2319 */
2320 entry = ieee80211_reassemble_find(cache, frag, seq,
2321 rx->seqno_idx, hdr);
2322 if (!entry) {
2323 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2324 return RX_DROP_MONITOR;
2325 }
2326
2327 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2328 * MPDU PN values are not incrementing in steps of 1."
2329 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2330 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2331 */
2332 if (entry->check_sequential_pn) {
2333 int i;
2334 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2335
2336 if (!requires_sequential_pn(rx, fc))
2337 return RX_DROP_UNUSABLE;
2338
2339 /* Prevent mixed key and fragment cache attacks */
2340 if (entry->key_color != rx->key->color)
2341 return RX_DROP_UNUSABLE;
2342
2343 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2344 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2345 pn[i]++;
2346 if (pn[i])
2347 break;
2348 }
2349
2350 rpn = rx->ccm_gcm.pn;
2351 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2352 return RX_DROP_UNUSABLE;
2353 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2354 } else if (entry->is_protected &&
2355 (!rx->key ||
2356 (!ieee80211_has_protected(fc) &&
2357 !(status->flag & RX_FLAG_DECRYPTED)) ||
2358 rx->key->color != entry->key_color)) {
2359 /* Drop this as a mixed key or fragment cache attack, even
2360 * if for TKIP Michael MIC should protect us, and WEP is a
2361 * lost cause anyway.
2362 */
2363 return RX_DROP_UNUSABLE;
2364 } else if (entry->is_protected && rx->key &&
2365 entry->key_color != rx->key->color &&
2366 (status->flag & RX_FLAG_DECRYPTED)) {
2367 return RX_DROP_UNUSABLE;
2368 }
2369
2370 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2371 __skb_queue_tail(&entry->skb_list, rx->skb);
2372 entry->last_frag = frag;
2373 entry->extra_len += rx->skb->len;
2374 if (ieee80211_has_morefrags(fc)) {
2375 rx->skb = NULL;
2376 return RX_QUEUED;
2377 }
2378
2379 rx->skb = __skb_dequeue(&entry->skb_list);
2380 if (skb_tailroom(rx->skb) < entry->extra_len) {
2381 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2382 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2383 GFP_ATOMIC))) {
2384 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2385 __skb_queue_purge(&entry->skb_list);
2386 return RX_DROP_UNUSABLE;
2387 }
2388 }
2389 while ((skb = __skb_dequeue(&entry->skb_list))) {
2390 skb_put_data(rx->skb, skb->data, skb->len);
2391 dev_kfree_skb(skb);
2392 }
2393
2394 out:
2395 ieee80211_led_rx(rx->local);
2396 if (rx->sta)
2397 rx->sta->rx_stats.packets++;
2398 return RX_CONTINUE;
2399 }
2400
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2401 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2402 {
2403 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2404 return -EACCES;
2405
2406 return 0;
2407 }
2408
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2409 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2410 {
2411 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2412 struct sk_buff *skb = rx->skb;
2413 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2414
2415 /*
2416 * Pass through unencrypted frames if the hardware has
2417 * decrypted them already.
2418 */
2419 if (status->flag & RX_FLAG_DECRYPTED)
2420 return 0;
2421
2422 /* check mesh EAPOL frames first */
2423 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2424 ieee80211_is_data(fc))) {
2425 struct ieee80211s_hdr *mesh_hdr;
2426 u16 hdr_len = ieee80211_hdrlen(fc);
2427 u16 ethertype_offset;
2428 __be16 ethertype;
2429
2430 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2431 goto drop_check;
2432
2433 /* make sure fixed part of mesh header is there, also checks skb len */
2434 if (!pskb_may_pull(rx->skb, hdr_len + 6))
2435 goto drop_check;
2436
2437 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2438 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2439 sizeof(rfc1042_header);
2440
2441 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 &&
2442 ethertype == rx->sdata->control_port_protocol)
2443 return 0;
2444 }
2445
2446 drop_check:
2447 /* Drop unencrypted frames if key is set. */
2448 if (unlikely(!ieee80211_has_protected(fc) &&
2449 !ieee80211_is_any_nullfunc(fc) &&
2450 ieee80211_is_data(fc) && rx->key))
2451 return -EACCES;
2452
2453 return 0;
2454 }
2455
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2456 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2457 {
2458 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2459 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2460 __le16 fc = hdr->frame_control;
2461
2462 /*
2463 * Pass through unencrypted frames if the hardware has
2464 * decrypted them already.
2465 */
2466 if (status->flag & RX_FLAG_DECRYPTED)
2467 return 0;
2468
2469 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2470 if (unlikely(!ieee80211_has_protected(fc) &&
2471 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2472 rx->key)) {
2473 if (ieee80211_is_deauth(fc) ||
2474 ieee80211_is_disassoc(fc))
2475 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2476 rx->skb->data,
2477 rx->skb->len);
2478 return -EACCES;
2479 }
2480 /* BIP does not use Protected field, so need to check MMIE */
2481 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2482 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2483 if (ieee80211_is_deauth(fc) ||
2484 ieee80211_is_disassoc(fc))
2485 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2486 rx->skb->data,
2487 rx->skb->len);
2488 return -EACCES;
2489 }
2490 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2491 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2492 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2493 rx->skb->data,
2494 rx->skb->len);
2495 return -EACCES;
2496 }
2497 /*
2498 * When using MFP, Action frames are not allowed prior to
2499 * having configured keys.
2500 */
2501 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2502 ieee80211_is_robust_mgmt_frame(rx->skb)))
2503 return -EACCES;
2504 }
2505
2506 return 0;
2507 }
2508
2509 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2510 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2511 {
2512 struct ieee80211_sub_if_data *sdata = rx->sdata;
2513 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2514 bool check_port_control = false;
2515 struct ethhdr *ehdr;
2516 int ret;
2517
2518 *port_control = false;
2519 if (ieee80211_has_a4(hdr->frame_control) &&
2520 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2521 return -1;
2522
2523 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2524 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2525
2526 if (!sdata->u.mgd.use_4addr)
2527 return -1;
2528 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2529 check_port_control = true;
2530 }
2531
2532 if (is_multicast_ether_addr(hdr->addr1) &&
2533 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2534 return -1;
2535
2536 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2537 if (ret < 0)
2538 return ret;
2539
2540 ehdr = (struct ethhdr *) rx->skb->data;
2541 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2542 *port_control = true;
2543 else if (check_port_control)
2544 return -1;
2545
2546 return 0;
2547 }
2548
2549 /*
2550 * requires that rx->skb is a frame with ethernet header
2551 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2552 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2553 {
2554 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2555 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2556 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2557
2558 /*
2559 * Allow EAPOL frames to us/the PAE group address regardless of
2560 * whether the frame was encrypted or not, and always disallow
2561 * all other destination addresses for them.
2562 */
2563 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2564 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2565 ether_addr_equal(ehdr->h_dest, pae_group_addr);
2566
2567 if (ieee80211_802_1x_port_control(rx) ||
2568 ieee80211_drop_unencrypted(rx, fc))
2569 return false;
2570
2571 return true;
2572 }
2573
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2574 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2575 struct ieee80211_rx_data *rx)
2576 {
2577 struct ieee80211_sub_if_data *sdata = rx->sdata;
2578 struct net_device *dev = sdata->dev;
2579
2580 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2581 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2582 !sdata->control_port_no_preauth)) &&
2583 sdata->control_port_over_nl80211)) {
2584 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2585 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2586
2587 cfg80211_rx_control_port(dev, skb, noencrypt, -1);
2588 dev_kfree_skb(skb);
2589 } else {
2590 struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2591
2592 memset(skb->cb, 0, sizeof(skb->cb));
2593
2594 /*
2595 * 802.1X over 802.11 requires that the authenticator address
2596 * be used for EAPOL frames. However, 802.1X allows the use of
2597 * the PAE group address instead. If the interface is part of
2598 * a bridge and we pass the frame with the PAE group address,
2599 * then the bridge will forward it to the network (even if the
2600 * client was not associated yet), which isn't supposed to
2601 * happen.
2602 * To avoid that, rewrite the destination address to our own
2603 * address, so that the authenticator (e.g. hostapd) will see
2604 * the frame, but bridge won't forward it anywhere else. Note
2605 * that due to earlier filtering, the only other address can
2606 * be the PAE group address, unless the hardware allowed them
2607 * through in 802.3 offloaded mode.
2608 */
2609 if (unlikely(skb->protocol == sdata->control_port_protocol &&
2610 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2611 ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2612
2613 /* deliver to local stack */
2614 if (rx->list)
2615 list_add_tail(&skb->list, rx->list);
2616 else
2617 netif_receive_skb(skb);
2618 }
2619 }
2620
2621 /*
2622 * requires that rx->skb is a frame with ethernet header
2623 */
2624 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2625 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2626 {
2627 struct ieee80211_sub_if_data *sdata = rx->sdata;
2628 struct net_device *dev = sdata->dev;
2629 struct sk_buff *skb, *xmit_skb;
2630 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2631 struct sta_info *dsta;
2632
2633 skb = rx->skb;
2634 xmit_skb = NULL;
2635
2636 dev_sw_netstats_rx_add(dev, skb->len);
2637
2638 if (rx->sta) {
2639 /* The seqno index has the same property as needed
2640 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2641 * for non-QoS-data frames. Here we know it's a data
2642 * frame, so count MSDUs.
2643 */
2644 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2645 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2646 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2647 }
2648
2649 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2650 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2651 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2652 ehdr->h_proto != rx->sdata->control_port_protocol &&
2653 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2654 if (is_multicast_ether_addr(ehdr->h_dest) &&
2655 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2656 /*
2657 * send multicast frames both to higher layers in
2658 * local net stack and back to the wireless medium
2659 */
2660 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2661 if (!xmit_skb)
2662 net_info_ratelimited("%s: failed to clone multicast frame\n",
2663 dev->name);
2664 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2665 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2666 dsta = sta_info_get(sdata, ehdr->h_dest);
2667 if (dsta) {
2668 /*
2669 * The destination station is associated to
2670 * this AP (in this VLAN), so send the frame
2671 * directly to it and do not pass it to local
2672 * net stack.
