1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 instruction analysis
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004, 2009
6 */
7
8 #include <linux/kernel.h>
9 #ifdef __KERNEL__
10 #include <linux/string.h>
11 #else
12 #include <string.h>
13 #endif
14 #include "../include/asm/inat.h" /* __ignore_sync_check__ */
15 #include "../include/asm/insn.h" /* __ignore_sync_check__ */
16 #include "../include/asm-generic/unaligned.h" /* __ignore_sync_check__ */
17
18 #include <linux/errno.h>
19 #include <linux/kconfig.h>
20
21 #include "../include/asm/emulate_prefix.h" /* __ignore_sync_check__ */
22
23 #define leXX_to_cpu(t, r) \
24 ({ \
25 __typeof__(t) v; \
26 switch (sizeof(t)) { \
27 case 4: v = le32_to_cpu(r); break; \
28 case 2: v = le16_to_cpu(r); break; \
29 case 1: v = r; break; \
30 default: \
31 BUILD_BUG(); break; \
32 } \
33 v; \
34 })
35
36 /* Verify next sizeof(t) bytes can be on the same instruction */
37 #define validate_next(t, insn, n) \
38 ((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
39
40 #define __get_next(t, insn) \
41 ({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); })
42
43 #define __peek_nbyte_next(t, insn, n) \
44 ({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); })
45
46 #define get_next(t, insn) \
47 ({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
48
49 #define peek_nbyte_next(t, insn, n) \
50 ({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
51
52 #define peek_next(t, insn) peek_nbyte_next(t, insn, 0)
53
54 /**
55 * insn_init() - initialize struct insn
56 * @insn: &struct insn to be initialized
57 * @kaddr: address (in kernel memory) of instruction (or copy thereof)
58 * @buf_len: length of the insn buffer at @kaddr
59 * @x86_64: !0 for 64-bit kernel or 64-bit app
60 */
insn_init(struct insn * insn,const void * kaddr,int buf_len,int x86_64)61 void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
62 {
63 /*
64 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
65 * even if the input buffer is long enough to hold them.
66 */
67 if (buf_len > MAX_INSN_SIZE)
68 buf_len = MAX_INSN_SIZE;
69
70 memset(insn, 0, sizeof(*insn));
71 insn->kaddr = kaddr;
72 insn->end_kaddr = kaddr + buf_len;
73 insn->next_byte = kaddr;
74 insn->x86_64 = x86_64 ? 1 : 0;
75 insn->opnd_bytes = 4;
76 if (x86_64)
77 insn->addr_bytes = 8;
78 else
79 insn->addr_bytes = 4;
80 }
81
82 static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
83 static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
84
__insn_get_emulate_prefix(struct insn * insn,const insn_byte_t * prefix,size_t len)85 static int __insn_get_emulate_prefix(struct insn *insn,
86 const insn_byte_t *prefix, size_t len)
87 {
88 size_t i;
89
90 for (i = 0; i < len; i++) {
91 if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
92 goto err_out;
93 }
94
95 insn->emulate_prefix_size = len;
96 insn->next_byte += len;
97
98 return 1;
99
100 err_out:
101 return 0;
102 }
103
insn_get_emulate_prefix(struct insn * insn)104 static void insn_get_emulate_prefix(struct insn *insn)
105 {
106 if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
107 return;
108
109 __insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
110 }
111
112 /**
113 * insn_get_prefixes - scan x86 instruction prefix bytes
114 * @insn: &struct insn containing instruction
115 *
116 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
117 * to point to the (first) opcode. No effect if @insn->prefixes.got
118 * is already set.
