1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_qos.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/time.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
23
24 #include "fsl_sai.h"
25 #include "imx-pcm.h"
26
27 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
28 FSL_SAI_CSR_FEIE)
29
30 static const unsigned int fsl_sai_rates[] = {
31 8000, 11025, 12000, 16000, 22050,
32 24000, 32000, 44100, 48000, 64000,
33 88200, 96000, 176400, 192000
34 };
35
36 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
37 .count = ARRAY_SIZE(fsl_sai_rates),
38 .list = fsl_sai_rates,
39 };
40
41 /**
42 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
43 *
44 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
45 * or Receiver's for both streams. This function is used to check if clocks of
46 * the stream's are synced by the opposite stream.
47 *
48 * @sai: SAI context
49 * @dir: stream direction
50 */
fsl_sai_dir_is_synced(struct fsl_sai * sai,int dir)51 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
52 {
53 int adir = (dir == TX) ? RX : TX;
54
55 /* current dir in async mode while opposite dir in sync mode */
56 return !sai->synchronous[dir] && sai->synchronous[adir];
57 }
58
fsl_sai_isr(int irq,void * devid)59 static irqreturn_t fsl_sai_isr(int irq, void *devid)
60 {
61 struct fsl_sai *sai = (struct fsl_sai *)devid;
62 unsigned int ofs = sai->soc_data->reg_offset;
63 struct device *dev = &sai->pdev->dev;
64 u32 flags, xcsr, mask;
65 bool irq_none = true;
66
67 /*
68 * Both IRQ status bits and IRQ mask bits are in the xCSR but
69 * different shifts. And we here create a mask only for those
70 * IRQs that we activated.
71 */
72 mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
73
74 /* Tx IRQ */
75 regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
76 flags = xcsr & mask;
77
78 if (flags)
79 irq_none = false;
80 else
81 goto irq_rx;
82
83 if (flags & FSL_SAI_CSR_WSF)
84 dev_dbg(dev, "isr: Start of Tx word detected\n");
85
86 if (flags & FSL_SAI_CSR_SEF)
87 dev_dbg(dev, "isr: Tx Frame sync error detected\n");
88
89 if (flags & FSL_SAI_CSR_FEF) {
90 dev_dbg(dev, "isr: Transmit underrun detected\n");
91 /* FIFO reset for safety */
92 xcsr |= FSL_SAI_CSR_FR;
93 }
94
95 if (flags & FSL_SAI_CSR_FWF)
96 dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
97
98 if (flags & FSL_SAI_CSR_FRF)
99 dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
100
101 flags &= FSL_SAI_CSR_xF_W_MASK;
102 xcsr &= ~FSL_SAI_CSR_xF_MASK;
103
104 if (flags)
105 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
106
107 irq_rx:
108 /* Rx IRQ */
109 regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
110 flags = xcsr & mask;
111
112 if (flags)
113 irq_none = false;
114 else
115 goto out;
116
117 if (flags & FSL_SAI_CSR_WSF)
118 dev_dbg(dev, "isr: Start of Rx word detected\n");
119
120 if (flags & FSL_SAI_CSR_SEF)
121 dev_dbg(dev, "isr: Rx Frame sync error detected\n");
122
123 if (flags & FSL_SAI_CSR_FEF) {
124 dev_dbg(dev, "isr: Receive overflow detected\n");
125 /* FIFO reset for safety */
126 xcsr |= FSL_SAI_CSR_FR;
127 }
128
129 if (flags & FSL_SAI_CSR_FWF)
130 dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
131
132 if (flags & FSL_SAI_CSR_FRF)
133 dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
134
135 flags &= FSL_SAI_CSR_xF_W_MASK;
136 xcsr &= ~FSL_SAI_CSR_xF_MASK;
137
138 if (flags)
139 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
140
141 out:
142 if (irq_none)
143 return IRQ_NONE;
144 else
145 return IRQ_HANDLED;
146 }
147
fsl_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)148 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
149 u32 rx_mask, int slots, int slot_width)
150 {
151 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
152
153 sai->slots = slots;
154 sai->slot_width = slot_width;
155
156 return 0;
157 }
158
fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai * dai,unsigned int ratio)159 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
160 unsigned int ratio)
161 {
162 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
163
164 sai->bclk_ratio = ratio;
165
166 return 0;
167 }
168
fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int fsl_dir)169 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
170 int clk_id, unsigned int freq, int fsl_dir)
171 {
172 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
173 unsigned int ofs = sai->soc_data->reg_offset;
174 bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
175 u32 val_cr2 = 0;
176
177 switch (clk_id) {
178 case FSL_SAI_CLK_BUS:
179 val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
180 break;
181 case FSL_SAI_CLK_MAST1:
182 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
183 break;
184 case FSL_SAI_CLK_MAST2:
185 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
186 break;
187 case FSL_SAI_CLK_MAST3:
188 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
189 break;
190 default:
191 return -EINVAL;
192 }
193
194 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
195 FSL_SAI_CR2_MSEL_MASK, val_cr2);
196
197 return 0;
198 }
199
fsl_sai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)200 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
201 int clk_id, unsigned int freq, int dir)
202 {
203 int ret;
204
205 if (dir == SND_SOC_CLOCK_IN)
206 return 0;
207
208 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
209 FSL_FMT_TRANSMITTER);
210 if (ret) {
211 dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
212 return ret;
213 }
214
215 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
216 FSL_FMT_RECEIVER);
217 if (ret)
218 dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
219
220 return ret;
221 }
222
fsl_sai_set_dai_fmt_tr(struct snd_soc_dai * cpu_dai,unsigned int fmt,int fsl_dir)223 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
224 unsigned int fmt, int fsl_dir)
225 {
226 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
227 unsigned int ofs = sai->soc_data->reg_offset;
228 bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
229 u32 val_cr2 = 0, val_cr4 = 0;
230
231 if (!sai->is_lsb_first)
232 val_cr4 |= FSL_SAI_CR4_MF;
233
234 sai->is_dsp_mode = false;
235 /* DAI mode */
236 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
237 case SND_SOC_DAIFMT_I2S:
238 /*
239 * Frame low, 1clk before data, one word length for frame sync,
240 * frame sync starts one serial clock cycle earlier,
241 * that is, together with the last bit of the previous
242 * data word.