2673 */
2674 xmit_skb = skb;
2675 skb = NULL;
2676 }
2677 }
2678 }
2679
2680 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2681 if (skb) {
2682 /* 'align' will only take the values 0 or 2 here since all
2683 * frames are required to be aligned to 2-byte boundaries
2684 * when being passed to mac80211; the code here works just
2685 * as well if that isn't true, but mac80211 assumes it can
2686 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2687 */
2688 int align;
2689
2690 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2691 if (align) {
2692 if (WARN_ON(skb_headroom(skb) < 3)) {
2693 dev_kfree_skb(skb);
2694 skb = NULL;
2695 } else {
2696 u8 *data = skb->data;
2697 size_t len = skb_headlen(skb);
2698 skb->data -= align;
2699 memmove(skb->data, data, len);
2700 skb_set_tail_pointer(skb, len);
2701 }
2702 }
2703 }
2704 #endif
2705
2706 if (skb) {
2707 skb->protocol = eth_type_trans(skb, dev);
2708 ieee80211_deliver_skb_to_local_stack(skb, rx);
2709 }
2710
2711 if (xmit_skb) {
2712 /*
2713 * Send to wireless media and increase priority by 256 to
2714 * keep the received priority instead of reclassifying
2715 * the frame (see cfg80211_classify8021d).
2716 */
2717 xmit_skb->priority += 256;
2718 xmit_skb->protocol = htons(ETH_P_802_3);
2719 skb_reset_network_header(xmit_skb);
2720 skb_reset_mac_header(xmit_skb);
2721 dev_queue_xmit(xmit_skb);
2722 }
2723 }
2724
2725 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2726 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2727 {
2728 struct net_device *dev = rx->sdata->dev;
2729 struct sk_buff *skb = rx->skb;
2730 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2731 __le16 fc = hdr->frame_control;
2732 struct sk_buff_head frame_list;
2733 struct ethhdr ethhdr;
2734 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2735
2736 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2737 check_da = NULL;
2738 check_sa = NULL;
2739 } else switch (rx->sdata->vif.type) {
2740 case NL80211_IFTYPE_AP:
2741 case NL80211_IFTYPE_AP_VLAN:
2742 check_da = NULL;
2743 break;
2744 case NL80211_IFTYPE_STATION:
2745 if (!rx->sta ||
2746 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2747 check_sa = NULL;
2748 break;
2749 case NL80211_IFTYPE_MESH_POINT:
2750 check_sa = NULL;
2751 break;
2752 default:
2753 break;
2754 }
2755
2756 skb->dev = dev;
2757 __skb_queue_head_init(&frame_list);
2758
2759 if (ieee80211_data_to_8023_exthdr(skb, ðhdr,
2760 rx->sdata->vif.addr,
2761 rx->sdata->vif.type,
2762 data_offset, true))
2763 return RX_DROP_UNUSABLE;
2764
2765 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2766 rx->sdata->vif.type,
2767 rx->local->hw.extra_tx_headroom,
2768 check_da, check_sa);
2769
2770 while (!skb_queue_empty(&frame_list)) {
2771 rx->skb = __skb_dequeue(&frame_list);
2772
2773 if (!ieee80211_frame_allowed(rx, fc)) {
2774 dev_kfree_skb(rx->skb);
2775 continue;
2776 }
2777
2778 ieee80211_deliver_skb(rx);
2779 }
2780
2781 return RX_QUEUED;
2782 }
2783
2784 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2785 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2786 {
2787 struct sk_buff *skb = rx->skb;
2788 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2789 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2790 __le16 fc = hdr->frame_control;
2791
2792 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2793 return RX_CONTINUE;
2794
2795 if (unlikely(!ieee80211_is_data(fc)))
2796 return RX_CONTINUE;
2797
2798 if (unlikely(!ieee80211_is_data_present(fc)))
2799 return RX_DROP_MONITOR;
2800
2801 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2802 switch (rx->sdata->vif.type) {
2803 case NL80211_IFTYPE_AP_VLAN:
2804 if (!rx->sdata->u.vlan.sta)
2805 return RX_DROP_UNUSABLE;
2806 break;
2807 case NL80211_IFTYPE_STATION:
2808 if (!rx->sdata->u.mgd.use_4addr)
2809 return RX_DROP_UNUSABLE;
2810 break;
2811 default:
2812 return RX_DROP_UNUSABLE;
2813 }
2814 }
2815
2816 if (is_multicast_ether_addr(hdr->addr1))
2817 return RX_DROP_UNUSABLE;
2818
2819 if (rx->key) {
2820 /*
2821 * We should not receive A-MSDUs on pre-HT connections,
2822 * and HT connections cannot use old ciphers. Thus drop
2823 * them, as in those cases we couldn't even have SPP
2824 * A-MSDUs or such.
2825 */
2826 switch (rx->key->conf.cipher) {
2827 case WLAN_CIPHER_SUITE_WEP40:
2828 case WLAN_CIPHER_SUITE_WEP104:
2829 case WLAN_CIPHER_SUITE_TKIP:
2830 return RX_DROP_UNUSABLE;
2831 default:
2832 break;
2833 }
2834 }
2835
2836 return __ieee80211_rx_h_amsdu(rx, 0);
2837 }
2838
2839 #ifdef CONFIG_MAC80211_MESH
2840 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2841 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2842 {
2843 struct ieee80211_hdr *fwd_hdr, *hdr;
2844 struct ieee80211_tx_info *info;
2845 struct ieee80211s_hdr *mesh_hdr;
2846 struct sk_buff *skb = rx->skb, *fwd_skb;
2847 struct ieee80211_local *local = rx->local;
2848 struct ieee80211_sub_if_data *sdata = rx->sdata;
2849 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2850 u16 ac, q, hdrlen;
2851 int tailroom = 0;
2852
2853 hdr = (struct ieee80211_hdr *) skb->data;
2854 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2855
2856 /* make sure fixed part of mesh header is there, also checks skb len */
2857 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2858 return RX_DROP_MONITOR;
2859
2860 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2861
2862 /* make sure full mesh header is there, also checks skb len */
2863 if (!pskb_may_pull(rx->skb,
2864 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2865 return RX_DROP_MONITOR;
2866
2867 /* reload pointers */
2868 hdr = (struct ieee80211_hdr *) skb->data;
2869 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2870
2871 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2872 return RX_DROP_MONITOR;
2873
2874 /* frame is in RMC, don't forward */
2875 if (ieee80211_is_data(hdr->frame_control) &&
2876 is_multicast_ether_addr(hdr->addr1) &&
2877 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2878 return RX_DROP_MONITOR;
2879
2880 if (!ieee80211_is_data(hdr->frame_control))
2881 return RX_CONTINUE;
2882
2883 if (!mesh_hdr->ttl)
2884 return RX_DROP_MONITOR;
2885
2886 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2887 struct mesh_path *mppath;
2888 char *proxied_addr;
2889 char *mpp_addr;
2890
2891 if (is_multicast_ether_addr(hdr->addr1)) {
2892 mpp_addr = hdr->addr3;
2893 proxied_addr = mesh_hdr->eaddr1;
2894 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2895 MESH_FLAGS_AE_A5_A6) {
2896 /* has_a4 already checked in ieee80211_rx_mesh_check */
2897 mpp_addr = hdr->addr4;
2898 proxied_addr = mesh_hdr->eaddr2;
2899 } else {
2900 return RX_DROP_MONITOR;
2901 }
2902
2903 rcu_read_lock();
2904 mppath = mpp_path_lookup(sdata, proxied_addr);
2905 if (!mppath) {
2906 mpp_path_add(sdata, proxied_addr, mpp_addr);
2907 } else {
2908 spin_lock_bh(&mppath->state_lock);
2909 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2910 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2911 mppath->exp_time = jiffies;
2912 spin_unlock_bh(&mppath->state_lock);
2913 }
2914 rcu_read_unlock();
2915 }
2916
2917 /* Frame has reached destination. Don't forward */
2918 if (!is_multicast_ether_addr(hdr->addr1) &&
2919 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2920 return RX_CONTINUE;
2921
2922 ac = ieee802_1d_to_ac[skb->priority];
2923 q = sdata->vif.hw_queue[ac];
2924 if (ieee80211_queue_stopped(&local->hw, q)) {
2925 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2926 return RX_DROP_MONITOR;
2927 }
2928 skb_set_queue_mapping(skb, ac);
2929
2930 if (!--mesh_hdr->ttl) {
2931 if (!is_multicast_ether_addr(hdr->addr1))
2932 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2933 dropped_frames_ttl);
2934 goto out;
2935 }
2936
2937 if (!ifmsh->mshcfg.dot11MeshForwarding)
2938 goto out;
2939
2940 if (sdata->crypto_tx_tailroom_needed_cnt)
2941 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2942
2943 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2944 sdata->encrypt_headroom,
2945 tailroom, GFP_ATOMIC);
2946 if (!fwd_skb)
2947 goto out;
2948
2949 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2950 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2951 info = IEEE80211_SKB_CB(fwd_skb);
2952 memset(info, 0, sizeof(*info));
2953 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2954 info->control.vif = &rx->sdata->vif;
2955 info->control.jiffies = jiffies;
2956 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2957 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2958 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2959 /* update power mode indication when forwarding */
2960 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2961 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2962 /* mesh power mode flags updated in mesh_nexthop_lookup */
2963 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2964 } else {
2965 /* unable to resolve next hop */
2966 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2967 fwd_hdr->addr3, 0,
2968 WLAN_REASON_MESH_PATH_NOFORWARD,
2969 fwd_hdr->addr2);
2970 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2971 kfree_skb(fwd_skb);
2972 return RX_DROP_MONITOR;
2973 }
2974
2975 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2976 ieee80211_add_pending_skb(local, fwd_skb);
2977 out:
2978 if (is_multicast_ether_addr(hdr->addr1))
2979 return RX_CONTINUE;
2980 return RX_DROP_MONITOR;
2981 }
2982 #endif
2983
2984 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2985 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2986 {
2987 struct ieee80211_sub_if_data *sdata = rx->sdata;
2988 struct ieee80211_local *local = rx->local;
2989 struct net_device *dev = sdata->dev;
2990 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2991 __le16 fc = hdr->frame_control;
2992 bool port_control;
2993 int err;
2994
2995 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2996 return RX_CONTINUE;
2997
2998 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2999 return RX_DROP_MONITOR;
3000
3001 /*
3002 * Send unexpected-4addr-frame event to hostapd. For older versions,
3003 * also drop the frame to cooked monitor interfaces.