119 *
120 * * Returns:
121 * 0: on success
122 * < 0: on error
123 */
insn_get_prefixes(struct insn * insn)124 int insn_get_prefixes(struct insn *insn)
125 {
126 struct insn_field *prefixes = &insn->prefixes;
127 insn_attr_t attr;
128 insn_byte_t b, lb;
129 int i, nb;
130
131 if (prefixes->got)
132 return 0;
133
134 insn_get_emulate_prefix(insn);
135
136 nb = 0;
137 lb = 0;
138 b = peek_next(insn_byte_t, insn);
139 attr = inat_get_opcode_attribute(b);
140 while (inat_is_legacy_prefix(attr)) {
141 /* Skip if same prefix */
142 for (i = 0; i < nb; i++)
143 if (prefixes->bytes[i] == b)
144 goto found;
145 if (nb == 4)
146 /* Invalid instruction */
147 break;
148 prefixes->bytes[nb++] = b;
149 if (inat_is_address_size_prefix(attr)) {
150 /* address size switches 2/4 or 4/8 */
151 if (insn->x86_64)
152 insn->addr_bytes ^= 12;
153 else
154 insn->addr_bytes ^= 6;
155 } else if (inat_is_operand_size_prefix(attr)) {
156 /* oprand size switches 2/4 */
157 insn->opnd_bytes ^= 6;
158 }
159 found:
160 prefixes->nbytes++;
161 insn->next_byte++;
162 lb = b;
163 b = peek_next(insn_byte_t, insn);
164 attr = inat_get_opcode_attribute(b);
165 }
166 /* Set the last prefix */
167 if (lb && lb != insn->prefixes.bytes[3]) {
168 if (unlikely(insn->prefixes.bytes[3])) {
169 /* Swap the last prefix */
170 b = insn->prefixes.bytes[3];
171 for (i = 0; i < nb; i++)
172 if (prefixes->bytes[i] == lb)
173 insn_set_byte(prefixes, i, b);
174 }
175 insn_set_byte(&insn->prefixes, 3, lb);
176 }
177
178 /* Decode REX prefix */
179 if (insn->x86_64) {
180 b = peek_next(insn_byte_t, insn);
181 attr = inat_get_opcode_attribute(b);
182 if (inat_is_rex_prefix(attr)) {
183 insn_field_set(&insn->rex_prefix, b, 1);
184 insn->next_byte++;
185 if (X86_REX_W(b))
186 /* REX.W overrides opnd_size */
187 insn->opnd_bytes = 8;
188 }
189 }
190 insn->rex_prefix.got = 1;
191
192 /* Decode VEX prefix */
193 b = peek_next(insn_byte_t, insn);
194 attr = inat_get_opcode_attribute(b);
195 if (inat_is_vex_prefix(attr)) {
196 insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
197 if (!insn->x86_64) {
198 /*
199 * In 32-bits mode, if the [7:6] bits (mod bits of
200 * ModRM) on the second byte are not 11b, it is
201 * LDS or LES or BOUND.
202 */
203 if (X86_MODRM_MOD(b2) != 3)
204 goto vex_end;
205 }
206 insn_set_byte(&insn->vex_prefix, 0, b);
207 insn_set_byte(&insn->vex_prefix, 1, b2);
208 if (inat_is_evex_prefix(attr)) {
209 b2 = peek_nbyte_next(insn_byte_t, insn, 2);
210 insn_set_byte(&insn->vex_prefix, 2, b2);
211 b2 = peek_nbyte_next(insn_byte_t, insn, 3);
212 insn_set_byte(&insn->vex_prefix, 3, b2);
213 insn->vex_prefix.nbytes = 4;
214 insn->next_byte += 4;
215 if (insn->x86_64 && X86_VEX_W(b2))
216 /* VEX.W overrides opnd_size */
217 insn->opnd_bytes = 8;
218 } else if (inat_is_vex3_prefix(attr)) {
219 b2 = peek_nbyte_next(insn_byte_t, insn, 2);
220 insn_set_byte(&insn->vex_prefix, 2, b2);
221 insn->vex_prefix.nbytes = 3;
222 insn->next_byte += 3;
223 if (insn->x86_64 && X86_VEX_W(b2))
224 /* VEX.W overrides opnd_size */
225 insn->opnd_bytes = 8;
226 } else {
227 /*
228 * For VEX2, fake VEX3-like byte#2.