243 */
244 val_cr2 |= FSL_SAI_CR2_BCP;
245 val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
246 break;
247 case SND_SOC_DAIFMT_LEFT_J:
248 /*
249 * Frame high, one word length for frame sync,
250 * frame sync asserts with the first bit of the frame.
251 */
252 val_cr2 |= FSL_SAI_CR2_BCP;
253 break;
254 case SND_SOC_DAIFMT_DSP_A:
255 /*
256 * Frame high, 1clk before data, one bit for frame sync,
257 * frame sync starts one serial clock cycle earlier,
258 * that is, together with the last bit of the previous
259 * data word.
260 */
261 val_cr2 |= FSL_SAI_CR2_BCP;
262 val_cr4 |= FSL_SAI_CR4_FSE;
263 sai->is_dsp_mode = true;
264 break;
265 case SND_SOC_DAIFMT_DSP_B:
266 /*
267 * Frame high, one bit for frame sync,
268 * frame sync asserts with the first bit of the frame.
269 */
270 val_cr2 |= FSL_SAI_CR2_BCP;
271 sai->is_dsp_mode = true;
272 break;
273 case SND_SOC_DAIFMT_RIGHT_J:
274 /* To be done */
275 default:
276 return -EINVAL;
277 }
278
279 /* DAI clock inversion */
280 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
281 case SND_SOC_DAIFMT_IB_IF:
282 /* Invert both clocks */
283 val_cr2 ^= FSL_SAI_CR2_BCP;
284 val_cr4 ^= FSL_SAI_CR4_FSP;
285 break;
286 case SND_SOC_DAIFMT_IB_NF:
287 /* Invert bit clock */
288 val_cr2 ^= FSL_SAI_CR2_BCP;
289 break;
290 case SND_SOC_DAIFMT_NB_IF:
291 /* Invert frame clock */
292 val_cr4 ^= FSL_SAI_CR4_FSP;
293 break;
294 case SND_SOC_DAIFMT_NB_NF:
295 /* Nothing to do for both normal cases */
296 break;
297 default:
298 return -EINVAL;
299 }
300
301 /* DAI clock provider masks */
302 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
303 case SND_SOC_DAIFMT_CBC_CFC:
304 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
305 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
306 sai->is_consumer_mode = false;
307 break;
308 case SND_SOC_DAIFMT_CBP_CFP:
309 sai->is_consumer_mode = true;
310 break;
311 case SND_SOC_DAIFMT_CBC_CFP:
312 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
313 sai->is_consumer_mode = false;
314 break;
315 case SND_SOC_DAIFMT_CBP_CFC:
316 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
317 sai->is_consumer_mode = true;
318 break;
319 default:
320 return -EINVAL;
321 }
322
323 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
324 FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
325 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
326 FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
327 FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
328
329 return 0;
330 }
331
fsl_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)332 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
333 {
334 int ret;
335
336 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
337 if (ret) {
338 dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
339 return ret;
340 }
341
342 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
343 if (ret)
344 dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
345
346 return ret;
347 }
348
fsl_sai_set_bclk(struct snd_soc_dai * dai,bool tx,u32 freq)349 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
350 {
351 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
352 unsigned int ofs = sai->soc_data->reg_offset;
353 unsigned long clk_rate;
354 u32 savediv = 0, ratio, savesub = freq;
355 int adir = tx ? RX : TX;
356 int dir = tx ? TX : RX;
357 u32 id;
358 int ret = 0;
359
360 /* Don't apply to consumer mode */
361 if (sai->is_consumer_mode)
362 return 0;
363
364 /*
365 * There is no point in polling MCLK0 if it is identical to MCLK1.
366 * And given that MQS use case has to use MCLK1 though two clocks
367 * are the same, we simply skip MCLK0 and start to find from MCLK1.
