• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static struct file_operations kvm_chardev_ops;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 			   unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 				  unsigned long arg);
127 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 				unsigned long arg) { return -EINVAL; }
138 
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 	return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
144 			.open		= kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148 
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150 
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 						   unsigned long start, unsigned long end)
164 {
165 }
166 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170 
kvm_is_zone_device_pfn(kvm_pfn_t pfn)171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172 {
173 	/*
174 	 * The metadata used by is_zone_device_page() to determine whether or
175 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
177 	 * page_count() is zero to help detect bad usage of this helper.
178 	 */
179 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180 		return false;
181 
182 	return is_zone_device_page(pfn_to_page(pfn));
183 }
184 
kvm_is_reserved_pfn(kvm_pfn_t pfn)185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
186 {
187 	/*
188 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189 	 * perspective they are "normal" pages, albeit with slightly different
190 	 * usage rules.
191 	 */
192 	if (pfn_valid(pfn))
193 		return PageReserved(pfn_to_page(pfn)) &&
194 		       !is_zero_pfn(pfn) &&
195 		       !kvm_is_zone_device_pfn(pfn);
196 
197 	return true;
198 }
199 
200 /*
201  * Switches to specified vcpu, until a matching vcpu_put()
202  */
vcpu_load(struct kvm_vcpu * vcpu)203 void vcpu_load(struct kvm_vcpu *vcpu)
204 {
205 	int cpu = get_cpu();
206 
207 	__this_cpu_write(kvm_running_vcpu, vcpu);
208 	preempt_notifier_register(&vcpu->preempt_notifier);
209 	kvm_arch_vcpu_load(vcpu, cpu);
210 	put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_load);
213 
vcpu_put(struct kvm_vcpu * vcpu)214 void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216 	preempt_disable();
217 	kvm_arch_vcpu_put(vcpu);
218 	preempt_notifier_unregister(&vcpu->preempt_notifier);
219 	__this_cpu_write(kvm_running_vcpu, NULL);
220 	preempt_enable();
221 }
222 EXPORT_SYMBOL_GPL(vcpu_put);
223 
224 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226 {
227 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228 
229 	/*
230 	 * We need to wait for the VCPU to reenable interrupts and get out of
231 	 * READING_SHADOW_PAGE_TABLES mode.
232 	 */
233 	if (req & KVM_REQUEST_WAIT)
234 		return mode != OUTSIDE_GUEST_MODE;
235 
236 	/*
237 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
238 	 */
239 	return mode == IN_GUEST_MODE;
240 }
241 
ack_flush(void * _completed)242 static void ack_flush(void *_completed)
243 {
244 }
245 
kvm_kick_many_cpus(cpumask_var_t tmp,bool wait)246 static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
247 {
248 	const struct cpumask *cpus;
249 
250 	if (likely(cpumask_available(tmp)))
251 		cpus = tmp;
252 	else
253 		cpus = cpu_online_mask;
254 
255 	if (cpumask_empty(cpus))
256 		return false;
257 
258 	smp_call_function_many(cpus, ack_flush, NULL, wait);
259 	return true;
260 }
261 
kvm_make_vcpu_request(struct kvm * kvm,struct kvm_vcpu * vcpu,unsigned int req,cpumask_var_t tmp,int current_cpu)262 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
263 				  unsigned int req, cpumask_var_t tmp,
264 				  int current_cpu)
265 {
266 	int cpu;
267 
268 	kvm_make_request(req, vcpu);
269 
270 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 		return;
272 
273 	/*
274 	 * tmp can be "unavailable" if cpumasks are allocated off stack as
275 	 * allocation of the mask is deliberately not fatal and is handled by
276 	 * falling back to kicking all online CPUs.
277 	 */
278 	if (!cpumask_available(tmp))
279 		return;
280 
281 	/*
282 	 * Note, the vCPU could get migrated to a different pCPU at any point
283 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
284 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
285 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
286 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
287 	 * after this point is also OK, as the requirement is only that KVM wait
288 	 * for vCPUs that were reading SPTEs _before_ any changes were
289 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
290 	 */
291 	if (kvm_request_needs_ipi(vcpu, req)) {
292 		cpu = READ_ONCE(vcpu->cpu);
293 		if (cpu != -1 && cpu != current_cpu)
294 			__cpumask_set_cpu(cpu, tmp);
295 	}
296 }
297 
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except,unsigned long * vcpu_bitmap,cpumask_var_t tmp)298 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
299 				 struct kvm_vcpu *except,
300 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
301 {
302 	struct kvm_vcpu *vcpu;
303 	int i, me;
304 	bool called;
305 
306 	me = get_cpu();
307 
308 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309 		vcpu = kvm_get_vcpu(kvm, i);
310 		if (!vcpu || vcpu == except)
311 			continue;
312 		kvm_make_vcpu_request(kvm, vcpu, req, tmp, me);
313 	}
314 
315 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
316 	put_cpu();
317 
318 	return called;
319 }
320 
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322 				      struct kvm_vcpu *except)
323 {
324 	struct kvm_vcpu *vcpu;
325 	struct cpumask *cpus;
326 	bool called;
327 	int i, me;
328 
329 	me = get_cpu();
330 
331 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
332 	cpumask_clear(cpus);
333 
334 	kvm_for_each_vcpu(i, vcpu, kvm) {
335 		if (vcpu == except)
336 			continue;
337 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
338 	}
339 
340 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
341 	put_cpu();
342 
343 	return called;
344 }
345 
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)346 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
347 {
348 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
349 }
350 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
351 
352 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)353 void kvm_flush_remote_tlbs(struct kvm *kvm)
354 {
355 	++kvm->stat.generic.remote_tlb_flush_requests;
356 
357 	/*
358 	 * We want to publish modifications to the page tables before reading
359 	 * mode. Pairs with a memory barrier in arch-specific code.
360 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
361 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
362 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
363 	 *
364 	 * There is already an smp_mb__after_atomic() before
365 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
366 	 * barrier here.
367 	 */
368 	if (!kvm_arch_flush_remote_tlb(kvm)
369 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
370 		++kvm->stat.generic.remote_tlb_flush;
371 }
372 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
373 #endif
374 
kvm_reload_remote_mmus(struct kvm * kvm)375 void kvm_reload_remote_mmus(struct kvm *kvm)
376 {
377 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
378 }
379 
kvm_flush_shadow_all(struct kvm * kvm)380 static void kvm_flush_shadow_all(struct kvm *kvm)
381 {
382 	kvm_arch_flush_shadow_all(kvm);
383 	kvm_arch_guest_memory_reclaimed(kvm);
384 }
385 
386 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)387 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
388 					       gfp_t gfp_flags)
389 {
390 	gfp_flags |= mc->gfp_zero;
391 
392 	if (mc->kmem_cache)
393 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
394 	else
395 		return (void *)__get_free_page(gfp_flags);
396 }
397 
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)398 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
399 {
400 	void *obj;
401 
402 	if (mc->nobjs >= min)
403 		return 0;
404 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
405 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
406 		if (!obj)
407 			return mc->nobjs >= min ? 0 : -ENOMEM;
408 		mc->objects[mc->nobjs++] = obj;
409 	}
410 	return 0;
411 }
412 
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)413 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
414 {
415 	return mc->nobjs;
416 }
417 
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)418 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
419 {
420 	while (mc->nobjs) {
421 		if (mc->kmem_cache)
422 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
423 		else
424 			free_page((unsigned long)mc->objects[--mc->nobjs]);
425 	}
426 }
427 
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)428 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
429 {
430 	void *p;
431 
432 	if (WARN_ON(!mc->nobjs))
433 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
434 	else
435 		p = mc->objects[--mc->nobjs];
436 	BUG_ON(!p);
437 	return p;
438 }
439 #endif
440 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)441 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
442 {
443 	mutex_init(&vcpu->mutex);
444 	vcpu->cpu = -1;
445 	vcpu->kvm = kvm;
446 	vcpu->vcpu_id = id;
447 	vcpu->pid = NULL;
448 	rcuwait_init(&vcpu->wait);
449 	kvm_async_pf_vcpu_init(vcpu);
450 
451 	vcpu->pre_pcpu = -1;
452 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
453 
454 	kvm_vcpu_set_in_spin_loop(vcpu, false);
455 	kvm_vcpu_set_dy_eligible(vcpu, false);
456 	vcpu->preempted = false;
457 	vcpu->ready = false;
458 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
459 	vcpu->last_used_slot = 0;
460 }
461 
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)462 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
463 {
464 	kvm_arch_vcpu_destroy(vcpu);
465 	kvm_dirty_ring_free(&vcpu->dirty_ring);
466 
467 	/*
468 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
469 	 * the vcpu->pid pointer, and at destruction time all file descriptors
470 	 * are already gone.
471 	 */
472 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
473 
474 	free_page((unsigned long)vcpu->run);
475 	kmem_cache_free(kvm_vcpu_cache, vcpu);
476 }
477 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
478 
479 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)480 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
481 {
482 	return container_of(mn, struct kvm, mmu_notifier);
483 }
484 
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)485 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
486 					      struct mm_struct *mm,
487 					      unsigned long start, unsigned long end)
488 {
489 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
490 	int idx;
491 
492 	idx = srcu_read_lock(&kvm->srcu);
493 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
494 	srcu_read_unlock(&kvm->srcu, idx);
495 }
496 
497 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
498 
499 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
500 			     unsigned long end);
501 
502 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
503 
504 struct kvm_hva_range {
505 	unsigned long start;
506 	unsigned long end;
507 	pte_t pte;
508 	hva_handler_t handler;
509 	on_lock_fn_t on_lock;
510 	on_unlock_fn_t on_unlock;
511 	bool flush_on_ret;
512 	bool may_block;
513 };
514 
515 /*
516  * Use a dedicated stub instead of NULL to indicate that there is no callback
517  * function/handler.  The compiler technically can't guarantee that a real
518  * function will have a non-zero address, and so it will generate code to
519  * check for !NULL, whereas comparing against a stub will be elided at compile
520  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
521  */
kvm_null_fn(void)522 static void kvm_null_fn(void)
523 {
524 
525 }
526 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
527 
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_hva_range * range)528 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
529 						  const struct kvm_hva_range *range)
530 {
531 	bool ret = false, locked = false;
532 	struct kvm_gfn_range gfn_range;
533 	struct kvm_memory_slot *slot;
534 	struct kvm_memslots *slots;
535 	int i, idx;
536 
537 	/* A null handler is allowed if and only if on_lock() is provided. */
538 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
539 			 IS_KVM_NULL_FN(range->handler)))
540 		return 0;
541 
542 	idx = srcu_read_lock(&kvm->srcu);
543 
544 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
545 		slots = __kvm_memslots(kvm, i);
546 		kvm_for_each_memslot(slot, slots) {
547 			unsigned long hva_start, hva_end;
548 
549 			hva_start = max(range->start, slot->userspace_addr);
550 			hva_end = min(range->end, slot->userspace_addr +
551 						  (slot->npages << PAGE_SHIFT));
552 			if (hva_start >= hva_end)
553 				continue;
554 
555 			/*
556 			 * To optimize for the likely case where the address
557 			 * range is covered by zero or one memslots, don't
558 			 * bother making these conditional (to avoid writes on
559 			 * the second or later invocation of the handler).
560 			 */
561 			gfn_range.pte = range->pte;
562 			gfn_range.may_block = range->may_block;
563 
564 			/*
565 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
566 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
567 			 */
568 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
569 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
570 			gfn_range.slot = slot;
571 
572 			if (!locked) {
573 				locked = true;
574 				KVM_MMU_LOCK(kvm);
575 				if (!IS_KVM_NULL_FN(range->on_lock))
576 					range->on_lock(kvm, range->start, range->end);
577 				if (IS_KVM_NULL_FN(range->handler))
578 					break;
579 			}
580 			ret |= range->handler(kvm, &gfn_range);
581 		}
582 	}
583 
584 	if (range->flush_on_ret && ret)
585 		kvm_flush_remote_tlbs(kvm);
586 
587 	if (locked) {
588 		KVM_MMU_UNLOCK(kvm);
589 		if (!IS_KVM_NULL_FN(range->on_unlock))
590 			range->on_unlock(kvm);
591 	}
592 
593 	srcu_read_unlock(&kvm->srcu, idx);
594 
595 	/* The notifiers are averse to booleans. :-( */
596 	return (int)ret;
597 }
598 
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,pte_t pte,hva_handler_t handler)599 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
600 						unsigned long start,
601 						unsigned long end,
602 						pte_t pte,
603 						hva_handler_t handler)
604 {
605 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
606 	const struct kvm_hva_range range = {
607 		.start		= start,
608 		.end		= end,
609 		.pte		= pte,
610 		.handler	= handler,
611 		.on_lock	= (void *)kvm_null_fn,
612 		.on_unlock	= (void *)kvm_null_fn,
613 		.flush_on_ret	= true,
614 		.may_block	= false,
615 	};
616 
617 	return __kvm_handle_hva_range(kvm, &range);
618 }
619 
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,hva_handler_t handler)620 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
621 							 unsigned long start,
622 							 unsigned long end,
623 							 hva_handler_t handler)
624 {
625 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
626 	const struct kvm_hva_range range = {
627 		.start		= start,
628 		.end		= end,
629 		.pte		= __pte(0),
630 		.handler	= handler,
631 		.on_lock	= (void *)kvm_null_fn,
632 		.on_unlock	= (void *)kvm_null_fn,
633 		.flush_on_ret	= false,
634 		.may_block	= false,
635 	};
636 
637 	return __kvm_handle_hva_range(kvm, &range);
638 }
639 
kvm_change_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)640 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
641 {
642 	/*
643 	 * Skipping invalid memslots is correct if and only change_pte() is
644 	 * surrounded by invalidate_range_{start,end}(), which is currently
645 	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
646 	 * unmap the memslot instead of skipping the memslot to ensure that KVM
647 	 * doesn't hold references to the old PFN.
648 	 */
649 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
650 
651 	if (range->slot->flags & KVM_MEMSLOT_INVALID)
652 		return false;
653 
654 	return kvm_set_spte_gfn(kvm, range);
655 }
656 
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)657 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
658 					struct mm_struct *mm,
659 					unsigned long address,
660 					pte_t pte)
661 {
662 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
663 
664 	trace_kvm_set_spte_hva(address);
665 
666 	/*
667 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
668 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
669 	 * including this one, found a relevant memslot at start(); rechecking
670 	 * memslots here is unnecessary.  Note, a false positive (count elevated
671 	 * by a different invalidation) is sub-optimal but functionally ok.
672 	 */
673 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
674 	if (!READ_ONCE(kvm->mmu_notifier_count))
675 		return;
676 
677 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
678 }
679 
kvm_inc_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)680 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
681 				   unsigned long end)
682 {
683 	/*
684 	 * The count increase must become visible at unlock time as no
685 	 * spte can be established without taking the mmu_lock and
686 	 * count is also read inside the mmu_lock critical section.
687 	 */
688 	kvm->mmu_notifier_count++;
689 	if (likely(kvm->mmu_notifier_count == 1)) {
690 		kvm->mmu_notifier_range_start = start;
691 		kvm->mmu_notifier_range_end = end;
692 	} else {
693 		/*
694 		 * Fully tracking multiple concurrent ranges has dimishing
695 		 * returns. Keep things simple and just find the minimal range
696 		 * which includes the current and new ranges. As there won't be
697 		 * enough information to subtract a range after its invalidate
698 		 * completes, any ranges invalidated concurrently will
699 		 * accumulate and persist until all outstanding invalidates
700 		 * complete.
701 		 */
702 		kvm->mmu_notifier_range_start =
703 			min(kvm->mmu_notifier_range_start, start);
704 		kvm->mmu_notifier_range_end =
705 			max(kvm->mmu_notifier_range_end, end);
706 	}
707 }
708 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)709 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
710 					const struct mmu_notifier_range *range)
711 {
712 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
713 	const struct kvm_hva_range hva_range = {
714 		.start		= range->start,
715 		.end		= range->end,
716 		.pte		= __pte(0),
717 		.handler	= kvm_unmap_gfn_range,
718 		.on_lock	= kvm_inc_notifier_count,
719 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
720 		.flush_on_ret	= true,
721 		.may_block	= mmu_notifier_range_blockable(range),
722 	};
723 
724 	trace_kvm_unmap_hva_range(range->start, range->end);
725 
726 	/*
727 	 * Prevent memslot modification between range_start() and range_end()
728 	 * so that conditionally locking provides the same result in both
729 	 * functions.  Without that guarantee, the mmu_notifier_count
730 	 * adjustments will be imbalanced.