3004 */
3005 if (ieee80211_has_a4(hdr->frame_control) &&
3006 sdata->vif.type == NL80211_IFTYPE_AP) {
3007 if (rx->sta &&
3008 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3009 cfg80211_rx_unexpected_4addr_frame(
3010 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3011 return RX_DROP_MONITOR;
3012 }
3013
3014 err = __ieee80211_data_to_8023(rx, &port_control);
3015 if (unlikely(err))
3016 return RX_DROP_UNUSABLE;
3017
3018 if (!ieee80211_frame_allowed(rx, fc))
3019 return RX_DROP_MONITOR;
3020
3021 /* directly handle TDLS channel switch requests/responses */
3022 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3023 cpu_to_be16(ETH_P_TDLS))) {
3024 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3025
3026 if (pskb_may_pull(rx->skb,
3027 offsetof(struct ieee80211_tdls_data, u)) &&
3028 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3029 tf->category == WLAN_CATEGORY_TDLS &&
3030 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3031 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3032 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3033 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3034 return RX_QUEUED;
3035 }
3036 }
3037
3038 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3039 unlikely(port_control) && sdata->bss) {
3040 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3041 u.ap);
3042 dev = sdata->dev;
3043 rx->sdata = sdata;
3044 }
3045
3046 rx->skb->dev = dev;
3047
3048 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3049 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3050 !is_multicast_ether_addr(
3051 ((struct ethhdr *)rx->skb->data)->h_dest) &&
3052 (!local->scanning &&
3053 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3054 mod_timer(&local->dynamic_ps_timer, jiffies +
3055 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3056
3057 ieee80211_deliver_skb(rx);
3058
3059 return RX_QUEUED;
3060 }
3061
3062 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3063 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3064 {
3065 struct sk_buff *skb = rx->skb;
3066 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3067 struct tid_ampdu_rx *tid_agg_rx;
3068 u16 start_seq_num;
3069 u16 tid;
3070
3071 if (likely(!ieee80211_is_ctl(bar->frame_control)))
3072 return RX_CONTINUE;
3073
3074 if (ieee80211_is_back_req(bar->frame_control)) {
3075 struct {
3076 __le16 control, start_seq_num;
3077 } __packed bar_data;
3078 struct ieee80211_event event = {
3079 .type = BAR_RX_EVENT,
3080 };
3081
3082 if (!rx->sta)
3083 return RX_DROP_MONITOR;
3084
3085 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3086 &bar_data, sizeof(bar_data)))
3087 return RX_DROP_MONITOR;
3088
3089 tid = le16_to_cpu(bar_data.control) >> 12;
3090
3091 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3092 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3093 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3094 WLAN_BACK_RECIPIENT,
3095 WLAN_REASON_QSTA_REQUIRE_SETUP);
3096
3097 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3098 if (!tid_agg_rx)
3099 return RX_DROP_MONITOR;
3100
3101 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3102 event.u.ba.tid = tid;
3103 event.u.ba.ssn = start_seq_num;
3104 event.u.ba.sta = &rx->sta->sta;
3105
3106 /* reset session timer */
3107 if (tid_agg_rx->timeout)
3108 mod_timer(&tid_agg_rx->session_timer,
3109 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3110
3111 spin_lock(&tid_agg_rx->reorder_lock);
3112 /* release stored frames up to start of BAR */
3113 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3114 start_seq_num, frames);
3115 spin_unlock(&tid_agg_rx->reorder_lock);
3116
3117 drv_event_callback(rx->local, rx->sdata, &event);
3118
3119 kfree_skb(skb);
3120 return RX_QUEUED;
3121 }
3122
3123 /*
3124 * After this point, we only want management frames,
3125 * so we can drop all remaining control frames to
3126 * cooked monitor interfaces.
3127 */
3128 return RX_DROP_MONITOR;
3129 }
3130
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3131 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3132 struct ieee80211_mgmt *mgmt,
3133 size_t len)
3134 {
3135 struct ieee80211_local *local = sdata->local;
3136 struct sk_buff *skb;
3137 struct ieee80211_mgmt *resp;
3138
3139 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3140 /* Not to own unicast address */
3141 return;
3142 }
3143
3144 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3145 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3146 /* Not from the current AP or not associated yet. */
3147 return;
3148 }
3149
3150 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3151 /* Too short SA Query request frame */
3152 return;
3153 }
3154
3155 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3156 if (skb == NULL)
3157 return;
3158
3159 skb_reserve(skb, local->hw.extra_tx_headroom);
3160 resp = skb_put_zero(skb, 24);
3161 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3162 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3163 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3164 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3165 IEEE80211_STYPE_ACTION);
3166 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3167 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3168 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3169 memcpy(resp->u.action.u.sa_query.trans_id,
3170 mgmt->u.action.u.sa_query.trans_id,
3171 WLAN_SA_QUERY_TR_ID_LEN);
3172
3173 ieee80211_tx_skb(sdata, skb);
3174 }
3175
3176 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3177 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3178 {
3179 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3180 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3181
3182 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3183 return RX_CONTINUE;
3184
3185 /*
3186 * From here on, look only at management frames.
3187 * Data and control frames are already handled,
3188 * and unknown (reserved) frames are useless.
3189 */
3190 if (rx->skb->len < 24)
3191 return RX_DROP_MONITOR;
3192
3193 if (!ieee80211_is_mgmt(mgmt->frame_control))
3194 return RX_DROP_MONITOR;
3195
3196 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3197 ieee80211_is_beacon(mgmt->frame_control) &&
3198 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3199 int sig = 0;
3200
3201 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3202 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3203 sig = status->signal;
3204
3205 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3206 rx->skb->data, rx->skb->len,
3207 ieee80211_rx_status_to_khz(status),
3208 sig);
3209 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3210 }
3211
3212 if (ieee80211_drop_unencrypted_mgmt(rx))
3213 return RX_DROP_UNUSABLE;
3214
3215 return RX_CONTINUE;
3216 }
3217
3218 static bool
ieee80211_process_rx_twt_action(struct ieee80211_rx_data * rx)3219 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3220 {
3221 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3223 struct ieee80211_sub_if_data *sdata = rx->sdata;
3224 const struct ieee80211_sta_he_cap *hecap;
3225 struct ieee80211_supported_band *sband;
3226
3227 /* TWT actions are only supported in AP for the moment */
3228 if (sdata->vif.type != NL80211_IFTYPE_AP)
3229 return false;
3230
3231 if (!rx->local->ops->add_twt_setup)
3232 return false;
3233
3234 sband = rx->local->hw.wiphy->bands[status->band];
3235 hecap = ieee80211_get_he_iftype_cap(sband,
3236 ieee80211_vif_type_p2p(&sdata->vif));
3237 if (!hecap)
3238 return false;
3239
3240 if (!(hecap->he_cap_elem.mac_cap_info[0] &
3241 IEEE80211_HE_MAC_CAP0_TWT_RES))
3242 return false;
3243
3244 if (!rx->sta)
3245 return false;
3246
3247 switch (mgmt->u.action.u.s1g.action_code) {
3248 case WLAN_S1G_TWT_SETUP: {
3249 struct ieee80211_twt_setup *twt;
3250
3251 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3252 1 + /* action code */
3253 sizeof(struct ieee80211_twt_setup) +
3254 2 /* TWT req_type agrt */)
3255 break;
3256
3257 twt = (void *)mgmt->u.action.u.s1g.variable;
3258 if (twt->element_id != WLAN_EID_S1G_TWT)
3259 break;
3260
3261 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3262 4 + /* action code + token + tlv */
3263 twt->length)
3264 break;
3265
3266 return true; /* queue the frame */
3267 }
3268 case WLAN_S1G_TWT_TEARDOWN:
3269 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3270 break;
3271
3272 return true; /* queue the frame */
3273 default:
3274 break;
3275 }
3276
3277 return false;
3278 }
3279
3280 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3281 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3282 {
3283 struct ieee80211_local *local = rx->local;
3284 struct ieee80211_sub_if_data *sdata = rx->sdata;
3285 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3286 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3287 int len = rx->skb->len;
3288
3289 if (!ieee80211_is_action(mgmt->frame_control))
3290 return RX_CONTINUE;
3291
3292 /* drop too small frames */
3293 if (len < IEEE80211_MIN_ACTION_SIZE)
3294 return RX_DROP_UNUSABLE;
3295
3296 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3297 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3298 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3299 return RX_DROP_UNUSABLE;
3300
3301 switch (mgmt->u.action.category) {
3302 case WLAN_CATEGORY_HT:
3303 /* reject HT action frames from stations not supporting HT */
3304 if (!rx->sta->sta.ht_cap.ht_supported)
3305 goto invalid;
3306
3307 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3308 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3309 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3310 sdata->vif.type != NL80211_IFTYPE_AP &&
3311 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3312 break;
3313
3314 /* verify action & smps_control/chanwidth are present */
3315 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3316 goto invalid;
3317
3318 switch (mgmt->u.action.u.ht_smps.action) {
3319 case WLAN_HT_ACTION_SMPS: {
3320 struct ieee80211_supported_band *sband;
3321 enum ieee80211_smps_mode smps_mode;
3322 struct sta_opmode_info sta_opmode = {};
3323
3324 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3325 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3326 goto handled;
3327
3328 /* convert to HT capability */
3329 switch (mgmt->u.action.u.ht_smps.smps_control) {
3330 case WLAN_HT_SMPS_CONTROL_DISABLED:
3331 smps_mode = IEEE80211_SMPS_OFF;