229 * Makes it easier to decode vex.W, vex.vvvv,
230 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
231 */
232 insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f);
233 insn->vex_prefix.nbytes = 2;
234 insn->next_byte += 2;
235 }
236 }
237 vex_end:
238 insn->vex_prefix.got = 1;
239
240 prefixes->got = 1;
241
242 return 0;
243
244 err_out:
245 return -ENODATA;
246 }
247
248 /**
249 * insn_get_opcode - collect opcode(s)
250 * @insn: &struct insn containing instruction
251 *
252 * Populates @insn->opcode, updates @insn->next_byte to point past the
253 * opcode byte(s), and set @insn->attr (except for groups).
254 * If necessary, first collects any preceding (prefix) bytes.
255 * Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got
256 * is already 1.
257 *
258 * Returns:
259 * 0: on success
260 * < 0: on error
261 */
insn_get_opcode(struct insn * insn)262 int insn_get_opcode(struct insn *insn)
263 {
264 struct insn_field *opcode = &insn->opcode;
265 int pfx_id, ret;
266 insn_byte_t op;
267
268 if (opcode->got)
269 return 0;
270
271 if (!insn->prefixes.got) {
272 ret = insn_get_prefixes(insn);
273 if (ret)
274 return ret;
275 }
276
277 /* Get first opcode */
278 op = get_next(insn_byte_t, insn);
279 insn_set_byte(opcode, 0, op);
280 opcode->nbytes = 1;
281
282 /* Check if there is VEX prefix or not */
283 if (insn_is_avx(insn)) {
284 insn_byte_t m, p;
285 m = insn_vex_m_bits(insn);
286 p = insn_vex_p_bits(insn);
287 insn->attr = inat_get_avx_attribute(op, m, p);
288 if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
289 (!inat_accept_vex(insn->attr) &&
290 !inat_is_group(insn->attr))) {
291 /* This instruction is bad */
292 insn->attr = 0;
293 return -EINVAL;
294 }
295 /* VEX has only 1 byte for opcode */
296 goto end;
297 }
298
299 insn->attr = inat_get_opcode_attribute(op);
300 while (inat_is_escape(insn->attr)) {
301 /* Get escaped opcode */
302 op = get_next(insn_byte_t, insn);
303 opcode->bytes[opcode->nbytes++] = op;
304 pfx_id = insn_last_prefix_id(insn);
305 insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
306 }
307
308 if (inat_must_vex(insn->attr)) {
309 /* This instruction is bad */
310 insn->attr = 0;
311 return -EINVAL;
312 }
313 end:
314 opcode->got = 1;
315 return 0;
316
317 err_out:
318 return -ENODATA;
319 }
320
321 /**
322 * insn_get_modrm - collect ModRM byte, if any
323 * @insn: &struct insn containing instruction
324 *
325 * Populates @insn->modrm and updates @insn->next_byte to point past the
326 * ModRM byte, if any. If necessary, first collects the preceding bytes
327 * (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1.
328 *
329 * Returns:
330 * 0: on success
331 * < 0: on error
332 */
insn_get_modrm(struct insn * insn)333 int insn_get_modrm(struct insn *insn)
334 {
335 struct insn_field *modrm = &insn->modrm;
336 insn_byte_t pfx_id, mod;
337 int ret;
338
339 if (modrm->got)
340 return 0;
341
342 if (!insn->opcode.got) {
343 ret = insn_get_opcode(insn);
344 if (ret)
345 return ret;
346 }
347
348 if (inat_has_modrm(insn->attr)) {
349 mod = get_next(insn_byte_t, insn);
350 insn_field_set(modrm, mod, 1);
351 if (inat_is_group(insn->attr)) {
352 pfx_id = insn_last_prefix_id(insn);
353 insn->attr = inat_get_group_attribute(mod, pfx_id,
354 insn->attr);
355 if (insn_is_avx(insn) && !inat_accept_vex(insn->attr)) {
356 /* Bad insn */
357 insn->attr = 0;
358 return -EINVAL;
359 }
360 }
361 }
362
363 if (insn->x86_64 && inat_is_force64(insn->attr))
364 insn->opnd_bytes = 8;
365
366 modrm->got = 1;
367 return 0;
368
369 err_out:
370 return -ENODATA;
371 }
372
373
374 /**
375 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
376 * @insn: &struct insn containing instruction
377 *
378 * If necessary, first collects the instruction up to and including the
379 * ModRM byte. No effect if @insn->x86_64 is 0.
