1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2022 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
get_cfg80211_regdom(void)138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
get_wiphy_regdom(struct wiphy * wiphy)148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169 }
170
reg_get_dfs_region(struct wiphy * wiphy)171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201 out:
202 rcu_read_unlock();
203
204 return dfs_region;
205 }
206
rcu_free_regdom(const struct ieee80211_regdomain * r)207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
get_last_request(void)214 static struct regulatory_request *get_last_request(void)
215 {
216 return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
reg_free_request(struct regulatory_request * request)292 static void reg_free_request(struct regulatory_request *request)
293 {
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299 }
300
reg_free_last_request(void)301 static void reg_free_last_request(void)
302 {
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307 }
308
reg_update_last_request(struct regulatory_request * request)309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319 }
320
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)321 static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323 {
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348 }
349
350 /*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
update_world_regdomain(const struct ieee80211_regdomain * rd)354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365 }
366
is_world_regdom(const char * alpha2)367 bool is_world_regdom(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
is_alpha2_set(const char * alpha2)374 static bool is_alpha2_set(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379 }
380
is_unknown_alpha2(const char * alpha2)381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
is_intersected_alpha2(const char * alpha2)392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
is_an_alpha2(const char * alpha2)404 static bool is_an_alpha2(const char *alpha2)
405 {
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
alpha2_equal(const char * alpha2_x,const char * alpha2_y)411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
regdom_changes(const char * alpha2)418 static bool regdom_changes(const char *alpha2)
419 {
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
is_user_regdom_saved(void)432 static bool is_user_regdom_saved(void)
433 {
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444 }
445
446 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464 }
465
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
reg_regdb_apply(struct work_struct * work)483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
reg_schedule_apply(const struct ieee80211_regdomain * regdom)506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
crda_timeout_work(struct work_struct * work)535 static void crda_timeout_work(struct work_struct *work)
536 {
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542 }
543
cancel_crda_timeout(void)544 static void cancel_crda_timeout(void)
545 {
546 cancel_delayed_work(&crda_timeout);
547 }
548
cancel_crda_timeout_sync(void)549 static void cancel_crda_timeout_sync(void)
550 {
551 cancel_delayed_work_sync(&crda_timeout);
552 }
553
reset_crda_timeouts(void)554 static void reset_crda_timeouts(void)
555 {
556 reg_crda_timeouts = 0;
557 }
558
559 /*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
call_crda(const char * alpha2)563 static int call_crda(const char *alpha2)
564 {
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590 }
591 #else
cancel_crda_timeout(void)592 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)593 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)594 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)595 static inline int call_crda(const char *alpha2)
596 {
597 return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654 } __packed __aligned(4);
655
ecw2cw(int ecw)656 static int ecw2cw(int ecw)
657 {
658 return (1 << ecw) - 1;
659 }
660
valid_wmm(struct fwdb_wmm_rule * rule)661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679 }
680
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704 }
705
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)706 static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708 {
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741
load_keys_from_buffer(const u8 * p,unsigned int buflen)742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744 const u8 *end = p + buflen;
745 size_t plen;
746 key_ref_t key;
747
748 while (p < end) {
749 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750 * than 256 bytes in size.
751 */
752 if (end - p < 4)
753 goto dodgy_cert;
754 if (p[0] != 0x30 &&
755 p[1] != 0x82)
756 goto dodgy_cert;
757 plen = (p[2] << 8) | p[3];
758 plen += 4;
759 if (plen > end - p)
760 goto dodgy_cert;
761
762 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763 "asymmetric", NULL, p, plen,
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ),
766 KEY_ALLOC_NOT_IN_QUOTA |
767 KEY_ALLOC_BUILT_IN |
768 KEY_ALLOC_BYPASS_RESTRICTION);
769 if (IS_ERR(key)) {
770 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771 PTR_ERR(key));
772 } else {
773 pr_notice("Loaded X.509 cert '%s'\n",
774 key_ref_to_ptr(key)->description);
775 key_ref_put(key);
776 }
777 p += plen;
778 }
779
780 return;
781
782 dodgy_cert:
783 pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785
load_builtin_regdb_keys(void)786 static int __init load_builtin_regdb_keys(void)
787 {
788 builtin_regdb_keys =
789 keyring_alloc(".builtin_regdb_keys",
790 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794 if (IS_ERR(builtin_regdb_keys))
795 return PTR_ERR(builtin_regdb_keys);
796
797 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806
807 return 0;
808 }
809
810 MODULE_FIRMWARE("regulatory.db.p7s");
811
regdb_has_valid_signature(const u8 * data,unsigned int size)812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 {
814 const struct firmware *sig;
815 bool result;
816
817 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
818 return false;
819
820 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821 builtin_regdb_keys,
822 VERIFYING_UNSPECIFIED_SIGNATURE,
823 NULL, NULL) == 0;
824
825 release_firmware(sig);
826
827 return result;
828 }
829
free_regdb_keyring(void)830 static void free_regdb_keyring(void)
831 {
832 key_put(builtin_regdb_keys);
833 }
834 #else
load_builtin_regdb_keys(void)835 static int load_builtin_regdb_keys(void)
836 {
837 return 0;
838 }
839
regdb_has_valid_signature(const u8 * data,unsigned int size)840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841 {
842 return true;
843 }
844
free_regdb_keyring(void)845 static void free_regdb_keyring(void)
846 {
847 }
848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849
valid_regdb(const u8 * data,unsigned int size)850 static bool valid_regdb(const u8 *data, unsigned int size)
851 {
852 const struct fwdb_header *hdr = (void *)data;
853 const struct fwdb_country *country;
854
855 if (size < sizeof(*hdr))
856 return false;
857
858 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859 return false;
860
861 if (hdr->version != cpu_to_be32(FWDB_VERSION))
862 return false;
863
864 if (!regdb_has_valid_signature(data, size))
865 return false;
866
867 country = &hdr->country[0];
868 while ((u8 *)(country + 1) <= data + size) {
869 if (!country->coll_ptr)
870 break;
871 if (!valid_country(data, size, country))
872 return false;
873 country++;
874 }
875
876 return true;
877 }
878
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)879 static void set_wmm_rule(const struct fwdb_header *db,
880 const struct fwdb_country *country,
881 const struct fwdb_rule *rule,
882 struct ieee80211_reg_rule *rrule)
883 {
884 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885 struct fwdb_wmm_rule *wmm;
886 unsigned int i, wmm_ptr;
887
888 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889 wmm = (void *)((u8 *)db + wmm_ptr);
890
891 if (!valid_wmm(wmm)) {
892 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894 country->alpha2[0], country->alpha2[1]);
895 return;
896 }
897
898 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899 wmm_rule->client[i].cw_min =
900 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
903 wmm_rule->client[i].cot =
904 1000 * be16_to_cpu(wmm->client[i].cot);
905 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909 }
910
911 rrule->has_wmm = true;
912 }
913
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)914 static int __regdb_query_wmm(const struct fwdb_header *db,
915 const struct fwdb_country *country, int freq,
916 struct ieee80211_reg_rule *rrule)
917 {
918 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920 int i;
921
922 for (i = 0; i < coll->n_rules; i++) {
923 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926
927 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928 continue;
929
930 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932 set_wmm_rule(db, country, rule, rrule);
933 return 0;
934 }
935 }
936
937 return -ENODATA;
938 }
939
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941 {
942 const struct fwdb_header *hdr = regdb;
943 const struct fwdb_country *country;
944
945 if (!regdb)
946 return -ENODATA;
947
948 if (IS_ERR(regdb))
949 return PTR_ERR(regdb);
950
951 country = &hdr->country[0];
952 while (country->coll_ptr) {
953 if (alpha2_equal(alpha2, country->alpha2))
954 return __regdb_query_wmm(regdb, country, freq, rule);
955
956 country++;
957 }
958
959 return -ENODATA;
960 }
961 EXPORT_SYMBOL(reg_query_regdb_wmm);
962
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)963 static int regdb_query_country(const struct fwdb_header *db,
964 const struct fwdb_country *country)
965 {
966 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968 struct ieee80211_regdomain *regdom;
969 unsigned int i;
970
971 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972 GFP_KERNEL);
973 if (!regdom)
974 return -ENOMEM;
975
976 regdom->n_reg_rules = coll->n_rules;
977 regdom->alpha2[0] = country->alpha2[0];
978 regdom->alpha2[1] = country->alpha2[1];
979 regdom->dfs_region = coll->dfs_region;
980
981 for (i = 0; i < regdom->n_reg_rules; i++) {
982 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
986
987 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990
991 rrule->power_rule.max_antenna_gain = 0;
992 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993
994 rrule->flags = 0;
995 if (rule->flags & FWDB_FLAG_NO_OFDM)
996 rrule->flags |= NL80211_RRF_NO_OFDM;
997 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999 if (rule->flags & FWDB_FLAG_DFS)
1000 rrule->flags |= NL80211_RRF_DFS;
1001 if (rule->flags & FWDB_FLAG_NO_IR)
1002 rrule->flags |= NL80211_RRF_NO_IR;
1003 if (rule->flags & FWDB_FLAG_AUTO_BW)
1004 rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006 rrule->dfs_cac_ms = 0;
1007
1008 /* handle optional data */
1009 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010 rrule->dfs_cac_ms =
1011 1000 * be16_to_cpu(rule->cac_timeout);
1012 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013 set_wmm_rule(db, country, rule, rrule);
1014 }
1015
1016 return reg_schedule_apply(regdom);
1017 }
1018
query_regdb(const char * alpha2)1019 static int query_regdb(const char *alpha2)
1020 {
1021 const struct fwdb_header *hdr = regdb;
1022 const struct fwdb_country *country;
1023
1024 ASSERT_RTNL();
1025
1026 if (IS_ERR(regdb))
1027 return PTR_ERR(regdb);
1028
1029 country = &hdr->country[0];
1030 while (country->coll_ptr) {
1031 if (alpha2_equal(alpha2, country->alpha2))
1032 return regdb_query_country(regdb, country);
1033 country++;
1034 }
1035
1036 return -ENODATA;
1037 }
1038
regdb_fw_cb(const struct firmware * fw,void * context)1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041 int set_error = 0;
1042 bool restore = true;
1043 void *db;
1044
1045 if (!fw) {
1046 pr_info("failed to load regulatory.db\n");
1047 set_error = -ENODATA;
1048 } else if (!valid_regdb(fw->data, fw->size)) {
1049 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050 set_error = -EINVAL;
1051 }
1052
1053 rtnl_lock();
1054 if (regdb && !IS_ERR(regdb)) {
1055 /* negative case - a bug
1056 * positive case - can happen due to race in case of multiple cb's in
1057 * queue, due to usage of asynchronous callback
1058 *
1059 * Either case, just restore and free new db.
1060 */
1061 } else if (set_error) {
1062 regdb = ERR_PTR(set_error);
1063 } else if (fw) {
1064 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065 if (db) {
1066 regdb = db;
1067 restore = context && query_regdb(context);
1068 } else {
1069 restore = true;
1070 }
1071 }
1072
1073 if (restore)
1074 restore_regulatory_settings(true, false);
1075
1076 rtnl_unlock();
1077
1078 kfree(context);
1079
1080 release_firmware(fw);
1081 }
1082
1083 MODULE_FIRMWARE("regulatory.db");
1084
query_regdb_file(const char * alpha2)1085 static int query_regdb_file(const char *alpha2)
1086 {
1087 int err;
1088
1089 ASSERT_RTNL();
1090
1091 if (regdb)
1092 return query_regdb(alpha2);
1093
1094 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1095 if (!alpha2)
1096 return -ENOMEM;
1097
1098 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1099 ®_pdev->dev, GFP_KERNEL,
1100 (void *)alpha2, regdb_fw_cb);
1101 if (err)
1102 kfree(alpha2);
1103
1104 return err;
1105 }
1106
reg_reload_regdb(void)1107 int reg_reload_regdb(void)
1108 {
1109 const struct firmware *fw;
1110 void *db;
1111 int err;
1112 const struct ieee80211_regdomain *current_regdomain;
1113 struct regulatory_request *request;
1114
1115 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1116 if (err)
1117 return err;
1118
1119 if (!valid_regdb(fw->data, fw->size)) {
1120 err = -ENODATA;
1121 goto out;
1122 }
1123
1124 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1125 if (!db) {
1126 err = -ENOMEM;
1127 goto out;
1128 }
1129
1130 rtnl_lock();
1131 if (!IS_ERR_OR_NULL(regdb))
1132 kfree(regdb);
1133 regdb = db;
1134
1135 /* reset regulatory domain */
1136 current_regdomain = get_cfg80211_regdom();
1137
1138 request = kzalloc(sizeof(*request), GFP_KERNEL);
1139 if (!request) {
1140 err = -ENOMEM;
1141 goto out_unlock;
1142 }
1143
1144 request->wiphy_idx = WIPHY_IDX_INVALID;
1145 request->alpha2[0] = current_regdomain->alpha2[0];
1146 request->alpha2[1] = current_regdomain->alpha2[1];
1147 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1148 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1149
1150 reg_process_hint(request);
1151
1152 out_unlock:
1153 rtnl_unlock();
1154 out:
1155 release_firmware(fw);
1156 return err;
1157 }
1158
reg_query_database(struct regulatory_request * request)1159 static bool reg_query_database(struct regulatory_request *request)
1160 {
1161 if (query_regdb_file(request->alpha2) == 0)
1162 return true;
1163
1164 if (call_crda(request->alpha2) == 0)
1165 return true;
1166
1167 return false;
1168 }
1169
reg_is_valid_request(const char * alpha2)1170 bool reg_is_valid_request(const char *alpha2)
1171 {
1172 struct regulatory_request *lr = get_last_request();
1173
1174 if (!lr || lr->processed)
1175 return false;
1176
1177 return alpha2_equal(lr->alpha2, alpha2);
1178 }
1179
reg_get_regdomain(struct wiphy * wiphy)1180 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1181 {
1182 struct regulatory_request *lr = get_last_request();
1183
1184 /*
1185 * Follow the driver's regulatory domain, if present, unless a country
1186 * IE has been processed or a user wants to help complaince further
1187 */
1188 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1189 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1190 wiphy->regd)
1191 return get_wiphy_regdom(wiphy);
1192
1193 return get_cfg80211_regdom();
1194 }
1195
1196 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1197 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1198 const struct ieee80211_reg_rule *rule)
1199 {
1200 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1201 const struct ieee80211_freq_range *freq_range_tmp;
1202 const struct ieee80211_reg_rule *tmp;
1203 u32 start_freq, end_freq, idx, no;
1204
1205 for (idx = 0; idx < rd->n_reg_rules; idx++)
1206 if (rule == &rd->reg_rules[idx])
1207 break;
1208
1209 if (idx == rd->n_reg_rules)
1210 return 0;
1211
1212 /* get start_freq */
1213 no = idx;
1214
1215 while (no) {
1216 tmp = &rd->reg_rules[--no];
1217 freq_range_tmp = &tmp->freq_range;
1218
1219 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1220 break;
1221
1222 freq_range = freq_range_tmp;
1223 }
1224
1225 start_freq = freq_range->start_freq_khz;
1226
1227 /* get end_freq */
1228 freq_range = &rule->freq_range;
1229 no = idx;
1230
1231 while (no < rd->n_reg_rules - 1) {
1232 tmp = &rd->reg_rules[++no];
1233 freq_range_tmp = &tmp->freq_range;
1234
1235 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1236 break;
1237
1238 freq_range = freq_range_tmp;
1239 }
1240
1241 end_freq = freq_range->end_freq_khz;
1242
1243 return end_freq - start_freq;
1244 }
1245
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1246 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1247 const struct ieee80211_reg_rule *rule)
1248 {
1249 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1250
1251 if (rule->flags & NL80211_RRF_NO_320MHZ)
1252 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1253 if (rule->flags & NL80211_RRF_NO_160MHZ)
1254 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1255 if (rule->flags & NL80211_RRF_NO_80MHZ)
1256 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1257
1258 /*
1259 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1260 * are not allowed.