368 */
369 id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
370
371 for (; id < FSL_SAI_MCLK_MAX; id++) {
372 clk_rate = clk_get_rate(sai->mclk_clk[id]);
373 if (!clk_rate)
374 continue;
375
376 ratio = clk_rate / freq;
377
378 ret = clk_rate - ratio * freq;
379
380 /*
381 * Drop the source that can not be
382 * divided into the required rate.
383 */
384 if (ret != 0 && clk_rate / ret < 1000)
385 continue;
386
387 dev_dbg(dai->dev,
388 "ratio %d for freq %dHz based on clock %ldHz\n",
389 ratio, freq, clk_rate);
390
391 if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
392 ratio /= 2;
393 else
394 continue;
395
396 if (ret < savesub) {
397 savediv = ratio;
398 sai->mclk_id[tx] = id;
399 savesub = ret;
400 }
401
402 if (ret == 0)
403 break;
404 }
405
406 if (savediv == 0) {
407 dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
408 tx ? 'T' : 'R', freq);
409 return -EINVAL;
410 }
411
412 /*
413 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
414 * set TCR2 register for playback.
415 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
416 * and capture.
417 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
418 * and capture.
419 * 4) For Tx and Rx are both Synchronous with another SAI, we just
420 * ignore it.
421 */
422 if (fsl_sai_dir_is_synced(sai, adir)) {
423 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
424 FSL_SAI_CR2_MSEL_MASK,
425 FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
426 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
427 FSL_SAI_CR2_DIV_MASK, savediv - 1);
428 } else if (!sai->synchronous[dir]) {
429 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
430 FSL_SAI_CR2_MSEL_MASK,
431 FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
432 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
433 FSL_SAI_CR2_DIV_MASK, savediv - 1);
434 }
435
436 dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
437 sai->mclk_id[tx], savediv, savesub);
438
439 return 0;
440 }
441
fsl_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)442 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
443 struct snd_pcm_hw_params *params,
444 struct snd_soc_dai *cpu_dai)
445 {
446 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
447 unsigned int ofs = sai->soc_data->reg_offset;
448 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
449 unsigned int channels = params_channels(params);
450 u32 word_width = params_width(params);
451 u32 val_cr4 = 0, val_cr5 = 0;
452 u32 slots = (channels == 1) ? 2 : channels;
453 u32 slot_width = word_width;
454 int adir = tx ? RX : TX;
455 u32 pins;
456 int ret;
457
458 if (sai->slots)
459 slots = sai->slots;
460
461 if (sai->slot_width)
462 slot_width = sai->slot_width;
463
464 pins = DIV_ROUND_UP(channels, slots);
465
466 if (!sai->is_consumer_mode) {
467 if (sai->bclk_ratio)
468 ret = fsl_sai_set_bclk(cpu_dai, tx,
469 sai->bclk_ratio *
470 params_rate(params));
471 else
472 ret = fsl_sai_set_bclk(cpu_dai, tx,
473 slots * slot_width *
474 params_rate(params));
475 if (ret)
476 return ret;
477
478 /* Do not enable the clock if it is already enabled */
479 if (!(sai->mclk_streams & BIT(substream->stream))) {
480 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
481 if (ret)
482 return ret;
483
484 sai->mclk_streams |= BIT(substream->stream);
485 }
486 }
487
488 if (!sai->is_dsp_mode)
489 val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
490
491 val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
492 val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
493
494 if (sai->is_lsb_first)
495 val_cr5 |= FSL_SAI_CR5_FBT(0);
496 else
497 val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
498
499 val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
500
501 /* Set to output mode to avoid tri-stated data pins */
502 if (tx)
503 val_cr4 |= FSL_SAI_CR4_CHMOD;
504
505 /*
506 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
507 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
508 * RCR5(TCR5) for playback(capture), or there will be sync error.
509 */
510
511 if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
512 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
513 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
514 FSL_SAI_CR4_CHMOD_MASK,
515 val_cr4);
516 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
517 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
518 FSL_SAI_CR5_FBT_MASK, val_cr5);
519 }
520
521 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
522 FSL_SAI_CR3_TRCE_MASK,
523 FSL_SAI_CR3_TRCE((1 << pins) - 1));
524 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
525 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
526 FSL_SAI_CR4_CHMOD_MASK,
527 val_cr4);
528 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
529 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
530 FSL_SAI_CR5_FBT_MASK, val_cr5);
531 regmap_write(sai->regmap, FSL_SAI_xMR(tx),
532 ~0UL - ((1 << min(channels, slots)) - 1));
533
534 return 0;
535 }
536
fsl_sai_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)537 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
538 struct snd_soc_dai *cpu_dai)
539 {
540 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
541 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
542 unsigned int ofs = sai->soc_data->reg_offset;
543
544 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
545 FSL_SAI_CR3_TRCE_MASK, 0);
546
547 if (!sai->is_consumer_mode &&
548 sai->mclk_streams & BIT(substream->stream)) {
549 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
550 sai->mclk_streams &= ~BIT(substream->stream);
551 }
552
553 return 0;
554 }
555
fsl_sai_config_disable(struct fsl_sai * sai,int dir)556 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
557 {
558 unsigned int ofs = sai->soc_data->reg_offset;
559 bool tx = dir == TX;
560 u32 xcsr, count = 100;
561
562 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
563 FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE, 0);
564
565 /* TERE will remain set till the end of current frame */
566 do {
567 udelay(10);
568 regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
569 } while (--count && xcsr & FSL_SAI_CSR_TERE);
570
571 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
572 FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
573
574 /*
575 * For sai master mode, after several open/close sai,
576 * there will be no frame clock, and can't recover
577 * anymore. Add software reset to fix this issue.