3332 break;
3333 case WLAN_HT_SMPS_CONTROL_STATIC:
3334 smps_mode = IEEE80211_SMPS_STATIC;
3335 break;
3336 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3337 smps_mode = IEEE80211_SMPS_DYNAMIC;
3338 break;
3339 default:
3340 goto invalid;
3341 }
3342
3343 /* if no change do nothing */
3344 if (rx->sta->sta.smps_mode == smps_mode)
3345 goto handled;
3346 rx->sta->sta.smps_mode = smps_mode;
3347 sta_opmode.smps_mode =
3348 ieee80211_smps_mode_to_smps_mode(smps_mode);
3349 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3350
3351 sband = rx->local->hw.wiphy->bands[status->band];
3352
3353 rate_control_rate_update(local, sband, rx->sta,
3354 IEEE80211_RC_SMPS_CHANGED);
3355 cfg80211_sta_opmode_change_notify(sdata->dev,
3356 rx->sta->addr,
3357 &sta_opmode,
3358 GFP_ATOMIC);
3359 goto handled;
3360 }
3361 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3362 struct ieee80211_supported_band *sband;
3363 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3364 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3365 struct sta_opmode_info sta_opmode = {};
3366
3367 /* If it doesn't support 40 MHz it can't change ... */
3368 if (!(rx->sta->sta.ht_cap.cap &
3369 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3370 goto handled;
3371
3372 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3373 max_bw = IEEE80211_STA_RX_BW_20;
3374 else
3375 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3376
3377 /* set cur_max_bandwidth and recalc sta bw */
3378 rx->sta->cur_max_bandwidth = max_bw;
3379 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3380
3381 if (rx->sta->sta.bandwidth == new_bw)
3382 goto handled;
3383
3384 rx->sta->sta.bandwidth = new_bw;
3385 sband = rx->local->hw.wiphy->bands[status->band];
3386 sta_opmode.bw =
3387 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3388 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3389
3390 rate_control_rate_update(local, sband, rx->sta,
3391 IEEE80211_RC_BW_CHANGED);
3392 cfg80211_sta_opmode_change_notify(sdata->dev,
3393 rx->sta->addr,
3394 &sta_opmode,
3395 GFP_ATOMIC);
3396 goto handled;
3397 }
3398 default:
3399 goto invalid;
3400 }
3401
3402 break;
3403 case WLAN_CATEGORY_PUBLIC:
3404 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3405 goto invalid;
3406 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3407 break;
3408 if (!rx->sta)
3409 break;
3410 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3411 break;
3412 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3413 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3414 break;
3415 if (len < offsetof(struct ieee80211_mgmt,
3416 u.action.u.ext_chan_switch.variable))
3417 goto invalid;
3418 goto queue;
3419 case WLAN_CATEGORY_VHT:
3420 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3421 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3422 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3423 sdata->vif.type != NL80211_IFTYPE_AP &&
3424 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3425 break;
3426
3427 /* verify action code is present */
3428 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3429 goto invalid;
3430
3431 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3432 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3433 /* verify opmode is present */
3434 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3435 goto invalid;
3436 goto queue;
3437 }
3438 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3439 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3440 goto invalid;
3441 goto queue;
3442 }
3443 default:
3444 break;
3445 }
3446 break;
3447 case WLAN_CATEGORY_BACK:
3448 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3449 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3450 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3451 sdata->vif.type != NL80211_IFTYPE_AP &&
3452 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3453 break;
3454
3455 /* verify action_code is present */
3456 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3457 break;
3458
3459 switch (mgmt->u.action.u.addba_req.action_code) {
3460 case WLAN_ACTION_ADDBA_REQ:
3461 if (len < (IEEE80211_MIN_ACTION_SIZE +
3462 sizeof(mgmt->u.action.u.addba_req)))
3463 goto invalid;
3464 break;
3465 case WLAN_ACTION_ADDBA_RESP:
3466 if (len < (IEEE80211_MIN_ACTION_SIZE +
3467 sizeof(mgmt->u.action.u.addba_resp)))
3468 goto invalid;
3469 break;
3470 case WLAN_ACTION_DELBA:
3471 if (len < (IEEE80211_MIN_ACTION_SIZE +
3472 sizeof(mgmt->u.action.u.delba)))
3473 goto invalid;
3474 break;
3475 default:
3476 goto invalid;
3477 }
3478
3479 goto queue;
3480 case WLAN_CATEGORY_SPECTRUM_MGMT:
3481 /* verify action_code is present */
3482 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3483 break;
3484
3485 switch (mgmt->u.action.u.measurement.action_code) {
3486 case WLAN_ACTION_SPCT_MSR_REQ:
3487 if (status->band != NL80211_BAND_5GHZ)
3488 break;
3489
3490 if (len < (IEEE80211_MIN_ACTION_SIZE +
3491 sizeof(mgmt->u.action.u.measurement)))
3492 break;
3493
3494 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3495 break;
3496
3497 ieee80211_process_measurement_req(sdata, mgmt, len);
3498 goto handled;
3499 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3500 u8 *bssid;
3501 if (len < (IEEE80211_MIN_ACTION_SIZE +
3502 sizeof(mgmt->u.action.u.chan_switch)))
3503 break;
3504
3505 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3506 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3507 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3508 break;
3509
3510 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3511 bssid = sdata->u.mgd.bssid;
3512 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3513 bssid = sdata->u.ibss.bssid;
3514 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3515 bssid = mgmt->sa;
3516 else
3517 break;
3518
3519 if (!ether_addr_equal(mgmt->bssid, bssid))
3520 break;
3521
3522 goto queue;
3523 }
3524 }
3525 break;
3526 case WLAN_CATEGORY_SELF_PROTECTED:
3527 if (len < (IEEE80211_MIN_ACTION_SIZE +
3528 sizeof(mgmt->u.action.u.self_prot.action_code)))
3529 break;
3530
3531 switch (mgmt->u.action.u.self_prot.action_code) {
3532 case WLAN_SP_MESH_PEERING_OPEN:
3533 case WLAN_SP_MESH_PEERING_CLOSE:
3534 case WLAN_SP_MESH_PEERING_CONFIRM:
3535 if (!ieee80211_vif_is_mesh(&sdata->vif))
3536 goto invalid;
3537 if (sdata->u.mesh.user_mpm)
3538 /* userspace handles this frame */
3539 break;
3540 goto queue;
3541 case WLAN_SP_MGK_INFORM:
3542 case WLAN_SP_MGK_ACK:
3543 if (!ieee80211_vif_is_mesh(&sdata->vif))
3544 goto invalid;
3545 break;
3546 }
3547 break;
3548 case WLAN_CATEGORY_MESH_ACTION:
3549 if (len < (IEEE80211_MIN_ACTION_SIZE +
3550 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3551 break;
3552
3553 if (!ieee80211_vif_is_mesh(&sdata->vif))
3554 break;
3555 if (mesh_action_is_path_sel(mgmt) &&
3556 !mesh_path_sel_is_hwmp(sdata))
3557 break;
3558 goto queue;
3559 case WLAN_CATEGORY_S1G:
3560 if (len < offsetofend(typeof(*mgmt),
3561 u.action.u.s1g.action_code))
3562 break;
3563
3564 switch (mgmt->u.action.u.s1g.action_code) {
3565 case WLAN_S1G_TWT_SETUP:
3566 case WLAN_S1G_TWT_TEARDOWN:
3567 if (ieee80211_process_rx_twt_action(rx))
3568 goto queue;
3569 break;
3570 default:
3571 break;
3572 }
3573 break;
3574 }
3575
3576 return RX_CONTINUE;
3577
3578 invalid:
3579 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3580 /* will return in the next handlers */
3581 return RX_CONTINUE;
3582
3583 handled:
3584 if (rx->sta)
3585 rx->sta->rx_stats.packets++;
3586 dev_kfree_skb(rx->skb);
3587 return RX_QUEUED;
3588
3589 queue:
3590 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3591 return RX_QUEUED;
3592 }
3593
3594 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3595 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3596 {
3597 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3598 int sig = 0;
3599
3600 /* skip known-bad action frames and return them in the next handler */
3601 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3602 return RX_CONTINUE;
3603
3604 /*
3605 * Getting here means the kernel doesn't know how to handle
3606 * it, but maybe userspace does ... include returned frames
3607 * so userspace can register for those to know whether ones
3608 * it transmitted were processed or returned.
3609 */
3610
3611 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3612 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3613 sig = status->signal;
3614
3615 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3616 ieee80211_rx_status_to_khz(status), sig,
3617 rx->skb->data, rx->skb->len, 0)) {
3618 if (rx->sta)
3619 rx->sta->rx_stats.packets++;
3620 dev_kfree_skb(rx->skb);
3621 return RX_QUEUED;
3622 }
3623
3624 return RX_CONTINUE;
3625 }
3626
3627 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3628 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3629 {
3630 struct ieee80211_sub_if_data *sdata = rx->sdata;
3631 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3632 int len = rx->skb->len;
3633
3634 if (!ieee80211_is_action(mgmt->frame_control))
3635 return RX_CONTINUE;
3636
3637 switch (mgmt->u.action.category) {
3638 case WLAN_CATEGORY_SA_QUERY:
3639 if (len < (IEEE80211_MIN_ACTION_SIZE +
3640 sizeof(mgmt->u.action.u.sa_query)))
3641 break;
3642
3643 switch (mgmt->u.action.u.sa_query.action) {
3644 case WLAN_ACTION_SA_QUERY_REQUEST:
3645 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3646 break;
3647 ieee80211_process_sa_query_req(sdata, mgmt, len);
3648 goto handled;
3649 }
3650 break;
3651 }
3652
3653 return RX_CONTINUE;
3654
3655 handled:
3656 if (rx->sta)
3657 rx->sta->rx_stats.packets++;
3658 dev_kfree_skb(rx->skb);
3659 return RX_QUEUED;
3660 }
3661
3662 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3663 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3664 {
3665 struct ieee80211_local *local = rx->local;
3666 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3667 struct sk_buff *nskb;
3668 struct ieee80211_sub_if_data *sdata = rx->sdata;
3669 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3670
3671 if (!ieee80211_is_action(mgmt->frame_control))
3672 return RX_CONTINUE;
3673
3674 /*
3675 * For AP mode, hostapd is responsible for handling any action
3676 * frames that we didn't handle, including returning unknown
3677 * ones. For all other modes we will return them to the sender,
3678 * setting the 0x80 bit in the action category, as required by
3679 * 802.11-2012 9.24.4.