1261 */
1262 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1263 rule->flags & NL80211_RRF_NO_HT40PLUS)
1264 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1265
1266 return bw;
1267 }
1268
1269 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1270 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1271 {
1272 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1273 u32 freq_diff;
1274
1275 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1276 return false;
1277
1278 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1279 return false;
1280
1281 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1282
1283 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1284 freq_range->max_bandwidth_khz > freq_diff)
1285 return false;
1286
1287 return true;
1288 }
1289
is_valid_rd(const struct ieee80211_regdomain * rd)1290 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1291 {
1292 const struct ieee80211_reg_rule *reg_rule = NULL;
1293 unsigned int i;
1294
1295 if (!rd->n_reg_rules)
1296 return false;
1297
1298 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1299 return false;
1300
1301 for (i = 0; i < rd->n_reg_rules; i++) {
1302 reg_rule = &rd->reg_rules[i];
1303 if (!is_valid_reg_rule(reg_rule))
1304 return false;
1305 }
1306
1307 return true;
1308 }
1309
1310 /**
1311 * freq_in_rule_band - tells us if a frequency is in a frequency band
1312 * @freq_range: frequency rule we want to query
1313 * @freq_khz: frequency we are inquiring about
1314 *
1315 * This lets us know if a specific frequency rule is or is not relevant to
1316 * a specific frequency's band. Bands are device specific and artificial
1317 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1318 * however it is safe for now to assume that a frequency rule should not be
1319 * part of a frequency's band if the start freq or end freq are off by more
1320 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1321 * 60 GHz band.
1322 * This resolution can be lowered and should be considered as we add
1323 * regulatory rule support for other "bands".
1324 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1325 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1326 u32 freq_khz)
1327 {
1328 #define ONE_GHZ_IN_KHZ 1000000
1329 /*
1330 * From 802.11ad: directional multi-gigabit (DMG):
1331 * Pertaining to operation in a frequency band containing a channel
1332 * with the Channel starting frequency above 45 GHz.
1333 */
1334 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1335 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1336 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1337 return true;
1338 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1339 return true;
1340 return false;
1341 #undef ONE_GHZ_IN_KHZ
1342 }
1343
1344 /*
1345 * Later on we can perhaps use the more restrictive DFS
1346 * region but we don't have information for that yet so
1347 * for now simply disallow conflicts.
1348 */
1349 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1350 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1351 const enum nl80211_dfs_regions dfs_region2)
1352 {
1353 if (dfs_region1 != dfs_region2)
1354 return NL80211_DFS_UNSET;
1355 return dfs_region1;
1356 }
1357
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1358 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1359 const struct ieee80211_wmm_ac *wmm_ac2,
1360 struct ieee80211_wmm_ac *intersect)
1361 {
1362 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1363 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1364 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1365 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1366 }
1367
1368 /*
1369 * Helper for regdom_intersect(), this does the real
1370 * mathematical intersection fun
1371 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1372 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1373 const struct ieee80211_regdomain *rd2,
1374 const struct ieee80211_reg_rule *rule1,
1375 const struct ieee80211_reg_rule *rule2,
1376 struct ieee80211_reg_rule *intersected_rule)
1377 {
1378 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1379 struct ieee80211_freq_range *freq_range;
1380 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1381 struct ieee80211_power_rule *power_rule;
1382 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1383 struct ieee80211_wmm_rule *wmm_rule;
1384 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1385
1386 freq_range1 = &rule1->freq_range;
1387 freq_range2 = &rule2->freq_range;
1388 freq_range = &intersected_rule->freq_range;
1389
1390 power_rule1 = &rule1->power_rule;
1391 power_rule2 = &rule2->power_rule;
1392 power_rule = &intersected_rule->power_rule;
1393
1394 wmm_rule1 = &rule1->wmm_rule;
1395 wmm_rule2 = &rule2->wmm_rule;
1396 wmm_rule = &intersected_rule->wmm_rule;
1397
1398 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1399 freq_range2->start_freq_khz);
1400 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1401 freq_range2->end_freq_khz);
1402
1403 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1404 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1405
1406 if (rule1->flags & NL80211_RRF_AUTO_BW)
1407 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1408 if (rule2->flags & NL80211_RRF_AUTO_BW)
1409 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1410
1411 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1412
1413 intersected_rule->flags = rule1->flags | rule2->flags;
1414
1415 /*
1416 * In case NL80211_RRF_AUTO_BW requested for both rules
1417 * set AUTO_BW in intersected rule also. Next we will
1418 * calculate BW correctly in handle_channel function.
1419 * In other case remove AUTO_BW flag while we calculate
1420 * maximum bandwidth correctly and auto calculation is
1421 * not required.
1422 */
1423 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1424 (rule2->flags & NL80211_RRF_AUTO_BW))
1425 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1426 else
1427 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1428
1429 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1430 if (freq_range->max_bandwidth_khz > freq_diff)
1431 freq_range->max_bandwidth_khz = freq_diff;
1432
1433 power_rule->max_eirp = min(power_rule1->max_eirp,
1434 power_rule2->max_eirp);
1435 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1436 power_rule2->max_antenna_gain);
1437
1438 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1439 rule2->dfs_cac_ms);
1440
1441 if (rule1->has_wmm && rule2->has_wmm) {
1442 u8 ac;
1443
1444 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1445 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1446 &wmm_rule2->client[ac],
1447 &wmm_rule->client[ac]);
1448 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1449 &wmm_rule2->ap[ac],
1450 &wmm_rule->ap[ac]);
1451 }
1452
1453 intersected_rule->has_wmm = true;
1454 } else if (rule1->has_wmm) {
1455 *wmm_rule = *wmm_rule1;
1456 intersected_rule->has_wmm = true;
1457 } else if (rule2->has_wmm) {
1458 *wmm_rule = *wmm_rule2;
1459 intersected_rule->has_wmm = true;
1460 } else {
1461 intersected_rule->has_wmm = false;
1462 }
1463
1464 if (!is_valid_reg_rule(intersected_rule))
1465 return -EINVAL;
1466
1467 return 0;
1468 }
1469
1470 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1471 static bool rule_contains(struct ieee80211_reg_rule *r1,
1472 struct ieee80211_reg_rule *r2)
1473 {
1474 /* for simplicity, currently consider only same flags */
1475 if (r1->flags != r2->flags)
1476 return false;
1477
1478 /* verify r1 is more restrictive */
1479 if ((r1->power_rule.max_antenna_gain >
1480 r2->power_rule.max_antenna_gain) ||
1481 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1482 return false;
1483
1484 /* make sure r2's range is contained within r1 */
1485 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1486 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1487 return false;
1488
1489 /* and finally verify that r1.max_bw >= r2.max_bw */
1490 if (r1->freq_range.max_bandwidth_khz <
1491 r2->freq_range.max_bandwidth_khz)
1492 return false;
1493
1494 return true;
1495 }
1496
1497 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1498 static void add_rule(struct ieee80211_reg_rule *rule,
1499 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1500 {
1501 struct ieee80211_reg_rule *tmp_rule;
1502 int i;
1503
1504 for (i = 0; i < *n_rules; i++) {
1505 tmp_rule = ®_rules[i];
1506 /* rule is already contained - do nothing */
1507 if (rule_contains(tmp_rule, rule))
1508 return;
1509
1510 /* extend rule if possible */
1511 if (rule_contains(rule, tmp_rule)) {
1512 memcpy(tmp_rule, rule, sizeof(*rule));
1513 return;
1514 }
1515 }
1516
1517 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1518 (*n_rules)++;
1519 }
1520
1521 /**
1522 * regdom_intersect - do the intersection between two regulatory domains
1523 * @rd1: first regulatory domain
1524 * @rd2: second regulatory domain
1525 *
1526 * Use this function to get the intersection between two regulatory domains.
1527 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1528 * as no one single alpha2 can represent this regulatory domain.
1529 *
1530 * Returns a pointer to the regulatory domain structure which will hold the
1531 * resulting intersection of rules between rd1 and rd2. We will
1532 * kzalloc() this structure for you.
1533 */
1534 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1535 regdom_intersect(const struct ieee80211_regdomain *rd1,
1536 const struct ieee80211_regdomain *rd2)
1537 {
1538 int r;
1539 unsigned int x, y;
1540 unsigned int num_rules = 0;
1541 const struct ieee80211_reg_rule *rule1, *rule2;
1542 struct ieee80211_reg_rule intersected_rule;
1543 struct ieee80211_regdomain *rd;
1544
1545 if (!rd1 || !rd2)
1546 return NULL;
1547
1548 /*
1549 * First we get a count of the rules we'll need, then we actually
1550 * build them. This is to so we can malloc() and free() a
1551 * regdomain once. The reason we use reg_rules_intersect() here
1552 * is it will return -EINVAL if the rule computed makes no sense.
1553 * All rules that do check out OK are valid.
1554 */
1555
1556 for (x = 0; x < rd1->n_reg_rules; x++) {
1557 rule1 = &rd1->reg_rules[x];
1558 for (y = 0; y < rd2->n_reg_rules; y++) {
1559 rule2 = &rd2->reg_rules[y];
1560 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1561 &intersected_rule))
1562 num_rules++;
1563 }
1564 }
1565
1566 if (!num_rules)
1567 return NULL;
1568
1569 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1570 if (!rd)
1571 return NULL;
1572
1573 for (x = 0; x < rd1->n_reg_rules; x++) {
1574 rule1 = &rd1->reg_rules[x];
1575 for (y = 0; y < rd2->n_reg_rules; y++) {
1576 rule2 = &rd2->reg_rules[y];
1577 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1578 &intersected_rule);
1579 /*
1580 * No need to memset here the intersected rule here as
1581 * we're not using the stack anymore
1582 */
1583 if (r)
1584 continue;
1585
1586 add_rule(&intersected_rule, rd->reg_rules,
1587 &rd->n_reg_rules);
1588 }
1589 }
1590
1591 rd->alpha2[0] = '9';
1592 rd->alpha2[1] = '8';
1593 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1594 rd2->dfs_region);
1595
1596 return rd;
1597 }
1598
1599 /*
1600 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1601 * want to just have the channel structure use these
1602 */
map_regdom_flags(u32 rd_flags)1603 static u32 map_regdom_flags(u32 rd_flags)
1604 {
1605 u32 channel_flags = 0;
1606 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1607 channel_flags |= IEEE80211_CHAN_NO_IR;
1608 if (rd_flags & NL80211_RRF_DFS)
1609 channel_flags |= IEEE80211_CHAN_RADAR;
1610 if (rd_flags & NL80211_RRF_NO_OFDM)
1611 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1612 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1613 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1614 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1615 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1616 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1617 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1618 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1619 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1620 if (rd_flags & NL80211_RRF_NO_80MHZ)
1621 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1622 if (rd_flags & NL80211_RRF_NO_160MHZ)
1623 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1624 if (rd_flags & NL80211_RRF_NO_HE)
1625 channel_flags |= IEEE80211_CHAN_NO_HE;
1626 if (rd_flags & NL80211_RRF_NO_320MHZ)
1627 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1628 return channel_flags;
1629 }
1630
1631 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1632 freq_reg_info_regd(u32 center_freq,
1633 const struct ieee80211_regdomain *regd, u32 bw)
1634 {
1635 int i;
1636 bool band_rule_found = false;
1637 bool bw_fits = false;
1638
1639 if (!regd)
1640 return ERR_PTR(-EINVAL);
1641
1642 for (i = 0; i < regd->n_reg_rules; i++) {
1643 const struct ieee80211_reg_rule *rr;
1644 const struct ieee80211_freq_range *fr = NULL;
1645
1646 rr = ®d->reg_rules[i];
1647 fr = &rr->freq_range;
1648
1649 /*
1650 * We only need to know if one frequency rule was
1651 * in center_freq's band, that's enough, so let's
1652 * not overwrite it once found
1653 */
1654 if (!band_rule_found)
1655 band_rule_found = freq_in_rule_band(fr, center_freq);
1656
1657 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1658
1659 if (band_rule_found && bw_fits)
1660 return rr;
1661 }
1662
1663 if (!band_rule_found)
1664 return ERR_PTR(-ERANGE);
1665
1666 return ERR_PTR(-EINVAL);
1667 }
1668
1669 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1670 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1671 {
1672 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1673 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1674 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1675 int i = ARRAY_SIZE(bws) - 1;
1676 u32 bw;
1677
1678 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1679 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1680 if (!IS_ERR(reg_rule))
1681 return reg_rule;
1682 }
1683
1684 return reg_rule;
1685 }
1686
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1687 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1688 u32 center_freq)
1689 {
1690 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1691
1692 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1693 }
1694 EXPORT_SYMBOL(freq_reg_info);
1695
reg_initiator_name(enum nl80211_reg_initiator initiator)1696 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1697 {
1698 switch (initiator) {
1699 case NL80211_REGDOM_SET_BY_CORE:
1700 return "core";
1701 case NL80211_REGDOM_SET_BY_USER:
1702 return "user";
1703 case NL80211_REGDOM_SET_BY_DRIVER:
1704 return "driver";
1705 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1706 return "country element";
1707 default:
1708 WARN_ON(1);
1709 return "bug";
1710 }
1711 }
1712 EXPORT_SYMBOL(reg_initiator_name);
1713
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1714 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1715 const struct ieee80211_reg_rule *reg_rule,
1716 const struct ieee80211_channel *chan)
1717 {
1718 const struct ieee80211_freq_range *freq_range = NULL;
1719 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1720 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1721
1722 freq_range = ®_rule->freq_range;
1723
1724 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1725 center_freq_khz = ieee80211_channel_to_khz(chan);
1726 /* Check if auto calculation requested */
1727 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1728 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1729
1730 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1731 if (!cfg80211_does_bw_fit_range(freq_range,
1732 center_freq_khz,
1733 MHZ_TO_KHZ(10)))
1734 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1735 if (!cfg80211_does_bw_fit_range(freq_range,
1736 center_freq_khz,
1737 MHZ_TO_KHZ(20)))
1738 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1739
1740 if (is_s1g) {
1741 /* S1G is strict about non overlapping channels. We can
1742 * calculate which bandwidth is allowed per channel by finding
1743 * the largest bandwidth which cleanly divides the freq_range.