380 */
insn_rip_relative(struct insn * insn)381 int insn_rip_relative(struct insn *insn)
382 {
383 struct insn_field *modrm = &insn->modrm;
384 int ret;
385
386 if (!insn->x86_64)
387 return 0;
388
389 if (!modrm->got) {
390 ret = insn_get_modrm(insn);
391 if (ret)
392 return 0;
393 }
394 /*
395 * For rip-relative instructions, the mod field (top 2 bits)
396 * is zero and the r/m field (bottom 3 bits) is 0x5.
397 */
398 return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5);
399 }
400
401 /**
402 * insn_get_sib() - Get the SIB byte of instruction
403 * @insn: &struct insn containing instruction
404 *
405 * If necessary, first collects the instruction up to and including the
406 * ModRM byte.
407 *
408 * Returns:
409 * 0: if decoding succeeded
410 * < 0: otherwise.
411 */
insn_get_sib(struct insn * insn)412 int insn_get_sib(struct insn *insn)
413 {
414 insn_byte_t modrm;
415 int ret;
416
417 if (insn->sib.got)
418 return 0;
419
420 if (!insn->modrm.got) {
421 ret = insn_get_modrm(insn);
422 if (ret)
423 return ret;
424 }
425
426 if (insn->modrm.nbytes) {
427 modrm = insn->modrm.bytes[0];
428 if (insn->addr_bytes != 2 &&
429 X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
430 insn_field_set(&insn->sib,
431 get_next(insn_byte_t, insn), 1);
432 }
433 }
434 insn->sib.got = 1;
435
436 return 0;
437
438 err_out:
439 return -ENODATA;
440 }
441
442
443 /**
444 * insn_get_displacement() - Get the displacement of instruction
445 * @insn: &struct insn containing instruction
446 *
447 * If necessary, first collects the instruction up to and including the
448 * SIB byte.
449 * Displacement value is sign-expanded.
450 *
451 * * Returns:
452 * 0: if decoding succeeded
453 * < 0: otherwise.
454 */
insn_get_displacement(struct insn * insn)455 int insn_get_displacement(struct insn *insn)
456 {
457 insn_byte_t mod, rm, base;
458 int ret;
459
460 if (insn->displacement.got)
461 return 0;
462
463 if (!insn->sib.got) {
464 ret = insn_get_sib(insn);
465 if (ret)
466 return ret;
467 }
468
469 if (insn->modrm.nbytes) {
470 /*
471 * Interpreting the modrm byte:
472 * mod = 00 - no displacement fields (exceptions below)
473 * mod = 01 - 1-byte displacement field
474 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
475 * address size = 2 (0x67 prefix in 32-bit mode)
476 * mod = 11 - no memory operand
477 *
478 * If address size = 2...
479 * mod = 00, r/m = 110 - displacement field is 2 bytes
480 *
481 * If address size != 2...