3680 * Newer versions of hostapd shall also use the management frame
3681 * registration mechanisms, but older ones still use cooked
3682 * monitor interfaces so push all frames there.
3683 */
3684 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3685 (sdata->vif.type == NL80211_IFTYPE_AP ||
3686 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3687 return RX_DROP_MONITOR;
3688
3689 if (is_multicast_ether_addr(mgmt->da))
3690 return RX_DROP_MONITOR;
3691
3692 /* do not return rejected action frames */
3693 if (mgmt->u.action.category & 0x80)
3694 return RX_DROP_UNUSABLE;
3695
3696 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3697 GFP_ATOMIC);
3698 if (nskb) {
3699 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3700
3701 nmgmt->u.action.category |= 0x80;
3702 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3703 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3704
3705 memset(nskb->cb, 0, sizeof(nskb->cb));
3706
3707 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3708 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3709
3710 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3711 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3712 IEEE80211_TX_CTL_NO_CCK_RATE;
3713 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3714 info->hw_queue =
3715 local->hw.offchannel_tx_hw_queue;
3716 }
3717
3718 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3719 status->band);
3720 }
3721 dev_kfree_skb(rx->skb);
3722 return RX_QUEUED;
3723 }
3724
3725 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3726 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3727 {
3728 struct ieee80211_sub_if_data *sdata = rx->sdata;
3729 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3730
3731 if (!ieee80211_is_ext(hdr->frame_control))
3732 return RX_CONTINUE;
3733
3734 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3735 return RX_DROP_MONITOR;
3736
3737 /* for now only beacons are ext, so queue them */
3738 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3739
3740 return RX_QUEUED;
3741 }
3742
3743 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3744 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3745 {
3746 struct ieee80211_sub_if_data *sdata = rx->sdata;
3747 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3748 __le16 stype;
3749
3750 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3751
3752 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3753 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3754 sdata->vif.type != NL80211_IFTYPE_OCB &&
3755 sdata->vif.type != NL80211_IFTYPE_STATION)
3756 return RX_DROP_MONITOR;
3757
3758 switch (stype) {
3759 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3760 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3761 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3762 /* process for all: mesh, mlme, ibss */
3763 break;
3764 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3765 if (is_multicast_ether_addr(mgmt->da) &&
3766 !is_broadcast_ether_addr(mgmt->da))
3767 return RX_DROP_MONITOR;
3768
3769 /* process only for station/IBSS */
3770 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3771 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3772 return RX_DROP_MONITOR;
3773 break;
3774 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3775 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3776 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3777 if (is_multicast_ether_addr(mgmt->da) &&
3778 !is_broadcast_ether_addr(mgmt->da))
3779 return RX_DROP_MONITOR;
3780
3781 /* process only for station */
3782 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3783 return RX_DROP_MONITOR;
3784 break;
3785 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3786 /* process only for ibss and mesh */
3787 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3788 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3789 return RX_DROP_MONITOR;
3790 break;
3791 default:
3792 return RX_DROP_MONITOR;
3793 }
3794
3795 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3796
3797 return RX_QUEUED;
3798 }
3799
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3800 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3801 struct ieee80211_rate *rate)
3802 {
3803 struct ieee80211_sub_if_data *sdata;
3804 struct ieee80211_local *local = rx->local;
3805 struct sk_buff *skb = rx->skb, *skb2;
3806 struct net_device *prev_dev = NULL;
3807 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3808 int needed_headroom;
3809
3810 /*
3811 * If cooked monitor has been processed already, then
3812 * don't do it again. If not, set the flag.
3813 */
3814 if (rx->flags & IEEE80211_RX_CMNTR)
3815 goto out_free_skb;
3816 rx->flags |= IEEE80211_RX_CMNTR;
3817
3818 /* If there are no cooked monitor interfaces, just free the SKB */
3819 if (!local->cooked_mntrs)
3820 goto out_free_skb;
3821
3822 /* vendor data is long removed here */
3823 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3824 /* room for the radiotap header based on driver features */
3825 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3826
3827 if (skb_headroom(skb) < needed_headroom &&
3828 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3829 goto out_free_skb;
3830
3831 /* prepend radiotap information */
3832 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3833 false);
3834
3835 skb_reset_mac_header(skb);
3836 skb->ip_summed = CHECKSUM_UNNECESSARY;
3837 skb->pkt_type = PACKET_OTHERHOST;
3838 skb->protocol = htons(ETH_P_802_2);
3839
3840 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3841 if (!ieee80211_sdata_running(sdata))
3842 continue;
3843
3844 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3845 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3846 continue;
3847
3848 if (prev_dev) {
3849 skb2 = skb_clone(skb, GFP_ATOMIC);
3850 if (skb2) {
3851 skb2->dev = prev_dev;
3852 netif_receive_skb(skb2);
3853 }
3854 }
3855
3856 prev_dev = sdata->dev;
3857 dev_sw_netstats_rx_add(sdata->dev, skb->len);
3858 }
3859
3860 if (prev_dev) {
3861 skb->dev = prev_dev;
3862 netif_receive_skb(skb);
3863 return;
3864 }
3865
3866 out_free_skb:
3867 dev_kfree_skb(skb);
3868 }
3869
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3870 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3871 ieee80211_rx_result res)
3872 {
3873 switch (res) {
3874 case RX_DROP_MONITOR:
3875 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3876 if (rx->sta)
3877 rx->sta->rx_stats.dropped++;
3878 fallthrough;
3879 case RX_CONTINUE: {
3880 struct ieee80211_rate *rate = NULL;
3881 struct ieee80211_supported_band *sband;
3882 struct ieee80211_rx_status *status;
3883
3884 status = IEEE80211_SKB_RXCB((rx->skb));
3885
3886 sband = rx->local->hw.wiphy->bands[status->band];
3887 if (status->encoding == RX_ENC_LEGACY)
3888 rate = &sband->bitrates[status->rate_idx];
3889
3890 ieee80211_rx_cooked_monitor(rx, rate);
3891 break;
3892 }
3893 case RX_DROP_UNUSABLE:
3894 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3895 if (rx->sta)
3896 rx->sta->rx_stats.dropped++;
3897 dev_kfree_skb(rx->skb);
3898 break;
3899 case RX_QUEUED:
3900 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3901 break;
3902 }
3903 }
3904
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3905 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3906 struct sk_buff_head *frames)
3907 {
3908 ieee80211_rx_result res = RX_DROP_MONITOR;
3909 struct sk_buff *skb;
3910
3911 #define CALL_RXH(rxh) \
3912 do { \
3913 res = rxh(rx); \
3914 if (res != RX_CONTINUE) \
3915 goto rxh_next; \
3916 } while (0)
3917
3918 /* Lock here to avoid hitting all of the data used in the RX
3919 * path (e.g. key data, station data, ...) concurrently when
3920 * a frame is released from the reorder buffer due to timeout
3921 * from the timer, potentially concurrently with RX from the
3922 * driver.
3923 */
3924 spin_lock_bh(&rx->local->rx_path_lock);
3925
3926 while ((skb = __skb_dequeue(frames))) {
3927 /*
3928 * all the other fields are valid across frames
3929 * that belong to an aMPDU since they are on the
3930 * same TID from the same station
3931 */
3932 rx->skb = skb;
3933
3934 CALL_RXH(ieee80211_rx_h_check_more_data);
3935 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3936 CALL_RXH(ieee80211_rx_h_sta_process);
3937 CALL_RXH(ieee80211_rx_h_decrypt);
3938 CALL_RXH(ieee80211_rx_h_defragment);
3939 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3940 /* must be after MMIC verify so header is counted in MPDU mic */
3941 #ifdef CONFIG_MAC80211_MESH
3942 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3943 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3944 #endif
3945 CALL_RXH(ieee80211_rx_h_amsdu);
3946 CALL_RXH(ieee80211_rx_h_data);
3947
3948 /* special treatment -- needs the queue */
3949 res = ieee80211_rx_h_ctrl(rx, frames);
3950 if (res != RX_CONTINUE)
3951 goto rxh_next;
3952
3953 CALL_RXH(ieee80211_rx_h_mgmt_check);
3954 CALL_RXH(ieee80211_rx_h_action);
3955 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3956 CALL_RXH(ieee80211_rx_h_action_post_userspace);
3957 CALL_RXH(ieee80211_rx_h_action_return);
3958 CALL_RXH(ieee80211_rx_h_ext);
3959 CALL_RXH(ieee80211_rx_h_mgmt);
3960
3961 rxh_next:
3962 ieee80211_rx_handlers_result(rx, res);
3963
3964 #undef CALL_RXH
3965 }
3966
3967 spin_unlock_bh(&rx->local->rx_path_lock);
3968 }
3969
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3970 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3971 {
3972 struct sk_buff_head reorder_release;
3973 ieee80211_rx_result res = RX_DROP_MONITOR;
3974
3975 __skb_queue_head_init(&reorder_release);
3976
3977 #define CALL_RXH(rxh) \
3978 do { \
3979 res = rxh(rx); \
3980 if (res != RX_CONTINUE) \
3981 goto rxh_next; \
3982 } while (0)
3983
3984 CALL_RXH(ieee80211_rx_h_check_dup);
3985 CALL_RXH(ieee80211_rx_h_check);
3986
3987 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3988
3989 ieee80211_rx_handlers(rx, &reorder_release);
3990 return;
3991
3992 rxh_next:
3993 ieee80211_rx_handlers_result(rx, res);
3994
3995 #undef CALL_RXH
3996 }
3997
3998 /*
3999 * This function makes calls into the RX path, therefore
4000 * it has to be invoked under RCU read lock.