1744 */
1745 int edge_offset;
1746 int ch_bw = max_bandwidth_khz;
1747
1748 while (ch_bw) {
1749 edge_offset = (center_freq_khz - ch_bw / 2) -
1750 freq_range->start_freq_khz;
1751 if (edge_offset % ch_bw == 0) {
1752 switch (KHZ_TO_MHZ(ch_bw)) {
1753 case 1:
1754 bw_flags |= IEEE80211_CHAN_1MHZ;
1755 break;
1756 case 2:
1757 bw_flags |= IEEE80211_CHAN_2MHZ;
1758 break;
1759 case 4:
1760 bw_flags |= IEEE80211_CHAN_4MHZ;
1761 break;
1762 case 8:
1763 bw_flags |= IEEE80211_CHAN_8MHZ;
1764 break;
1765 case 16:
1766 bw_flags |= IEEE80211_CHAN_16MHZ;
1767 break;
1768 default:
1769 /* If we got here, no bandwidths fit on
1770 * this frequency, ie. band edge.
1771 */
1772 bw_flags |= IEEE80211_CHAN_DISABLED;
1773 break;
1774 }
1775 break;
1776 }
1777 ch_bw /= 2;
1778 }
1779 } else {
1780 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1781 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1782 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1783 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1784 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1785 bw_flags |= IEEE80211_CHAN_NO_HT40;
1786 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1787 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1788 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1789 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1790 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1791 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1792 }
1793 return bw_flags;
1794 }
1795
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1796 static void handle_channel_single_rule(struct wiphy *wiphy,
1797 enum nl80211_reg_initiator initiator,
1798 struct ieee80211_channel *chan,
1799 u32 flags,
1800 struct regulatory_request *lr,
1801 struct wiphy *request_wiphy,
1802 const struct ieee80211_reg_rule *reg_rule)
1803 {
1804 u32 bw_flags = 0;
1805 const struct ieee80211_power_rule *power_rule = NULL;
1806 const struct ieee80211_regdomain *regd;
1807
1808 regd = reg_get_regdomain(wiphy);
1809
1810 power_rule = ®_rule->power_rule;
1811 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1812
1813 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1814 request_wiphy && request_wiphy == wiphy &&
1815 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1816 /*
1817 * This guarantees the driver's requested regulatory domain
1818 * will always be used as a base for further regulatory
1819 * settings
1820 */
1821 chan->flags = chan->orig_flags =
1822 map_regdom_flags(reg_rule->flags) | bw_flags;
1823 chan->max_antenna_gain = chan->orig_mag =
1824 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1825 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1826 (int) MBM_TO_DBM(power_rule->max_eirp);
1827
1828 if (chan->flags & IEEE80211_CHAN_RADAR) {
1829 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830 if (reg_rule->dfs_cac_ms)
1831 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1832 }
1833
1834 return;
1835 }
1836
1837 chan->dfs_state = NL80211_DFS_USABLE;
1838 chan->dfs_state_entered = jiffies;
1839
1840 chan->beacon_found = false;
1841 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1842 chan->max_antenna_gain =
1843 min_t(int, chan->orig_mag,
1844 MBI_TO_DBI(power_rule->max_antenna_gain));
1845 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1846
1847 if (chan->flags & IEEE80211_CHAN_RADAR) {
1848 if (reg_rule->dfs_cac_ms)
1849 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1850 else
1851 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1852 }
1853
1854 if (chan->orig_mpwr) {
1855 /*
1856 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1857 * will always follow the passed country IE power settings.
1858 */
1859 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1860 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1861 chan->max_power = chan->max_reg_power;
1862 else
1863 chan->max_power = min(chan->orig_mpwr,
1864 chan->max_reg_power);
1865 } else
1866 chan->max_power = chan->max_reg_power;
1867 }
1868
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1869 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1870 enum nl80211_reg_initiator initiator,
1871 struct ieee80211_channel *chan,
1872 u32 flags,
1873 struct regulatory_request *lr,
1874 struct wiphy *request_wiphy,
1875 const struct ieee80211_reg_rule *rrule1,
1876 const struct ieee80211_reg_rule *rrule2,
1877 struct ieee80211_freq_range *comb_range)
1878 {
1879 u32 bw_flags1 = 0;
1880 u32 bw_flags2 = 0;
1881 const struct ieee80211_power_rule *power_rule1 = NULL;
1882 const struct ieee80211_power_rule *power_rule2 = NULL;
1883 const struct ieee80211_regdomain *regd;
1884
1885 regd = reg_get_regdomain(wiphy);
1886
1887 power_rule1 = &rrule1->power_rule;
1888 power_rule2 = &rrule2->power_rule;
1889 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1890 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1891
1892 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1893 request_wiphy && request_wiphy == wiphy &&
1894 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1895 /* This guarantees the driver's requested regulatory domain
1896 * will always be used as a base for further regulatory
1897 * settings
1898 */
1899 chan->flags =
1900 map_regdom_flags(rrule1->flags) |
1901 map_regdom_flags(rrule2->flags) |
1902 bw_flags1 |
1903 bw_flags2;
1904 chan->orig_flags = chan->flags;
1905 chan->max_antenna_gain =
1906 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1907 MBI_TO_DBI(power_rule2->max_antenna_gain));
1908 chan->orig_mag = chan->max_antenna_gain;
1909 chan->max_reg_power =
1910 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1911 MBM_TO_DBM(power_rule2->max_eirp));
1912 chan->max_power = chan->max_reg_power;
1913 chan->orig_mpwr = chan->max_reg_power;
1914
1915 if (chan->flags & IEEE80211_CHAN_RADAR) {
1916 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1917 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1918 chan->dfs_cac_ms = max_t(unsigned int,
1919 rrule1->dfs_cac_ms,
1920 rrule2->dfs_cac_ms);
1921 }
1922
1923 return;
1924 }
1925
1926 chan->dfs_state = NL80211_DFS_USABLE;
1927 chan->dfs_state_entered = jiffies;
1928
1929 chan->beacon_found = false;
1930 chan->flags = flags | bw_flags1 | bw_flags2 |
1931 map_regdom_flags(rrule1->flags) |
1932 map_regdom_flags(rrule2->flags);
1933
1934 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1935 * (otherwise no adj. rule case), recheck therefore
1936 */
1937 if (cfg80211_does_bw_fit_range(comb_range,
1938 ieee80211_channel_to_khz(chan),
1939 MHZ_TO_KHZ(10)))
1940 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1941 if (cfg80211_does_bw_fit_range(comb_range,
1942 ieee80211_channel_to_khz(chan),
1943 MHZ_TO_KHZ(20)))
1944 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1945
1946 chan->max_antenna_gain =
1947 min_t(int, chan->orig_mag,
1948 min_t(int,
1949 MBI_TO_DBI(power_rule1->max_antenna_gain),
1950 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1951 chan->max_reg_power = min_t(int,
1952 MBM_TO_DBM(power_rule1->max_eirp),
1953 MBM_TO_DBM(power_rule2->max_eirp));
1954
1955 if (chan->flags & IEEE80211_CHAN_RADAR) {
1956 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1957 chan->dfs_cac_ms = max_t(unsigned int,
1958 rrule1->dfs_cac_ms,
1959 rrule2->dfs_cac_ms);
1960 else
1961 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1962 }
1963
1964 if (chan->orig_mpwr) {
1965 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1966 * will always follow the passed country IE power settings.
1967 */
1968 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1969 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1970 chan->max_power = chan->max_reg_power;
1971 else
1972 chan->max_power = min(chan->orig_mpwr,
1973 chan->max_reg_power);
1974 } else {
1975 chan->max_power = chan->max_reg_power;
1976 }
1977 }
1978
1979 /* Note that right now we assume the desired channel bandwidth
1980 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1981 * per channel, the primary and the extension channel).
1982 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1983 static void handle_channel(struct wiphy *wiphy,
1984 enum nl80211_reg_initiator initiator,
1985 struct ieee80211_channel *chan)
1986 {
1987 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1988 struct regulatory_request *lr = get_last_request();
1989 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1990 const struct ieee80211_reg_rule *rrule = NULL;
1991 const struct ieee80211_reg_rule *rrule1 = NULL;
1992 const struct ieee80211_reg_rule *rrule2 = NULL;
1993
1994 u32 flags = chan->orig_flags;
1995
1996 rrule = freq_reg_info(wiphy, orig_chan_freq);
1997 if (IS_ERR(rrule)) {
1998 /* check for adjacent match, therefore get rules for
1999 * chan - 20 MHz and chan + 20 MHz and test
2000 * if reg rules are adjacent
2001 */
2002 rrule1 = freq_reg_info(wiphy,
2003 orig_chan_freq - MHZ_TO_KHZ(20));
2004 rrule2 = freq_reg_info(wiphy,
2005 orig_chan_freq + MHZ_TO_KHZ(20));
2006 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2007 struct ieee80211_freq_range comb_range;
2008
2009 if (rrule1->freq_range.end_freq_khz !=
2010 rrule2->freq_range.start_freq_khz)
2011 goto disable_chan;
2012
2013 comb_range.start_freq_khz =
2014 rrule1->freq_range.start_freq_khz;
2015 comb_range.end_freq_khz =
2016 rrule2->freq_range.end_freq_khz;
2017 comb_range.max_bandwidth_khz =
2018 min_t(u32,
2019 rrule1->freq_range.max_bandwidth_khz,
2020 rrule2->freq_range.max_bandwidth_khz);
2021
2022 if (!cfg80211_does_bw_fit_range(&comb_range,
2023 orig_chan_freq,
2024 MHZ_TO_KHZ(20)))
2025 goto disable_chan;
2026
2027 handle_channel_adjacent_rules(wiphy, initiator, chan,
2028 flags, lr, request_wiphy,
2029 rrule1, rrule2,
2030 &comb_range);
2031 return;
2032 }
2033
2034 disable_chan:
2035 /* We will disable all channels that do not match our
2036 * received regulatory rule unless the hint is coming
2037 * from a Country IE and the Country IE had no information
2038 * about a band. The IEEE 802.11 spec allows for an AP
2039 * to send only a subset of the regulatory rules allowed,
2040 * so an AP in the US that only supports 2.4 GHz may only send
2041 * a country IE with information for the 2.4 GHz band
2042 * while 5 GHz is still supported.