731 	 *
732 	 * Pairs with the decrement in range_end().
733 	 */
734 	spin_lock(&kvm->mn_invalidate_lock);
735 	kvm->mn_active_invalidate_count++;
736 	spin_unlock(&kvm->mn_invalidate_lock);
737 
738 	__kvm_handle_hva_range(kvm, &hva_range);
739 
740 	return 0;
741 }
742 
kvm_dec_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)743 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
744 				   unsigned long end)
745 {
746 	/*
747 	 * This sequence increase will notify the kvm page fault that
748 	 * the page that is going to be mapped in the spte could have
749 	 * been freed.
750 	 */
751 	kvm->mmu_notifier_seq++;
752 	smp_wmb();
753 	/*
754 	 * The above sequence increase must be visible before the
755 	 * below count decrease, which is ensured by the smp_wmb above
756 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
757 	 */
758 	kvm->mmu_notifier_count--;
759 }
760 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)761 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
762 					const struct mmu_notifier_range *range)
763 {
764 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
765 	const struct kvm_hva_range hva_range = {
766 		.start		= range->start,
767 		.end		= range->end,
768 		.pte		= __pte(0),
769 		.handler	= (void *)kvm_null_fn,
770 		.on_lock	= kvm_dec_notifier_count,
771 		.on_unlock	= (void *)kvm_null_fn,
772 		.flush_on_ret	= false,
773 		.may_block	= mmu_notifier_range_blockable(range),
774 	};
775 	bool wake;
776 
777 	__kvm_handle_hva_range(kvm, &hva_range);
778 
779 	/* Pairs with the increment in range_start(). */
780 	spin_lock(&kvm->mn_invalidate_lock);
781 	wake = (--kvm->mn_active_invalidate_count == 0);
782 	spin_unlock(&kvm->mn_invalidate_lock);
783 
784 	/*
785 	 * There can only be one waiter, since the wait happens under
786 	 * slots_lock.
787 	 */
788 	if (wake)
789 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
790 
791 	BUG_ON(kvm->mmu_notifier_count < 0);
792 }
793 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)794 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
795 					      struct mm_struct *mm,
796 					      unsigned long start,
797 					      unsigned long end)
798 {
799 	trace_kvm_age_hva(start, end);
800 
801 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
802 }
803 
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)804 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
805 					struct mm_struct *mm,
806 					unsigned long start,
807 					unsigned long end)
808 {
809 	trace_kvm_age_hva(start, end);
810 
811 	/*
812 	 * Even though we do not flush TLB, this will still adversely
813 	 * affect performance on pre-Haswell Intel EPT, where there is
814 	 * no EPT Access Bit to clear so that we have to tear down EPT
815 	 * tables instead. If we find this unacceptable, we can always
816 	 * add a parameter to kvm_age_hva so that it effectively doesn't
817 	 * do anything on clear_young.
818 	 *
819 	 * Also note that currently we never issue secondary TLB flushes
820 	 * from clear_young, leaving this job up to the regular system
821 	 * cadence. If we find this inaccurate, we might come up with a
822 	 * more sophisticated heuristic later.
823 	 */
824 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
825 }
826 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)827 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
828 				       struct mm_struct *mm,
829 				       unsigned long address)
830 {
831 	trace_kvm_test_age_hva(address);
832 
833 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
834 					     kvm_test_age_gfn);
835 }
836 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)837 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
838 				     struct mm_struct *mm)
839 {
840 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
841 	int idx;
842 
843 	idx = srcu_read_lock(&kvm->srcu);
844 	kvm_flush_shadow_all(kvm);
845 	srcu_read_unlock(&kvm->srcu, idx);
846 }
847 
848 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
849 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
850 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
851 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
852 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
853 	.clear_young		= kvm_mmu_notifier_clear_young,
854 	.test_young		= kvm_mmu_notifier_test_young,
855 	.change_pte		= kvm_mmu_notifier_change_pte,
856 	.release		= kvm_mmu_notifier_release,
857 };
858 
kvm_init_mmu_notifier(struct kvm * kvm)859 static int kvm_init_mmu_notifier(struct kvm *kvm)
860 {
861 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
862 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
863 }
864 
865 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
866 
kvm_init_mmu_notifier(struct kvm * kvm)867 static int kvm_init_mmu_notifier(struct kvm *kvm)
868 {
869 	return 0;
870 }
871 
872 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
873 
874 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)875 static int kvm_pm_notifier_call(struct notifier_block *bl,
876 				unsigned long state,
877 				void *unused)
878 {
879 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
880 
881 	return kvm_arch_pm_notifier(kvm, state);
882 }
883 
kvm_init_pm_notifier(struct kvm * kvm)884 static void kvm_init_pm_notifier(struct kvm *kvm)
885 {
886 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
887 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
888 	kvm->pm_notifier.priority = INT_MAX;
889 	register_pm_notifier(&kvm->pm_notifier);
890 }
891 
kvm_destroy_pm_notifier(struct kvm * kvm)892 static void kvm_destroy_pm_notifier(struct kvm *kvm)
893 {
894 	unregister_pm_notifier(&kvm->pm_notifier);
895 }
896 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)897 static void kvm_init_pm_notifier(struct kvm *kvm)
898 {
899 }
900 
kvm_destroy_pm_notifier(struct kvm * kvm)901 static void kvm_destroy_pm_notifier(struct kvm *kvm)
902 {
903 }
904 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
905 
kvm_alloc_memslots(void)906 static struct kvm_memslots *kvm_alloc_memslots(void)
907 {
908 	int i;
909 	struct kvm_memslots *slots;
910 
911 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
912 	if (!slots)
913 		return NULL;
914 
915 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
916 		slots->id_to_index[i] = -1;
917 
918 	return slots;
919 }
920 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)921 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
922 {
923 	if (!memslot->dirty_bitmap)
924 		return;
925 
926 	kvfree(memslot->dirty_bitmap);
927 	memslot->dirty_bitmap = NULL;
928 }
929 
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)930 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
931 {
932 	kvm_destroy_dirty_bitmap(slot);
933 
934 	kvm_arch_free_memslot(kvm, slot);
935 
936 	slot->flags = 0;
937 	slot->npages = 0;
938 }
939 
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)940 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
941 {
942 	struct kvm_memory_slot *memslot;
943 
944 	if (!slots)
945 		return;
946 
947 	kvm_for_each_memslot(memslot, slots)
948 		kvm_free_memslot(kvm, memslot);
949 
950 	kvfree(slots);
951 }
952 
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)953 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
954 {
955 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
956 	case KVM_STATS_TYPE_INSTANT:
957 		return 0444;
958 	case KVM_STATS_TYPE_CUMULATIVE:
959 	case KVM_STATS_TYPE_PEAK:
960 	default:
961 		return 0644;
962 	}
963 }
964 
965 
kvm_destroy_vm_debugfs(struct kvm * kvm)966 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
967 {
968 	int i;
969 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
970 				      kvm_vcpu_stats_header.num_desc;
971 
972 	if (IS_ERR(kvm->debugfs_dentry))
973 		return;
974 
975 	debugfs_remove_recursive(kvm->debugfs_dentry);
976 
977 	if (kvm->debugfs_stat_data) {
978 		for (i = 0; i < kvm_debugfs_num_entries; i++)
979 			kfree(kvm->debugfs_stat_data[i]);
980 		kfree(kvm->debugfs_stat_data);
981 	}
982 }
983 
kvm_create_vm_debugfs(struct kvm * kvm,int fd)984 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
985 {
986 	static DEFINE_MUTEX(kvm_debugfs_lock);
987 	struct dentry *dent;
988 	char dir_name[ITOA_MAX_LEN * 2];
989 	struct kvm_stat_data *stat_data;
990 	const struct _kvm_stats_desc *pdesc;
991 	int i, ret;
992 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
993 				      kvm_vcpu_stats_header.num_desc;
994 
995 	if (!debugfs_initialized())
996 		return 0;
997 
998 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
999 	mutex_lock(&kvm_debugfs_lock);
1000 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1001 	if (dent) {
1002 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1003 		dput(dent);
1004 		mutex_unlock(&kvm_debugfs_lock);
1005 		return 0;
1006 	}
1007 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1008 	mutex_unlock(&kvm_debugfs_lock);
1009 	if (IS_ERR(dent))
1010 		return 0;
1011 
1012 	kvm->debugfs_dentry = dent;
1013 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1014 					 sizeof(*kvm->debugfs_stat_data),
1015 					 GFP_KERNEL_ACCOUNT);
1016 	if (!kvm->debugfs_stat_data)
1017 		return -ENOMEM;
1018 
1019 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1020 		pdesc = &kvm_vm_stats_desc[i];
1021 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1022 		if (!stat_data)
1023 			return -ENOMEM;
1024 
1025 		stat_data->kvm = kvm;
1026 		stat_data->desc = pdesc;
1027 		stat_data->kind = KVM_STAT_VM;
1028 		kvm->debugfs_stat_data[i] = stat_data;
1029 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1030 				    kvm->debugfs_dentry, stat_data,
1031 				    &stat_fops_per_vm);
1032 	}
1033 
1034 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1035 		pdesc = &kvm_vcpu_stats_desc[i];
1036 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1037 		if (!stat_data)
1038 			return -ENOMEM;
1039 
1040 		stat_data->kvm = kvm;
1041 		stat_data->desc = pdesc;
1042 		stat_data->kind = KVM_STAT_VCPU;
1043 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1044 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1045 				    kvm->debugfs_dentry, stat_data,
1046 				    &stat_fops_per_vm);
1047 	}
1048 
1049 	ret = kvm_arch_create_vm_debugfs(kvm);
1050 	if (ret) {
1051 		kvm_destroy_vm_debugfs(kvm);
1052 		return i;
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Called after the VM is otherwise initialized, but just before adding it to
1060  * the vm_list.
1061  */
kvm_arch_post_init_vm(struct kvm * kvm)1062 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1063 {
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Called just after removing the VM from the vm_list, but before doing any
1069  * other destruction.
1070  */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1071 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1072 {
1073 }
1074 
1075 /*
1076  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1077  * be setup already, so we can create arch-specific debugfs entries under it.
1078  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1079  * a per-arch destroy interface is not needed.
1080  */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1081 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1082 {
1083 	return 0;
1084 }
1085 
kvm_create_vm(unsigned long type)1086 static struct kvm *kvm_create_vm(unsigned long type)
1087 {
1088 	struct kvm *kvm = kvm_arch_alloc_vm();
1089 	int r = -ENOMEM;
1090 	int i;
1091 
1092 	if (!kvm)
1093 		return ERR_PTR(-ENOMEM);
1094 
1095 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1096 	__module_get(kvm_chardev_ops.owner);
1097 
1098 	KVM_MMU_LOCK_INIT(kvm);
1099 	mmgrab(current->mm);
1100 	kvm->mm = current->mm;
1101 	kvm_eventfd_init(kvm);
1102 	mutex_init(&kvm->lock);
1103 	mutex_init(&kvm->irq_lock);
1104 	mutex_init(&kvm->slots_lock);
1105 	mutex_init(&kvm->slots_arch_lock);
1106 	spin_lock_init(&kvm->mn_invalidate_lock);
1107 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1108 
1109 	INIT_LIST_HEAD(&kvm->devices);
1110 
1111 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1112 
1113 	/*
1114 	 * Force subsequent debugfs file creations to fail if the VM directory
1115 	 * is not created (by kvm_create_vm_debugfs()).
1116 	 */
1117 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1118 
1119 	if (init_srcu_struct(&kvm->srcu))
1120 		goto out_err_no_srcu;
1121 	if (init_srcu_struct(&kvm->irq_srcu))
1122 		goto out_err_no_irq_srcu;
1123 
1124 	refcount_set(&kvm->users_count, 1);
1125 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1126 		struct kvm_memslots *slots = kvm_alloc_memslots();
1127 
1128 		if (!slots)
1129 			goto out_err_no_arch_destroy_vm;
1130 		/* Generations must be different for each address space. */
1131 		slots->generation = i;
1132 		rcu_assign_pointer(kvm->memslots[i], slots);
1133 	}
1134 
1135 	for (i = 0; i < KVM_NR_BUSES; i++) {
1136 		rcu_assign_pointer(kvm->buses[i],
1137 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1138 		if (!kvm->buses[i])
1139 			goto out_err_no_arch_destroy_vm;
1140 	}
1141 
1142 	kvm->max_halt_poll_ns = halt_poll_ns;
1143 
1144 	r = kvm_arch_init_vm(kvm, type);
1145 	if (r)
1146 		goto out_err_no_arch_destroy_vm;
1147 
1148 	r = hardware_enable_all();
1149 	if (r)
1150 		goto out_err_no_disable;
1151 
1152 #ifdef CONFIG_HAVE_KVM_IRQFD
1153 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1154 #endif
1155 
1156 	r = kvm_init_mmu_notifier(kvm);
1157 	if (r)
1158 		goto out_err_no_mmu_notifier;
1159 
1160 	r = kvm_arch_post_init_vm(kvm);
1161 	if (r)
1162 		goto out_err;
1163 
1164 	mutex_lock(&kvm_lock);
1165 	list_add(&kvm->vm_list, &vm_list);
1166 	mutex_unlock(&kvm_lock);
1167 
1168 	preempt_notifier_inc();
1169 	kvm_init_pm_notifier(kvm);
1170 
1171 	return kvm;
1172 
1173 out_err:
1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1175 	if (kvm->mmu_notifier.ops)
1176 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1177 #endif
1178 out_err_no_mmu_notifier:
1179 	hardware_disable_all();
1180 out_err_no_disable:
1181 	kvm_arch_destroy_vm(kvm);
1182 out_err_no_arch_destroy_vm:
1183 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1184 	for (i = 0; i < KVM_NR_BUSES; i++)
1185 		kfree(kvm_get_bus(kvm, i));
1186 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1187 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1188 	cleanup_srcu_struct(&kvm->irq_srcu);
1189 out_err_no_irq_srcu:
1190 	cleanup_srcu_struct(&kvm->srcu);
1191 out_err_no_srcu:
1192 	kvm_arch_free_vm(kvm);
1193 	mmdrop(current->mm);
1194 	module_put(kvm_chardev_ops.owner);
1195 	return ERR_PTR(r);
1196 }
1197 
kvm_destroy_devices(struct kvm * kvm)1198 static void kvm_destroy_devices(struct kvm *kvm)
1199 {
1200 	struct kvm_device *dev, *tmp;
1201 
1202 	/*
1203 	 * We do not need to take the kvm->lock here, because nobody else
1204 	 * has a reference to the struct kvm at this point and therefore
1205 	 * cannot access the devices list anyhow.
1206 	 */
1207 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1208 		list_del(&dev->vm_node);
1209 		dev->ops->destroy(dev);
1210 	}
1211 }
1212 
kvm_destroy_vm(struct kvm * kvm)1213 static void kvm_destroy_vm(struct kvm *kvm)
1214 {
1215 	int i;
1216 	struct mm_struct *mm = kvm->mm;
1217 
1218 	kvm_destroy_pm_notifier(kvm);
1219 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1220 	kvm_destroy_vm_debugfs(kvm);
1221 	kvm_arch_sync_events(kvm);
1222 	mutex_lock(&kvm_lock);
1223 	list_del(&kvm->vm_list);
1224 	mutex_unlock(&kvm_lock);
1225 	kvm_arch_pre_destroy_vm(kvm);
1226 
1227 	kvm_free_irq_routing(kvm);
1228 	for (i = 0; i < KVM_NR_BUSES; i++) {
1229 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1230 
1231 		if (bus)
1232 			kvm_io_bus_destroy(bus);
1233 		kvm->buses[i] = NULL;
1234 	}
1235 	kvm_coalesced_mmio_free(kvm);
1236 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1237 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1238 	/*
1239 	 * At this point, pending calls to invalidate_range_start()
1240 	 * have completed but no more MMU notifiers will run, so
1241 	 * mn_active_invalidate_count may remain unbalanced.
1242 	 * No threads can be waiting in install_new_memslots as the
1243 	 * last reference on KVM has been dropped, but freeing
1244 	 * memslots would deadlock without this manual intervention.