578 * This is a hardware bug, and will be fix in the
579 * next sai version.
580 */
581 if (!sai->is_consumer_mode) {
582 /* Software Reset */
583 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
584 /* Clear SR bit to finish the reset */
585 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
586 }
587 }
588
fsl_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)589 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
590 struct snd_soc_dai *cpu_dai)
591 {
592 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
593 unsigned int ofs = sai->soc_data->reg_offset;
594
595 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
596 int adir = tx ? RX : TX;
597 int dir = tx ? TX : RX;
598 u32 xcsr;
599
600 /*
601 * Asynchronous mode: Clear SYNC for both Tx and Rx.
602 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
603 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
604 */
605 regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
606 sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
607 regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
608 sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
609
610 /*
611 * It is recommended that the transmitter is the last enabled
612 * and the first disabled.
613 */
614 switch (cmd) {
615 case SNDRV_PCM_TRIGGER_START:
616 case SNDRV_PCM_TRIGGER_RESUME:
617 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
618 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
619 FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
620
621 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
622 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
623 /*
624 * Enable the opposite direction for synchronous mode
625 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
626 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
627 *
628 * RM recommends to enable RE after TE for case 1 and to enable
629 * TE after RE for case 2, but we here may not always guarantee
630 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
631 * TE after RE, which is against what RM recommends but should
632 * be safe to do, judging by years of testing results.
633 */
634 if (fsl_sai_dir_is_synced(sai, adir))
635 regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
636 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
637
638 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
639 FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
640 break;
641 case SNDRV_PCM_TRIGGER_STOP:
642 case SNDRV_PCM_TRIGGER_SUSPEND:
643 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
644 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
645 FSL_SAI_CSR_FRDE, 0);
646 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
647 FSL_SAI_CSR_xIE_MASK, 0);
648
649 /* Check if the opposite FRDE is also disabled */
650 regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
651
652 /*
653 * If opposite stream provides clocks for synchronous mode and
654 * it is inactive, disable it before disabling the current one
655 */
656 if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
657 fsl_sai_config_disable(sai, adir);
658
659 /*
660 * Disable current stream if either of:
661 * 1. current stream doesn't provide clocks for synchronous mode
662 * 2. current stream provides clocks for synchronous mode but no
663 * more stream is active.
664 */
665 if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
666 fsl_sai_config_disable(sai, dir);
667
668 break;
669 default:
670 return -EINVAL;
671 }
672
673 return 0;
674 }
675
fsl_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)676 static int fsl_sai_startup(struct snd_pcm_substream *substream,
677 struct snd_soc_dai *cpu_dai)
678 {
679 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
680 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
681 int ret;
682
683 /*
684 * EDMA controller needs period size to be a multiple of
685 * tx/rx maxburst
686 */
687 if (sai->soc_data->use_edma)
688 snd_pcm_hw_constraint_step(substream->runtime, 0,
689 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
690 tx ? sai->dma_params_tx.maxburst :
691 sai->dma_params_rx.maxburst);
692
693 ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
694 SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
695
696 return ret;
697 }
698
699 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
700 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
701 .set_sysclk = fsl_sai_set_dai_sysclk,
702 .set_fmt = fsl_sai_set_dai_fmt,
703 .set_tdm_slot = fsl_sai_set_dai_tdm_slot,
704 .hw_params = fsl_sai_hw_params,
705 .hw_free = fsl_sai_hw_free,
706 .trigger = fsl_sai_trigger,
707 .startup = fsl_sai_startup,