2043 */
2044 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2045 PTR_ERR(rrule) == -ERANGE)
2046 return;
2047
2048 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2049 request_wiphy && request_wiphy == wiphy &&
2050 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2051 pr_debug("Disabling freq %d.%03d MHz for good\n",
2052 chan->center_freq, chan->freq_offset);
2053 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2054 chan->flags = chan->orig_flags;
2055 } else {
2056 pr_debug("Disabling freq %d.%03d MHz\n",
2057 chan->center_freq, chan->freq_offset);
2058 chan->flags |= IEEE80211_CHAN_DISABLED;
2059 }
2060 return;
2061 }
2062
2063 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2064 request_wiphy, rrule);
2065 }
2066
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2067 static void handle_band(struct wiphy *wiphy,
2068 enum nl80211_reg_initiator initiator,
2069 struct ieee80211_supported_band *sband)
2070 {
2071 unsigned int i;
2072
2073 if (!sband)
2074 return;
2075
2076 for (i = 0; i < sband->n_channels; i++)
2077 handle_channel(wiphy, initiator, &sband->channels[i]);
2078 }
2079
reg_request_cell_base(struct regulatory_request * request)2080 static bool reg_request_cell_base(struct regulatory_request *request)
2081 {
2082 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2083 return false;
2084 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2085 }
2086
reg_last_request_cell_base(void)2087 bool reg_last_request_cell_base(void)
2088 {
2089 return reg_request_cell_base(get_last_request());
2090 }
2091
2092 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2093 /* Core specific check */
2094 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2095 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2096 {
2097 struct regulatory_request *lr = get_last_request();
2098
2099 if (!reg_num_devs_support_basehint)
2100 return REG_REQ_IGNORE;
2101
2102 if (reg_request_cell_base(lr) &&
2103 !regdom_changes(pending_request->alpha2))
2104 return REG_REQ_ALREADY_SET;
2105
2106 return REG_REQ_OK;
2107 }
2108
2109 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111 {
2112 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2113 }
2114 #else
2115 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2116 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2117 {
2118 return REG_REQ_IGNORE;
2119 }
2120
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2121 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2122 {
2123 return true;
2124 }
2125 #endif
2126
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2127 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2128 {
2129 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2130 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2131 return true;
2132 return false;
2133 }
2134
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2135 static bool ignore_reg_update(struct wiphy *wiphy,
2136 enum nl80211_reg_initiator initiator)
2137 {
2138 struct regulatory_request *lr = get_last_request();
2139
2140 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2141 return true;
2142
2143 if (!lr) {
2144 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2145 reg_initiator_name(initiator));
2146 return true;
2147 }
2148
2149 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2150 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2151 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2152 reg_initiator_name(initiator));
2153 return true;
2154 }
2155
2156 /*
2157 * wiphy->regd will be set once the device has its own
2158 * desired regulatory domain set
2159 */
2160 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2161 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2162 !is_world_regdom(lr->alpha2)) {
2163 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2164 reg_initiator_name(initiator));
2165 return true;
2166 }
2167
2168 if (reg_request_cell_base(lr))
2169 return reg_dev_ignore_cell_hint(wiphy);
2170
2171 return false;
2172 }
2173
reg_is_world_roaming(struct wiphy * wiphy)2174 static bool reg_is_world_roaming(struct wiphy *wiphy)
2175 {
2176 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2177 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2178 struct regulatory_request *lr = get_last_request();
2179
2180 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2181 return true;
2182
2183 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2184 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2185 return true;
2186
2187 return false;
2188 }
2189
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2190 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2191 struct reg_beacon *reg_beacon)
2192 {
2193 struct ieee80211_supported_band *sband;
2194 struct ieee80211_channel *chan;
2195 bool channel_changed = false;
2196 struct ieee80211_channel chan_before;
2197
2198 sband = wiphy->bands[reg_beacon->chan.band];
2199 chan = &sband->channels[chan_idx];
2200
2201 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2202 return;
2203
2204 if (chan->beacon_found)
2205 return;
2206
2207 chan->beacon_found = true;
2208
2209 if (!reg_is_world_roaming(wiphy))
2210 return;
2211
2212 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2213 return;
2214
2215 chan_before = *chan;
2216
2217 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2218 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2219 channel_changed = true;
2220 }
2221
2222 if (channel_changed)
2223 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2224 }
2225
2226 /*
2227 * Called when a scan on a wiphy finds a beacon on
2228 * new channel
2229 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2230 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231 struct reg_beacon *reg_beacon)
2232 {
2233 unsigned int i;
2234 struct ieee80211_supported_band *sband;
2235
2236 if (!wiphy->bands[reg_beacon->chan.band])
2237 return;
2238
2239 sband = wiphy->bands[reg_beacon->chan.band];
2240
2241 for (i = 0; i < sband->n_channels; i++)
2242 handle_reg_beacon(wiphy, i, reg_beacon);
2243 }
2244
2245 /*
2246 * Called upon reg changes or a new wiphy is added
2247 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249 {
2250 unsigned int i;
2251 struct ieee80211_supported_band *sband;
2252 struct reg_beacon *reg_beacon;
2253
2254 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2255 if (!wiphy->bands[reg_beacon->chan.band])
2256 continue;
2257 sband = wiphy->bands[reg_beacon->chan.band];
2258 for (i = 0; i < sband->n_channels; i++)
2259 handle_reg_beacon(wiphy, i, reg_beacon);
2260 }
2261 }
2262
2263 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2264 static void reg_process_beacons(struct wiphy *wiphy)
2265 {
2266 /*
2267 * Means we are just firing up cfg80211, so no beacons would
2268 * have been processed yet.
2269 */
2270 if (!last_request)
2271 return;
2272 wiphy_update_beacon_reg(wiphy);
2273 }
2274
is_ht40_allowed(struct ieee80211_channel * chan)2275 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276 {
2277 if (!chan)
2278 return false;
2279 if (chan->flags & IEEE80211_CHAN_DISABLED)
2280 return false;
2281 /* This would happen when regulatory rules disallow HT40 completely */
2282 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283 return false;
2284 return true;
2285 }
2286
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288 struct ieee80211_channel *channel)
2289 {
2290 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292 const struct ieee80211_regdomain *regd;
2293 unsigned int i;
2294 u32 flags;
2295
2296 if (!is_ht40_allowed(channel)) {
2297 channel->flags |= IEEE80211_CHAN_NO_HT40;
2298 return;
2299 }
2300
2301 /*
2302 * We need to ensure the extension channels exist to
2303 * be able to use HT40- or HT40+, this finds them (or not)
2304 */
2305 for (i = 0; i < sband->n_channels; i++) {
2306 struct ieee80211_channel *c = &sband->channels[i];
2307
2308 if (c->center_freq == (channel->center_freq - 20))
2309 channel_before = c;
2310 if (c->center_freq == (channel->center_freq + 20))
2311 channel_after = c;
2312 }
2313
2314 flags = 0;
2315 regd = get_wiphy_regdom(wiphy);
2316 if (regd) {
2317 const struct ieee80211_reg_rule *reg_rule =
2318 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319 regd, MHZ_TO_KHZ(20));
2320
2321 if (!IS_ERR(reg_rule))
2322 flags = reg_rule->flags;
2323 }
2324
2325 /*
2326 * Please note that this assumes target bandwidth is 20 MHz,
2327 * if that ever changes we also need to change the below logic
2328 * to include that as well.
2329 */
2330 if (!is_ht40_allowed(channel_before) ||
2331 flags & NL80211_RRF_NO_HT40MINUS)
2332 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333 else
2334 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335
2336 if (!is_ht40_allowed(channel_after) ||
2337 flags & NL80211_RRF_NO_HT40PLUS)
2338 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339 else
2340 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341 }
2342
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2343 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344 struct ieee80211_supported_band *sband)
2345 {
2346 unsigned int i;
2347
2348 if (!sband)
2349 return;
2350
2351 for (i = 0; i < sband->n_channels; i++)
2352 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353 }
2354
reg_process_ht_flags(struct wiphy * wiphy)2355 static void reg_process_ht_flags(struct wiphy *wiphy)
2356 {
2357 enum nl80211_band band;
2358
2359 if (!wiphy)
2360 return;
2361
2362 for (band = 0; band < NUM_NL80211_BANDS; band++)
2363 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364 }
2365
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2366 static void reg_call_notifier(struct wiphy *wiphy,
2367 struct regulatory_request *request)
2368 {
2369 if (wiphy->reg_notifier)
2370 wiphy->reg_notifier(wiphy, request);
2371 }
2372
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2373 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2374 {
2375 struct cfg80211_chan_def chandef = {};
2376 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2377 enum nl80211_iftype iftype;
2378 bool ret;
2379 int link;
2380
2381 wdev_lock(wdev);
2382 iftype = wdev->iftype;
2383
2384 /* make sure the interface is active */
2385 if (!wdev->netdev || !netif_running(wdev->netdev))
2386 goto wdev_inactive_unlock;
2387
2388 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2389 struct ieee80211_channel *chan;
2390
2391 if (!wdev->valid_links && link > 0)
2392 break;
2393 if (!(wdev->valid_links & BIT(link)))
2394 continue;
2395 switch (iftype) {
2396 case NL80211_IFTYPE_AP:
2397 case NL80211_IFTYPE_P2P_GO:
2398 if (!wdev->links[link].ap.beacon_interval)
2399 continue;
2400 chandef = wdev->links[link].ap.chandef;
2401 break;
2402 case NL80211_IFTYPE_MESH_POINT:
2403 if (!wdev->u.mesh.beacon_interval)
2404 continue;
2405 chandef = wdev->u.mesh.chandef;
2406 break;
2407 case NL80211_IFTYPE_ADHOC:
2408 if (!wdev->u.ibss.ssid_len)
2409 continue;
2410 chandef = wdev->u.ibss.chandef;
2411 break;
2412 case NL80211_IFTYPE_STATION:
2413 case NL80211_IFTYPE_P2P_CLIENT:
2414 /* Maybe we could consider disabling that link only? */
2415 if (!wdev->links[link].client.current_bss)
2416 continue;
2417
2418 chan = wdev->links[link].client.current_bss->pub.channel;
2419 if (!chan)
2420 continue;
2421
2422 if (!rdev->ops->get_channel ||
2423 rdev_get_channel(rdev, wdev, link, &chandef))
2424 cfg80211_chandef_create(&chandef, chan,
2425 NL80211_CHAN_NO_HT);
2426 break;
2427 case NL80211_IFTYPE_MONITOR:
2428 case NL80211_IFTYPE_AP_VLAN:
2429 case NL80211_IFTYPE_P2P_DEVICE:
2430 /* no enforcement required */
2431 break;
2432 default:
2433 /* others not implemented for now */
2434 WARN_ON(1);
2435 break;
2436 }
2437
2438 wdev_unlock(wdev);
2439
2440 switch (iftype) {
2441 case NL80211_IFTYPE_AP:
2442 case NL80211_IFTYPE_P2P_GO:
2443 case NL80211_IFTYPE_ADHOC:
2444 case NL80211_IFTYPE_MESH_POINT:
2445 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2446 iftype);
2447
2448 if (!ret)
2449 return ret;
2450 break;
2451 case NL80211_IFTYPE_STATION:
2452 case NL80211_IFTYPE_P2P_CLIENT:
2453 ret = cfg80211_chandef_usable(wiphy, &chandef,
2454 IEEE80211_CHAN_DISABLED);
2455 if (!ret)
2456 return ret;
2457 break;
2458 default:
2459 break;
2460 }
2461
2462 wdev_lock(wdev);
2463 }
2464
2465 wdev_unlock(wdev);
2466
2467 return true;
2468
2469 wdev_inactive_unlock:
2470 wdev_unlock(wdev);
2471 return true;
2472 }
2473
reg_leave_invalid_chans(struct wiphy * wiphy)2474 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2475 {
2476 struct wireless_dev *wdev;
2477 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2478
2479 wiphy_lock(wiphy);
2480 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2481 if (!reg_wdev_chan_valid(wiphy, wdev))
2482 cfg80211_leave(rdev, wdev);
2483 wiphy_unlock(wiphy);
2484 }
2485
reg_check_chans_work(struct work_struct * work)2486 static void reg_check_chans_work(struct work_struct *work)
2487 {
2488 struct cfg80211_registered_device *rdev;
2489
2490 pr_debug("Verifying active interfaces after reg change\n");
2491 rtnl_lock();
2492
2493 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2494 if (!(rdev->wiphy.regulatory_flags &
2495 REGULATORY_IGNORE_STALE_KICKOFF))
2496 reg_leave_invalid_chans(&rdev->wiphy);
2497
2498 rtnl_unlock();
2499 }
2500
reg_check_channels(void)2501 static void reg_check_channels(void)
2502 {
2503 /*
2504 * Give usermode a chance to do something nicer (move to another
2505 * channel, orderly disconnection), before forcing a disconnection.
2506 */
2507 mod_delayed_work(system_power_efficient_wq,
2508 ®_check_chans,
2509 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2510 }
2511
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2512 static void wiphy_update_regulatory(struct wiphy *wiphy,
2513 enum nl80211_reg_initiator initiator)
2514 {
2515 enum nl80211_band band;
2516 struct regulatory_request *lr = get_last_request();
2517
2518 if (ignore_reg_update(wiphy, initiator)) {
2519 /*
2520 * Regulatory updates set by CORE are ignored for custom
2521 * regulatory cards. Let us notify the changes to the driver,
2522 * as some drivers used this to restore its orig_* reg domain.
2523 */
2524 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2525 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2526 !(wiphy->regulatory_flags &
2527 REGULATORY_WIPHY_SELF_MANAGED))
2528 reg_call_notifier(wiphy, lr);
2529 return;
2530 }
2531
2532 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2533
2534 for (band = 0; band < NUM_NL80211_BANDS; band++)
2535 handle_band(wiphy, initiator, wiphy->bands[band]);
2536
2537 reg_process_beacons(wiphy);
2538 reg_process_ht_flags(wiphy);
2539 reg_call_notifier(wiphy, lr);
2540 }
2541
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2542 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2543 {
2544 struct cfg80211_registered_device *rdev;
2545 struct wiphy *wiphy;
2546
2547 ASSERT_RTNL();
2548
2549 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2550 wiphy = &rdev->wiphy;
2551 wiphy_update_regulatory(wiphy, initiator);
2552 }
2553
2554 reg_check_channels();
2555 }
2556
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2557 static void handle_channel_custom(struct wiphy *wiphy,
2558 struct ieee80211_channel *chan,
2559 const struct ieee80211_regdomain *regd,
2560 u32 min_bw)
2561 {
2562 u32 bw_flags = 0;
2563 const struct ieee80211_reg_rule *reg_rule = NULL;
2564 const struct ieee80211_power_rule *power_rule = NULL;
2565 u32 bw, center_freq_khz;
2566
2567 center_freq_khz = ieee80211_channel_to_khz(chan);
2568 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2569 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2570 if (!IS_ERR(reg_rule))
2571 break;
2572 }
2573
2574 if (IS_ERR_OR_NULL(reg_rule)) {
2575 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2576 chan->center_freq, chan->freq_offset);
2577 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2578 chan->flags |= IEEE80211_CHAN_DISABLED;
2579 } else {
2580 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2581 chan->flags = chan->orig_flags;
2582 }
2583 return;
2584 }
2585
2586 power_rule = ®_rule->power_rule;
2587 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2588
2589 chan->dfs_state_entered = jiffies;
2590 chan->dfs_state = NL80211_DFS_USABLE;
2591
2592 chan->beacon_found = false;
2593
2594 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2595 chan->flags = chan->orig_flags | bw_flags |
2596 map_regdom_flags(reg_rule->flags);
2597 else
2598 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2599
2600 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2601 chan->max_reg_power = chan->max_power =
2602 (int) MBM_TO_DBM(power_rule->max_eirp);
2603
2604 if (chan->flags & IEEE80211_CHAN_RADAR) {
2605 if (reg_rule->dfs_cac_ms)
2606 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2607 else
2608 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2609 }
2610
2611 chan->max_power = chan->max_reg_power;
2612 }
2613
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2614 static void handle_band_custom(struct wiphy *wiphy,
2615 struct ieee80211_supported_band *sband,
2616 const struct ieee80211_regdomain *regd)
2617 {
2618 unsigned int i;
2619
2620 if (!sband)
2621 return;
2622
2623 /*
2624 * We currently assume that you always want at least 20 MHz,
2625 * otherwise channel 12 might get enabled if this rule is
2626 * compatible to US, which permits 2402 - 2472 MHz.