1245 	 */
1246 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1247 	kvm->mn_active_invalidate_count = 0;
1248 #else
1249 	kvm_flush_shadow_all(kvm);
1250 #endif
1251 	kvm_arch_destroy_vm(kvm);
1252 	kvm_destroy_devices(kvm);
1253 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1254 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1255 	cleanup_srcu_struct(&kvm->irq_srcu);
1256 	cleanup_srcu_struct(&kvm->srcu);
1257 	kvm_arch_free_vm(kvm);
1258 	preempt_notifier_dec();
1259 	hardware_disable_all();
1260 	mmdrop(mm);
1261 	module_put(kvm_chardev_ops.owner);
1262 }
1263 
kvm_get_kvm(struct kvm * kvm)1264 void kvm_get_kvm(struct kvm *kvm)
1265 {
1266 	refcount_inc(&kvm->users_count);
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1269 
1270 /*
1271  * Make sure the vm is not during destruction, which is a safe version of
1272  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1273  */
kvm_get_kvm_safe(struct kvm * kvm)1274 bool kvm_get_kvm_safe(struct kvm *kvm)
1275 {
1276 	return refcount_inc_not_zero(&kvm->users_count);
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1279 
kvm_put_kvm(struct kvm * kvm)1280 void kvm_put_kvm(struct kvm *kvm)
1281 {
1282 	if (refcount_dec_and_test(&kvm->users_count))
1283 		kvm_destroy_vm(kvm);
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1286 
1287 /*
1288  * Used to put a reference that was taken on behalf of an object associated
1289  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1290  * of the new file descriptor fails and the reference cannot be transferred to
1291  * its final owner.  In such cases, the caller is still actively using @kvm and
1292  * will fail miserably if the refcount unexpectedly hits zero.
1293  */
kvm_put_kvm_no_destroy(struct kvm * kvm)1294 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1295 {
1296 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1299 
kvm_vm_release(struct inode * inode,struct file * filp)1300 static int kvm_vm_release(struct inode *inode, struct file *filp)
1301 {
1302 	struct kvm *kvm = filp->private_data;
1303 
1304 	kvm_irqfd_release(kvm);
1305 
1306 	kvm_put_kvm(kvm);
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Allocation size is twice as large as the actual dirty bitmap size.
1312  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1313  */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1314 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1315 {
1316 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1317 
1318 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1319 	if (!memslot->dirty_bitmap)
1320 		return -ENOMEM;
1321 
1322 	return 0;
1323 }
1324 
1325 /*
1326  * Delete a memslot by decrementing the number of used slots and shifting all
1327  * other entries in the array forward one spot.
1328  */
kvm_memslot_delete(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1329 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1330 				      struct kvm_memory_slot *memslot)
1331 {
1332 	struct kvm_memory_slot *mslots = slots->memslots;
1333 	int i;
1334 
1335 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1336 		return;
1337 
1338 	slots->used_slots--;
1339 
1340 	if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1341 		atomic_set(&slots->last_used_slot, 0);
1342 
1343 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1344 		mslots[i] = mslots[i + 1];
1345 		slots->id_to_index[mslots[i].id] = i;
1346 	}
1347 	mslots[i] = *memslot;
1348 	slots->id_to_index[memslot->id] = -1;
1349 }
1350 
1351 /*
1352  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1353  * the new slot's initial index into the memslots array.
1354  */
kvm_memslot_insert_back(struct kvm_memslots * slots)1355 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1356 {
1357 	return slots->used_slots++;
1358 }
1359 
1360 /*
1361  * Move a changed memslot backwards in the array by shifting existing slots
1362  * with a higher GFN toward the front of the array.  Note, the changed memslot
1363  * itself is not preserved in the array, i.e. not swapped at this time, only
1364  * its new index into the array is tracked.  Returns the changed memslot's
1365  * current index into the memslots array.
1366  */
kvm_memslot_move_backward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1367 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1368 					    struct kvm_memory_slot *memslot)
1369 {
1370 	struct kvm_memory_slot *mslots = slots->memslots;
1371 	int i;
1372 
1373 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1374 	    WARN_ON_ONCE(!slots->used_slots))
1375 		return -1;
1376 
1377 	/*
1378 	 * Move the target memslot backward in the array by shifting existing
1379 	 * memslots with a higher GFN (than the target memslot) towards the
1380 	 * front of the array.
1381 	 */
1382 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1383 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1384 			break;
1385 
1386 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1387 
1388 		/* Shift the next memslot forward one and update its index. */
1389 		mslots[i] = mslots[i + 1];
1390 		slots->id_to_index[mslots[i].id] = i;
1391 	}
1392 	return i;
1393 }
1394 
1395 /*
1396  * Move a changed memslot forwards in the array by shifting existing slots with
1397  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1398  * is not preserved in the array, i.e. not swapped at this time, only its new
1399  * index into the array is tracked.  Returns the changed memslot's final index
1400  * into the memslots array.
1401  */
kvm_memslot_move_forward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,int start)1402 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1403 					   struct kvm_memory_slot *memslot,
1404 					   int start)
1405 {
1406 	struct kvm_memory_slot *mslots = slots->memslots;
1407 	int i;
1408 
1409 	for (i = start; i > 0; i--) {
1410 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1411 			break;
1412 
1413 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1414 
1415 		/* Shift the next memslot back one and update its index. */
1416 		mslots[i] = mslots[i - 1];
1417 		slots->id_to_index[mslots[i].id] = i;
1418 	}
1419 	return i;
1420 }
1421 
1422 /*
1423  * Re-sort memslots based on their GFN to account for an added, deleted, or
1424  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1425  * memslot lookup.
1426  *
1427  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1428  * at memslots[0] has the highest GFN.
1429  *
1430  * The sorting algorithm takes advantage of having initially sorted memslots
1431  * and knowing the position of the changed memslot.  Sorting is also optimized
1432  * by not swapping the updated memslot and instead only shifting other memslots
1433  * and tracking the new index for the update memslot.  Only once its final
1434  * index is known is the updated memslot copied into its position in the array.
1435  *
1436  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1437  *    the end of the array.
1438  *
1439  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1440  *    end of the array and then it forward to its correct location.
1441  *
1442  *  - When moving a memslot, the algorithm first moves the updated memslot
1443  *    backward to handle the scenario where the memslot's GFN was changed to a
1444  *    lower value.  update_memslots() then falls through and runs the same flow
1445  *    as creating a memslot to move the memslot forward to handle the scenario
1446  *    where its GFN was changed to a higher value.
1447  *
1448  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1449  * historical reasons.  Originally, invalid memslots where denoted by having
1450  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1451  * to the end of the array.  The current algorithm uses dedicated logic to
1452  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1453  *
1454  * The other historical motiviation for highest->lowest was to improve the
1455  * performance of memslot lookup.  KVM originally used a linear search starting
1456  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1457  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1458  * single memslot above the 4gb boundary.  As the largest memslot is also the
1459  * most likely to be referenced, sorting it to the front of the array was
1460  * advantageous.  The current binary search starts from the middle of the array
1461  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1462  */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,enum kvm_mr_change change)1463 static void update_memslots(struct kvm_memslots *slots,
1464 			    struct kvm_memory_slot *memslot,
1465 			    enum kvm_mr_change change)
1466 {
1467 	int i;
1468 
1469 	if (change == KVM_MR_DELETE) {
1470 		kvm_memslot_delete(slots, memslot);
1471 	} else {
1472 		if (change == KVM_MR_CREATE)
1473 			i = kvm_memslot_insert_back(slots);
1474 		else
1475 			i = kvm_memslot_move_backward(slots, memslot);
1476 		i = kvm_memslot_move_forward(slots, memslot, i);
1477 
1478 		/*
1479 		 * Copy the memslot to its new position in memslots and update
1480 		 * its index accordingly.
1481 		 */
1482 		slots->memslots[i] = *memslot;
1483 		slots->id_to_index[memslot->id] = i;
1484 	}
1485 }
1486 
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1487 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1488 {
1489 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1490 
1491 #ifdef __KVM_HAVE_READONLY_MEM
1492 	valid_flags |= KVM_MEM_READONLY;
1493 #endif
1494 
1495 	if (mem->flags & ~valid_flags)
1496 		return -EINVAL;
1497 
1498 	return 0;
1499 }
1500 
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)1501 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1502 		int as_id, struct kvm_memslots *slots)
1503 {
1504 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1505 	u64 gen = old_memslots->generation;
1506 
1507 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1508 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1509 
1510 	/*
1511 	 * Do not store the new memslots while there are invalidations in
1512 	 * progress, otherwise the locking in invalidate_range_start and
1513 	 * invalidate_range_end will be unbalanced.
1514 	 */
1515 	spin_lock(&kvm->mn_invalidate_lock);
1516 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1517 	while (kvm->mn_active_invalidate_count) {
1518 		set_current_state(TASK_UNINTERRUPTIBLE);
1519 		spin_unlock(&kvm->mn_invalidate_lock);
1520 		schedule();
1521 		spin_lock(&kvm->mn_invalidate_lock);
1522 	}
1523 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1524 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1525 	spin_unlock(&kvm->mn_invalidate_lock);
1526 
1527 	/*
1528 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1529 	 * SRCU below in order to avoid deadlock with another thread
1530 	 * acquiring the slots_arch_lock in an srcu critical section.
1531 	 */
1532 	mutex_unlock(&kvm->slots_arch_lock);
1533 
1534 	synchronize_srcu_expedited(&kvm->srcu);
1535 
1536 	/*
1537 	 * Increment the new memslot generation a second time, dropping the
1538 	 * update in-progress flag and incrementing the generation based on
1539 	 * the number of address spaces.  This provides a unique and easily
1540 	 * identifiable generation number while the memslots are in flux.
1541 	 */
1542 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1543 
1544 	/*
1545 	 * Generations must be unique even across address spaces.  We do not need
1546 	 * a global counter for that, instead the generation space is evenly split
1547 	 * across address spaces.  For example, with two address spaces, address
1548 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1549 	 * use generations 1, 3, 5, ...
1550 	 */
1551 	gen += KVM_ADDRESS_SPACE_NUM;
1552 
1553 	kvm_arch_memslots_updated(kvm, gen);
1554 
1555 	slots->generation = gen;
1556 
1557 	return old_memslots;
1558 }
1559 
kvm_memslots_size(int slots)1560 static size_t kvm_memslots_size(int slots)
1561 {
1562 	return sizeof(struct kvm_memslots) +
1563 	       (sizeof(struct kvm_memory_slot) * slots);
1564 }
1565 
kvm_copy_memslots(struct kvm_memslots * to,struct kvm_memslots * from)1566 static void kvm_copy_memslots(struct kvm_memslots *to,
1567 			      struct kvm_memslots *from)
1568 {
1569 	memcpy(to, from, kvm_memslots_size(from->used_slots));
1570 }
1571 
1572 /*
1573  * Note, at a minimum, the current number of used slots must be allocated, even
1574  * when deleting a memslot, as we need a complete duplicate of the memslots for
1575  * use when invalidating a memslot prior to deleting/moving the memslot.
1576  */
kvm_dup_memslots(struct kvm_memslots * old,enum kvm_mr_change change)1577 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1578 					     enum kvm_mr_change change)
1579 {
1580 	struct kvm_memslots *slots;
1581 	size_t new_size;
1582 
1583 	if (change == KVM_MR_CREATE)
1584 		new_size = kvm_memslots_size(old->used_slots + 1);
1585 	else
1586 		new_size = kvm_memslots_size(old->used_slots);
1587 
1588 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1589 	if (likely(slots))
1590 		kvm_copy_memslots(slots, old);
1591 
1592 	return slots;
1593 }
1594 
kvm_set_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * new,int as_id,enum kvm_mr_change change)1595 static int kvm_set_memslot(struct kvm *kvm,
1596 			   const struct kvm_userspace_memory_region *mem,
1597 			   struct kvm_memory_slot *new, int as_id,
1598 			   enum kvm_mr_change change)
1599 {
1600 	struct kvm_memory_slot *slot, old;
1601 	struct kvm_memslots *slots;
1602 	int r;
1603 
1604 	/*
1605 	 * Released in install_new_memslots.
1606 	 *
1607 	 * Must be held from before the current memslots are copied until
1608 	 * after the new memslots are installed with rcu_assign_pointer,
1609 	 * then released before the synchronize srcu in install_new_memslots.
1610 	 *
1611 	 * When modifying memslots outside of the slots_lock, must be held
1612 	 * before reading the pointer to the current memslots until after all
1613 	 * changes to those memslots are complete.
1614 	 *
1615 	 * These rules ensure that installing new memslots does not lose
1616 	 * changes made to the previous memslots.
1617 	 */
1618 	mutex_lock(&kvm->slots_arch_lock);
1619 
1620 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1621 	if (!slots) {
1622 		mutex_unlock(&kvm->slots_arch_lock);
1623 		return -ENOMEM;
1624 	}
1625 
1626 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1627 		/*
1628 		 * Note, the INVALID flag needs to be in the appropriate entry
1629 		 * in the freshly allocated memslots, not in @old or @new.
1630 		 */
1631 		slot = id_to_memslot(slots, new->id);
1632 		slot->flags |= KVM_MEMSLOT_INVALID;
1633 
1634 		/*
1635 		 * We can re-use the memory from the old memslots.
1636 		 * It will be overwritten with a copy of the new memslots
1637 		 * after reacquiring the slots_arch_lock below.
1638 		 */
1639 		slots = install_new_memslots(kvm, as_id, slots);
1640 
1641 		/* From this point no new shadow pages pointing to a deleted,
1642 		 * or moved, memslot will be created.
1643 		 *
1644 		 * validation of sp->gfn happens in:
1645 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1646 		 *	- kvm_is_visible_gfn (mmu_check_root)
1647 		 */
1648 		kvm_arch_flush_shadow_memslot(kvm, slot);
1649 		kvm_arch_guest_memory_reclaimed(kvm);
1650 
1651 		/* Released in install_new_memslots. */
1652 		mutex_lock(&kvm->slots_arch_lock);
1653 
1654 		/*
1655 		 * The arch-specific fields of the memslots could have changed
1656 		 * between releasing the slots_arch_lock in
1657 		 * install_new_memslots and here, so get a fresh copy of the
1658 		 * slots.
1659 		 */
1660 		kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1661 	}
1662 
1663 	/*
1664 	 * Make a full copy of the old memslot, the pointer will become stale
1665 	 * when the memslots are re-sorted by update_memslots(), and the old
1666 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1667 	 * to free its resources and for arch specific behavior.  This needs to
1668 	 * happen *after* (re)acquiring slots_arch_lock.
1669 	 */
1670 	slot = id_to_memslot(slots, new->id);
1671 	if (slot) {
1672 		old = *slot;
1673 	} else {
1674 		WARN_ON_ONCE(change != KVM_MR_CREATE);
1675 		memset(&old, 0, sizeof(old));
1676 		old.id = new->id;
1677 		old.as_id = as_id;
1678 	}
1679 
1680 	/* Copy the arch-specific data, again after (re)acquiring slots_arch_lock. */
1681 	memcpy(&new->arch, &old.arch, sizeof(old.arch));
1682 
1683 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1684 	if (r)
1685 		goto out_slots;
1686 
1687 	update_memslots(slots, new, change);
1688 	slots = install_new_memslots(kvm, as_id, slots);
1689 
1690 	kvm_arch_commit_memory_region(kvm, mem, &old, new, change);
1691 
1692 	/* Free the old memslot's metadata.  Note, this is the full copy!!! */
1693 	if (change == KVM_MR_DELETE)
1694 		kvm_free_memslot(kvm, &old);
1695 
1696 	kvfree(slots);
1697 	return 0;
1698 
1699 out_slots:
1700 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1701 		slot = id_to_memslot(slots, new->id);
1702 		slot->flags &= ~KVM_MEMSLOT_INVALID;
1703 		slots = install_new_memslots(kvm, as_id, slots);
1704 	} else {
1705 		mutex_unlock(&kvm->slots_arch_lock);
1706 	}
1707 	kvfree(slots);
1708 	return r;
1709 }
1710 
kvm_delete_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,int as_id)1711 static int kvm_delete_memslot(struct kvm *kvm,
1712 			      const struct kvm_userspace_memory_region *mem,
1713 			      struct kvm_memory_slot *old, int as_id)
1714 {
1715 	struct kvm_memory_slot new;
1716 
1717 	if (!old->npages)
1718 		return -EINVAL;
1719 
1720 	memset(&new, 0, sizeof(new));
1721 	new.id = old->id;
1722 	/*
1723 	 * This is only for debugging purpose; it should never be referenced
1724 	 * for a removed memslot.