708 };
709
fsl_sai_dai_probe(struct snd_soc_dai * cpu_dai)710 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
711 {
712 struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
713 unsigned int ofs = sai->soc_data->reg_offset;
714
715 /* Software Reset for both Tx and Rx */
716 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
717 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
718 /* Clear SR bit to finish the reset */
719 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
720 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
721
722 regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
723 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
724 sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
725 regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
726 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
727 FSL_SAI_MAXBURST_RX - 1);
728
729 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
730 &sai->dma_params_rx);
731
732 return 0;
733 }
734
735 static struct snd_soc_dai_driver fsl_sai_dai_template = {
736 .probe = fsl_sai_dai_probe,
737 .playback = {
738 .stream_name = "CPU-Playback",
739 .channels_min = 1,
740 .channels_max = 32,
741 .rate_min = 8000,
742 .rate_max = 192000,
743 .rates = SNDRV_PCM_RATE_KNOT,
744 .formats = FSL_SAI_FORMATS,
745 },
746 .capture = {
747 .stream_name = "CPU-Capture",
748 .channels_min = 1,
749 .channels_max = 32,
750 .rate_min = 8000,
751 .rate_max = 192000,
752 .rates = SNDRV_PCM_RATE_KNOT,
753 .formats = FSL_SAI_FORMATS,
754 },
755 .ops = &fsl_sai_pcm_dai_ops,
756 };
757
758 static const struct snd_soc_component_driver fsl_component = {
759 .name = "fsl-sai",
760 };
761
762 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
763 {FSL_SAI_TCR1(0), 0},
764 {FSL_SAI_TCR2(0), 0},
765 {FSL_SAI_TCR3(0), 0},
766 {FSL_SAI_TCR4(0), 0},
767 {FSL_SAI_TCR5(0), 0},
768 {FSL_SAI_TDR0, 0},
769 {FSL_SAI_TDR1, 0},
770 {FSL_SAI_TDR2, 0},
771 {FSL_SAI_TDR3, 0},
772 {FSL_SAI_TDR4, 0},
773 {FSL_SAI_TDR5, 0},
774 {FSL_SAI_TDR6, 0},
775 {FSL_SAI_TDR7, 0},
776 {FSL_SAI_TMR, 0},
777 {FSL_SAI_RCR1(0), 0},
778 {FSL_SAI_RCR2(0), 0},
779 {FSL_SAI_RCR3(0), 0},
780 {FSL_SAI_RCR4(0), 0},
781 {FSL_SAI_RCR5(0), 0},
782 {FSL_SAI_RMR, 0},
783 };
784
785 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
786 {FSL_SAI_TCR1(8), 0},
787 {FSL_SAI_TCR2(8), 0},
788 {FSL_SAI_TCR3(8), 0},
789 {FSL_SAI_TCR4(8), 0},
790 {FSL_SAI_TCR5(8), 0},
791 {FSL_SAI_TDR0, 0},
792 {FSL_SAI_TDR1, 0},
793 {FSL_SAI_TDR2, 0},
794 {FSL_SAI_TDR3, 0},
795 {FSL_SAI_TDR4, 0},
796 {FSL_SAI_TDR5, 0},
797 {FSL_SAI_TDR6, 0},
798 {FSL_SAI_TDR7, 0},
799 {FSL_SAI_TMR, 0},
800 {FSL_SAI_RCR1(8), 0},
801 {FSL_SAI_RCR2(8), 0},
802 {FSL_SAI_RCR3(8), 0},
803 {FSL_SAI_RCR4(8), 0},
804 {FSL_SAI_RCR5(8), 0},
805 {FSL_SAI_RMR, 0},
806 {FSL_SAI_MCTL, 0},
807 {FSL_SAI_MDIV, 0},
808 };
809
fsl_sai_readable_reg(struct device * dev,unsigned int reg)810 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
811 {
812 struct fsl_sai *sai = dev_get_drvdata(dev);
813 unsigned int ofs = sai->soc_data->reg_offset;
814
815 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
816 return true;
817
818 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
819 return true;
820
821 switch (reg) {
822 case FSL_SAI_TFR0:
823 case FSL_SAI_TFR1:
824 case FSL_SAI_TFR2:
825 case FSL_SAI_TFR3:
826 case FSL_SAI_TFR4:
827 case FSL_SAI_TFR5:
828 case FSL_SAI_TFR6:
829 case FSL_SAI_TFR7:
830 case FSL_SAI_TMR:
831 case FSL_SAI_RDR0:
832 case FSL_SAI_RDR1:
833 case FSL_SAI_RDR2:
834 case FSL_SAI_RDR3:
835 case FSL_SAI_RDR4:
836 case FSL_SAI_RDR5:
837 case FSL_SAI_RDR6:
838 case FSL_SAI_RDR7:
839 case FSL_SAI_RFR0:
840 case FSL_SAI_RFR1:
841 case FSL_SAI_RFR2:
842 case FSL_SAI_RFR3:
843 case FSL_SAI_RFR4:
844 case FSL_SAI_RFR5:
845 case FSL_SAI_RFR6:
846 case FSL_SAI_RFR7:
847 case FSL_SAI_RMR:
848 case FSL_SAI_MCTL:
849 case FSL_SAI_MDIV:
850 case FSL_SAI_VERID:
851 case FSL_SAI_PARAM:
852 case FSL_SAI_TTCTN:
853 case FSL_SAI_RTCTN:
854 case FSL_SAI_TTCTL:
855 case FSL_SAI_TBCTN:
856 case FSL_SAI_TTCAP:
857 case FSL_SAI_RTCTL:
858 case FSL_SAI_RBCTN:
859 case FSL_SAI_RTCAP:
860 return true;
861 default:
862 return false;
863 }
864 }
865
fsl_sai_volatile_reg(struct device * dev,unsigned int reg)866 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
867 {
868 struct fsl_sai *sai = dev_get_drvdata(dev);
869 unsigned int ofs = sai->soc_data->reg_offset;
870
871 if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
872 return true;
873
874 /* Set VERID and PARAM be volatile for reading value in probe */
875 if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
876 return true;
877