2627 */
2628 for (i = 0; i < sband->n_channels; i++)
2629 handle_channel_custom(wiphy, &sband->channels[i], regd,
2630 MHZ_TO_KHZ(20));
2631 }
2632
2633 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2634 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2635 const struct ieee80211_regdomain *regd)
2636 {
2637 const struct ieee80211_regdomain *new_regd, *tmp;
2638 enum nl80211_band band;
2639 unsigned int bands_set = 0;
2640
2641 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2642 "wiphy should have REGULATORY_CUSTOM_REG\n");
2643 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2644
2645 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2646 if (!wiphy->bands[band])
2647 continue;
2648 handle_band_custom(wiphy, wiphy->bands[band], regd);
2649 bands_set++;
2650 }
2651
2652 /*
2653 * no point in calling this if it won't have any effect
2654 * on your device's supported bands.
2655 */
2656 WARN_ON(!bands_set);
2657 new_regd = reg_copy_regd(regd);
2658 if (IS_ERR(new_regd))
2659 return;
2660
2661 rtnl_lock();
2662 wiphy_lock(wiphy);
2663
2664 tmp = get_wiphy_regdom(wiphy);
2665 rcu_assign_pointer(wiphy->regd, new_regd);
2666 rcu_free_regdom(tmp);
2667
2668 wiphy_unlock(wiphy);
2669 rtnl_unlock();
2670 }
2671 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2672
reg_set_request_processed(void)2673 static void reg_set_request_processed(void)
2674 {
2675 bool need_more_processing = false;
2676 struct regulatory_request *lr = get_last_request();
2677
2678 lr->processed = true;
2679
2680 spin_lock(®_requests_lock);
2681 if (!list_empty(®_requests_list))
2682 need_more_processing = true;
2683 spin_unlock(®_requests_lock);
2684
2685 cancel_crda_timeout();
2686
2687 if (need_more_processing)
2688 schedule_work(®_work);
2689 }
2690
2691 /**
2692 * reg_process_hint_core - process core regulatory requests
2693 * @core_request: a pending core regulatory request
2694 *
2695 * The wireless subsystem can use this function to process
2696 * a regulatory request issued by the regulatory core.
2697 */
2698 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2699 reg_process_hint_core(struct regulatory_request *core_request)
2700 {
2701 if (reg_query_database(core_request)) {
2702 core_request->intersect = false;
2703 core_request->processed = false;
2704 reg_update_last_request(core_request);
2705 return REG_REQ_OK;
2706 }
2707
2708 return REG_REQ_IGNORE;
2709 }
2710
2711 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2712 __reg_process_hint_user(struct regulatory_request *user_request)
2713 {
2714 struct regulatory_request *lr = get_last_request();
2715
2716 if (reg_request_cell_base(user_request))
2717 return reg_ignore_cell_hint(user_request);
2718
2719 if (reg_request_cell_base(lr))
2720 return REG_REQ_IGNORE;
2721
2722 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2723 return REG_REQ_INTERSECT;
2724 /*
2725 * If the user knows better the user should set the regdom
2726 * to their country before the IE is picked up
2727 */
2728 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2729 lr->intersect)
2730 return REG_REQ_IGNORE;
2731 /*
2732 * Process user requests only after previous user/driver/core
2733 * requests have been processed
2734 */
2735 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2736 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2737 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2738 regdom_changes(lr->alpha2))
2739 return REG_REQ_IGNORE;
2740
2741 if (!regdom_changes(user_request->alpha2))
2742 return REG_REQ_ALREADY_SET;
2743
2744 return REG_REQ_OK;
2745 }
2746
2747 /**
2748 * reg_process_hint_user - process user regulatory requests
2749 * @user_request: a pending user regulatory request
2750 *
2751 * The wireless subsystem can use this function to process
2752 * a regulatory request initiated by userspace.
2753 */
2754 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2755 reg_process_hint_user(struct regulatory_request *user_request)
2756 {
2757 enum reg_request_treatment treatment;
2758
2759 treatment = __reg_process_hint_user(user_request);
2760 if (treatment == REG_REQ_IGNORE ||
2761 treatment == REG_REQ_ALREADY_SET)
2762 return REG_REQ_IGNORE;
2763
2764 user_request->intersect = treatment == REG_REQ_INTERSECT;
2765 user_request->processed = false;
2766
2767 if (reg_query_database(user_request)) {
2768 reg_update_last_request(user_request);
2769 user_alpha2[0] = user_request->alpha2[0];
2770 user_alpha2[1] = user_request->alpha2[1];
2771 return REG_REQ_OK;
2772 }
2773
2774 return REG_REQ_IGNORE;
2775 }
2776
2777 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2778 __reg_process_hint_driver(struct regulatory_request *driver_request)
2779 {
2780 struct regulatory_request *lr = get_last_request();
2781
2782 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2783 if (regdom_changes(driver_request->alpha2))
2784 return REG_REQ_OK;
2785 return REG_REQ_ALREADY_SET;
2786 }
2787
2788 /*
2789 * This would happen if you unplug and plug your card
2790 * back in or if you add a new device for which the previously
2791 * loaded card also agrees on the regulatory domain.
2792 */
2793 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2794 !regdom_changes(driver_request->alpha2))
2795 return REG_REQ_ALREADY_SET;
2796
2797 return REG_REQ_INTERSECT;
2798 }
2799
2800 /**
2801 * reg_process_hint_driver - process driver regulatory requests
2802 * @wiphy: the wireless device for the regulatory request
2803 * @driver_request: a pending driver regulatory request
2804 *
2805 * The wireless subsystem can use this function to process
2806 * a regulatory request issued by an 802.11 driver.
2807 *
2808 * Returns one of the different reg request treatment values.
2809 */
2810 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2811 reg_process_hint_driver(struct wiphy *wiphy,
2812 struct regulatory_request *driver_request)
2813 {
2814 const struct ieee80211_regdomain *regd, *tmp;
2815 enum reg_request_treatment treatment;
2816
2817 treatment = __reg_process_hint_driver(driver_request);
2818
2819 switch (treatment) {
2820 case REG_REQ_OK:
2821 break;
2822 case REG_REQ_IGNORE:
2823 return REG_REQ_IGNORE;
2824 case REG_REQ_INTERSECT:
2825 case REG_REQ_ALREADY_SET:
2826 regd = reg_copy_regd(get_cfg80211_regdom());
2827 if (IS_ERR(regd))
2828 return REG_REQ_IGNORE;
2829
2830 tmp = get_wiphy_regdom(wiphy);
2831 ASSERT_RTNL();
2832 wiphy_lock(wiphy);
2833 rcu_assign_pointer(wiphy->regd, regd);
2834 wiphy_unlock(wiphy);
2835 rcu_free_regdom(tmp);
2836 }
2837
2838
2839 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2840 driver_request->processed = false;
2841
2842 /*
2843 * Since CRDA will not be called in this case as we already
2844 * have applied the requested regulatory domain before we just
2845 * inform userspace we have processed the request
2846 */
2847 if (treatment == REG_REQ_ALREADY_SET) {
2848 nl80211_send_reg_change_event(driver_request);
2849 reg_update_last_request(driver_request);
2850 reg_set_request_processed();
2851 return REG_REQ_ALREADY_SET;
2852 }
2853
2854 if (reg_query_database(driver_request)) {
2855 reg_update_last_request(driver_request);
2856 return REG_REQ_OK;
2857 }
2858
2859 return REG_REQ_IGNORE;
2860 }
2861
2862 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2863 __reg_process_hint_country_ie(struct wiphy *wiphy,
2864 struct regulatory_request *country_ie_request)
2865 {
2866 struct wiphy *last_wiphy = NULL;
2867 struct regulatory_request *lr = get_last_request();
2868
2869 if (reg_request_cell_base(lr)) {
2870 /* Trust a Cell base station over the AP's country IE */
2871 if (regdom_changes(country_ie_request->alpha2))
2872 return REG_REQ_IGNORE;
2873 return REG_REQ_ALREADY_SET;
2874 } else {
2875 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2876 return REG_REQ_IGNORE;
2877 }
2878
2879 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2880 return -EINVAL;
2881
2882 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2883 return REG_REQ_OK;
2884
2885 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2886
2887 if (last_wiphy != wiphy) {
2888 /*
2889 * Two cards with two APs claiming different
2890 * Country IE alpha2s. We could
2891 * intersect them, but that seems unlikely
2892 * to be correct. Reject second one for now.
2893 */
2894 if (regdom_changes(country_ie_request->alpha2))
2895 return REG_REQ_IGNORE;
2896 return REG_REQ_ALREADY_SET;
2897 }
2898
2899 if (regdom_changes(country_ie_request->alpha2))
2900 return REG_REQ_OK;
2901 return REG_REQ_ALREADY_SET;
2902 }
2903
2904 /**
2905 * reg_process_hint_country_ie - process regulatory requests from country IEs
2906 * @wiphy: the wireless device for the regulatory request
2907 * @country_ie_request: a regulatory request from a country IE
2908 *
2909 * The wireless subsystem can use this function to process
2910 * a regulatory request issued by a country Information Element.
2911 *
2912 * Returns one of the different reg request treatment values.
2913 */
2914 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2915 reg_process_hint_country_ie(struct wiphy *wiphy,
2916 struct regulatory_request *country_ie_request)
2917 {
2918 enum reg_request_treatment treatment;
2919
2920 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2921
2922 switch (treatment) {
2923 case REG_REQ_OK:
2924 break;
2925 case REG_REQ_IGNORE:
2926 return REG_REQ_IGNORE;
2927 case REG_REQ_ALREADY_SET:
2928 reg_free_request(country_ie_request);
2929 return REG_REQ_ALREADY_SET;
2930 case REG_REQ_INTERSECT:
2931 /*
2932 * This doesn't happen yet, not sure we
2933 * ever want to support it for this case.
2934 */
2935 WARN_ONCE(1, "Unexpected intersection for country elements");
2936 return REG_REQ_IGNORE;
2937 }
2938
2939 country_ie_request->intersect = false;
2940 country_ie_request->processed = false;
2941
2942 if (reg_query_database(country_ie_request)) {
2943 reg_update_last_request(country_ie_request);
2944 return REG_REQ_OK;
2945 }
2946
2947 return REG_REQ_IGNORE;
2948 }
2949
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2950 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2951 {
2952 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2953 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2954 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2955 bool dfs_domain_same;
2956
2957 rcu_read_lock();
2958
2959 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2960 wiphy1_regd = rcu_dereference(wiphy1->regd);
2961 if (!wiphy1_regd)
2962 wiphy1_regd = cfg80211_regd;
2963
2964 wiphy2_regd = rcu_dereference(wiphy2->regd);
2965 if (!wiphy2_regd)
2966 wiphy2_regd = cfg80211_regd;
2967
2968 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2969
2970 rcu_read_unlock();
2971
2972 return dfs_domain_same;
2973 }
2974
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2975 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2976 struct ieee80211_channel *src_chan)
2977 {
2978 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2979 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2980 return;
2981
2982 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2983 src_chan->flags & IEEE80211_CHAN_DISABLED)
2984 return;
2985
2986 if (src_chan->center_freq == dst_chan->center_freq &&
2987 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2988 dst_chan->dfs_state = src_chan->dfs_state;
2989 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2990 }
2991 }
2992
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2993 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2994 struct wiphy *src_wiphy)
2995 {
2996 struct ieee80211_supported_band *src_sband, *dst_sband;
2997 struct ieee80211_channel *src_chan, *dst_chan;
2998 int i, j, band;
2999
3000 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
3001 return;
3002
3003 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3004 dst_sband = dst_wiphy->bands[band];
3005 src_sband = src_wiphy->bands[band];
3006 if (!dst_sband || !src_sband)
3007 continue;
3008
3009 for (i = 0; i < dst_sband->n_channels; i++) {
3010 dst_chan = &dst_sband->channels[i];
3011 for (j = 0; j < src_sband->n_channels; j++) {
3012 src_chan = &src_sband->channels[j];
3013 reg_copy_dfs_chan_state(dst_chan, src_chan);
3014 }
3015 }
3016 }
3017 }
3018
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3019 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3020 {
3021 struct cfg80211_registered_device *rdev;
3022
3023 ASSERT_RTNL();
3024
3025 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3026 if (wiphy == &rdev->wiphy)
3027 continue;
3028 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3029 }
3030 }
3031
3032 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3033 static void reg_process_hint(struct regulatory_request *reg_request)
3034 {
3035 struct wiphy *wiphy = NULL;
3036 enum reg_request_treatment treatment;
3037 enum nl80211_reg_initiator initiator = reg_request->initiator;
3038
3039 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3040 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3041
3042 switch (initiator) {
3043 case NL80211_REGDOM_SET_BY_CORE:
3044 treatment = reg_process_hint_core(reg_request);
3045 break;
3046 case NL80211_REGDOM_SET_BY_USER:
3047 treatment = reg_process_hint_user(reg_request);
3048 break;
3049 case NL80211_REGDOM_SET_BY_DRIVER:
3050 if (!wiphy)
3051 goto out_free;
3052 treatment = reg_process_hint_driver(wiphy, reg_request);
3053 break;
3054 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3055 if (!wiphy)
3056 goto out_free;
3057 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3058 break;
3059 default:
3060 WARN(1, "invalid initiator %d\n", initiator);
3061 goto out_free;
3062 }
3063
3064 if (treatment == REG_REQ_IGNORE)
3065 goto out_free;
3066
3067 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3068 "unexpected treatment value %d\n", treatment);
3069
3070 /* This is required so that the orig_* parameters are saved.