1725 	 */
1726 	new.as_id = as_id;
1727 
1728 	return kvm_set_memslot(kvm, mem, &new, as_id, KVM_MR_DELETE);
1729 }
1730 
1731 /*
1732  * Allocate some memory and give it an address in the guest physical address
1733  * space.
1734  *
1735  * Discontiguous memory is allowed, mostly for framebuffers.
1736  *
1737  * Must be called holding kvm->slots_lock for write.
1738  */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1739 int __kvm_set_memory_region(struct kvm *kvm,
1740 			    const struct kvm_userspace_memory_region *mem)
1741 {
1742 	struct kvm_memory_slot old, new;
1743 	struct kvm_memory_slot *tmp;
1744 	enum kvm_mr_change change;
1745 	int as_id, id;
1746 	int r;
1747 
1748 	r = check_memory_region_flags(mem);
1749 	if (r)
1750 		return r;
1751 
1752 	as_id = mem->slot >> 16;
1753 	id = (u16)mem->slot;
1754 
1755 	/* General sanity checks */
1756 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1757 	    (mem->memory_size != (unsigned long)mem->memory_size))
1758 		return -EINVAL;
1759 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1760 		return -EINVAL;
1761 	/* We can read the guest memory with __xxx_user() later on. */
1762 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1763 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1764 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1765 			mem->memory_size))
1766 		return -EINVAL;
1767 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1768 		return -EINVAL;
1769 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1770 		return -EINVAL;
1771 
1772 	/*
1773 	 * Make a full copy of the old memslot, the pointer will become stale
1774 	 * when the memslots are re-sorted by update_memslots(), and the old
1775 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1776 	 * to free its resources and for arch specific behavior.
1777 	 */
1778 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1779 	if (tmp) {
1780 		old = *tmp;
1781 		tmp = NULL;
1782 	} else {
1783 		memset(&old, 0, sizeof(old));
1784 		old.id = id;
1785 	}
1786 
1787 	if (!mem->memory_size)
1788 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1789 
1790 	new.as_id = as_id;
1791 	new.id = id;
1792 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1793 	new.npages = mem->memory_size >> PAGE_SHIFT;
1794 	new.flags = mem->flags;
1795 	new.userspace_addr = mem->userspace_addr;
1796 
1797 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1798 		return -EINVAL;
1799 
1800 	if (!old.npages) {
1801 		change = KVM_MR_CREATE;
1802 		new.dirty_bitmap = NULL;
1803 	} else { /* Modify an existing slot. */
1804 		if ((new.userspace_addr != old.userspace_addr) ||
1805 		    (new.npages != old.npages) ||
1806 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1807 			return -EINVAL;
1808 
1809 		if (new.base_gfn != old.base_gfn)
1810 			change = KVM_MR_MOVE;
1811 		else if (new.flags != old.flags)
1812 			change = KVM_MR_FLAGS_ONLY;
1813 		else /* Nothing to change. */
1814 			return 0;
1815 
1816 		/* Copy dirty_bitmap from the current memslot. */
1817 		new.dirty_bitmap = old.dirty_bitmap;
1818 	}
1819 
1820 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1821 		/* Check for overlaps */
1822 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1823 			if (tmp->id == id)
1824 				continue;
1825 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1826 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1827 				return -EEXIST;
1828 		}
1829 	}
1830 
1831 	/* Allocate/free page dirty bitmap as needed */
1832 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1833 		new.dirty_bitmap = NULL;
1834 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1835 		r = kvm_alloc_dirty_bitmap(&new);
1836 		if (r)
1837 			return r;
1838 
1839 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1840 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1841 	}
1842 
1843 	r = kvm_set_memslot(kvm, mem, &new, as_id, change);
1844 	if (r)
1845 		goto out_bitmap;
1846 
1847 	if (old.dirty_bitmap && !new.dirty_bitmap)
1848 		kvm_destroy_dirty_bitmap(&old);
1849 	return 0;
1850 
1851 out_bitmap:
1852 	if (new.dirty_bitmap && !old.dirty_bitmap)
1853 		kvm_destroy_dirty_bitmap(&new);
1854 	return r;
1855 }
1856 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1857 
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1858 int kvm_set_memory_region(struct kvm *kvm,
1859 			  const struct kvm_userspace_memory_region *mem)
1860 {
1861 	int r;
1862 
1863 	mutex_lock(&kvm->slots_lock);
1864 	r = __kvm_set_memory_region(kvm, mem);
1865 	mutex_unlock(&kvm->slots_lock);
1866 	return r;
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1869 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1870 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1871 					  struct kvm_userspace_memory_region *mem)
1872 {
1873 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1874 		return -EINVAL;
1875 
1876 	return kvm_set_memory_region(kvm, mem);
1877 }
1878 
1879 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1880 /**
1881  * kvm_get_dirty_log - get a snapshot of dirty pages
1882  * @kvm:	pointer to kvm instance
1883  * @log:	slot id and address to which we copy the log
1884  * @is_dirty:	set to '1' if any dirty pages were found
1885  * @memslot:	set to the associated memslot, always valid on success
1886  */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)1887 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1888 		      int *is_dirty, struct kvm_memory_slot **memslot)
1889 {
1890 	struct kvm_memslots *slots;
1891 	int i, as_id, id;
1892 	unsigned long n;
1893 	unsigned long any = 0;
1894 
1895 	/* Dirty ring tracking is exclusive to dirty log tracking */
1896 	if (kvm->dirty_ring_size)
1897 		return -ENXIO;
1898 
1899 	*memslot = NULL;
1900 	*is_dirty = 0;
1901 
1902 	as_id = log->slot >> 16;
1903 	id = (u16)log->slot;
1904 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1905 		return -EINVAL;
1906 
1907 	slots = __kvm_memslots(kvm, as_id);
1908 	*memslot = id_to_memslot(slots, id);
1909 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1910 		return -ENOENT;
1911 
1912 	kvm_arch_sync_dirty_log(kvm, *memslot);
1913 
1914 	n = kvm_dirty_bitmap_bytes(*memslot);
1915 
1916 	for (i = 0; !any && i < n/sizeof(long); ++i)
1917 		any = (*memslot)->dirty_bitmap[i];
1918 
1919 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1920 		return -EFAULT;
1921 
1922 	if (any)
1923 		*is_dirty = 1;
1924 	return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1927 
1928 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1929 /**
1930  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1931  *	and reenable dirty page tracking for the corresponding pages.
1932  * @kvm:	pointer to kvm instance
1933  * @log:	slot id and address to which we copy the log
1934  *
1935  * We need to keep it in mind that VCPU threads can write to the bitmap
1936  * concurrently. So, to avoid losing track of dirty pages we keep the
1937  * following order:
1938  *
1939  *    1. Take a snapshot of the bit and clear it if needed.
1940  *    2. Write protect the corresponding page.
1941  *    3. Copy the snapshot to the userspace.
1942  *    4. Upon return caller flushes TLB's if needed.
1943  *
1944  * Between 2 and 4, the guest may write to the page using the remaining TLB
1945  * entry.  This is not a problem because the page is reported dirty using
1946  * the snapshot taken before and step 4 ensures that writes done after
1947  * exiting to userspace will be logged for the next call.
1948  *
1949  */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)1950 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1951 {
1952 	struct kvm_memslots *slots;
1953 	struct kvm_memory_slot *memslot;
1954 	int i, as_id, id;
1955 	unsigned long n;
1956 	unsigned long *dirty_bitmap;
1957 	unsigned long *dirty_bitmap_buffer;
1958 	bool flush;
1959 
1960 	/* Dirty ring tracking is exclusive to dirty log tracking */
1961 	if (kvm->dirty_ring_size)
1962 		return -ENXIO;
1963 
1964 	as_id = log->slot >> 16;
1965 	id = (u16)log->slot;
1966 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1967 		return -EINVAL;
1968 
1969 	slots = __kvm_memslots(kvm, as_id);
1970 	memslot = id_to_memslot(slots, id);
1971 	if (!memslot || !memslot->dirty_bitmap)
1972 		return -ENOENT;
1973 
1974 	dirty_bitmap = memslot->dirty_bitmap;
1975 
1976 	kvm_arch_sync_dirty_log(kvm, memslot);
1977 
1978 	n = kvm_dirty_bitmap_bytes(memslot);
1979 	flush = false;
1980 	if (kvm->manual_dirty_log_protect) {
1981 		/*
1982 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1983 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1984 		 * is some code duplication between this function and
1985 		 * kvm_get_dirty_log, but hopefully all architecture
1986 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1987 		 * can be eliminated.
1988 		 */
1989 		dirty_bitmap_buffer = dirty_bitmap;
1990 	} else {
1991 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1992 		memset(dirty_bitmap_buffer, 0, n);
1993 
1994 		KVM_MMU_LOCK(kvm);
1995 		for (i = 0; i < n / sizeof(long); i++) {
1996 			unsigned long mask;
1997 			gfn_t offset;
1998 
1999 			if (!dirty_bitmap[i])
2000 				continue;
2001 
2002 			flush = true;
2003 			mask = xchg(&dirty_bitmap[i], 0);
2004 			dirty_bitmap_buffer[i] = mask;
2005 
2006 			offset = i * BITS_PER_LONG;
2007 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2008 								offset, mask);
2009 		}
2010 		KVM_MMU_UNLOCK(kvm);
2011 	}
2012 
2013 	if (flush)
2014 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2015 
2016 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2017 		return -EFAULT;
2018 	return 0;
2019 }
2020 
2021 
2022 /**
2023  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2024  * @kvm: kvm instance
2025  * @log: slot id and address to which we copy the log
2026  *
2027  * Steps 1-4 below provide general overview of dirty page logging. See
2028  * kvm_get_dirty_log_protect() function description for additional details.
2029  *
2030  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2031  * always flush the TLB (step 4) even if previous step failed  and the dirty
2032  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2033  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2034  * writes will be marked dirty for next log read.
2035  *
2036  *   1. Take a snapshot of the bit and clear it if needed.
2037  *   2. Write protect the corresponding page.
2038  *   3. Copy the snapshot to the userspace.
2039  *   4. Flush TLB's if needed.
2040  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2041 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2042 				      struct kvm_dirty_log *log)
2043 {
2044 	int r;
2045 
2046 	mutex_lock(&kvm->slots_lock);
2047 
2048 	r = kvm_get_dirty_log_protect(kvm, log);
2049 
2050 	mutex_unlock(&kvm->slots_lock);
2051 	return r;
2052 }
2053 
2054 /**
2055  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2056  *	and reenable dirty page tracking for the corresponding pages.
2057  * @kvm:	pointer to kvm instance
2058  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2059  */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2060 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2061 				       struct kvm_clear_dirty_log *log)
2062 {
2063 	struct kvm_memslots *slots;
2064 	struct kvm_memory_slot *memslot;
2065 	int as_id, id;
2066 	gfn_t offset;
2067 	unsigned long i, n;
2068 	unsigned long *dirty_bitmap;
2069 	unsigned long *dirty_bitmap_buffer;
2070 	bool flush;
2071 
2072 	/* Dirty ring tracking is exclusive to dirty log tracking */
2073 	if (kvm->dirty_ring_size)
2074 		return -ENXIO;
2075 
2076 	as_id = log->slot >> 16;
2077 	id = (u16)log->slot;
2078 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2079 		return -EINVAL;
2080 
2081 	if (log->first_page & 63)
2082 		return -EINVAL;
2083 
2084 	slots = __kvm_memslots(kvm, as_id);
2085 	memslot = id_to_memslot(slots, id);
2086 	if (!memslot || !memslot->dirty_bitmap)
2087 		return -ENOENT;
2088 
2089 	dirty_bitmap = memslot->dirty_bitmap;
2090 
2091 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2092 
2093 	if (log->first_page > memslot->npages ||
2094 	    log->num_pages > memslot->npages - log->first_page ||
2095 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2096 	    return -EINVAL;
2097 
2098 	kvm_arch_sync_dirty_log(kvm, memslot);
2099 
2100 	flush = false;
2101 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2102 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2103 		return -EFAULT;
2104 
2105 	KVM_MMU_LOCK(kvm);
2106 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2107 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2108 	     i++, offset += BITS_PER_LONG) {
2109 		unsigned long mask = *dirty_bitmap_buffer++;
2110 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2111 		if (!mask)
2112 			continue;
2113 
2114 		mask &= atomic_long_fetch_andnot(mask, p);
2115 
2116 		/*
2117 		 * mask contains the bits that really have been cleared.  This
2118 		 * never includes any bits beyond the length of the memslot (if
2119 		 * the length is not aligned to 64 pages), therefore it is not
2120 		 * a problem if userspace sets them in log->dirty_bitmap.
2121 		*/
2122 		if (mask) {
2123 			flush = true;
2124 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2125 								offset, mask);
2126 		}
2127 	}
2128 	KVM_MMU_UNLOCK(kvm);
2129 
2130 	if (flush)
2131 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2132 
2133 	return 0;
2134 }
2135 
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2136 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2137 					struct kvm_clear_dirty_log *log)
2138 {
2139 	int r;
2140 
2141 	mutex_lock(&kvm->slots_lock);
2142 
2143 	r = kvm_clear_dirty_log_protect(kvm, log);
2144 
2145 	mutex_unlock(&kvm->slots_lock);
2146 	return r;
2147 }
2148 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2149 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2150 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2151 {
2152 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2153 }
2154 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2155 
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2156 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2157 {
2158 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2159 	struct kvm_memory_slot *slot;
2160 	int slot_index;
2161 
2162 	slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2163 	if (slot)
2164 		return slot;
2165 
2166 	/*
2167 	 * Fall back to searching all memslots. We purposely use
2168 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2169 	 * thrashing the VM-wide last_used_index in kvm_memslots.
2170 	 */
2171 	slot = search_memslots(slots, gfn, &slot_index);
2172 	if (slot) {
2173 		vcpu->last_used_slot = slot_index;
2174 		return slot;
2175 	}
2176 
2177 	return NULL;
2178 }
2179 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2180 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2181 {
2182 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2183 
2184 	return kvm_is_visible_memslot(memslot);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2187 
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2188 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2189 {
2190 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2191 
2192 	return kvm_is_visible_memslot(memslot);
2193 }
2194 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2195 
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2196 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2197 {
2198 	struct vm_area_struct *vma;
2199 	unsigned long addr, size;
2200 
2201 	size = PAGE_SIZE;
2202 
2203 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2204 	if (kvm_is_error_hva(addr))
2205 		return PAGE_SIZE;
2206 
2207 	mmap_read_lock(current->mm);
2208 	vma = find_vma(current->mm, addr);
2209 	if (!vma)
2210 		goto out;
2211 
2212 	size = vma_kernel_pagesize(vma);
2213 
2214 out:
2215 	mmap_read_unlock(current->mm);
2216 
2217 	return size;
2218 }
2219 
memslot_is_readonly(struct kvm_memory_slot * slot)2220 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2221 {
2222 	return slot->flags & KVM_MEM_READONLY;
2223 }
2224 
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2225 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2226 				       gfn_t *nr_pages, bool write)
2227 {
2228 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2229 		return KVM_HVA_ERR_BAD;
2230 
2231 	if (memslot_is_readonly(slot) && write)
2232 		return KVM_HVA_ERR_RO_BAD;
2233 
2234 	if (nr_pages)
2235 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2236 
2237 	return __gfn_to_hva_memslot(slot, gfn);
2238 }
2239 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2240 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2241 				     gfn_t *nr_pages)
2242 {
2243 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2244 }
2245 
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2246 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2247 					gfn_t gfn)
2248 {
2249 	return gfn_to_hva_many(slot, gfn, NULL);
2250 }
2251 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2252 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2253 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2254 {
2255 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2256 }
2257 EXPORT_SYMBOL_GPL(gfn_to_hva);
2258 
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2259 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2260 {
2261 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2262 }
2263 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2264 
2265 /*
2266  * Return the hva of a @gfn and the R/W attribute if possible.