482 * mod != 11, r/m = 100 - SIB byte exists
483 * mod = 00, SIB base = 101 - displacement field is 4 bytes
484 * mod = 00, r/m = 101 - rip-relative addressing, displacement
485 * field is 4 bytes
486 */
487 mod = X86_MODRM_MOD(insn->modrm.value);
488 rm = X86_MODRM_RM(insn->modrm.value);
489 base = X86_SIB_BASE(insn->sib.value);
490 if (mod == 3)
491 goto out;
492 if (mod == 1) {
493 insn_field_set(&insn->displacement,
494 get_next(signed char, insn), 1);
495 } else if (insn->addr_bytes == 2) {
496 if ((mod == 0 && rm == 6) || mod == 2) {
497 insn_field_set(&insn->displacement,
498 get_next(short, insn), 2);
499 }
500 } else {
501 if ((mod == 0 && rm == 5) || mod == 2 ||
502 (mod == 0 && base == 5)) {
503 insn_field_set(&insn->displacement,
504 get_next(int, insn), 4);
505 }
506 }
507 }
508 out:
509 insn->displacement.got = 1;
510 return 0;
511
512 err_out:
513 return -ENODATA;
514 }
515
516 /* Decode moffset16/32/64. Return 0 if failed */
__get_moffset(struct insn * insn)517 static int __get_moffset(struct insn *insn)
518 {
519 switch (insn->addr_bytes) {
520 case 2:
521 insn_field_set(&insn->moffset1, get_next(short, insn), 2);
522 break;
523 case 4:
524 insn_field_set(&insn->moffset1, get_next(int, insn), 4);
525 break;
526 case 8:
527 insn_field_set(&insn->moffset1, get_next(int, insn), 4);
528 insn_field_set(&insn->moffset2, get_next(int, insn), 4);
529 break;
530 default: /* opnd_bytes must be modified manually */
531 goto err_out;
532 }
533 insn->moffset1.got = insn->moffset2.got = 1;
534
535 return 1;
536
537 err_out:
538 return 0;
539 }
540
541 /* Decode imm v32(Iz). Return 0 if failed */
__get_immv32(struct insn * insn)542 static int __get_immv32(struct insn *insn)
543 {
544 switch (insn->opnd_bytes) {
545 case 2:
546 insn_field_set(&insn->immediate, get_next(short, insn), 2);
547 break;
548 case 4:
549 case 8:
550 insn_field_set(&insn->immediate, get_next(int, insn), 4);
551 break;
552 default: /* opnd_bytes must be modified manually */
553 goto err_out;
554 }
555
556 return 1;
557
558 err_out:
559 return 0;
560 }
561
562 /* Decode imm v64(Iv/Ov), Return 0 if failed */
__get_immv(struct insn * insn)563 static int __get_immv(struct insn *insn)
564 {
565 switch (insn->opnd_bytes) {
566 case 2:
567 insn_field_set(&insn->immediate1, get_next(short, insn), 2);
568 break;
569 case 4:
570 insn_field_set(&insn->immediate1, get_next(int, insn), 4);
571 insn->immediate1.nbytes = 4;
572 break;
573 case 8:
574 insn_field_set(&insn->immediate1, get_next(int, insn), 4);
575 insn_field_set(&insn->immediate2, get_next(int, insn), 4);
576 break;
577 default: /* opnd_bytes must be modified manually */
578 goto err_out;
579 }
580 insn->immediate1.got = insn->immediate2.got = 1;
581
582 return 1;
583 err_out:
584 return 0;
585 }
586
587 /* Decode ptr16:16/32(Ap) */
__get_immptr(struct insn * insn)588 static int __get_immptr(struct insn *insn)
589 {
590 switch (insn->opnd_bytes) {
591 case 2:
592 insn_field_set(&insn->immediate1, get_next(short, insn), 2);
593 break;
594 case 4:
595 insn_field_set(&insn->immediate1, get_next(int, insn), 4);
596 break;
597 case 8:
598 /* ptr16:64 is not exist (no segment) */
599 return 0;
600 default: /* opnd_bytes must be modified manually */
601 goto err_out;
602 }
603 insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2);
604 insn->immediate1.got = insn->immediate2.got = 1;
605
606 return 1;
607 err_out:
608 return 0;
609 }
610
611 /**
612 * insn_get_immediate() - Get the immediate in an instruction
613 * @insn: &struct insn containing instruction
614 *
615 * If necessary, first collects the instruction up to and including the
616 * displacement bytes.