3071 * NOTE: treatment must be set for any case that reaches here!
3072 */
3073 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3074 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3075 wiphy_update_regulatory(wiphy, initiator);
3076 wiphy_all_share_dfs_chan_state(wiphy);
3077 reg_check_channels();
3078 }
3079
3080 return;
3081
3082 out_free:
3083 reg_free_request(reg_request);
3084 }
3085
notify_self_managed_wiphys(struct regulatory_request * request)3086 static void notify_self_managed_wiphys(struct regulatory_request *request)
3087 {
3088 struct cfg80211_registered_device *rdev;
3089 struct wiphy *wiphy;
3090
3091 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3092 wiphy = &rdev->wiphy;
3093 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3094 request->initiator == NL80211_REGDOM_SET_BY_USER)
3095 reg_call_notifier(wiphy, request);
3096 }
3097 }
3098
3099 /*
3100 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3101 * Regulatory hints come on a first come first serve basis and we
3102 * must process each one atomically.
3103 */
reg_process_pending_hints(void)3104 static void reg_process_pending_hints(void)
3105 {
3106 struct regulatory_request *reg_request, *lr;
3107
3108 lr = get_last_request();
3109
3110 /* When last_request->processed becomes true this will be rescheduled */
3111 if (lr && !lr->processed) {
3112 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3113 return;
3114 }
3115
3116 spin_lock(®_requests_lock);
3117
3118 if (list_empty(®_requests_list)) {
3119 spin_unlock(®_requests_lock);
3120 return;
3121 }
3122
3123 reg_request = list_first_entry(®_requests_list,
3124 struct regulatory_request,
3125 list);
3126 list_del_init(®_request->list);
3127
3128 spin_unlock(®_requests_lock);
3129
3130 notify_self_managed_wiphys(reg_request);
3131
3132 reg_process_hint(reg_request);
3133
3134 lr = get_last_request();
3135
3136 spin_lock(®_requests_lock);
3137 if (!list_empty(®_requests_list) && lr && lr->processed)
3138 schedule_work(®_work);
3139 spin_unlock(®_requests_lock);
3140 }
3141
3142 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3143 static void reg_process_pending_beacon_hints(void)
3144 {
3145 struct cfg80211_registered_device *rdev;
3146 struct reg_beacon *pending_beacon, *tmp;
3147
3148 /* This goes through the _pending_ beacon list */
3149 spin_lock_bh(®_pending_beacons_lock);
3150
3151 list_for_each_entry_safe(pending_beacon, tmp,
3152 ®_pending_beacons, list) {
3153 list_del_init(&pending_beacon->list);
3154
3155 /* Applies the beacon hint to current wiphys */
3156 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3157 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3158
3159 /* Remembers the beacon hint for new wiphys or reg changes */
3160 list_add_tail(&pending_beacon->list, ®_beacon_list);
3161 }
3162
3163 spin_unlock_bh(®_pending_beacons_lock);
3164 }
3165
reg_process_self_managed_hint(struct wiphy * wiphy)3166 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3167 {
3168 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3169 const struct ieee80211_regdomain *tmp;
3170 const struct ieee80211_regdomain *regd;
3171 enum nl80211_band band;
3172 struct regulatory_request request = {};
3173
3174 ASSERT_RTNL();
3175 lockdep_assert_wiphy(wiphy);
3176
3177 spin_lock(®_requests_lock);
3178 regd = rdev->requested_regd;
3179 rdev->requested_regd = NULL;
3180 spin_unlock(®_requests_lock);
3181
3182 if (!regd)
3183 return;
3184
3185 tmp = get_wiphy_regdom(wiphy);
3186 rcu_assign_pointer(wiphy->regd, regd);
3187 rcu_free_regdom(tmp);
3188
3189 for (band = 0; band < NUM_NL80211_BANDS; band++)
3190 handle_band_custom(wiphy, wiphy->bands[band], regd);
3191
3192 reg_process_ht_flags(wiphy);
3193
3194 request.wiphy_idx = get_wiphy_idx(wiphy);
3195 request.alpha2[0] = regd->alpha2[0];
3196 request.alpha2[1] = regd->alpha2[1];
3197 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3198
3199 nl80211_send_wiphy_reg_change_event(&request);
3200 }
3201
reg_process_self_managed_hints(void)3202 static void reg_process_self_managed_hints(void)
3203 {
3204 struct cfg80211_registered_device *rdev;
3205
3206 ASSERT_RTNL();
3207
3208 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3209 wiphy_lock(&rdev->wiphy);
3210 reg_process_self_managed_hint(&rdev->wiphy);
3211 wiphy_unlock(&rdev->wiphy);
3212 }
3213
3214 reg_check_channels();
3215 }
3216
reg_todo(struct work_struct * work)3217 static void reg_todo(struct work_struct *work)
3218 {
3219 rtnl_lock();
3220 reg_process_pending_hints();
3221 reg_process_pending_beacon_hints();
3222 reg_process_self_managed_hints();
3223 rtnl_unlock();
3224 }
3225
queue_regulatory_request(struct regulatory_request * request)3226 static void queue_regulatory_request(struct regulatory_request *request)
3227 {
3228 request->alpha2[0] = toupper(request->alpha2[0]);
3229 request->alpha2[1] = toupper(request->alpha2[1]);
3230
3231 spin_lock(®_requests_lock);
3232 list_add_tail(&request->list, ®_requests_list);
3233 spin_unlock(®_requests_lock);
3234
3235 schedule_work(®_work);
3236 }
3237
3238 /*
3239 * Core regulatory hint -- happens during cfg80211_init()
3240 * and when we restore regulatory settings.
3241 */
regulatory_hint_core(const char * alpha2)3242 static int regulatory_hint_core(const char *alpha2)
3243 {
3244 struct regulatory_request *request;
3245
3246 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3247 if (!request)
3248 return -ENOMEM;
3249
3250 request->alpha2[0] = alpha2[0];
3251 request->alpha2[1] = alpha2[1];
3252 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3253 request->wiphy_idx = WIPHY_IDX_INVALID;
3254
3255 queue_regulatory_request(request);
3256
3257 return 0;
3258 }
3259
3260 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3261 int regulatory_hint_user(const char *alpha2,
3262 enum nl80211_user_reg_hint_type user_reg_hint_type)
3263 {
3264 struct regulatory_request *request;
3265
3266 if (WARN_ON(!alpha2))
3267 return -EINVAL;
3268
3269 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3270 return -EINVAL;
3271
3272 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3273 if (!request)
3274 return -ENOMEM;
3275
3276 request->wiphy_idx = WIPHY_IDX_INVALID;
3277 request->alpha2[0] = alpha2[0];
3278 request->alpha2[1] = alpha2[1];
3279 request->initiator = NL80211_REGDOM_SET_BY_USER;
3280 request->user_reg_hint_type = user_reg_hint_type;
3281
3282 /* Allow calling CRDA again */
3283 reset_crda_timeouts();
3284
3285 queue_regulatory_request(request);
3286
3287 return 0;
3288 }
3289
regulatory_hint_indoor(bool is_indoor,u32 portid)3290 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3291 {
3292 spin_lock(®_indoor_lock);
3293
3294 /* It is possible that more than one user space process is trying to
3295 * configure the indoor setting. To handle such cases, clear the indoor
3296 * setting in case that some process does not think that the device
3297 * is operating in an indoor environment. In addition, if a user space
3298 * process indicates that it is controlling the indoor setting, save its
3299 * portid, i.e., make it the owner.
3300 */
3301 reg_is_indoor = is_indoor;
3302 if (reg_is_indoor) {
3303 if (!reg_is_indoor_portid)
3304 reg_is_indoor_portid = portid;
3305 } else {
3306 reg_is_indoor_portid = 0;
3307 }
3308
3309 spin_unlock(®_indoor_lock);
3310
3311 if (!is_indoor)
3312 reg_check_channels();
3313
3314 return 0;
3315 }
3316
regulatory_netlink_notify(u32 portid)3317 void regulatory_netlink_notify(u32 portid)
3318 {
3319 spin_lock(®_indoor_lock);
3320
3321 if (reg_is_indoor_portid != portid) {
3322 spin_unlock(®_indoor_lock);
3323 return;
3324 }
3325
3326 reg_is_indoor = false;
3327 reg_is_indoor_portid = 0;
3328
3329 spin_unlock(®_indoor_lock);
3330
3331 reg_check_channels();
3332 }
3333
3334 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3335 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3336 {
3337 struct regulatory_request *request;
3338
3339 if (WARN_ON(!alpha2 || !wiphy))
3340 return -EINVAL;
3341
3342 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3343
3344 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3345 if (!request)
3346 return -ENOMEM;
3347
3348 request->wiphy_idx = get_wiphy_idx(wiphy);
3349
3350 request->alpha2[0] = alpha2[0];
3351 request->alpha2[1] = alpha2[1];
3352 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3353
3354 /* Allow calling CRDA again */
3355 reset_crda_timeouts();
3356
3357 queue_regulatory_request(request);
3358
3359 return 0;
3360 }
3361 EXPORT_SYMBOL(regulatory_hint);
3362
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3363 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3364 const u8 *country_ie, u8 country_ie_len)
3365 {
3366 char alpha2[2];
3367 enum environment_cap env = ENVIRON_ANY;
3368 struct regulatory_request *request = NULL, *lr;
3369
3370 /* IE len must be evenly divisible by 2 */
3371 if (country_ie_len & 0x01)
3372 return;
3373
3374 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3375 return;
3376
3377 request = kzalloc(sizeof(*request), GFP_KERNEL);
3378 if (!request)
3379 return;
3380
3381 alpha2[0] = country_ie[0];
3382 alpha2[1] = country_ie[1];
3383
3384 if (country_ie[2] == 'I')
3385 env = ENVIRON_INDOOR;
3386 else if (country_ie[2] == 'O')
3387 env = ENVIRON_OUTDOOR;
3388
3389 rcu_read_lock();
3390 lr = get_last_request();
3391
3392 if (unlikely(!lr))
3393 goto out;
3394
3395 /*
3396 * We will run this only upon a successful connection on cfg80211.
3397 * We leave conflict resolution to the workqueue, where can hold
3398 * the RTNL.
3399 */
3400 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3401 lr->wiphy_idx != WIPHY_IDX_INVALID)
3402 goto out;
3403
3404 request->wiphy_idx = get_wiphy_idx(wiphy);
3405 request->alpha2[0] = alpha2[0];
3406 request->alpha2[1] = alpha2[1];
3407 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3408 request->country_ie_env = env;
3409
3410 /* Allow calling CRDA again */
3411 reset_crda_timeouts();
3412
3413 queue_regulatory_request(request);
3414 request = NULL;
3415 out:
3416 kfree(request);
3417 rcu_read_unlock();
3418 }
3419
restore_alpha2(char * alpha2,bool reset_user)3420 static void restore_alpha2(char *alpha2, bool reset_user)
3421 {
3422 /* indicates there is no alpha2 to consider for restoration */
3423 alpha2[0] = '9';
3424 alpha2[1] = '7';
3425
3426 /* The user setting has precedence over the module parameter */
3427 if (is_user_regdom_saved()) {
3428 /* Unless we're asked to ignore it and reset it */
3429 if (reset_user) {
3430 pr_debug("Restoring regulatory settings including user preference\n");
3431 user_alpha2[0] = '9';
3432 user_alpha2[1] = '7';
3433
3434 /*
3435 * If we're ignoring user settings, we still need to
3436 * check the module parameter to ensure we put things
3437 * back as they were for a full restore.
3438 */
3439 if (!is_world_regdom(ieee80211_regdom)) {
3440 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3441 ieee80211_regdom[0], ieee80211_regdom[1]);
3442 alpha2[0] = ieee80211_regdom[0];
3443 alpha2[1] = ieee80211_regdom[1];
3444 }
3445 } else {
3446 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3447 user_alpha2[0], user_alpha2[1]);
3448 alpha2[0] = user_alpha2[0];
3449 alpha2[1] = user_alpha2[1];
3450 }
3451 } else if (!is_world_regdom(ieee80211_regdom)) {
3452 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3453 ieee80211_regdom[0], ieee80211_regdom[1]);
3454 alpha2[0] = ieee80211_regdom[0];
3455 alpha2[1] = ieee80211_regdom[1];
3456 } else
3457 pr_debug("Restoring regulatory settings\n");
3458 }
3459
restore_custom_reg_settings(struct wiphy * wiphy)3460 static void restore_custom_reg_settings(struct wiphy *wiphy)
3461 {
3462 struct ieee80211_supported_band *sband;
3463 enum nl80211_band band;
3464 struct ieee80211_channel *chan;
3465 int i;
3466
3467 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3468 sband = wiphy->bands[band];
3469 if (!sband)
3470 continue;
3471 for (i = 0; i < sband->n_channels; i++) {
3472 chan = &sband->channels[i];
3473 chan->flags = chan->orig_flags;
3474 chan->max_antenna_gain = chan->orig_mag;
3475 chan->max_power = chan->orig_mpwr;
3476 chan->beacon_found = false;
3477 }
3478 }
3479 }
3480
3481 /*
3482 * Restoring regulatory settings involves ignoring any
3483 * possibly stale country IE information and user regulatory
3484 * settings if so desired, this includes any beacon hints
3485 * learned as we could have traveled outside to another country
3486 * after disconnection. To restore regulatory settings we do
3487 * exactly what we did at bootup:
3488 *
3489 * - send a core regulatory hint
3490 * - send a user regulatory hint if applicable
3491 *
3492 * Device drivers that send a regulatory hint for a specific country
3493 * keep their own regulatory domain on wiphy->regd so that does
3494 * not need to be remembered.