2267  *
2268  * @slot: the kvm_memory_slot which contains @gfn
2269  * @gfn: the gfn to be translated
2270  * @writable: used to return the read/write attribute of the @slot if the hva
2271  * is valid and @writable is not NULL
2272  */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2273 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2274 				      gfn_t gfn, bool *writable)
2275 {
2276 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2277 
2278 	if (!kvm_is_error_hva(hva) && writable)
2279 		*writable = !memslot_is_readonly(slot);
2280 
2281 	return hva;
2282 }
2283 
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2284 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2285 {
2286 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2287 
2288 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2289 }
2290 
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2291 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2292 {
2293 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2294 
2295 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2296 }
2297 
check_user_page_hwpoison(unsigned long addr)2298 static inline int check_user_page_hwpoison(unsigned long addr)
2299 {
2300 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2301 
2302 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2303 	return rc == -EHWPOISON;
2304 }
2305 
2306 /*
2307  * The fast path to get the writable pfn which will be stored in @pfn,
2308  * true indicates success, otherwise false is returned.  It's also the
2309  * only part that runs if we can in atomic context.
2310  */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2311 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2312 			    bool *writable, kvm_pfn_t *pfn)
2313 {
2314 	struct page *page[1];
2315 
2316 	/*
2317 	 * Fast pin a writable pfn only if it is a write fault request
2318 	 * or the caller allows to map a writable pfn for a read fault
2319 	 * request.
2320 	 */
2321 	if (!(write_fault || writable))
2322 		return false;
2323 
2324 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2325 		*pfn = page_to_pfn(page[0]);
2326 
2327 		if (writable)
2328 			*writable = true;
2329 		return true;
2330 	}
2331 
2332 	return false;
2333 }
2334 
2335 /*
2336  * The slow path to get the pfn of the specified host virtual address,
2337  * 1 indicates success, -errno is returned if error is detected.
2338  */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)2339 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2340 			   bool *writable, kvm_pfn_t *pfn)
2341 {
2342 	unsigned int flags = FOLL_HWPOISON;
2343 	struct page *page;
2344 	int npages = 0;
2345 
2346 	might_sleep();
2347 
2348 	if (writable)
2349 		*writable = write_fault;
2350 
2351 	if (write_fault)
2352 		flags |= FOLL_WRITE;
2353 	if (async)
2354 		flags |= FOLL_NOWAIT;
2355 
2356 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2357 	if (npages != 1)
2358 		return npages;
2359 
2360 	/* map read fault as writable if possible */
2361 	if (unlikely(!write_fault) && writable) {
2362 		struct page *wpage;
2363 
2364 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2365 			*writable = true;
2366 			put_page(page);
2367 			page = wpage;
2368 		}
2369 	}
2370 	*pfn = page_to_pfn(page);
2371 	return npages;
2372 }
2373 
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2374 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2375 {
2376 	if (unlikely(!(vma->vm_flags & VM_READ)))
2377 		return false;
2378 
2379 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2380 		return false;
2381 
2382 	return true;
2383 }
2384 
kvm_try_get_pfn(kvm_pfn_t pfn)2385 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2386 {
2387 	if (kvm_is_reserved_pfn(pfn))
2388 		return 1;
2389 	return get_page_unless_zero(pfn_to_page(pfn));
2390 }
2391 
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2392 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2393 			       unsigned long addr, bool *async,
2394 			       bool write_fault, bool *writable,
2395 			       kvm_pfn_t *p_pfn)
2396 {
2397 	kvm_pfn_t pfn;
2398 	pte_t *ptep;
2399 	spinlock_t *ptl;
2400 	int r;
2401 
2402 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2403 	if (r) {
2404 		/*
2405 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2406 		 * not call the fault handler, so do it here.
2407 		 */
2408 		bool unlocked = false;
2409 		r = fixup_user_fault(current->mm, addr,
2410 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2411 				     &unlocked);
2412 		if (unlocked)
2413 			return -EAGAIN;
2414 		if (r)
2415 			return r;
2416 
2417 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2418 		if (r)
2419 			return r;
2420 	}
2421 
2422 	if (write_fault && !pte_write(*ptep)) {
2423 		pfn = KVM_PFN_ERR_RO_FAULT;
2424 		goto out;
2425 	}
2426 
2427 	if (writable)
2428 		*writable = pte_write(*ptep);
2429 	pfn = pte_pfn(*ptep);
2430 
2431 	/*
2432 	 * Get a reference here because callers of *hva_to_pfn* and
2433 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2434 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2435 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2436 	 * simply do nothing for reserved pfns.
2437 	 *
2438 	 * Whoever called remap_pfn_range is also going to call e.g.
2439 	 * unmap_mapping_range before the underlying pages are freed,
2440 	 * causing a call to our MMU notifier.
2441 	 *
2442 	 * Certain IO or PFNMAP mappings can be backed with valid
2443 	 * struct pages, but be allocated without refcounting e.g.,
2444 	 * tail pages of non-compound higher order allocations, which
2445 	 * would then underflow the refcount when the caller does the
2446 	 * required put_page. Don't allow those pages here.
2447 	 */
2448 	if (!kvm_try_get_pfn(pfn))
2449 		r = -EFAULT;
2450 
2451 out:
2452 	pte_unmap_unlock(ptep, ptl);
2453 	*p_pfn = pfn;
2454 
2455 	return r;
2456 }
2457 
2458 /*
2459  * Pin guest page in memory and return its pfn.
2460  * @addr: host virtual address which maps memory to the guest
2461  * @atomic: whether this function can sleep
2462  * @async: whether this function need to wait IO complete if the
2463  *         host page is not in the memory
2464  * @write_fault: whether we should get a writable host page
2465  * @writable: whether it allows to map a writable host page for !@write_fault
2466  *
2467  * The function will map a writable host page for these two cases:
2468  * 1): @write_fault = true
2469  * 2): @write_fault = false && @writable, @writable will tell the caller
2470  *     whether the mapping is writable.
2471  */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)2472 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2473 			bool write_fault, bool *writable)
2474 {
2475 	struct vm_area_struct *vma;
2476 	kvm_pfn_t pfn = 0;
2477 	int npages, r;
2478 
2479 	/* we can do it either atomically or asynchronously, not both */
2480 	BUG_ON(atomic && async);
2481 
2482 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2483 		return pfn;
2484 
2485 	if (atomic)
2486 		return KVM_PFN_ERR_FAULT;
2487 
2488 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2489 	if (npages == 1)
2490 		return pfn;
2491 
2492 	mmap_read_lock(current->mm);
2493 	if (npages == -EHWPOISON ||
2494 	      (!async && check_user_page_hwpoison(addr))) {
2495 		pfn = KVM_PFN_ERR_HWPOISON;
2496 		goto exit;
2497 	}
2498 
2499 retry:
2500 	vma = vma_lookup(current->mm, addr);
2501 
2502 	if (vma == NULL)
2503 		pfn = KVM_PFN_ERR_FAULT;
2504 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2505 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2506 		if (r == -EAGAIN)
2507 			goto retry;
2508 		if (r < 0)
2509 			pfn = KVM_PFN_ERR_FAULT;
2510 	} else {
2511 		if (async && vma_is_valid(vma, write_fault))
2512 			*async = true;
2513 		pfn = KVM_PFN_ERR_FAULT;
2514 	}
2515 exit:
2516 	mmap_read_unlock(current->mm);
2517 	return pfn;
2518 }
2519 
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable,hva_t * hva)2520 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2521 			       bool atomic, bool *async, bool write_fault,
2522 			       bool *writable, hva_t *hva)
2523 {
2524 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2525 
2526 	if (hva)
2527 		*hva = addr;
2528 
2529 	if (addr == KVM_HVA_ERR_RO_BAD) {
2530 		if (writable)
2531 			*writable = false;
2532 		return KVM_PFN_ERR_RO_FAULT;
2533 	}
2534 
2535 	if (kvm_is_error_hva(addr)) {
2536 		if (writable)
2537 			*writable = false;
2538 		return KVM_PFN_NOSLOT;
2539 	}
2540 
2541 	/* Do not map writable pfn in the readonly memslot. */
2542 	if (writable && memslot_is_readonly(slot)) {
2543 		*writable = false;
2544 		writable = NULL;
2545 	}
2546 
2547 	return hva_to_pfn(addr, atomic, async, write_fault,
2548 			  writable);
2549 }
2550 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2551 
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2552 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2553 		      bool *writable)
2554 {
2555 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2556 				    write_fault, writable, NULL);
2557 }
2558 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2559 
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2560 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2561 {
2562 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2563 }
2564 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2565 
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)2566 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2567 {
2568 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2569 }
2570 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2571 
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2572 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2573 {
2574 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2577 
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2578 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2579 {
2580 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2581 }
2582 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2583 
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2584 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2585 {
2586 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2589 
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2590 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2591 			    struct page **pages, int nr_pages)
2592 {
2593 	unsigned long addr;
2594 	gfn_t entry = 0;
2595 
2596 	addr = gfn_to_hva_many(slot, gfn, &entry);
2597 	if (kvm_is_error_hva(addr))
2598 		return -1;
2599 
2600 	if (entry < nr_pages)
2601 		return 0;
2602 
2603 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2604 }
2605 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2606 
kvm_pfn_to_page(kvm_pfn_t pfn)2607 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2608 {
2609 	if (is_error_noslot_pfn(pfn))
2610 		return KVM_ERR_PTR_BAD_PAGE;
2611 
2612 	if (kvm_is_reserved_pfn(pfn)) {
2613 		WARN_ON(1);
2614 		return KVM_ERR_PTR_BAD_PAGE;
2615 	}
2616 
2617 	return pfn_to_page(pfn);
2618 }
2619 
gfn_to_page(struct kvm * kvm,gfn_t gfn)2620 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2621 {
2622 	kvm_pfn_t pfn;
2623 
2624 	pfn = gfn_to_pfn(kvm, gfn);
2625 
2626 	return kvm_pfn_to_page(pfn);
2627 }
2628 EXPORT_SYMBOL_GPL(gfn_to_page);
2629 
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)2630 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2631 {
2632 	if (pfn == 0)
2633 		return;
2634 
2635 	if (cache)
2636 		cache->pfn = cache->gfn = 0;
2637 
2638 	if (dirty)
2639 		kvm_release_pfn_dirty(pfn);
2640 	else
2641 		kvm_release_pfn_clean(pfn);
2642 }
2643 
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)2644 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2645 				 struct gfn_to_pfn_cache *cache, u64 gen)
2646 {
2647 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2648 
2649 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2650 	cache->gfn = gfn;
2651 	cache->dirty = false;
2652 	cache->generation = gen;
2653 }
2654 
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2655 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2656 			 struct kvm_host_map *map,
2657 			 struct gfn_to_pfn_cache *cache,
2658 			 bool atomic)
2659 {
2660 	kvm_pfn_t pfn;
2661 	void *hva = NULL;
2662 	struct page *page = KVM_UNMAPPED_PAGE;
2663 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2664 	u64 gen = slots->generation;
2665 
2666 	if (!map)
2667 		return -EINVAL;
2668 
2669 	if (cache) {
2670 		if (!cache->pfn || cache->gfn != gfn ||
2671 			cache->generation != gen) {
2672 			if (atomic)
2673 				return -EAGAIN;
2674 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2675 		}
2676 		pfn = cache->pfn;
2677 	} else {
2678 		if (atomic)
2679 			return -EAGAIN;
2680 		pfn = gfn_to_pfn_memslot(slot, gfn);
2681 	}
2682 	if (is_error_noslot_pfn(pfn))
2683 		return -EINVAL;
2684 
2685 	if (pfn_valid(pfn)) {
2686 		page = pfn_to_page(pfn);
2687 		if (atomic)
2688 			hva = kmap_atomic(page);
2689 		else
2690 			hva = kmap(page);
2691 #ifdef CONFIG_HAS_IOMEM
2692 	} else if (!atomic) {
2693 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2694 	} else {
2695 		return -EINVAL;
2696 #endif
2697 	}
2698 
2699 	if (!hva)
2700 		return -EFAULT;
2701 
2702 	map->page = page;
2703 	map->hva = hva;
2704 	map->pfn = pfn;
2705 	map->gfn = gfn;
2706 
2707 	return 0;
2708 }
2709 
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2710 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2711 		struct gfn_to_pfn_cache *cache, bool atomic)
2712 {
2713 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2714 			cache, atomic);
2715 }
2716 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2717 
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2718 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2719 {
2720 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2721 		NULL, false);
2722 }
2723 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2724 
__kvm_unmap_gfn(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2725 static void __kvm_unmap_gfn(struct kvm *kvm,
2726 			struct kvm_memory_slot *memslot,
2727 			struct kvm_host_map *map,
2728 			struct gfn_to_pfn_cache *cache,
2729 			bool dirty, bool atomic)
2730 {
2731 	if (!map)
2732 		return;
2733 
2734 	if (!map->hva)
2735 		return;
2736 
2737 	if (map->page != KVM_UNMAPPED_PAGE) {
2738 		if (atomic)
2739 			kunmap_atomic(map->hva);
2740 		else
2741 			kunmap(map->page);
2742 	}
2743 #ifdef CONFIG_HAS_IOMEM
2744 	else if (!atomic)
2745 		memunmap(map->hva);
2746 	else
2747 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2748 #endif
2749 
2750 	if (dirty)
2751 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2752 
2753 	if (cache)
2754 		cache->dirty |= dirty;
2755 	else
2756 		kvm_release_pfn(map->pfn, dirty, NULL);
2757 
2758 	map->hva = NULL;
2759 	map->page = NULL;
2760 }
2761 
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2762 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2763 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2764 {
2765 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2766 			cache, dirty, atomic);
2767 	return 0;
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2770 
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2771 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2772 {
2773 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2774 			map, NULL, dirty, false);
2775 }
2776 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2777 
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)2778 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2779 {
2780 	kvm_pfn_t pfn;
2781 
2782 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2783 
2784 	return kvm_pfn_to_page(pfn);
2785 }
2786 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2787 
kvm_release_page_clean(struct page * page)2788 void kvm_release_page_clean(struct page *page)
2789 {
2790 	WARN_ON(is_error_page(page));
2791 
2792 	kvm_release_pfn_clean(page_to_pfn(page));
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2795 
kvm_release_pfn_clean(kvm_pfn_t pfn)2796 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2797 {
2798 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2799 		put_page(pfn_to_page(pfn));
2800 }
2801 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2802 
kvm_release_page_dirty(struct page * page)2803 void kvm_release_page_dirty(struct page *page)
2804 {
2805 	WARN_ON(is_error_page(page));
2806 
2807 	kvm_release_pfn_dirty(page_to_pfn(page));
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2810 
kvm_release_pfn_dirty(kvm_pfn_t pfn)2811 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2812 {
2813 	kvm_set_pfn_dirty(pfn);
2814 	kvm_release_pfn_clean(pfn);
2815 }
2816 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2817 
kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)2818 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2819 {
2820 	if (!pfn_valid(pfn))
2821 		return false;
2822 
2823 	/*
2824 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2825 	 * touched (e.g. set dirty) except by its owner".