4001 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)4002 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
4003 {
4004 struct sk_buff_head frames;
4005 struct ieee80211_rx_data rx = {
4006 .sta = sta,
4007 .sdata = sta->sdata,
4008 .local = sta->local,
4009 /* This is OK -- must be QoS data frame */
4010 .security_idx = tid,
4011 .seqno_idx = tid,
4012 };
4013 struct tid_ampdu_rx *tid_agg_rx;
4014
4015 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4016 if (!tid_agg_rx)
4017 return;
4018
4019 __skb_queue_head_init(&frames);
4020
4021 spin_lock(&tid_agg_rx->reorder_lock);
4022 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4023 spin_unlock(&tid_agg_rx->reorder_lock);
4024
4025 if (!skb_queue_empty(&frames)) {
4026 struct ieee80211_event event = {
4027 .type = BA_FRAME_TIMEOUT,
4028 .u.ba.tid = tid,
4029 .u.ba.sta = &sta->sta,
4030 };
4031 drv_event_callback(rx.local, rx.sdata, &event);
4032 }
4033
4034 ieee80211_rx_handlers(&rx, &frames);
4035 }
4036
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)4037 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4038 u16 ssn, u64 filtered,
4039 u16 received_mpdus)
4040 {
4041 struct sta_info *sta;
4042 struct tid_ampdu_rx *tid_agg_rx;
4043 struct sk_buff_head frames;
4044 struct ieee80211_rx_data rx = {
4045 /* This is OK -- must be QoS data frame */
4046 .security_idx = tid,
4047 .seqno_idx = tid,
4048 };
4049 int i, diff;
4050
4051 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4052 return;
4053
4054 __skb_queue_head_init(&frames);
4055
4056 sta = container_of(pubsta, struct sta_info, sta);
4057
4058 rx.sta = sta;
4059 rx.sdata = sta->sdata;
4060 rx.local = sta->local;
4061
4062 rcu_read_lock();
4063 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4064 if (!tid_agg_rx)
4065 goto out;
4066
4067 spin_lock_bh(&tid_agg_rx->reorder_lock);
4068
4069 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4070 int release;
4071
4072 /* release all frames in the reorder buffer */
4073 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4074 IEEE80211_SN_MODULO;
4075 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4076 release, &frames);
4077 /* update ssn to match received ssn */
4078 tid_agg_rx->head_seq_num = ssn;
4079 } else {
4080 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4081 &frames);
4082 }
4083
4084 /* handle the case that received ssn is behind the mac ssn.
4085 * it can be tid_agg_rx->buf_size behind and still be valid */
4086 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4087 if (diff >= tid_agg_rx->buf_size) {
4088 tid_agg_rx->reorder_buf_filtered = 0;
4089 goto release;
4090 }
4091 filtered = filtered >> diff;
4092 ssn += diff;
4093
4094 /* update bitmap */
4095 for (i = 0; i < tid_agg_rx->buf_size; i++) {
4096 int index = (ssn + i) % tid_agg_rx->buf_size;
4097
4098 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4099 if (filtered & BIT_ULL(i))
4100 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4101 }
4102
4103 /* now process also frames that the filter marking released */
4104 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4105
4106 release:
4107 spin_unlock_bh(&tid_agg_rx->reorder_lock);
4108
4109 ieee80211_rx_handlers(&rx, &frames);
4110
4111 out:
4112 rcu_read_unlock();
4113 }
4114 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4115
4116 /* main receive path */
4117
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4118 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4119 {
4120 struct ieee80211_sub_if_data *sdata = rx->sdata;
4121 struct sk_buff *skb = rx->skb;
4122 struct ieee80211_hdr *hdr = (void *)skb->data;
4123 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4124 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4125 bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4126 ieee80211_is_s1g_beacon(hdr->frame_control);
4127
4128 switch (sdata->vif.type) {
4129 case NL80211_IFTYPE_STATION:
4130 if (!bssid && !sdata->u.mgd.use_4addr)
4131 return false;
4132 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4133 return false;
4134 if (multicast)
4135 return true;
4136 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4137 case NL80211_IFTYPE_ADHOC:
4138 if (!bssid)
4139 return false;
4140 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4141 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4142 !is_valid_ether_addr(hdr->addr2))
4143 return false;
4144 if (ieee80211_is_beacon(hdr->frame_control))
4145 return true;
4146 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4147 return false;
4148 if (!multicast &&
4149 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4150 return false;
4151 if (!rx->sta) {
4152 int rate_idx;
4153 if (status->encoding != RX_ENC_LEGACY)
4154 rate_idx = 0; /* TODO: HT/VHT rates */
4155 else
4156 rate_idx = status->rate_idx;
4157 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4158 BIT(rate_idx));
4159 }
4160 return true;
4161 case NL80211_IFTYPE_OCB:
4162 if (!bssid)
4163 return false;
4164 if (!ieee80211_is_data_present(hdr->frame_control))
4165 return false;
4166 if (!is_broadcast_ether_addr(bssid))
4167 return false;
4168 if (!multicast &&
4169 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4170 return false;
4171 if (!rx->sta) {
4172 int rate_idx;
4173 if (status->encoding != RX_ENC_LEGACY)
4174 rate_idx = 0; /* TODO: HT rates */
4175 else
4176 rate_idx = status->rate_idx;
4177 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4178 BIT(rate_idx));
4179 }
4180 return true;
4181 case NL80211_IFTYPE_MESH_POINT:
4182 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4183 return false;
4184 if (multicast)
4185 return true;
4186 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4187 case NL80211_IFTYPE_AP_VLAN:
4188 case NL80211_IFTYPE_AP:
4189 if (!bssid)
4190 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4191
4192 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4193 /*
4194 * Accept public action frames even when the
4195 * BSSID doesn't match, this is used for P2P
4196 * and location updates. Note that mac80211
4197 * itself never looks at these frames.
4198 */
4199 if (!multicast &&
4200 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4201 return false;
4202 if (ieee80211_is_public_action(hdr, skb->len))
4203 return true;
4204 return ieee80211_is_beacon(hdr->frame_control);
4205 }
4206
4207 if (!ieee80211_has_tods(hdr->frame_control)) {
4208 /* ignore data frames to TDLS-peers */
4209 if (ieee80211_is_data(hdr->frame_control))
4210 return false;
4211 /* ignore action frames to TDLS-peers */
4212 if (ieee80211_is_action(hdr->frame_control) &&
4213 !is_broadcast_ether_addr(bssid) &&
4214 !ether_addr_equal(bssid, hdr->addr1))
4215 return false;
4216 }
4217
4218 /*
4219 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4220 * the BSSID - we've checked that already but may have accepted
4221 * the wildcard (ff:ff:ff:ff:ff:ff).
4222 *
4223 * It also says:
4224 * The BSSID of the Data frame is determined as follows:
4225 * a) If the STA is contained within an AP or is associated
4226 * with an AP, the BSSID is the address currently in use
4227 * by the STA contained in the AP.
4228 *
4229 * So we should not accept data frames with an address that's
4230 * multicast.
4231 *
4232 * Accepting it also opens a security problem because stations
4233 * could encrypt it with the GTK and inject traffic that way.
4234 */
4235 if (ieee80211_is_data(hdr->frame_control) && multicast)
4236 return false;
4237
4238 return true;
4239 case NL80211_IFTYPE_P2P_DEVICE:
4240 return ieee80211_is_public_action(hdr, skb->len) ||
4241 ieee80211_is_probe_req(hdr->frame_control) ||
4242 ieee80211_is_probe_resp(hdr->frame_control) ||
4243 ieee80211_is_beacon(hdr->frame_control);
4244 case NL80211_IFTYPE_NAN:
4245 /* Currently no frames on NAN interface are allowed */
4246 return false;
4247 default:
4248 break;
4249 }
4250
4251 WARN_ON_ONCE(1);
4252 return false;
4253 }
4254
ieee80211_check_fast_rx(struct sta_info * sta)4255 void ieee80211_check_fast_rx(struct sta_info *sta)
4256 {
4257 struct ieee80211_sub_if_data *sdata = sta->sdata;
4258 struct ieee80211_local *local = sdata->local;
4259 struct ieee80211_key *key;
4260 struct ieee80211_fast_rx fastrx = {
4261 .dev = sdata->dev,
4262 .vif_type = sdata->vif.type,
4263 .control_port_protocol = sdata->control_port_protocol,
4264 }, *old, *new = NULL;
4265 bool set_offload = false;
4266 bool assign = false;
4267 bool offload;
4268
4269 /* use sparse to check that we don't return without updating */
4270 __acquire(check_fast_rx);
4271
4272 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4273 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4274 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4275 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4276
4277 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4278
4279 /* fast-rx doesn't do reordering */
4280 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4281 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4282 goto clear;
4283
4284 switch (sdata->vif.type) {
4285 case NL80211_IFTYPE_STATION:
4286 if (sta->sta.tdls) {
4287 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4288 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4289 fastrx.expected_ds_bits = 0;
4290 } else {
4291 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4292 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4293 fastrx.expected_ds_bits =
4294 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4295 }
4296
4297 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4298 fastrx.expected_ds_bits |=
4299 cpu_to_le16(IEEE80211_FCTL_TODS);
4300 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4301 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4302 }
4303
4304 if (!sdata->u.mgd.powersave)
4305 break;
4306
4307 /* software powersave is a huge mess, avoid all of it */
4308 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4309 goto clear;
4310 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4311 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4312 goto clear;
4313 break;
4314 case NL80211_IFTYPE_AP_VLAN:
4315 case NL80211_IFTYPE_AP:
4316 /* parallel-rx requires this, at least with calls to
4317 * ieee80211_sta_ps_transition()
4318 */
4319 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4320 goto clear;
4321 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4322 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4323 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4324
4325 fastrx.internal_forward =
4326 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4327 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4328 !sdata->u.vlan.sta);
4329
4330 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4331 sdata->u.vlan.sta) {
4332 fastrx.expected_ds_bits |=
4333 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4334 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4335 fastrx.internal_forward = 0;
4336 }
4337
4338 break;
4339 default:
4340 goto clear;
4341 }
4342
4343 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4344 goto clear;
4345
4346 rcu_read_lock();
4347 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4348 if (!key)
4349 key = rcu_dereference(sdata->default_unicast_key);
4350 if (key) {
4351 switch (key->conf.cipher) {
4352 case WLAN_CIPHER_SUITE_TKIP:
4353 /* we don't want to deal with MMIC in fast-rx */
4354 goto clear_rcu;
4355 case WLAN_CIPHER_SUITE_CCMP:
4356 case WLAN_CIPHER_SUITE_CCMP_256:
4357 case WLAN_CIPHER_SUITE_GCMP:
4358 case WLAN_CIPHER_SUITE_GCMP_256:
4359 break;
4360 default:
4361 /* We also don't want to deal with
4362 * WEP or cipher scheme.