878 switch (reg) {
879 case FSL_SAI_TFR0:
880 case FSL_SAI_TFR1:
881 case FSL_SAI_TFR2:
882 case FSL_SAI_TFR3:
883 case FSL_SAI_TFR4:
884 case FSL_SAI_TFR5:
885 case FSL_SAI_TFR6:
886 case FSL_SAI_TFR7:
887 case FSL_SAI_RFR0:
888 case FSL_SAI_RFR1:
889 case FSL_SAI_RFR2:
890 case FSL_SAI_RFR3:
891 case FSL_SAI_RFR4:
892 case FSL_SAI_RFR5:
893 case FSL_SAI_RFR6:
894 case FSL_SAI_RFR7:
895 case FSL_SAI_RDR0:
896 case FSL_SAI_RDR1:
897 case FSL_SAI_RDR2:
898 case FSL_SAI_RDR3:
899 case FSL_SAI_RDR4:
900 case FSL_SAI_RDR5:
901 case FSL_SAI_RDR6:
902 case FSL_SAI_RDR7:
903 return true;
904 default:
905 return false;
906 }
907 }
908
fsl_sai_writeable_reg(struct device * dev,unsigned int reg)909 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
910 {
911 struct fsl_sai *sai = dev_get_drvdata(dev);
912 unsigned int ofs = sai->soc_data->reg_offset;
913
914 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
915 return true;
916
917 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
918 return true;
919
920 switch (reg) {
921 case FSL_SAI_TDR0:
922 case FSL_SAI_TDR1:
923 case FSL_SAI_TDR2:
924 case FSL_SAI_TDR3:
925 case FSL_SAI_TDR4:
926 case FSL_SAI_TDR5:
927 case FSL_SAI_TDR6:
928 case FSL_SAI_TDR7:
929 case FSL_SAI_TMR:
930 case FSL_SAI_RMR:
931 case FSL_SAI_MCTL:
932 case FSL_SAI_MDIV:
933 case FSL_SAI_TTCTL:
934 case FSL_SAI_RTCTL:
935 return true;
936 default:
937 return false;
938 }
939 }
940
941 static struct regmap_config fsl_sai_regmap_config = {
942 .reg_bits = 32,
943 .reg_stride = 4,
944 .val_bits = 32,
945 .fast_io = true,
946
947 .max_register = FSL_SAI_RMR,
948 .reg_defaults = fsl_sai_reg_defaults_ofs0,
949 .num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
950 .readable_reg = fsl_sai_readable_reg,
951 .volatile_reg = fsl_sai_volatile_reg,
952 .writeable_reg = fsl_sai_writeable_reg,
953 .cache_type = REGCACHE_FLAT,
954 };
955
fsl_sai_check_version(struct device * dev)956 static int fsl_sai_check_version(struct device *dev)
957 {
958 struct fsl_sai *sai = dev_get_drvdata(dev);
959 unsigned char ofs = sai->soc_data->reg_offset;
960 unsigned int val;
961 int ret;
962
963 if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
964 return 0;
965
966 ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
967 if (ret < 0)
968 return ret;
969
970 dev_dbg(dev, "VERID: 0x%016X\n", val);
971
972 sai->verid.major = (val & FSL_SAI_VERID_MAJOR_MASK) >>
973 FSL_SAI_VERID_MAJOR_SHIFT;
974 sai->verid.minor = (val & FSL_SAI_VERID_MINOR_MASK) >>
975 FSL_SAI_VERID_MINOR_SHIFT;
976 sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
977
978 ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
979 if (ret < 0)
980 return ret;
981
982 dev_dbg(dev, "PARAM: 0x%016X\n", val);
983
984 /* Max slots per frame, power of 2 */
985 sai->param.slot_num = 1 <<
986 ((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
987
988 /* Words per fifo, power of 2 */
989 sai->param.fifo_depth = 1 <<
990 ((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
991
992 /* Number of datalines implemented */
993 sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
994
995 return 0;
996 }
997
998 static int fsl_sai_runtime_suspend(struct device *dev);
999 static int fsl_sai_runtime_resume(struct device *dev);
1000
fsl_sai_probe(struct platform_device * pdev)1001 static int fsl_sai_probe(struct platform_device *pdev)
1002 {
1003 struct device_node *np = pdev->dev.of_node;
1004 struct device *dev = &pdev->dev;
1005 struct fsl_sai *sai;
1006 struct regmap *gpr;
1007 struct resource *res;
1008 void __iomem *base;
1009 char tmp[8];
1010 int irq, ret, i;
1011 int index;
1012
1013 sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1014 if (!sai)
1015 return -ENOMEM;
1016
1017 sai->pdev = pdev;
1018 sai->soc_data = of_device_get_match_data(dev);
1019
1020 sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1021
1022 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1023 if (IS_ERR(base))
1024 return PTR_ERR(base);
1025
1026 if (sai->soc_data->reg_offset == 8) {
1027 fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1028 fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1029 fsl_sai_regmap_config.num_reg_defaults =
1030 ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1031 }
1032
1033 sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1034 if (IS_ERR(sai->regmap)) {
1035 dev_err(dev, "regmap init failed\n");
1036 return PTR_ERR(sai->regmap);
1037 }
1038
1039 sai->bus_clk = devm_clk_get(dev, "bus");
1040 /* Compatible with old DTB cases */
1041 if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1042 sai->bus_clk = devm_clk_get(dev, "sai");
1043 if (IS_ERR(sai->bus_clk)) {