2826 	 */
2827 	return !PageReserved(pfn_to_page(pfn));
2828 }
2829 
kvm_set_pfn_dirty(kvm_pfn_t pfn)2830 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2831 {
2832 	if (kvm_is_ad_tracked_pfn(pfn))
2833 		SetPageDirty(pfn_to_page(pfn));
2834 }
2835 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2836 
kvm_set_pfn_accessed(kvm_pfn_t pfn)2837 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2838 {
2839 	if (kvm_is_ad_tracked_pfn(pfn))
2840 		mark_page_accessed(pfn_to_page(pfn));
2841 }
2842 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2843 
next_segment(unsigned long len,int offset)2844 static int next_segment(unsigned long len, int offset)
2845 {
2846 	if (len > PAGE_SIZE - offset)
2847 		return PAGE_SIZE - offset;
2848 	else
2849 		return len;
2850 }
2851 
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2852 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2853 				 void *data, int offset, int len)
2854 {
2855 	int r;
2856 	unsigned long addr;
2857 
2858 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2859 	if (kvm_is_error_hva(addr))
2860 		return -EFAULT;
2861 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2862 	if (r)
2863 		return -EFAULT;
2864 	return 0;
2865 }
2866 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2867 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2868 			int len)
2869 {
2870 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2871 
2872 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2873 }
2874 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2875 
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)2876 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2877 			     int offset, int len)
2878 {
2879 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2880 
2881 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2882 }
2883 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2884 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2885 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2886 {
2887 	gfn_t gfn = gpa >> PAGE_SHIFT;
2888 	int seg;
2889 	int offset = offset_in_page(gpa);
2890 	int ret;
2891 
2892 	while ((seg = next_segment(len, offset)) != 0) {
2893 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2894 		if (ret < 0)
2895 			return ret;
2896 		offset = 0;
2897 		len -= seg;
2898 		data += seg;
2899 		++gfn;
2900 	}
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL_GPL(kvm_read_guest);
2904 
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2905 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2906 {
2907 	gfn_t gfn = gpa >> PAGE_SHIFT;
2908 	int seg;
2909 	int offset = offset_in_page(gpa);
2910 	int ret;
2911 
2912 	while ((seg = next_segment(len, offset)) != 0) {
2913 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2914 		if (ret < 0)
2915 			return ret;
2916 		offset = 0;
2917 		len -= seg;
2918 		data += seg;
2919 		++gfn;
2920 	}
2921 	return 0;
2922 }
2923 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2924 
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2925 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2926 			           void *data, int offset, unsigned long len)
2927 {
2928 	int r;
2929 	unsigned long addr;
2930 
2931 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2932 	if (kvm_is_error_hva(addr))
2933 		return -EFAULT;
2934 	pagefault_disable();
2935 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2936 	pagefault_enable();
2937 	if (r)
2938 		return -EFAULT;
2939 	return 0;
2940 }
2941 
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2942 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2943 			       void *data, unsigned long len)
2944 {
2945 	gfn_t gfn = gpa >> PAGE_SHIFT;
2946 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2947 	int offset = offset_in_page(gpa);
2948 
2949 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2950 }
2951 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2952 
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2953 static int __kvm_write_guest_page(struct kvm *kvm,
2954 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2955 			          const void *data, int offset, int len)
2956 {
2957 	int r;
2958 	unsigned long addr;
2959 
2960 	addr = gfn_to_hva_memslot(memslot, gfn);
2961 	if (kvm_is_error_hva(addr))
2962 		return -EFAULT;
2963 	r = __copy_to_user((void __user *)addr + offset, data, len);
2964 	if (r)
2965 		return -EFAULT;
2966 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2967 	return 0;
2968 }
2969 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2970 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2971 			 const void *data, int offset, int len)
2972 {
2973 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2974 
2975 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2976 }
2977 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2978 
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2979 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2980 			      const void *data, int offset, int len)
2981 {
2982 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2983 
2984 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2987 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2988 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2989 		    unsigned long len)
2990 {
2991 	gfn_t gfn = gpa >> PAGE_SHIFT;
2992 	int seg;
2993 	int offset = offset_in_page(gpa);
2994 	int ret;
2995 
2996 	while ((seg = next_segment(len, offset)) != 0) {
2997 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2998 		if (ret < 0)
2999 			return ret;
3000 		offset = 0;
3001 		len -= seg;
3002 		data += seg;
3003 		++gfn;
3004 	}
3005 	return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_write_guest);
3008 
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3009 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3010 		         unsigned long len)
3011 {
3012 	gfn_t gfn = gpa >> PAGE_SHIFT;
3013 	int seg;
3014 	int offset = offset_in_page(gpa);
3015 	int ret;
3016 
3017 	while ((seg = next_segment(len, offset)) != 0) {
3018 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3019 		if (ret < 0)
3020 			return ret;
3021 		offset = 0;
3022 		len -= seg;
3023 		data += seg;
3024 		++gfn;
3025 	}
3026 	return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3029 
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3030 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3031 				       struct gfn_to_hva_cache *ghc,
3032 				       gpa_t gpa, unsigned long len)
3033 {
3034 	int offset = offset_in_page(gpa);
3035 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3036 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3037 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3038 	gfn_t nr_pages_avail;
3039 
3040 	/* Update ghc->generation before performing any error checks. */
3041 	ghc->generation = slots->generation;
3042 
3043 	if (start_gfn > end_gfn) {
3044 		ghc->hva = KVM_HVA_ERR_BAD;
3045 		return -EINVAL;
3046 	}
3047 
3048 	/*
3049 	 * If the requested region crosses two memslots, we still
3050 	 * verify that the entire region is valid here.
3051 	 */
3052 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3053 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3054 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3055 					   &nr_pages_avail);
3056 		if (kvm_is_error_hva(ghc->hva))
3057 			return -EFAULT;
3058 	}
3059 
3060 	/* Use the slow path for cross page reads and writes. */
3061 	if (nr_pages_needed == 1)
3062 		ghc->hva += offset;
3063 	else
3064 		ghc->memslot = NULL;
3065 
3066 	ghc->gpa = gpa;
3067 	ghc->len = len;
3068 	return 0;
3069 }
3070 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3071 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3072 			      gpa_t gpa, unsigned long len)
3073 {
3074 	struct kvm_memslots *slots = kvm_memslots(kvm);
3075 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3076 }
3077 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3078 
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3079 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3080 				  void *data, unsigned int offset,
3081 				  unsigned long len)
3082 {
3083 	struct kvm_memslots *slots = kvm_memslots(kvm);
3084 	int r;
3085 	gpa_t gpa = ghc->gpa + offset;
3086 
3087 	if (WARN_ON_ONCE(len + offset > ghc->len))
3088 		return -EINVAL;
3089 
3090 	if (slots->generation != ghc->generation) {
3091 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3092 			return -EFAULT;
3093 	}
3094 
3095 	if (kvm_is_error_hva(ghc->hva))
3096 		return -EFAULT;
3097 
3098 	if (unlikely(!ghc->memslot))
3099 		return kvm_write_guest(kvm, gpa, data, len);
3100 
3101 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3102 	if (r)
3103 		return -EFAULT;
3104 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3105 
3106 	return 0;
3107 }
3108 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3109 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3110 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3111 			   void *data, unsigned long len)
3112 {
3113 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3114 }
3115 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3116 
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3117 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3118 				 void *data, unsigned int offset,
3119 				 unsigned long len)
3120 {
3121 	struct kvm_memslots *slots = kvm_memslots(kvm);
3122 	int r;
3123 	gpa_t gpa = ghc->gpa + offset;
3124 
3125 	if (WARN_ON_ONCE(len + offset > ghc->len))
3126 		return -EINVAL;
3127 
3128 	if (slots->generation != ghc->generation) {
3129 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3130 			return -EFAULT;
3131 	}
3132 
3133 	if (kvm_is_error_hva(ghc->hva))
3134 		return -EFAULT;
3135 
3136 	if (unlikely(!ghc->memslot))
3137 		return kvm_read_guest(kvm, gpa, data, len);
3138 
3139 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3140 	if (r)
3141 		return -EFAULT;
3142 
3143 	return 0;
3144 }
3145 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3146 
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3147 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3148 			  void *data, unsigned long len)
3149 {
3150 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3151 }
3152 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3153 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3154 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3155 {
3156 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3157 	gfn_t gfn = gpa >> PAGE_SHIFT;
3158 	int seg;
3159 	int offset = offset_in_page(gpa);
3160 	int ret;
3161 
3162 	while ((seg = next_segment(len, offset)) != 0) {
3163 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3164 		if (ret < 0)
3165 			return ret;
3166 		offset = 0;
3167 		len -= seg;
3168 		++gfn;
3169 	}
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3173 
mark_page_dirty_in_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn)3174 void mark_page_dirty_in_slot(struct kvm *kvm,
3175 			     struct kvm_memory_slot *memslot,
3176 		 	     gfn_t gfn)
3177 {
3178 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3179 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3180 		u32 slot = (memslot->as_id << 16) | memslot->id;
3181 
3182 		if (kvm->dirty_ring_size)
3183 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3184 					    slot, rel_gfn);
3185 		else
3186 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3187 	}
3188 }
3189 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3190 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3191 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3192 {
3193 	struct kvm_memory_slot *memslot;
3194 
3195 	memslot = gfn_to_memslot(kvm, gfn);
3196 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3197 }
3198 EXPORT_SYMBOL_GPL(mark_page_dirty);
3199 
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3200 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3201 {
3202 	struct kvm_memory_slot *memslot;
3203 
3204 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3205 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3206 }
3207 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3208 
kvm_sigset_activate(struct kvm_vcpu * vcpu)3209 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3210 {
3211 	if (!vcpu->sigset_active)
3212 		return;
3213 
3214 	/*
3215 	 * This does a lockless modification of ->real_blocked, which is fine
3216 	 * because, only current can change ->real_blocked and all readers of
3217 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3218 	 * of ->blocked.
3219 	 */
3220 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3221 }
3222 
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3223 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3224 {
3225 	if (!vcpu->sigset_active)
3226 		return;
3227 
3228 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3229 	sigemptyset(&current->real_blocked);
3230 }
3231 
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3232 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3233 {
3234 	unsigned int old, val, grow, grow_start;
3235 
3236 	old = val = vcpu->halt_poll_ns;
3237 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3238 	grow = READ_ONCE(halt_poll_ns_grow);
3239 	if (!grow)
3240 		goto out;
3241 
3242 	val *= grow;
3243 	if (val < grow_start)
3244 		val = grow_start;
3245 
3246 	if (val > vcpu->kvm->max_halt_poll_ns)
3247 		val = vcpu->kvm->max_halt_poll_ns;
3248 
3249 	vcpu->halt_poll_ns = val;
3250 out:
3251 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3252 }
3253 
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3254 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3255 {
3256 	unsigned int old, val, shrink, grow_start;
3257 
3258 	old = val = vcpu->halt_poll_ns;
3259 	shrink = READ_ONCE(halt_poll_ns_shrink);
3260 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3261 	if (shrink == 0)
3262 		val = 0;
3263 	else
3264 		val /= shrink;
3265 
3266 	if (val < grow_start)
3267 		val = 0;
3268 
3269 	vcpu->halt_poll_ns = val;
3270 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3271 }
3272 
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3273 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3274 {
3275 	int ret = -EINTR;
3276 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3277 
3278 	if (kvm_arch_vcpu_runnable(vcpu)) {
3279 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3280 		goto out;
3281 	}
3282 	if (kvm_cpu_has_pending_timer(vcpu))
3283 		goto out;
3284 	if (signal_pending(current))
3285 		goto out;
3286 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3287 		goto out;
3288 
3289 	ret = 0;
3290 out:
3291 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3292 	return ret;
3293 }
3294 
3295 static inline void
update_halt_poll_stats(struct kvm_vcpu * vcpu,u64 poll_ns,bool waited)3296 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3297 {
3298 	if (waited)
3299 		vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3300 	else
3301 		vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3302 }
3303 
3304 /*
3305  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3306  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3307 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3308 {
3309 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3310 	ktime_t start, cur, poll_end;
3311 	bool waited = false;
3312 	u64 block_ns;
3313 
3314 	kvm_arch_vcpu_blocking(vcpu);
3315 
3316 	start = cur = poll_end = ktime_get();
3317 	if (vcpu->halt_poll_ns && halt_poll_allowed) {
3318 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3319 
3320 		++vcpu->stat.generic.halt_attempted_poll;
3321 		do {
3322 			/*
3323 			 * This sets KVM_REQ_UNHALT if an interrupt
3324 			 * arrives.
3325 			 */
3326 			if (kvm_vcpu_check_block(vcpu) < 0) {
3327 				++vcpu->stat.generic.halt_successful_poll;
3328 				if (!vcpu_valid_wakeup(vcpu))
3329 					++vcpu->stat.generic.halt_poll_invalid;
3330 
3331 				KVM_STATS_LOG_HIST_UPDATE(
3332 				      vcpu->stat.generic.halt_poll_success_hist,
3333 				      ktime_to_ns(ktime_get()) -
3334 				      ktime_to_ns(start));
3335 				goto out;
3336 			}
3337 			cpu_relax();
3338 			poll_end = cur = ktime_get();
3339 		} while (kvm_vcpu_can_poll(cur, stop));
3340 
3341 		KVM_STATS_LOG_HIST_UPDATE(
3342 				vcpu->stat.generic.halt_poll_fail_hist,
3343 				ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3344 	}
3345 
3346 
3347 	prepare_to_rcuwait(&vcpu->wait);
3348 	for (;;) {
3349 		set_current_state(TASK_INTERRUPTIBLE);
3350 
3351 		if (kvm_vcpu_check_block(vcpu) < 0)
3352 			break;
3353 
3354 		waited = true;
3355 		schedule();
3356 	}
3357 	finish_rcuwait(&vcpu->wait);
3358 	cur = ktime_get();
3359 	if (waited) {
3360 		vcpu->stat.generic.halt_wait_ns +=
3361 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3362 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3363 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3364 	}
3365 out:
3366 	kvm_arch_vcpu_unblocking(vcpu);
3367 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3368 
3369 	update_halt_poll_stats(
3370 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3371 
3372 	if (halt_poll_allowed) {
3373 		if (!vcpu_valid_wakeup(vcpu)) {
3374 			shrink_halt_poll_ns(vcpu);
3375 		} else if (vcpu->kvm->max_halt_poll_ns) {
3376 			if (block_ns <= vcpu->halt_poll_ns)
3377 				;
3378 			/* we had a long block, shrink polling */
3379 			else if (vcpu->halt_poll_ns &&
3380 					block_ns > vcpu->kvm->max_halt_poll_ns)
3381 				shrink_halt_poll_ns(vcpu);
3382 			/* we had a short halt and our poll time is too small */
3383 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3384 					block_ns < vcpu->kvm->max_halt_poll_ns)
3385 				grow_halt_poll_ns(vcpu);
3386 		} else {
3387 			vcpu->halt_poll_ns = 0;
3388 		}
3389 	}
3390 
3391 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3392 	kvm_arch_vcpu_block_finish(vcpu);
3393 }
3394 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3395 
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3396 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3397 {
3398 	struct rcuwait *waitp;
3399 
3400 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3401 	if (rcuwait_wake_up(waitp)) {
3402 		WRITE_ONCE(vcpu->ready, true);
3403 		++vcpu->stat.generic.halt_wakeup;
3404 		return true;
3405 	}
3406 
3407 	return false;
3408 }
3409 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3410 
3411 #ifndef CONFIG_S390
3412 /*
3413  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3414  */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3415 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3416 {
3417 	int me, cpu;
3418 
3419 	if (kvm_vcpu_wake_up(vcpu))
3420 		return;
3421 
3422 	/*
3423 	 * Note, the vCPU could get migrated to a different pCPU at any point
3424 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3425 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3426 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3427 	 * vCPU also requires it to leave IN_GUEST_MODE.
3428 	 */
3429 	me = get_cpu();
3430 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3431 		cpu = READ_ONCE(vcpu->cpu);
3432 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3433 			smp_send_reschedule(cpu);
3434 	}
3435 	put_cpu();
3436 }
3437 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3438 #endif /* !CONFIG_S390 */
3439 
kvm_vcpu_yield_to(struct kvm_vcpu * target)3440 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3441 {
3442 	struct pid *pid;
3443 	struct task_struct *task = NULL;
3444 	int ret = 0;
3445 
3446 	rcu_read_lock();
3447 	pid = rcu_dereference(target->pid);
3448 	if (pid)
3449 		task = get_pid_task(pid, PIDTYPE_PID);
3450 	rcu_read_unlock();
3451 	if (!task)
3452 		return ret;
3453 	ret = yield_to(task, 1);
3454 	put_task_struct(task);
3455 
3456 	return ret;
3457 }
3458 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3459 
3460 /*
3461  * Helper that checks whether a VCPU is eligible for directed yield.
3462  * Most eligible candidate to yield is decided by following heuristics:
3463  *
3464  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3465  *  (preempted lock holder), indicated by @in_spin_loop.
3466  *  Set at the beginning and cleared at the end of interception/PLE handler.
3467  *
3468  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3469  *  chance last time (mostly it has become eligible now since we have probably
3470  *  yielded to lockholder in last iteration. This is done by toggling
3471  *  @dy_eligible each time a VCPU checked for eligibility.)
3472  *
3473  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3474  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3475  *  burning. Giving priority for a potential lock-holder increases lock
3476  *  progress.
3477  *
3478  *  Since algorithm is based on heuristics, accessing another VCPU data without
3479  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3480  *  and continue with next VCPU and so on.
3481  */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3482 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3483 {
3484 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3485 	bool eligible;
3486 
3487 	eligible = !vcpu->spin_loop.in_spin_loop ||
3488 		    vcpu->spin_loop.dy_eligible;
3489 
3490 	if (vcpu->spin_loop.in_spin_loop)
3491 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3492 
3493 	return eligible;
3494 #else
3495 	return true;
3496 #endif
3497 }
3498 
3499 /*
3500  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3501  * a vcpu_load/vcpu_put pair.  However, for most architectures
3502  * kvm_arch_vcpu_runnable does not require vcpu_load.