617 * Basically, most of immediates are sign-expanded. Unsigned-value can be
618 * computed by bit masking with ((1 << (nbytes * 8)) - 1)
619 *
620 * Returns:
621 * 0: on success
622 * < 0: on error
623 */
insn_get_immediate(struct insn * insn)624 int insn_get_immediate(struct insn *insn)
625 {
626 int ret;
627
628 if (insn->immediate.got)
629 return 0;
630
631 if (!insn->displacement.got) {
632 ret = insn_get_displacement(insn);
633 if (ret)
634 return ret;
635 }
636
637 if (inat_has_moffset(insn->attr)) {
638 if (!__get_moffset(insn))
639 goto err_out;
640 goto done;
641 }
642
643 if (!inat_has_immediate(insn->attr))
644 /* no immediates */
645 goto done;
646
647 switch (inat_immediate_size(insn->attr)) {
648 case INAT_IMM_BYTE:
649 insn_field_set(&insn->immediate, get_next(signed char, insn), 1);
650 break;
651 case INAT_IMM_WORD:
652 insn_field_set(&insn->immediate, get_next(short, insn), 2);
653 break;
654 case INAT_IMM_DWORD:
655 insn_field_set(&insn->immediate, get_next(int, insn), 4);
656 break;
657 case INAT_IMM_QWORD:
658 insn_field_set(&insn->immediate1, get_next(int, insn), 4);
659 insn_field_set(&insn->immediate2, get_next(int, insn), 4);
660 break;
661 case INAT_IMM_PTR:
662 if (!__get_immptr(insn))
663 goto err_out;
664 break;
665 case INAT_IMM_VWORD32:
666 if (!__get_immv32(insn))
667 goto err_out;
668 break;
669 case INAT_IMM_VWORD:
670 if (!__get_immv(insn))
671 goto err_out;
672 break;
673 default:
674 /* Here, insn must have an immediate, but failed */
675 goto err_out;
676 }
677 if (inat_has_second_immediate(insn->attr)) {
678 insn_field_set(&insn->immediate2, get_next(signed char, insn), 1);
679 }
680 done:
681 insn->immediate.got = 1;
682 return 0;
683
684 err_out:
685 return -ENODATA;
686 }
687
688 /**
689 * insn_get_length() - Get the length of instruction
690 * @insn: &struct insn containing instruction
691 *
692 * If necessary, first collects the instruction up to and including the
693 * immediates bytes.
694 *
695 * Returns:
696 * - 0 on success
697 * - < 0 on error
698 */
insn_get_length(struct insn * insn)699 int insn_get_length(struct insn *insn)
700 {
701 int ret;
702
703 if (insn->length)
704 return 0;
705
706 if (!insn->immediate.got) {
707 ret = insn_get_immediate(insn);
708 if (ret)
709 return ret;
710 }
711
712 insn->length = (unsigned char)((unsigned long)insn->next_byte
713 - (unsigned long)insn->kaddr);
714
715 return 0;
716 }
717
718 /* Ensure this instruction is decoded completely */
insn_complete(struct insn * insn)719 static inline int insn_complete(struct insn *insn)
720 {
721 return insn->opcode.got && insn->modrm.got && insn->sib.got &&
722 insn->displacement.got && insn->immediate.got;
723 }
724
725 /**
726 * insn_decode() - Decode an x86 instruction
727 * @insn: &struct insn to be initialized
728 * @kaddr: address (in kernel memory) of instruction (or copy thereof)
729 * @buf_len: length of the insn buffer at @kaddr
730 * @m: insn mode, see enum insn_mode
731 *
732 * Returns:
733 * 0: if decoding succeeded
734 * < 0: otherwise.
735 */
insn_decode(struct insn * insn,const void * kaddr,int buf_len,enum insn_mode m)736 int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m)
737 {
738 int ret;
739
740 #define INSN_MODE_KERN (enum insn_mode)-1 /* __ignore_sync_check__ mode is only valid in the kernel */
741
742 if (m == INSN_MODE_KERN)
743 insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64));
744 else
745 insn_init(insn, kaddr, buf_len, m == INSN_MODE_64);
746
747 ret = insn_get_length(insn);
748 if (ret)
749 return ret;
750
751 if (insn_complete(insn))
752 return 0;
753
754 return -EINVAL;
755 }
756