1044 dev_err(dev, "failed to get bus clock: %ld\n",
1045 PTR_ERR(sai->bus_clk));
1046 /* -EPROBE_DEFER */
1047 return PTR_ERR(sai->bus_clk);
1048 }
1049
1050 for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1051 sprintf(tmp, "mclk%d", i);
1052 sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1053 if (IS_ERR(sai->mclk_clk[i])) {
1054 dev_err(dev, "failed to get mclk%d clock: %ld\n",
1055 i + 1, PTR_ERR(sai->mclk_clk[i]));
1056 sai->mclk_clk[i] = NULL;
1057 }
1058 }
1059
1060 if (sai->soc_data->mclk0_is_mclk1)
1061 sai->mclk_clk[0] = sai->mclk_clk[1];
1062 else
1063 sai->mclk_clk[0] = sai->bus_clk;
1064
1065 irq = platform_get_irq(pdev, 0);
1066 if (irq < 0)
1067 return irq;
1068
1069 ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1070 np->name, sai);
1071 if (ret) {
1072 dev_err(dev, "failed to claim irq %u\n", irq);
1073 return ret;
1074 }
1075
1076 memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1077 sizeof(fsl_sai_dai_template));
1078
1079 /* Sync Tx with Rx as default by following old DT binding */
1080 sai->synchronous[RX] = true;
1081 sai->synchronous[TX] = false;
1082 sai->cpu_dai_drv.symmetric_rate = 1;
1083 sai->cpu_dai_drv.symmetric_channels = 1;
1084 sai->cpu_dai_drv.symmetric_sample_bits = 1;
1085
1086 if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
1087 of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1088 /* error out if both synchronous and asynchronous are present */
1089 dev_err(dev, "invalid binding for synchronous mode\n");
1090 return -EINVAL;
1091 }
1092
1093 if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
1094 /* Sync Rx with Tx */
1095 sai->synchronous[RX] = false;
1096 sai->synchronous[TX] = true;
1097 } else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1098 /* Discard all settings for asynchronous mode */
1099 sai->synchronous[RX] = false;
1100 sai->synchronous[TX] = false;
1101 sai->cpu_dai_drv.symmetric_rate = 0;
1102 sai->cpu_dai_drv.symmetric_channels = 0;
1103 sai->cpu_dai_drv.symmetric_sample_bits = 0;
1104 }
1105
1106 if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1107 of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1108 gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1109 if (IS_ERR(gpr)) {
1110 dev_err(dev, "cannot find iomuxc registers\n");
1111 return PTR_ERR(gpr);
1112 }
1113
1114 index = of_alias_get_id(np, "sai");
1115 if (index < 0)
1116 return index;
1117
1118 regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1119 MCLK_DIR(index));
1120 }
1121
1122 sai->dma_params_rx.addr = res->start + FSL_SAI_RDR0;
1123 sai->dma_params_tx.addr = res->start + FSL_SAI_TDR0;
1124 sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
1125 sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
1126
1127 platform_set_drvdata(pdev, sai);
1128 pm_runtime_enable(dev);
1129 if (!pm_runtime_enabled(dev)) {
1130 ret = fsl_sai_runtime_resume(dev);
1131 if (ret)
1132 goto err_pm_disable;
1133 }
1134
1135 ret = pm_runtime_get_sync(dev);
1136 if (ret < 0) {
1137 pm_runtime_put_noidle(dev);
1138 goto err_pm_get_sync;
1139 }
1140
1141 /* Get sai version */
1142 ret = fsl_sai_check_version(dev);
1143 if (ret < 0)
1144 dev_warn(dev, "Error reading SAI version: %d\n", ret);
1145
1146 /* Select MCLK direction */
1147 if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1148 sai->verid.major >= 3 && sai->verid.minor >= 1) {
1149 regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1150 FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1151 }
1152
1153 ret = pm_runtime_put_sync(dev);
1154 if (ret < 0 && ret != -ENOSYS)
1155 goto err_pm_get_sync;
1156
1157 /*
1158 * Register platform component before registering cpu dai for there
1159 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1160 */
1161 if (sai->soc_data->use_imx_pcm) {
1162 ret = imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
1163 if (ret)
1164 goto err_pm_get_sync;
1165 } else {
1166 ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1167 if (ret)
1168 goto err_pm_get_sync;
1169 }
1170
1171 ret = devm_snd_soc_register_component(dev, &fsl_component,
1172 &sai->cpu_dai_drv, 1);
1173 if (ret)
1174 goto err_pm_get_sync;
1175
1176 return ret;
1177
1178 err_pm_get_sync:
1179 if (!pm_runtime_status_suspended(dev))
1180 fsl_sai_runtime_suspend(dev);
1181 err_pm_disable:
1182 pm_runtime_disable(dev);
1183
1184 return ret;
1185 }
1186
fsl_sai_remove(struct platform_device * pdev)1187 static int fsl_sai_remove(struct platform_device *pdev)
1188 {
1189 pm_runtime_disable(&pdev->dev);
1190 if (!pm_runtime_status_suspended(&pdev->dev))
1191 fsl_sai_runtime_suspend(&pdev->dev);
1192
1193 return 0;