3503  */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3504 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3505 {
3506 	return kvm_arch_vcpu_runnable(vcpu);
3507 }
3508 
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3509 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3510 {
3511 	if (kvm_arch_dy_runnable(vcpu))
3512 		return true;
3513 
3514 #ifdef CONFIG_KVM_ASYNC_PF
3515 	if (!list_empty_careful(&vcpu->async_pf.done))
3516 		return true;
3517 #endif
3518 
3519 	return false;
3520 }
3521 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3522 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3523 {
3524 	return false;
3525 }
3526 
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3527 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3528 {
3529 	struct kvm *kvm = me->kvm;
3530 	struct kvm_vcpu *vcpu;
3531 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3532 	int yielded = 0;
3533 	int try = 3;
3534 	int pass;
3535 	int i;
3536 
3537 	kvm_vcpu_set_in_spin_loop(me, true);
3538 	/*
3539 	 * We boost the priority of a VCPU that is runnable but not
3540 	 * currently running, because it got preempted by something
3541 	 * else and called schedule in __vcpu_run.  Hopefully that
3542 	 * VCPU is holding the lock that we need and will release it.
3543 	 * We approximate round-robin by starting at the last boosted VCPU.
3544 	 */
3545 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3546 		kvm_for_each_vcpu(i, vcpu, kvm) {
3547 			if (!pass && i <= last_boosted_vcpu) {
3548 				i = last_boosted_vcpu;
3549 				continue;
3550 			} else if (pass && i > last_boosted_vcpu)
3551 				break;
3552 			if (!READ_ONCE(vcpu->ready))
3553 				continue;
3554 			if (vcpu == me)
3555 				continue;
3556 			if (rcuwait_active(&vcpu->wait) &&
3557 			    !vcpu_dy_runnable(vcpu))
3558 				continue;
3559 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3560 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3561 			    !kvm_arch_vcpu_in_kernel(vcpu))
3562 				continue;
3563 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3564 				continue;
3565 
3566 			yielded = kvm_vcpu_yield_to(vcpu);
3567 			if (yielded > 0) {
3568 				kvm->last_boosted_vcpu = i;
3569 				break;
3570 			} else if (yielded < 0) {
3571 				try--;
3572 				if (!try)
3573 					break;
3574 			}
3575 		}
3576 	}
3577 	kvm_vcpu_set_in_spin_loop(me, false);
3578 
3579 	/* Ensure vcpu is not eligible during next spinloop */
3580 	kvm_vcpu_set_dy_eligible(me, false);
3581 }
3582 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3583 
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3584 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3585 {
3586 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3587 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3588 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3589 	     kvm->dirty_ring_size / PAGE_SIZE);
3590 #else
3591 	return false;
3592 #endif
3593 }
3594 
kvm_vcpu_fault(struct vm_fault * vmf)3595 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3596 {
3597 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3598 	struct page *page;
3599 
3600 	if (vmf->pgoff == 0)
3601 		page = virt_to_page(vcpu->run);
3602 #ifdef CONFIG_X86
3603 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3604 		page = virt_to_page(vcpu->arch.pio_data);
3605 #endif
3606 #ifdef CONFIG_KVM_MMIO
3607 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3608 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3609 #endif
3610 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3611 		page = kvm_dirty_ring_get_page(
3612 		    &vcpu->dirty_ring,
3613 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3614 	else
3615 		return kvm_arch_vcpu_fault(vcpu, vmf);
3616 	get_page(page);
3617 	vmf->page = page;
3618 	return 0;
3619 }
3620 
3621 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3622 	.fault = kvm_vcpu_fault,
3623 };
3624 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3625 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3626 {
3627 	struct kvm_vcpu *vcpu = file->private_data;
3628 	unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3629 
3630 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3631 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3632 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3633 		return -EINVAL;
3634 
3635 	vma->vm_ops = &kvm_vcpu_vm_ops;
3636 	return 0;
3637 }
3638 
kvm_vcpu_release(struct inode * inode,struct file * filp)3639 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3640 {
3641 	struct kvm_vcpu *vcpu = filp->private_data;
3642 
3643 	kvm_put_kvm(vcpu->kvm);
3644 	return 0;
3645 }
3646 
3647 static struct file_operations kvm_vcpu_fops = {
3648 	.release        = kvm_vcpu_release,
3649 	.unlocked_ioctl = kvm_vcpu_ioctl,
3650 	.mmap           = kvm_vcpu_mmap,
3651 	.llseek		= noop_llseek,
3652 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3653 };
3654 
3655 /*
3656  * Allocates an inode for the vcpu.
3657  */
create_vcpu_fd(struct kvm_vcpu * vcpu)3658 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3659 {
3660 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3661 
3662 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3663 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3664 }
3665 
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3666 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3667 {
3668 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3669 	struct dentry *debugfs_dentry;
3670 	char dir_name[ITOA_MAX_LEN * 2];
3671 
3672 	if (!debugfs_initialized())
3673 		return;
3674 
3675 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3676 	debugfs_dentry = debugfs_create_dir(dir_name,
3677 					    vcpu->kvm->debugfs_dentry);
3678 
3679 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3680 #endif
3681 }
3682 
3683 /*
3684  * Creates some virtual cpus.  Good luck creating more than one.
3685  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3686 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3687 {
3688 	int r;
3689 	struct kvm_vcpu *vcpu;
3690 	struct page *page;
3691 
3692 	if (id >= KVM_MAX_VCPU_ID)
3693 		return -EINVAL;
3694 
3695 	mutex_lock(&kvm->lock);
3696 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3697 		mutex_unlock(&kvm->lock);
3698 		return -EINVAL;
3699 	}
3700 
3701 	kvm->created_vcpus++;
3702 	mutex_unlock(&kvm->lock);
3703 
3704 	r = kvm_arch_vcpu_precreate(kvm, id);
3705 	if (r)
3706 		goto vcpu_decrement;
3707 
3708 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3709 	if (!vcpu) {
3710 		r = -ENOMEM;
3711 		goto vcpu_decrement;
3712 	}
3713 
3714 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3715 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3716 	if (!page) {
3717 		r = -ENOMEM;
3718 		goto vcpu_free;
3719 	}
3720 	vcpu->run = page_address(page);
3721 
3722 	kvm_vcpu_init(vcpu, kvm, id);
3723 
3724 	r = kvm_arch_vcpu_create(vcpu);
3725 	if (r)
3726 		goto vcpu_free_run_page;
3727 
3728 	if (kvm->dirty_ring_size) {
3729 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3730 					 id, kvm->dirty_ring_size);
3731 		if (r)
3732 			goto arch_vcpu_destroy;
3733 	}
3734 
3735 	mutex_lock(&kvm->lock);
3736 	if (kvm_get_vcpu_by_id(kvm, id)) {
3737 		r = -EEXIST;
3738 		goto unlock_vcpu_destroy;
3739 	}
3740 
3741 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3742 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3743 
3744 	/* Fill the stats id string for the vcpu */
3745 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3746 		 task_pid_nr(current), id);
3747 
3748 	/* Now it's all set up, let userspace reach it */
3749 	kvm_get_kvm(kvm);
3750 	r = create_vcpu_fd(vcpu);
3751 	if (r < 0) {
3752 		kvm_put_kvm_no_destroy(kvm);
3753 		goto unlock_vcpu_destroy;
3754 	}
3755 
3756 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3757 
3758 	/*
3759 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3760 	 * before kvm->online_vcpu's incremented value.
3761 	 */
3762 	smp_wmb();
3763 	atomic_inc(&kvm->online_vcpus);
3764 
3765 	mutex_unlock(&kvm->lock);
3766 	kvm_arch_vcpu_postcreate(vcpu);
3767 	kvm_create_vcpu_debugfs(vcpu);
3768 	return r;
3769 
3770 unlock_vcpu_destroy:
3771 	mutex_unlock(&kvm->lock);
3772 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3773 arch_vcpu_destroy:
3774 	kvm_arch_vcpu_destroy(vcpu);
3775 vcpu_free_run_page:
3776 	free_page((unsigned long)vcpu->run);
3777 vcpu_free:
3778 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3779 vcpu_decrement:
3780 	mutex_lock(&kvm->lock);
3781 	kvm->created_vcpus--;
3782 	mutex_unlock(&kvm->lock);
3783 	return r;
3784 }
3785 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3786 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3787 {
3788 	if (sigset) {
3789 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3790 		vcpu->sigset_active = 1;
3791 		vcpu->sigset = *sigset;
3792 	} else
3793 		vcpu->sigset_active = 0;
3794 	return 0;
3795 }
3796 
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)3797 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3798 			      size_t size, loff_t *offset)
3799 {
3800 	struct kvm_vcpu *vcpu = file->private_data;
3801 
3802 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3803 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3804 			sizeof(vcpu->stat), user_buffer, size, offset);
3805 }
3806 
kvm_vcpu_stats_release(struct inode * inode,struct file * file)3807 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
3808 {
3809 	struct kvm_vcpu *vcpu = file->private_data;
3810 
3811 	kvm_put_kvm(vcpu->kvm);
3812 	return 0;
3813 }
3814 
3815 static const struct file_operations kvm_vcpu_stats_fops = {
3816 	.read = kvm_vcpu_stats_read,
3817 	.release = kvm_vcpu_stats_release,
3818 	.llseek = noop_llseek,
3819 };
3820 
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)3821 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3822 {
3823 	int fd;
3824 	struct file *file;
3825 	char name[15 + ITOA_MAX_LEN + 1];
3826 
3827 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3828 
3829 	fd = get_unused_fd_flags(O_CLOEXEC);
3830 	if (fd < 0)
3831 		return fd;
3832 
3833 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3834 	if (IS_ERR(file)) {
3835 		put_unused_fd(fd);
3836 		return PTR_ERR(file);
3837 	}
3838 
3839 	kvm_get_kvm(vcpu->kvm);
3840 
3841 	file->f_mode |= FMODE_PREAD;
3842 	fd_install(fd, file);
3843 
3844 	return fd;
3845 }
3846 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3847 static long kvm_vcpu_ioctl(struct file *filp,
3848 			   unsigned int ioctl, unsigned long arg)
3849 {
3850 	struct kvm_vcpu *vcpu = filp->private_data;
3851 	void __user *argp = (void __user *)arg;
3852 	int r;
3853 	struct kvm_fpu *fpu = NULL;
3854 	struct kvm_sregs *kvm_sregs = NULL;
3855 
3856 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3857 		return -EIO;
3858 
3859 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3860 		return -EINVAL;
3861 
3862 	/*
3863 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3864 	 * execution; mutex_lock() would break them.
3865 	 */
3866 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3867 	if (r != -ENOIOCTLCMD)
3868 		return r;
3869 
3870 	if (mutex_lock_killable(&vcpu->mutex))
3871 		return -EINTR;
3872 	switch (ioctl) {
3873 	case KVM_RUN: {
3874 		struct pid *oldpid;
3875 		r = -EINVAL;
3876 		if (arg)
3877 			goto out;
3878 		oldpid = rcu_access_pointer(vcpu->pid);
3879 		if (unlikely(oldpid != task_pid(current))) {
3880 			/* The thread running this VCPU changed. */
3881 			struct pid *newpid;
3882 
3883 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3884 			if (r)
3885 				break;
3886 
3887 			newpid = get_task_pid(current, PIDTYPE_PID);
3888 			rcu_assign_pointer(vcpu->pid, newpid);
3889 			if (oldpid)
3890 				synchronize_rcu();
3891 			put_pid(oldpid);
3892 		}
3893 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3894 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3895 		break;
3896 	}
3897 	case KVM_GET_REGS: {
3898 		struct kvm_regs *kvm_regs;
3899 
3900 		r = -ENOMEM;
3901 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3902 		if (!kvm_regs)
3903 			goto out;
3904 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3905 		if (r)
3906 			goto out_free1;
3907 		r = -EFAULT;
3908 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3909 			goto out_free1;
3910 		r = 0;
3911 out_free1:
3912 		kfree(kvm_regs);
3913 		break;
3914 	}
3915 	case KVM_SET_REGS: {
3916 		struct kvm_regs *kvm_regs;
3917 
3918 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3919 		if (IS_ERR(kvm_regs)) {
3920 			r = PTR_ERR(kvm_regs);
3921 			goto out;
3922 		}
3923 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3924 		kfree(kvm_regs);
3925 		break;
3926 	}
3927 	case KVM_GET_SREGS: {
3928 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3929 				    GFP_KERNEL_ACCOUNT);
3930 		r = -ENOMEM;
3931 		if (!kvm_sregs)
3932 			goto out;
3933 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3934 		if (r)
3935 			goto out;
3936 		r = -EFAULT;
3937 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3938 			goto out;
3939 		r = 0;
3940 		break;
3941 	}
3942 	case KVM_SET_SREGS: {
3943 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3944 		if (IS_ERR(kvm_sregs)) {
3945 			r = PTR_ERR(kvm_sregs);
3946 			kvm_sregs = NULL;
3947 			goto out;
3948 		}
3949 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3950 		break;
3951 	}
3952 	case KVM_GET_MP_STATE: {
3953 		struct kvm_mp_state mp_state;
3954 
3955 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3956 		if (r)
3957 			goto out;
3958 		r = -EFAULT;
3959 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3960 			goto out;
3961 		r = 0;
3962 		break;
3963 	}
3964 	case KVM_SET_MP_STATE: {
3965 		struct kvm_mp_state mp_state;
3966 
3967 		r = -EFAULT;
3968 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3969 			goto out;
3970 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3971 		break;
3972 	}
3973 	case KVM_TRANSLATE: {
3974 		struct kvm_translation tr;
3975 
3976 		r = -EFAULT;
3977 		if (copy_from_user(&tr, argp, sizeof(tr)))
3978 			goto out;
3979 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3980 		if (r)
3981 			goto out;
3982 		r = -EFAULT;
3983 		if (copy_to_user(argp, &tr, sizeof(tr)))
3984 			goto out;
3985 		r = 0;
3986 		break;
3987 	}
3988 	case KVM_SET_GUEST_DEBUG: {
3989 		struct kvm_guest_debug dbg;
3990 
3991 		r = -EFAULT;
3992 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3993 			goto out;
3994 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3995 		break;
3996 	}
3997 	case KVM_SET_SIGNAL_MASK: {
3998 		struct kvm_signal_mask __user *sigmask_arg = argp;
3999 		struct kvm_signal_mask kvm_sigmask;
4000 		sigset_t sigset, *p;
4001 
4002 		p = NULL;
4003 		if (argp) {
4004 			r = -EFAULT;
4005 			if (copy_from_user(&kvm_sigmask, argp,
4006 					   sizeof(kvm_sigmask)))
4007 				goto out;
4008 			r = -EINVAL;
4009 			if (kvm_sigmask.len != sizeof(sigset))
4010 				goto out;
4011 			r = -EFAULT;
4012 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4013 					   sizeof(sigset)))
4014 				goto out;
4015 			p = &sigset;
4016 		}
4017 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4018 		break;
4019 	}
4020 	case KVM_GET_FPU: {
4021 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4022 		r = -ENOMEM;
4023 		if (!fpu)
4024 			goto out;
4025 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4026 		if (r)
4027 			goto out;
4028 		r = -EFAULT;
4029 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4030 			goto out;
4031 		r = 0;
4032 		break;
4033 	}
4034 	case KVM_SET_FPU: {
4035 		fpu = memdup_user(argp, sizeof(*fpu));
4036 		if (IS_ERR(fpu)) {
4037 			r = PTR_ERR(fpu);
4038 			fpu = NULL;
4039 			goto out;
4040 		}
4041 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4042 		break;
4043 	}
4044 	case KVM_GET_STATS_FD: {
4045 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4046 		break;
4047 	}
4048 	default:
4049 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4050 	}