3495 */
restore_regulatory_settings(bool reset_user,bool cached)3496 static void restore_regulatory_settings(bool reset_user, bool cached)
3497 {
3498 char alpha2[2];
3499 char world_alpha2[2];
3500 struct reg_beacon *reg_beacon, *btmp;
3501 LIST_HEAD(tmp_reg_req_list);
3502 struct cfg80211_registered_device *rdev;
3503
3504 ASSERT_RTNL();
3505
3506 /*
3507 * Clear the indoor setting in case that it is not controlled by user
3508 * space, as otherwise there is no guarantee that the device is still
3509 * operating in an indoor environment.
3510 */
3511 spin_lock(®_indoor_lock);
3512 if (reg_is_indoor && !reg_is_indoor_portid) {
3513 reg_is_indoor = false;
3514 reg_check_channels();
3515 }
3516 spin_unlock(®_indoor_lock);
3517
3518 reset_regdomains(true, &world_regdom);
3519 restore_alpha2(alpha2, reset_user);
3520
3521 /*
3522 * If there's any pending requests we simply
3523 * stash them to a temporary pending queue and
3524 * add then after we've restored regulatory
3525 * settings.
3526 */
3527 spin_lock(®_requests_lock);
3528 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3529 spin_unlock(®_requests_lock);
3530
3531 /* Clear beacon hints */
3532 spin_lock_bh(®_pending_beacons_lock);
3533 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3534 list_del(®_beacon->list);
3535 kfree(reg_beacon);
3536 }
3537 spin_unlock_bh(®_pending_beacons_lock);
3538
3539 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3540 list_del(®_beacon->list);
3541 kfree(reg_beacon);
3542 }
3543
3544 /* First restore to the basic regulatory settings */
3545 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3546 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3547
3548 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3549 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3550 continue;
3551 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3552 restore_custom_reg_settings(&rdev->wiphy);
3553 }
3554
3555 if (cached && (!is_an_alpha2(alpha2) ||
3556 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3557 reset_regdomains(false, cfg80211_world_regdom);
3558 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3559 print_regdomain(get_cfg80211_regdom());
3560 nl80211_send_reg_change_event(&core_request_world);
3561 reg_set_request_processed();
3562
3563 if (is_an_alpha2(alpha2) &&
3564 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3565 struct regulatory_request *ureq;
3566
3567 spin_lock(®_requests_lock);
3568 ureq = list_last_entry(®_requests_list,
3569 struct regulatory_request,
3570 list);
3571 list_del(&ureq->list);
3572 spin_unlock(®_requests_lock);
3573
3574 notify_self_managed_wiphys(ureq);
3575 reg_update_last_request(ureq);
3576 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3577 REGD_SOURCE_CACHED);
3578 }
3579 } else {
3580 regulatory_hint_core(world_alpha2);
3581
3582 /*
3583 * This restores the ieee80211_regdom module parameter
3584 * preference or the last user requested regulatory
3585 * settings, user regulatory settings takes precedence.
3586 */
3587 if (is_an_alpha2(alpha2))
3588 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3589 }
3590
3591 spin_lock(®_requests_lock);
3592 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3593 spin_unlock(®_requests_lock);
3594
3595 pr_debug("Kicking the queue\n");
3596
3597 schedule_work(®_work);
3598 }
3599
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3600 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3601 {
3602 struct cfg80211_registered_device *rdev;
3603 struct wireless_dev *wdev;
3604
3605 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3606 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3607 wdev_lock(wdev);
3608 if (!(wdev->wiphy->regulatory_flags & flag)) {
3609 wdev_unlock(wdev);
3610 return false;
3611 }
3612 wdev_unlock(wdev);
3613 }
3614 }
3615
3616 return true;
3617 }
3618
regulatory_hint_disconnect(void)3619 void regulatory_hint_disconnect(void)
3620 {
3621 /* Restore of regulatory settings is not required when wiphy(s)
3622 * ignore IE from connected access point but clearance of beacon hints
3623 * is required when wiphy(s) supports beacon hints.
3624 */
3625 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3626 struct reg_beacon *reg_beacon, *btmp;
3627
3628 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3629 return;
3630
3631 spin_lock_bh(®_pending_beacons_lock);
3632 list_for_each_entry_safe(reg_beacon, btmp,
3633 ®_pending_beacons, list) {
3634 list_del(®_beacon->list);
3635 kfree(reg_beacon);
3636 }
3637 spin_unlock_bh(®_pending_beacons_lock);
3638
3639 list_for_each_entry_safe(reg_beacon, btmp,
3640 ®_beacon_list, list) {
3641 list_del(®_beacon->list);
3642 kfree(reg_beacon);
3643 }
3644
3645 return;
3646 }
3647
3648 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3649 restore_regulatory_settings(false, true);
3650 }
3651
freq_is_chan_12_13_14(u32 freq)3652 static bool freq_is_chan_12_13_14(u32 freq)
3653 {
3654 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3655 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3656 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3657 return true;
3658 return false;
3659 }
3660
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3661 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3662 {
3663 struct reg_beacon *pending_beacon;
3664
3665 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3666 if (ieee80211_channel_equal(beacon_chan,
3667 &pending_beacon->chan))
3668 return true;
3669 return false;
3670 }
3671
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3672 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3673 struct ieee80211_channel *beacon_chan,
3674 gfp_t gfp)
3675 {
3676 struct reg_beacon *reg_beacon;
3677 bool processing;
3678
3679 if (beacon_chan->beacon_found ||
3680 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3681 (beacon_chan->band == NL80211_BAND_2GHZ &&
3682 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3683 return 0;
3684
3685 spin_lock_bh(®_pending_beacons_lock);
3686 processing = pending_reg_beacon(beacon_chan);
3687 spin_unlock_bh(®_pending_beacons_lock);
3688
3689 if (processing)
3690 return 0;
3691
3692 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3693 if (!reg_beacon)
3694 return -ENOMEM;
3695
3696 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3697 beacon_chan->center_freq, beacon_chan->freq_offset,
3698 ieee80211_freq_khz_to_channel(
3699 ieee80211_channel_to_khz(beacon_chan)),
3700 wiphy_name(wiphy));
3701
3702 memcpy(®_beacon->chan, beacon_chan,
3703 sizeof(struct ieee80211_channel));
3704
3705 /*
3706 * Since we can be called from BH or and non-BH context
3707 * we must use spin_lock_bh()
3708 */
3709 spin_lock_bh(®_pending_beacons_lock);
3710 list_add_tail(®_beacon->list, ®_pending_beacons);
3711 spin_unlock_bh(®_pending_beacons_lock);
3712
3713 schedule_work(®_work);
3714
3715 return 0;
3716 }
3717
print_rd_rules(const struct ieee80211_regdomain * rd)3718 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3719 {
3720 unsigned int i;
3721 const struct ieee80211_reg_rule *reg_rule = NULL;
3722 const struct ieee80211_freq_range *freq_range = NULL;
3723 const struct ieee80211_power_rule *power_rule = NULL;
3724 char bw[32], cac_time[32];
3725
3726 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3727
3728 for (i = 0; i < rd->n_reg_rules; i++) {
3729 reg_rule = &rd->reg_rules[i];
3730 freq_range = ®_rule->freq_range;
3731 power_rule = ®_rule->power_rule;
3732
3733 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3734 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3735 freq_range->max_bandwidth_khz,
3736 reg_get_max_bandwidth(rd, reg_rule));
3737 else
3738 snprintf(bw, sizeof(bw), "%d KHz",
3739 freq_range->max_bandwidth_khz);
3740
3741 if (reg_rule->flags & NL80211_RRF_DFS)
3742 scnprintf(cac_time, sizeof(cac_time), "%u s",
3743 reg_rule->dfs_cac_ms/1000);
3744 else
3745 scnprintf(cac_time, sizeof(cac_time), "N/A");
3746
3747
3748 /*
3749 * There may not be documentation for max antenna gain
3750 * in certain regions
3751 */
3752 if (power_rule->max_antenna_gain)
3753 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3754 freq_range->start_freq_khz,
3755 freq_range->end_freq_khz,
3756 bw,
3757 power_rule->max_antenna_gain,
3758 power_rule->max_eirp,
3759 cac_time);
3760 else
3761 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3762 freq_range->start_freq_khz,
3763 freq_range->end_freq_khz,
3764 bw,
3765 power_rule->max_eirp,
3766 cac_time);
3767 }
3768 }
3769
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3770 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3771 {
3772 switch (dfs_region) {
3773 case NL80211_DFS_UNSET:
3774 case NL80211_DFS_FCC:
3775 case NL80211_DFS_ETSI:
3776 case NL80211_DFS_JP:
3777 return true;
3778 default:
3779 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3780 return false;
3781 }
3782 }
3783
print_regdomain(const struct ieee80211_regdomain * rd)3784 static void print_regdomain(const struct ieee80211_regdomain *rd)
3785 {
3786 struct regulatory_request *lr = get_last_request();
3787
3788 if (is_intersected_alpha2(rd->alpha2)) {
3789 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3790 struct cfg80211_registered_device *rdev;
3791 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3792 if (rdev) {
3793 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3794 rdev->country_ie_alpha2[0],
3795 rdev->country_ie_alpha2[1]);
3796 } else
3797 pr_debug("Current regulatory domain intersected:\n");
3798 } else
3799 pr_debug("Current regulatory domain intersected:\n");
3800 } else if (is_world_regdom(rd->alpha2)) {
3801 pr_debug("World regulatory domain updated:\n");
3802 } else {
3803 if (is_unknown_alpha2(rd->alpha2))
3804 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3805 else {
3806 if (reg_request_cell_base(lr))
3807 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3808 rd->alpha2[0], rd->alpha2[1]);
3809 else
3810 pr_debug("Regulatory domain changed to country: %c%c\n",
3811 rd->alpha2[0], rd->alpha2[1]);
3812 }
3813 }
3814
3815 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3816 print_rd_rules(rd);
3817 }
3818
print_regdomain_info(const struct ieee80211_regdomain * rd)3819 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3820 {
3821 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3822 print_rd_rules(rd);
3823 }
3824
reg_set_rd_core(const struct ieee80211_regdomain * rd)3825 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3826 {
3827 if (!is_world_regdom(rd->alpha2))
3828 return -EINVAL;
3829 update_world_regdomain(rd);
3830 return 0;
3831 }
3832
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3833 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3834 struct regulatory_request *user_request)
3835 {
3836 const struct ieee80211_regdomain *intersected_rd = NULL;
3837
3838 if (!regdom_changes(rd->alpha2))
3839 return -EALREADY;
3840
3841 if (!is_valid_rd(rd)) {
3842 pr_err("Invalid regulatory domain detected: %c%c\n",
3843 rd->alpha2[0], rd->alpha2[1]);
3844 print_regdomain_info(rd);
3845 return -EINVAL;
3846 }
3847
3848 if (!user_request->intersect) {
3849 reset_regdomains(false, rd);
3850 return 0;
3851 }
3852
3853 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3854 if (!intersected_rd)
3855 return -EINVAL;
3856
3857 kfree(rd);
3858 rd = NULL;
3859 reset_regdomains(false, intersected_rd);
3860
3861 return 0;
3862 }
3863
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3864 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3865 struct regulatory_request *driver_request)
3866 {
3867 const struct ieee80211_regdomain *regd;
3868 const struct ieee80211_regdomain *intersected_rd = NULL;
3869 const struct ieee80211_regdomain *tmp;
3870 struct wiphy *request_wiphy;
3871
3872 if (is_world_regdom(rd->alpha2))
3873 return -EINVAL;
3874
3875 if (!regdom_changes(rd->alpha2))
3876 return -EALREADY;
3877
3878 if (!is_valid_rd(rd)) {
3879 pr_err("Invalid regulatory domain detected: %c%c\n",
3880 rd->alpha2[0], rd->alpha2[1]);
3881 print_regdomain_info(rd);
3882 return -EINVAL;
3883 }
3884
3885 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3886 if (!request_wiphy)
3887 return -ENODEV;
3888
3889 if (!driver_request->intersect) {
3890 ASSERT_RTNL();
3891 wiphy_lock(request_wiphy);
3892 if (request_wiphy->regd) {
3893 wiphy_unlock(request_wiphy);
3894 return -EALREADY;
3895 }
3896
3897 regd = reg_copy_regd(rd);
3898 if (IS_ERR(regd)) {
3899 wiphy_unlock(request_wiphy);
3900 return PTR_ERR(regd);
3901 }
3902
3903 rcu_assign_pointer(request_wiphy->regd, regd);
3904 wiphy_unlock(request_wiphy);
3905 reset_regdomains(false, rd);
3906 return 0;
3907 }
3908
3909 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3910 if (!intersected_rd)
3911 return -EINVAL;
3912
3913 /*
3914 * We can trash what CRDA provided now.