1194 }
1195
1196 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1197 .use_imx_pcm = false,
1198 .use_edma = false,
1199 .fifo_depth = 32,
1200 .reg_offset = 0,
1201 .mclk0_is_mclk1 = false,
1202 .flags = 0,
1203 };
1204
1205 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1206 .use_imx_pcm = true,
1207 .use_edma = false,
1208 .fifo_depth = 32,
1209 .reg_offset = 0,
1210 .mclk0_is_mclk1 = true,
1211 .flags = 0,
1212 };
1213
1214 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1215 .use_imx_pcm = true,
1216 .use_edma = false,
1217 .fifo_depth = 16,
1218 .reg_offset = 8,
1219 .mclk0_is_mclk1 = false,
1220 .flags = PMQOS_CPU_LATENCY,
1221 };
1222
1223 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1224 .use_imx_pcm = true,
1225 .use_edma = false,
1226 .fifo_depth = 128,
1227 .reg_offset = 8,
1228 .mclk0_is_mclk1 = false,
1229 .flags = 0,
1230 };
1231
1232 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1233 .use_imx_pcm = true,
1234 .use_edma = true,
1235 .fifo_depth = 64,
1236 .reg_offset = 0,
1237 .mclk0_is_mclk1 = false,
1238 .flags = 0,
1239 };
1240
1241 static const struct of_device_id fsl_sai_ids[] = {
1242 { .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1243 { .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1244 { .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1245 { .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1246 { .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1247 { .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1248 { /* sentinel */ }
1249 };
1250 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1251
fsl_sai_runtime_suspend(struct device * dev)1252 static int fsl_sai_runtime_suspend(struct device *dev)
1253 {
1254 struct fsl_sai *sai = dev_get_drvdata(dev);
1255
1256 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1257 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1258
1259 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1260 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1261
1262 clk_disable_unprepare(sai->bus_clk);
1263
1264 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1265 cpu_latency_qos_remove_request(&sai->pm_qos_req);
1266
1267 regcache_cache_only(sai->regmap, true);
1268
1269 return 0;
1270 }
1271
fsl_sai_runtime_resume(struct device * dev)1272 static int fsl_sai_runtime_resume(struct device *dev)
1273 {
1274 struct fsl_sai *sai = dev_get_drvdata(dev);
1275 unsigned int ofs = sai->soc_data->reg_offset;
1276 int ret;
1277
1278 ret = clk_prepare_enable(sai->bus_clk);
1279 if (ret) {
1280 dev_err(dev, "failed to enable bus clock: %d\n", ret);
1281 return ret;
1282 }
1283
1284 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1285 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1286 if (ret)
1287 goto disable_bus_clk;
1288 }
1289
1290 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1291 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1292 if (ret)
1293 goto disable_tx_clk;
1294 }
1295
1296 if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1297 cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1298
1299 regcache_cache_only(sai->regmap, false);
1300 regcache_mark_dirty(sai->regmap);
1301 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1302 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1303 usleep_range(1000, 2000);
1304 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1305 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1306
1307 ret = regcache_sync(sai->regmap);
1308 if (ret)
1309 goto disable_rx_clk;
1310
1311 return 0;
1312
1313 disable_rx_clk:
1314 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1315 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1316 disable_tx_clk:
1317 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1318 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1319 disable_bus_clk:
1320 clk_disable_unprepare(sai->bus_clk);
1321
1322 return ret;
1323 }
1324
1325 static const struct dev_pm_ops fsl_sai_pm_ops = {
1326 SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1327 fsl_sai_runtime_resume, NULL)
1328 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1329 pm_runtime_force_resume)
1330 };
1331
1332 static struct platform_driver fsl_sai_driver = {
1333 .probe = fsl_sai_probe,
1334 .remove = fsl_sai_remove,
1335 .driver = {
1336 .name = "fsl-sai",
1337 .pm = &fsl_sai_pm_ops,
1338 .of_match_table = fsl_sai_ids,
1339 },
1340 };
1341 module_platform_driver(fsl_sai_driver);
1342
1343 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1344 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1345 MODULE_ALIAS("platform:fsl-sai");
1346 MODULE_LICENSE("GPL");
1347