4363 */
4364 goto clear_rcu;
4365 }
4366
4367 fastrx.key = true;
4368 fastrx.icv_len = key->conf.icv_len;
4369 }
4370
4371 assign = true;
4372 clear_rcu:
4373 rcu_read_unlock();
4374 clear:
4375 __release(check_fast_rx);
4376
4377 if (assign)
4378 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4379
4380 offload = assign &&
4381 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4382
4383 if (offload)
4384 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4385 else
4386 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4387
4388 if (set_offload)
4389 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4390
4391 spin_lock_bh(&sta->lock);
4392 old = rcu_dereference_protected(sta->fast_rx, true);
4393 rcu_assign_pointer(sta->fast_rx, new);
4394 spin_unlock_bh(&sta->lock);
4395
4396 if (old)
4397 kfree_rcu(old, rcu_head);
4398 }
4399
ieee80211_clear_fast_rx(struct sta_info * sta)4400 void ieee80211_clear_fast_rx(struct sta_info *sta)
4401 {
4402 struct ieee80211_fast_rx *old;
4403
4404 spin_lock_bh(&sta->lock);
4405 old = rcu_dereference_protected(sta->fast_rx, true);
4406 RCU_INIT_POINTER(sta->fast_rx, NULL);
4407 spin_unlock_bh(&sta->lock);
4408
4409 if (old)
4410 kfree_rcu(old, rcu_head);
4411 }
4412
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4413 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4414 {
4415 struct ieee80211_local *local = sdata->local;
4416 struct sta_info *sta;
4417
4418 lockdep_assert_held(&local->sta_mtx);
4419
4420 list_for_each_entry(sta, &local->sta_list, list) {
4421 if (sdata != sta->sdata &&
4422 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4423 continue;
4424 ieee80211_check_fast_rx(sta);
4425 }
4426 }
4427
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4428 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4429 {
4430 struct ieee80211_local *local = sdata->local;
4431
4432 mutex_lock(&local->sta_mtx);
4433 __ieee80211_check_fast_rx_iface(sdata);
4434 mutex_unlock(&local->sta_mtx);
4435 }
4436
ieee80211_rx_8023(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx,int orig_len)4437 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4438 struct ieee80211_fast_rx *fast_rx,
4439 int orig_len)
4440 {
4441 struct ieee80211_sta_rx_stats *stats;
4442 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4443 struct sta_info *sta = rx->sta;
4444 struct sk_buff *skb = rx->skb;
4445 void *sa = skb->data + ETH_ALEN;
4446 void *da = skb->data;
4447
4448 stats = &sta->rx_stats;
4449 if (fast_rx->uses_rss)
4450 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4451
4452 /* statistics part of ieee80211_rx_h_sta_process() */
4453 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4454 stats->last_signal = status->signal;
4455 if (!fast_rx->uses_rss)
4456 ewma_signal_add(&sta->rx_stats_avg.signal,
4457 -status->signal);
4458 }
4459
4460 if (status->chains) {
4461 int i;
4462
4463 stats->chains = status->chains;
4464 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4465 int signal = status->chain_signal[i];
4466
4467 if (!(status->chains & BIT(i)))
4468 continue;
4469
4470 stats->chain_signal_last[i] = signal;
4471 if (!fast_rx->uses_rss)
4472 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4473 -signal);
4474 }
4475 }
4476 /* end of statistics */
4477
4478 stats->last_rx = jiffies;
4479 stats->last_rate = sta_stats_encode_rate(status);
4480
4481 stats->fragments++;
4482 stats->packets++;
4483
4484 skb->dev = fast_rx->dev;
4485
4486 dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4487
4488 /* The seqno index has the same property as needed
4489 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4490 * for non-QoS-data frames. Here we know it's a data
4491 * frame, so count MSDUs.
4492 */
4493 u64_stats_update_begin(&stats->syncp);
4494 stats->msdu[rx->seqno_idx]++;
4495 stats->bytes += orig_len;
4496 u64_stats_update_end(&stats->syncp);
4497
4498 if (fast_rx->internal_forward) {
4499 struct sk_buff *xmit_skb = NULL;
4500 if (is_multicast_ether_addr(da)) {
4501 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4502 } else if (!ether_addr_equal(da, sa) &&
4503 sta_info_get(rx->sdata, da)) {
4504 xmit_skb = skb;
4505 skb = NULL;
4506 }
4507
4508 if (xmit_skb) {
4509 /*
4510 * Send to wireless media and increase priority by 256
4511 * to keep the received priority instead of
4512 * reclassifying the frame (see cfg80211_classify8021d).
4513 */
4514 xmit_skb->priority += 256;
4515 xmit_skb->protocol = htons(ETH_P_802_3);
4516 skb_reset_network_header(xmit_skb);
4517 skb_reset_mac_header(xmit_skb);
4518 dev_queue_xmit(xmit_skb);
4519 }
4520
4521 if (!skb)
4522 return;
4523 }
4524
4525 /* deliver to local stack */
4526 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4527 ieee80211_deliver_skb_to_local_stack(skb, rx);
4528 }
4529
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4530 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4531 struct ieee80211_fast_rx *fast_rx)
4532 {
4533 struct sk_buff *skb = rx->skb;
4534 struct ieee80211_hdr *hdr = (void *)skb->data;
4535 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4536 struct sta_info *sta = rx->sta;
4537 int orig_len = skb->len;
4538 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4539 int snap_offs = hdrlen;
4540 struct {
4541 u8 snap[sizeof(rfc1042_header)];
4542 __be16 proto;
4543 } *payload __aligned(2);
4544 struct {
4545 u8 da[ETH_ALEN];
4546 u8 sa[ETH_ALEN];
4547 } addrs __aligned(2);
4548 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4549
4550 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4551 * to a common data structure; drivers can implement that per queue
4552 * but we don't have that information in mac80211
4553 */
4554 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4555 return false;
4556
4557 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4558
4559 /* If using encryption, we also need to have:
4560 * - PN_VALIDATED: similar, but the implementation is tricky
4561 * - DECRYPTED: necessary for PN_VALIDATED
4562 */
4563 if (fast_rx->key &&
4564 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4565 return false;
4566
4567 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4568 return false;
4569
4570 if (unlikely(ieee80211_is_frag(hdr)))
4571 return false;
4572
4573 /* Since our interface address cannot be multicast, this
4574 * implicitly also rejects multicast frames without the
4575 * explicit check.
4576 *
4577 * We shouldn't get any *data* frames not addressed to us
4578 * (AP mode will accept multicast *management* frames), but
4579 * punting here will make it go through the full checks in
4580 * ieee80211_accept_frame().
4581 */
4582 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4583 return false;
4584
4585 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4586 IEEE80211_FCTL_TODS)) !=
4587 fast_rx->expected_ds_bits)
4588 return false;
4589
4590 /* assign the key to drop unencrypted frames (later)
4591 * and strip the IV/MIC if necessary
4592 */
4593 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4594 /* GCMP header length is the same */
4595 snap_offs += IEEE80211_CCMP_HDR_LEN;
4596 }
4597
4598 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4599 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4600 goto drop;
4601
4602 payload = (void *)(skb->data + snap_offs);
4603
4604 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4605 return false;
4606
4607 /* Don't handle these here since they require special code.
4608 * Accept AARP and IPX even though they should come with a
4609 * bridge-tunnel header - but if we get them this way then
4610 * there's little point in discarding them.
4611 */
4612 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4613 payload->proto == fast_rx->control_port_protocol))
4614 return false;
4615 }
4616
4617 /* after this point, don't punt to the slowpath! */
4618
4619 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4620 pskb_trim(skb, skb->len - fast_rx->icv_len))
4621 goto drop;
4622
4623 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4624 goto drop;
4625
4626 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4627 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4628 RX_QUEUED)
4629 goto drop;
4630
4631 return true;
4632 }
4633
4634 /* do the header conversion - first grab the addresses */
4635 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4636 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4637 /* remove the SNAP but leave the ethertype */
4638 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4639 /* push the addresses in front */
4640 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4641
4642 ieee80211_rx_8023(rx, fast_rx, orig_len);
4643
4644 return true;
4645 drop:
4646 dev_kfree_skb(skb);
4647 if (fast_rx->uses_rss)
4648 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4649
4650 stats->dropped++;
4651 return true;
4652 }
4653
4654 /*
4655 * This function returns whether or not the SKB
4656 * was destined for RX processing or not, which,
4657 * if consume is true, is equivalent to whether
4658 * or not the skb was consumed.
4659 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4660 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4661 struct sk_buff *skb, bool consume)
4662 {
4663 struct ieee80211_local *local = rx->local;
4664 struct ieee80211_sub_if_data *sdata = rx->sdata;
4665
4666 rx->skb = skb;
4667
4668 /* See if we can do fast-rx; if we have to copy we already lost,
4669 * so punt in that case. We should never have to deliver a data
4670 * frame to multiple interfaces anyway.
4671 *
4672 * We skip the ieee80211_accept_frame() call and do the necessary
4673 * checking inside ieee80211_invoke_fast_rx().