3915 * However if a driver requested this specific regulatory
3916 * domain we keep it for its private use
3917 */
3918 tmp = get_wiphy_regdom(request_wiphy);
3919 rcu_assign_pointer(request_wiphy->regd, rd);
3920 rcu_free_regdom(tmp);
3921
3922 rd = NULL;
3923
3924 reset_regdomains(false, intersected_rd);
3925
3926 return 0;
3927 }
3928
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3929 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3930 struct regulatory_request *country_ie_request)
3931 {
3932 struct wiphy *request_wiphy;
3933
3934 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3935 !is_unknown_alpha2(rd->alpha2))
3936 return -EINVAL;
3937
3938 /*
3939 * Lets only bother proceeding on the same alpha2 if the current
3940 * rd is non static (it means CRDA was present and was used last)
3941 * and the pending request came in from a country IE
3942 */
3943
3944 if (!is_valid_rd(rd)) {
3945 pr_err("Invalid regulatory domain detected: %c%c\n",
3946 rd->alpha2[0], rd->alpha2[1]);
3947 print_regdomain_info(rd);
3948 return -EINVAL;
3949 }
3950
3951 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3952 if (!request_wiphy)
3953 return -ENODEV;
3954
3955 if (country_ie_request->intersect)
3956 return -EINVAL;
3957
3958 reset_regdomains(false, rd);
3959 return 0;
3960 }
3961
3962 /*
3963 * Use this call to set the current regulatory domain. Conflicts with
3964 * multiple drivers can be ironed out later. Caller must've already
3965 * kmalloc'd the rd structure.
3966 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3967 int set_regdom(const struct ieee80211_regdomain *rd,
3968 enum ieee80211_regd_source regd_src)
3969 {
3970 struct regulatory_request *lr;
3971 bool user_reset = false;
3972 int r;
3973
3974 if (IS_ERR_OR_NULL(rd))
3975 return -ENODATA;
3976
3977 if (!reg_is_valid_request(rd->alpha2)) {
3978 kfree(rd);
3979 return -EINVAL;
3980 }
3981
3982 if (regd_src == REGD_SOURCE_CRDA)
3983 reset_crda_timeouts();
3984
3985 lr = get_last_request();
3986
3987 /* Note that this doesn't update the wiphys, this is done below */
3988 switch (lr->initiator) {
3989 case NL80211_REGDOM_SET_BY_CORE:
3990 r = reg_set_rd_core(rd);
3991 break;
3992 case NL80211_REGDOM_SET_BY_USER:
3993 cfg80211_save_user_regdom(rd);
3994 r = reg_set_rd_user(rd, lr);
3995 user_reset = true;
3996 break;
3997 case NL80211_REGDOM_SET_BY_DRIVER:
3998 r = reg_set_rd_driver(rd, lr);
3999 break;
4000 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
4001 r = reg_set_rd_country_ie(rd, lr);
4002 break;
4003 default:
4004 WARN(1, "invalid initiator %d\n", lr->initiator);
4005 kfree(rd);
4006 return -EINVAL;
4007 }
4008
4009 if (r) {
4010 switch (r) {
4011 case -EALREADY:
4012 reg_set_request_processed();
4013 break;
4014 default:
4015 /* Back to world regulatory in case of errors */
4016 restore_regulatory_settings(user_reset, false);
4017 }
4018
4019 kfree(rd);
4020 return r;
4021 }
4022
4023 /* This would make this whole thing pointless */
4024 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4025 return -EINVAL;
4026
4027 /* update all wiphys now with the new established regulatory domain */
4028 update_all_wiphy_regulatory(lr->initiator);
4029
4030 print_regdomain(get_cfg80211_regdom());
4031
4032 nl80211_send_reg_change_event(lr);
4033
4034 reg_set_request_processed();
4035
4036 return 0;
4037 }
4038
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4039 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4040 struct ieee80211_regdomain *rd)
4041 {
4042 const struct ieee80211_regdomain *regd;
4043 const struct ieee80211_regdomain *prev_regd;
4044 struct cfg80211_registered_device *rdev;
4045
4046 if (WARN_ON(!wiphy || !rd))
4047 return -EINVAL;
4048
4049 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4050 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4051 return -EPERM;
4052
4053 if (WARN(!is_valid_rd(rd),
4054 "Invalid regulatory domain detected: %c%c\n",
4055 rd->alpha2[0], rd->alpha2[1])) {
4056 print_regdomain_info(rd);
4057 return -EINVAL;
4058 }
4059
4060 regd = reg_copy_regd(rd);
4061 if (IS_ERR(regd))
4062 return PTR_ERR(regd);
4063
4064 rdev = wiphy_to_rdev(wiphy);
4065
4066 spin_lock(®_requests_lock);
4067 prev_regd = rdev->requested_regd;
4068 rdev->requested_regd = regd;
4069 spin_unlock(®_requests_lock);
4070
4071 kfree(prev_regd);
4072 return 0;
4073 }
4074
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4075 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4076 struct ieee80211_regdomain *rd)
4077 {
4078 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4079
4080 if (ret)
4081 return ret;
4082
4083 schedule_work(®_work);
4084 return 0;
4085 }
4086 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4087
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4088 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4089 struct ieee80211_regdomain *rd)
4090 {
4091 int ret;
4092
4093 ASSERT_RTNL();
4094
4095 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4096 if (ret)
4097 return ret;
4098
4099 /* process the request immediately */
4100 reg_process_self_managed_hint(wiphy);
4101 reg_check_channels();
4102 return 0;
4103 }
4104 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4105
wiphy_regulatory_register(struct wiphy * wiphy)4106 void wiphy_regulatory_register(struct wiphy *wiphy)
4107 {
4108 struct regulatory_request *lr = get_last_request();
4109
4110 /* self-managed devices ignore beacon hints and country IE */
4111 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4112 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4113 REGULATORY_COUNTRY_IE_IGNORE;
4114
4115 /*
4116 * The last request may have been received before this
4117 * registration call. Call the driver notifier if
4118 * initiator is USER.
4119 */
4120 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4121 reg_call_notifier(wiphy, lr);
4122 }
4123
4124 if (!reg_dev_ignore_cell_hint(wiphy))
4125 reg_num_devs_support_basehint++;
4126
4127 wiphy_update_regulatory(wiphy, lr->initiator);
4128 wiphy_all_share_dfs_chan_state(wiphy);
4129 reg_process_self_managed_hints();
4130 }
4131
wiphy_regulatory_deregister(struct wiphy * wiphy)4132 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4133 {
4134 struct wiphy *request_wiphy = NULL;
4135 struct regulatory_request *lr;
4136
4137 lr = get_last_request();
4138
4139 if (!reg_dev_ignore_cell_hint(wiphy))
4140 reg_num_devs_support_basehint--;
4141
4142 rcu_free_regdom(get_wiphy_regdom(wiphy));
4143 RCU_INIT_POINTER(wiphy->regd, NULL);
4144
4145 if (lr)
4146 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4147
4148 if (!request_wiphy || request_wiphy != wiphy)
4149 return;
4150
4151 lr->wiphy_idx = WIPHY_IDX_INVALID;
4152 lr->country_ie_env = ENVIRON_ANY;
4153 }
4154
4155 /*
4156 * See FCC notices for UNII band definitions
4157 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4158 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4159 */
cfg80211_get_unii(int freq)4160 int cfg80211_get_unii(int freq)
4161 {
4162 /* UNII-1 */
4163 if (freq >= 5150 && freq <= 5250)
4164 return 0;
4165
4166 /* UNII-2A */
4167 if (freq > 5250 && freq <= 5350)
4168 return 1;
4169
4170 /* UNII-2B */
4171 if (freq > 5350 && freq <= 5470)
4172 return 2;
4173
4174 /* UNII-2C */
4175 if (freq > 5470 && freq <= 5725)
4176 return 3;
4177
4178 /* UNII-3 */
4179 if (freq > 5725 && freq <= 5825)
4180 return 4;
4181
4182 /* UNII-5 */
4183 if (freq > 5925 && freq <= 6425)
4184 return 5;
4185
4186 /* UNII-6 */
4187 if (freq > 6425 && freq <= 6525)
4188 return 6;
4189
4190 /* UNII-7 */
4191 if (freq > 6525 && freq <= 6875)
4192 return 7;
4193
4194 /* UNII-8 */
4195 if (freq > 6875 && freq <= 7125)
4196 return 8;
4197
4198 return -EINVAL;
4199 }
4200
regulatory_indoor_allowed(void)4201 bool regulatory_indoor_allowed(void)
4202 {
4203 return reg_is_indoor;
4204 }
4205
regulatory_pre_cac_allowed(struct wiphy * wiphy)4206 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4207 {
4208 const struct ieee80211_regdomain *regd = NULL;
4209 const struct ieee80211_regdomain *wiphy_regd = NULL;
4210 bool pre_cac_allowed = false;
4211
4212 rcu_read_lock();
4213
4214 regd = rcu_dereference(cfg80211_regdomain);
4215 wiphy_regd = rcu_dereference(wiphy->regd);
4216 if (!wiphy_regd) {
4217 if (regd->dfs_region == NL80211_DFS_ETSI)
4218 pre_cac_allowed = true;
4219
4220 rcu_read_unlock();
4221
4222 return pre_cac_allowed;
4223 }
4224
4225 if (regd->dfs_region == wiphy_regd->dfs_region &&
4226 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4227 pre_cac_allowed = true;
4228
4229 rcu_read_unlock();
4230
4231 return pre_cac_allowed;
4232 }
4233 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4234
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4235 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4236 {
4237 struct wireless_dev *wdev;
4238 /* If we finished CAC or received radar, we should end any
4239 * CAC running on the same channels.
4240 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4241 * either all channels are available - those the CAC_FINISHED
4242 * event has effected another wdev state, or there is a channel
4243 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4244 * event has effected another wdev state.
4245 * In both cases we should end the CAC on the wdev.
4246 */
4247 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4248 struct cfg80211_chan_def *chandef;
4249
4250 if (!wdev->cac_started)
4251 continue;
4252
4253 /* FIXME: radar detection is tied to link 0 for now */
4254 chandef = wdev_chandef(wdev, 0);
4255 if (!chandef)
4256 continue;
4257
4258 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4259 rdev_end_cac(rdev, wdev->netdev);
4260 }
4261 }
4262
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4263 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4264 struct cfg80211_chan_def *chandef,
4265 enum nl80211_dfs_state dfs_state,
4266 enum nl80211_radar_event event)
4267 {
4268 struct cfg80211_registered_device *rdev;
4269
4270 ASSERT_RTNL();
4271
4272 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4273 return;
4274
4275 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4276 if (wiphy == &rdev->wiphy)
4277 continue;
4278
4279 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4280 continue;
4281
4282 if (!ieee80211_get_channel(&rdev->wiphy,
4283 chandef->chan->center_freq))
4284 continue;
4285
4286 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4287
4288 if (event == NL80211_RADAR_DETECTED ||
4289 event == NL80211_RADAR_CAC_FINISHED) {
4290 cfg80211_sched_dfs_chan_update(rdev);
4291 cfg80211_check_and_end_cac(rdev);
4292 }
4293
4294 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4295 }
4296 }
4297
regulatory_init_db(void)4298 static int __init regulatory_init_db(void)
4299 {
4300 int err;
4301
4302 /*
4303 * It's possible that - due to other bugs/issues - cfg80211
4304 * never called regulatory_init() below, or that it failed;
4305 * in that case, don't try to do any further work here as
4306 * it's doomed to lead to crashes.
4307 */
4308 if (IS_ERR_OR_NULL(reg_pdev))
4309 return -EINVAL;
4310
4311 err = load_builtin_regdb_keys();
4312 if (err) {
4313 platform_device_unregister(reg_pdev);
4314 return err;
4315 }
4316
4317 /* We always try to get an update for the static regdomain */
4318 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4319 if (err) {
4320 if (err == -ENOMEM) {
4321 platform_device_unregister(reg_pdev);
4322 return err;
4323 }
4324 /*
4325 * N.B. kobject_uevent_env() can fail mainly for when we're out
4326 * memory which is handled and propagated appropriately above
4327 * but it can also fail during a netlink_broadcast() or during
4328 * early boot for call_usermodehelper(). For now treat these
4329 * errors as non-fatal.
4330 */
4331 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4332 }
4333
4334 /*
4335 * Finally, if the user set the module parameter treat it
4336 * as a user hint.
4337 */
4338 if (!is_world_regdom(ieee80211_regdom))
4339 regulatory_hint_user(ieee80211_regdom,
4340 NL80211_USER_REG_HINT_USER);
4341
4342 return 0;
4343 }
4344 #ifndef MODULE
4345 late_initcall(regulatory_init_db);
4346 #endif
4347
regulatory_init(void)4348 int __init regulatory_init(void)
4349 {
4350 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4351 if (IS_ERR(reg_pdev))
4352 return PTR_ERR(reg_pdev);
4353
4354 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4355
4356 user_alpha2[0] = '9';
4357 user_alpha2[1] = '7';
4358
4359 #ifdef MODULE
4360 return regulatory_init_db();
4361 #else
4362 return 0;
4363 #endif
4364 }
4365
regulatory_exit(void)4366 void regulatory_exit(void)
4367 {
4368 struct regulatory_request *reg_request, *tmp;
4369 struct reg_beacon *reg_beacon, *btmp;
4370
4371 cancel_work_sync(®_work);
4372 cancel_crda_timeout_sync();
4373 cancel_delayed_work_sync(®_check_chans);
4374
4375 /* Lock to suppress warnings */
4376 rtnl_lock();
4377 reset_regdomains(true, NULL);
4378 rtnl_unlock();
4379
4380 dev_set_uevent_suppress(®_pdev->dev, true);
4381
4382 platform_device_unregister(reg_pdev);
4383
4384 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4385 list_del(®_beacon->list);
4386 kfree(reg_beacon);
4387 }
4388
4389 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4390 list_del(®_beacon->list);
4391 kfree(reg_beacon);
4392 }
4393
4394 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4395 list_del(®_request->list);
4396 kfree(reg_request);
4397 }
4398
4399 if (!IS_ERR_OR_NULL(regdb))
4400 kfree(regdb);
4401 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4402 kfree(cfg80211_user_regdom);
4403
4404 free_regdb_keyring();
4405 }
4406