4674 */
4675 if (consume && rx->sta) {
4676 struct ieee80211_fast_rx *fast_rx;
4677
4678 fast_rx = rcu_dereference(rx->sta->fast_rx);
4679 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4680 return true;
4681 }
4682
4683 if (!ieee80211_accept_frame(rx))
4684 return false;
4685
4686 if (!consume) {
4687 skb = skb_copy(skb, GFP_ATOMIC);
4688 if (!skb) {
4689 if (net_ratelimit())
4690 wiphy_debug(local->hw.wiphy,
4691 "failed to copy skb for %s\n",
4692 sdata->name);
4693 return true;
4694 }
4695
4696 rx->skb = skb;
4697 }
4698
4699 ieee80211_invoke_rx_handlers(rx);
4700 return true;
4701 }
4702
__ieee80211_rx_handle_8023(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4703 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4704 struct ieee80211_sta *pubsta,
4705 struct sk_buff *skb,
4706 struct list_head *list)
4707 {
4708 struct ieee80211_local *local = hw_to_local(hw);
4709 struct ieee80211_fast_rx *fast_rx;
4710 struct ieee80211_rx_data rx;
4711
4712 memset(&rx, 0, sizeof(rx));
4713 rx.skb = skb;
4714 rx.local = local;
4715 rx.list = list;
4716
4717 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4718
4719 /* drop frame if too short for header */
4720 if (skb->len < sizeof(struct ethhdr))
4721 goto drop;
4722
4723 if (!pubsta)
4724 goto drop;
4725
4726 rx.sta = container_of(pubsta, struct sta_info, sta);
4727 rx.sdata = rx.sta->sdata;
4728
4729 fast_rx = rcu_dereference(rx.sta->fast_rx);
4730 if (!fast_rx)
4731 goto drop;
4732
4733 ieee80211_rx_8023(&rx, fast_rx, skb->len);
4734 return;
4735
4736 drop:
4737 dev_kfree_skb(skb);
4738 }
4739
4740 /*
4741 * This is the actual Rx frames handler. as it belongs to Rx path it must
4742 * be called with rcu_read_lock protection.
4743 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4744 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4745 struct ieee80211_sta *pubsta,
4746 struct sk_buff *skb,
4747 struct list_head *list)
4748 {
4749 struct ieee80211_local *local = hw_to_local(hw);
4750 struct ieee80211_sub_if_data *sdata;
4751 struct ieee80211_hdr *hdr;
4752 __le16 fc;
4753 struct ieee80211_rx_data rx;
4754 struct ieee80211_sub_if_data *prev;
4755 struct rhlist_head *tmp;
4756 int err = 0;
4757
4758 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4759 memset(&rx, 0, sizeof(rx));
4760 rx.skb = skb;
4761 rx.local = local;
4762 rx.list = list;
4763
4764 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4765 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4766
4767 if (ieee80211_is_mgmt(fc)) {
4768 /* drop frame if too short for header */
4769 if (skb->len < ieee80211_hdrlen(fc))
4770 err = -ENOBUFS;
4771 else
4772 err = skb_linearize(skb);
4773 } else {
4774 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4775 }
4776
4777 if (err) {
4778 dev_kfree_skb(skb);
4779 return;
4780 }
4781
4782 hdr = (struct ieee80211_hdr *)skb->data;
4783 ieee80211_parse_qos(&rx);
4784 ieee80211_verify_alignment(&rx);
4785
4786 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4787 ieee80211_is_beacon(hdr->frame_control) ||
4788 ieee80211_is_s1g_beacon(hdr->frame_control)))
4789 ieee80211_scan_rx(local, skb);
4790
4791 if (ieee80211_is_data(fc)) {
4792 struct sta_info *sta, *prev_sta;
4793
4794 if (pubsta) {
4795 rx.sta = container_of(pubsta, struct sta_info, sta);
4796 rx.sdata = rx.sta->sdata;
4797 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4798 return;
4799 goto out;
4800 }
4801
4802 prev_sta = NULL;
4803
4804 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4805 if (!prev_sta) {
4806 prev_sta = sta;
4807 continue;
4808 }
4809
4810 rx.sta = prev_sta;
4811 rx.sdata = prev_sta->sdata;
4812 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4813
4814 prev_sta = sta;
4815 }
4816
4817 if (prev_sta) {
4818 rx.sta = prev_sta;
4819 rx.sdata = prev_sta->sdata;
4820
4821 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4822 return;
4823 goto out;
4824 }
4825 }
4826
4827 prev = NULL;
4828
4829 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4830 if (!ieee80211_sdata_running(sdata))
4831 continue;
4832
4833 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4834 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4835 continue;
4836
4837 /*
4838 * frame is destined for this interface, but if it's
4839 * not also for the previous one we handle that after
4840 * the loop to avoid copying the SKB once too much
4841 */
4842
4843 if (!prev) {
4844 prev = sdata;
4845 continue;
4846 }
4847
4848 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4849 rx.sdata = prev;
4850 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4851
4852 prev = sdata;
4853 }
4854
4855 if (prev) {
4856 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4857 rx.sdata = prev;
4858
4859 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4860 return;
4861 }
4862
4863 out:
4864 dev_kfree_skb(skb);
4865 }
4866
4867 /*
4868 * This is the receive path handler. It is called by a low level driver when an
4869 * 802.11 MPDU is received from the hardware.
4870 */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4871 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4872 struct sk_buff *skb, struct list_head *list)
4873 {
4874 struct ieee80211_local *local = hw_to_local(hw);
4875 struct ieee80211_rate *rate = NULL;
4876 struct ieee80211_supported_band *sband;
4877 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4878 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
4879
4880 WARN_ON_ONCE(softirq_count() == 0);
4881
4882 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4883 goto drop;
4884
4885 sband = local->hw.wiphy->bands[status->band];
4886 if (WARN_ON(!sband))
4887 goto drop;
4888
4889 /*
4890 * If we're suspending, it is possible although not too likely
4891 * that we'd be receiving frames after having already partially
4892 * quiesced the stack. We can't process such frames then since
4893 * that might, for example, cause stations to be added or other
4894 * driver callbacks be invoked.
4895 */
4896 if (unlikely(local->quiescing || local->suspended))
4897 goto drop;
4898
4899 /* We might be during a HW reconfig, prevent Rx for the same reason */
4900 if (unlikely(local->in_reconfig))
4901 goto drop;
4902
4903 /*
4904 * The same happens when we're not even started,
4905 * but that's worth a warning.
4906 */
4907 if (WARN_ON(!local->started))
4908 goto drop;
4909
4910 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4911 /*
4912 * Validate the rate, unless a PLCP error means that
4913 * we probably can't have a valid rate here anyway.
4914 */
4915
4916 switch (status->encoding) {
4917 case RX_ENC_HT:
4918 /*
4919 * rate_idx is MCS index, which can be [0-76]
4920 * as documented on:
4921 *
4922 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4923 *
4924 * Anything else would be some sort of driver or
4925 * hardware error. The driver should catch hardware
4926 * errors.
4927 */
4928 if (WARN(status->rate_idx > 76,
4929 "Rate marked as an HT rate but passed "
4930 "status->rate_idx is not "
4931 "an MCS index [0-76]: %d (0x%02x)\n",
4932 status->rate_idx,
4933 status->rate_idx))
4934 goto drop;
4935 break;
4936 case RX_ENC_VHT:
4937 if (WARN_ONCE(status->rate_idx > 11 ||
4938 !status->nss ||
4939 status->nss > 8,
4940 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4941 status->rate_idx, status->nss))
4942 goto drop;
4943 break;
4944 case RX_ENC_HE:
4945 if (WARN_ONCE(status->rate_idx > 11 ||
4946 !status->nss ||
4947 status->nss > 8,
4948 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4949 status->rate_idx, status->nss))
4950 goto drop;
4951 break;
4952 default:
4953 WARN_ON_ONCE(1);
4954 fallthrough;
4955 case RX_ENC_LEGACY:
4956 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4957 goto drop;
4958 rate = &sband->bitrates[status->rate_idx];
4959 }
4960 }
4961
4962 status->rx_flags = 0;
4963
4964 kcov_remote_start_common(skb_get_kcov_handle(skb));
4965
4966 /*
4967 * Frames with failed FCS/PLCP checksum are not returned,
4968 * all other frames are returned without radiotap header
4969 * if it was previously present.
4970 * Also, frames with less than 16 bytes are dropped.
4971 */
4972 if (!(status->flag & RX_FLAG_8023))
4973 skb = ieee80211_rx_monitor(local, skb, rate);
4974 if (skb) {
4975 if ((status->flag & RX_FLAG_8023) ||
4976 ieee80211_is_data_present(hdr->frame_control))
4977 ieee80211_tpt_led_trig_rx(local, skb->len);
4978
4979 if (status->flag & RX_FLAG_8023)
4980 __ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4981 else
4982 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4983 }
4984
4985 kcov_remote_stop();
4986 return;
4987 drop:
4988 kfree_skb(skb);
4989 }
4990 EXPORT_SYMBOL(ieee80211_rx_list);
4991
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4992 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4993 struct sk_buff *skb, struct napi_struct *napi)
4994 {
4995 struct sk_buff *tmp;
4996 LIST_HEAD(list);
4997
4998
4999 /*
5000 * key references and virtual interfaces are protected using RCU
5001 * and this requires that we are in a read-side RCU section during
5002 * receive processing
5003 */
5004 rcu_read_lock();
5005 ieee80211_rx_list(hw, pubsta, skb, &list);
5006 rcu_read_unlock();
5007
5008 if (!napi) {
5009 netif_receive_skb_list(&list);
5010 return;
5011 }
5012
5013 list_for_each_entry_safe(skb, tmp, &list, list) {
5014 skb_list_del_init(skb);
5015 napi_gro_receive(napi, skb);
5016 }
5017 }
5018 EXPORT_SYMBOL(ieee80211_rx_napi);
5019
5020 /* This is a version of the rx handler that can be called from hard irq
5021 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)5022 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5023 {
5024 struct ieee80211_local *local = hw_to_local(hw);
5025
5026 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5027
5028 skb->pkt_type = IEEE80211_RX_MSG;
5029 skb_queue_tail(&local->skb_queue, skb);
5030 tasklet_schedule(&local->tasklet);
5031 }
5032 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5033