4051 out:
4052 	mutex_unlock(&vcpu->mutex);
4053 	kfree(fpu);
4054 	kfree(kvm_sregs);
4055 	return r;
4056 }
4057 
4058 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4059 static long kvm_vcpu_compat_ioctl(struct file *filp,
4060 				  unsigned int ioctl, unsigned long arg)
4061 {
4062 	struct kvm_vcpu *vcpu = filp->private_data;
4063 	void __user *argp = compat_ptr(arg);
4064 	int r;
4065 
4066 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
4067 		return -EIO;
4068 
4069 	switch (ioctl) {
4070 	case KVM_SET_SIGNAL_MASK: {
4071 		struct kvm_signal_mask __user *sigmask_arg = argp;
4072 		struct kvm_signal_mask kvm_sigmask;
4073 		sigset_t sigset;
4074 
4075 		if (argp) {
4076 			r = -EFAULT;
4077 			if (copy_from_user(&kvm_sigmask, argp,
4078 					   sizeof(kvm_sigmask)))
4079 				goto out;
4080 			r = -EINVAL;
4081 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4082 				goto out;
4083 			r = -EFAULT;
4084 			if (get_compat_sigset(&sigset,
4085 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4086 				goto out;
4087 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4088 		} else
4089 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4090 		break;
4091 	}
4092 	default:
4093 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4094 	}
4095 
4096 out:
4097 	return r;
4098 }
4099 #endif
4100 
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4101 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4102 {
4103 	struct kvm_device *dev = filp->private_data;
4104 
4105 	if (dev->ops->mmap)
4106 		return dev->ops->mmap(dev, vma);
4107 
4108 	return -ENODEV;
4109 }
4110 
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4111 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4112 				 int (*accessor)(struct kvm_device *dev,
4113 						 struct kvm_device_attr *attr),
4114 				 unsigned long arg)
4115 {
4116 	struct kvm_device_attr attr;
4117 
4118 	if (!accessor)
4119 		return -EPERM;
4120 
4121 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4122 		return -EFAULT;
4123 
4124 	return accessor(dev, &attr);
4125 }
4126 
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4127 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4128 			     unsigned long arg)
4129 {
4130 	struct kvm_device *dev = filp->private_data;
4131 
4132 	if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
4133 		return -EIO;
4134 
4135 	switch (ioctl) {
4136 	case KVM_SET_DEVICE_ATTR:
4137 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4138 	case KVM_GET_DEVICE_ATTR:
4139 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4140 	case KVM_HAS_DEVICE_ATTR:
4141 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4142 	default:
4143 		if (dev->ops->ioctl)
4144 			return dev->ops->ioctl(dev, ioctl, arg);
4145 
4146 		return -ENOTTY;
4147 	}
4148 }
4149 
kvm_device_release(struct inode * inode,struct file * filp)4150 static int kvm_device_release(struct inode *inode, struct file *filp)
4151 {
4152 	struct kvm_device *dev = filp->private_data;
4153 	struct kvm *kvm = dev->kvm;
4154 
4155 	if (dev->ops->release) {
4156 		mutex_lock(&kvm->lock);
4157 		list_del(&dev->vm_node);
4158 		dev->ops->release(dev);
4159 		mutex_unlock(&kvm->lock);
4160 	}
4161 
4162 	kvm_put_kvm(kvm);
4163 	return 0;
4164 }
4165 
4166 static const struct file_operations kvm_device_fops = {
4167 	.unlocked_ioctl = kvm_device_ioctl,
4168 	.release = kvm_device_release,
4169 	KVM_COMPAT(kvm_device_ioctl),
4170 	.mmap = kvm_device_mmap,
4171 };
4172 
kvm_device_from_filp(struct file * filp)4173 struct kvm_device *kvm_device_from_filp(struct file *filp)
4174 {
4175 	if (filp->f_op != &kvm_device_fops)
4176 		return NULL;
4177 
4178 	return filp->private_data;
4179 }
4180 
4181 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4182 #ifdef CONFIG_KVM_MPIC
4183 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4184 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4185 #endif
4186 };
4187 
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4188 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4189 {
4190 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4191 		return -ENOSPC;
4192 
4193 	if (kvm_device_ops_table[type] != NULL)
4194 		return -EEXIST;
4195 
4196 	kvm_device_ops_table[type] = ops;
4197 	return 0;
4198 }
4199 
kvm_unregister_device_ops(u32 type)4200 void kvm_unregister_device_ops(u32 type)
4201 {
4202 	if (kvm_device_ops_table[type] != NULL)
4203 		kvm_device_ops_table[type] = NULL;
4204 }
4205 
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4206 static int kvm_ioctl_create_device(struct kvm *kvm,
4207 				   struct kvm_create_device *cd)
4208 {
4209 	const struct kvm_device_ops *ops = NULL;
4210 	struct kvm_device *dev;
4211 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4212 	int type;
4213 	int ret;
4214 
4215 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4216 		return -ENODEV;
4217 
4218 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4219 	ops = kvm_device_ops_table[type];
4220 	if (ops == NULL)
4221 		return -ENODEV;
4222 
4223 	if (test)
4224 		return 0;
4225 
4226 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4227 	if (!dev)
4228 		return -ENOMEM;
4229 
4230 	dev->ops = ops;
4231 	dev->kvm = kvm;
4232 
4233 	mutex_lock(&kvm->lock);
4234 	ret = ops->create(dev, type);
4235 	if (ret < 0) {
4236 		mutex_unlock(&kvm->lock);
4237 		kfree(dev);
4238 		return ret;
4239 	}
4240 	list_add(&dev->vm_node, &kvm->devices);
4241 	mutex_unlock(&kvm->lock);
4242 
4243 	if (ops->init)
4244 		ops->init(dev);
4245 
4246 	kvm_get_kvm(kvm);
4247 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4248 	if (ret < 0) {
4249 		kvm_put_kvm_no_destroy(kvm);
4250 		mutex_lock(&kvm->lock);
4251 		list_del(&dev->vm_node);
4252 		if (ops->release)
4253 			ops->release(dev);
4254 		mutex_unlock(&kvm->lock);
4255 		if (ops->destroy)
4256 			ops->destroy(dev);
4257 		return ret;
4258 	}
4259 
4260 	cd->fd = ret;
4261 	return 0;
4262 }
4263 
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4264 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4265 {
4266 	switch (arg) {
4267 	case KVM_CAP_USER_MEMORY:
4268 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4269 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4270 	case KVM_CAP_INTERNAL_ERROR_DATA:
4271 #ifdef CONFIG_HAVE_KVM_MSI
4272 	case KVM_CAP_SIGNAL_MSI:
4273 #endif
4274 #ifdef CONFIG_HAVE_KVM_IRQFD
4275 	case KVM_CAP_IRQFD:
4276 	case KVM_CAP_IRQFD_RESAMPLE:
4277 #endif
4278 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4279 	case KVM_CAP_CHECK_EXTENSION_VM:
4280 	case KVM_CAP_ENABLE_CAP_VM:
4281 	case KVM_CAP_HALT_POLL:
4282 		return 1;
4283 #ifdef CONFIG_KVM_MMIO
4284 	case KVM_CAP_COALESCED_MMIO:
4285 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4286 	case KVM_CAP_COALESCED_PIO:
4287 		return 1;
4288 #endif
4289 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4290 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4291 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4292 #endif
4293 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4294 	case KVM_CAP_IRQ_ROUTING:
4295 		return KVM_MAX_IRQ_ROUTES;
4296 #endif
4297 #if KVM_ADDRESS_SPACE_NUM > 1
4298 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4299 		return KVM_ADDRESS_SPACE_NUM;
4300 #endif
4301 	case KVM_CAP_NR_MEMSLOTS:
4302 		return KVM_USER_MEM_SLOTS;
4303 	case KVM_CAP_DIRTY_LOG_RING:
4304 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4305 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4306 #else
4307 		return 0;
4308 #endif
4309 	case KVM_CAP_BINARY_STATS_FD:
4310 		return 1;
4311 	default:
4312 		break;
4313 	}
4314 	return kvm_vm_ioctl_check_extension(kvm, arg);
4315 }
4316 
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4317 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4318 {
4319 	int r;
4320 
4321 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4322 		return -EINVAL;
4323 
4324 	/* the size should be power of 2 */
4325 	if (!size || (size & (size - 1)))
4326 		return -EINVAL;
4327 
4328 	/* Should be bigger to keep the reserved entries, or a page */
4329 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4330 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4331 		return -EINVAL;
4332 
4333 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4334 	    sizeof(struct kvm_dirty_gfn))
4335 		return -E2BIG;
4336 
4337 	/* We only allow it to set once */
4338 	if (kvm->dirty_ring_size)
4339 		return -EINVAL;
4340 
4341 	mutex_lock(&kvm->lock);
4342 
4343 	if (kvm->created_vcpus) {
4344 		/* We don't allow to change this value after vcpu created */
4345 		r = -EINVAL;
4346 	} else {
4347 		kvm->dirty_ring_size = size;
4348 		r = 0;
4349 	}
4350 
4351 	mutex_unlock(&kvm->lock);
4352 	return r;
4353 }
4354 
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4355 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4356 {
4357 	int i;
4358 	struct kvm_vcpu *vcpu;
4359 	int cleared = 0;
4360 
4361 	if (!kvm->dirty_ring_size)
4362 		return -EINVAL;
4363 
4364 	mutex_lock(&kvm->slots_lock);
4365 
4366 	kvm_for_each_vcpu(i, vcpu, kvm)
4367 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4368 
4369 	mutex_unlock(&kvm->slots_lock);
4370 
4371 	if (cleared)
4372 		kvm_flush_remote_tlbs(kvm);
4373 
4374 	return cleared;
4375 }
4376 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4377 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4378 						  struct kvm_enable_cap *cap)
4379 {
4380 	return -EINVAL;
4381 }
4382 
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4383 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4384 					   struct kvm_enable_cap *cap)
4385 {
4386 	switch (cap->cap) {
4387 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4388 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4389 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4390 
4391 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4392 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4393 
4394 		if (cap->flags || (cap->args[0] & ~allowed_options))
4395 			return -EINVAL;
4396 		kvm->manual_dirty_log_protect = cap->args[0];
4397 		return 0;
4398 	}
4399 #endif
4400 	case KVM_CAP_HALT_POLL: {
4401 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4402 			return -EINVAL;
4403 
4404 		kvm->max_halt_poll_ns = cap->args[0];
4405 		return 0;
4406 	}
4407 	case KVM_CAP_DIRTY_LOG_RING:
4408 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4409 	default:
4410 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4411 	}
4412 }
4413 
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4414 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4415 			      size_t size, loff_t *offset)
4416 {
4417 	struct kvm *kvm = file->private_data;
4418 
4419 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4420 				&kvm_vm_stats_desc[0], &kvm->stat,
4421 				sizeof(kvm->stat), user_buffer, size, offset);
4422 }
4423 
kvm_vm_stats_release(struct inode * inode,struct file * file)4424 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4425 {
4426 	struct kvm *kvm = file->private_data;
4427 
4428 	kvm_put_kvm(kvm);
4429 	return 0;
4430 }
4431 
4432 static const struct file_operations kvm_vm_stats_fops = {
4433 	.read = kvm_vm_stats_read,
4434 	.release = kvm_vm_stats_release,
4435 	.llseek = noop_llseek,
4436 };
4437 
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)4438 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4439 {
4440 	int fd;
4441 	struct file *file;
4442 
4443 	fd = get_unused_fd_flags(O_CLOEXEC);
4444 	if (fd < 0)
4445 		return fd;
4446 
4447 	file = anon_inode_getfile("kvm-vm-stats",
4448 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4449 	if (IS_ERR(file)) {
4450 		put_unused_fd(fd);
4451 		return PTR_ERR(file);
4452 	}
4453 
4454 	kvm_get_kvm(kvm);
4455 
4456 	file->f_mode |= FMODE_PREAD;
4457 	fd_install(fd, file);
4458 
4459 	return fd;
4460 }
4461 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4462 static long kvm_vm_ioctl(struct file *filp,
4463 			   unsigned int ioctl, unsigned long arg)
4464 {
4465 	struct kvm *kvm = filp->private_data;
4466 	void __user *argp = (void __user *)arg;
4467 	int r;
4468 
4469 	if (kvm->mm != current->mm || kvm->vm_bugged)
4470 		return -EIO;
4471 	switch (ioctl) {
4472 	case KVM_CREATE_VCPU:
4473 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4474 		break;
4475 	case KVM_ENABLE_CAP: {
4476 		struct kvm_enable_cap cap;
4477 
4478 		r = -EFAULT;
4479 		if (copy_from_user(&cap, argp, sizeof(cap)))
4480 			goto out;
4481 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4482 		break;
4483 	}
4484 	case KVM_SET_USER_MEMORY_REGION: {
4485 		struct kvm_userspace_memory_region kvm_userspace_mem;
4486 
4487 		r = -EFAULT;
4488 		if (copy_from_user(&kvm_userspace_mem, argp,
4489 						sizeof(kvm_userspace_mem)))
4490 			goto out;
4491 
4492 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4493 		break;
4494 	}
4495 	case KVM_GET_DIRTY_LOG: {
4496 		struct kvm_dirty_log log;
4497 
4498 		r = -EFAULT;
4499 		if (copy_from_user(&log, argp, sizeof(log)))
4500 			goto out;
4501 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4502 		break;
4503 	}
4504 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4505 	case KVM_CLEAR_DIRTY_LOG: {
4506 		struct kvm_clear_dirty_log log;
4507 
4508 		r = -EFAULT;
4509 		if (copy_from_user(&log, argp, sizeof(log)))
4510 			goto out;
4511 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4512 		break;
4513 	}
4514 #endif
4515 #ifdef CONFIG_KVM_MMIO
4516 	case KVM_REGISTER_COALESCED_MMIO: {
4517 		struct kvm_coalesced_mmio_zone zone;
4518 
4519 		r = -EFAULT;
4520 		if (copy_from_user(&zone, argp, sizeof(zone)))
4521 			goto out;
4522 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4523 		break;
4524 	}
4525 	case KVM_UNREGISTER_COALESCED_MMIO: {
4526 		struct kvm_coalesced_mmio_zone zone;
4527 
4528 		r = -EFAULT;
4529 		if (copy_from_user(&zone, argp, sizeof(zone)))
4530 			goto out;
4531 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4532 		break;
4533 	}
4534 #endif
4535 	case KVM_IRQFD: {
4536 		struct kvm_irqfd data;
4537 
4538 		r = -EFAULT;
4539 		if (copy_from_user(&data, argp, sizeof(data)))
4540 			goto out;
4541 		r = kvm_irqfd(kvm, &data);
4542 		break;
4543 	}
4544 	case KVM_IOEVENTFD: {
4545 		struct kvm_ioeventfd data;
4546 
4547 		r = -EFAULT;
4548 		if (copy_from_user(&data, argp, sizeof(data)))
4549 			goto out;
4550 		r = kvm_ioeventfd(kvm, &data);
4551 		break;
4552 	}
4553 #ifdef CONFIG_HAVE_KVM_MSI
4554 	case KVM_SIGNAL_MSI: {
4555 		struct kvm_msi msi;
4556 
4557 		r = -EFAULT;
4558 		if (copy_from_user(&msi, argp, sizeof(msi)))
4559 			goto out;
4560 		r = kvm_send_userspace_msi(kvm, &msi);
4561 		break;
4562 	}
4563 #endif
4564 #ifdef __KVM_HAVE_IRQ_LINE
4565 	case KVM_IRQ_LINE_STATUS:
4566 	case KVM_IRQ_LINE: {
4567 		struct kvm_irq_level irq_event;
4568 
4569 		r = -EFAULT;
4570 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4571 			goto out;
4572 
4573 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4574 					ioctl == KVM_IRQ_LINE_STATUS);
4575 		if (r)
4576 			goto out;
4577 
4578 		r = -EFAULT;
4579 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4580 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4581 				goto out;
4582 		}
4583 
4584 		r = 0;
4585 		break;
4586 	}
4587 #endif
4588 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4589 	case KVM_SET_GSI_ROUTING: {
4590 		struct kvm_irq_routing routing;
4591 		struct kvm_irq_routing __user *urouting;
4592 		struct kvm_irq_routing_entry *entries = NULL;
4593 
4594 		r = -EFAULT;
4595 		if (copy_from_user(&routing, argp, sizeof(routing)))
4596 			goto out;
4597 		r = -EINVAL;
4598 		if (!kvm_arch_can_set_irq_routing(kvm))
4599 			goto out;
4600 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4601 			goto out;
4602 		if (routing.flags)
4603 			goto out;
4604 		if (routing.nr) {
4605 			urouting = argp;
4606 			entries = vmemdup_user(urouting->entries,
4607 					       array_size(sizeof(*entries),
4608 							  routing.nr));
4609 			if (IS_ERR(entries)) {
4610 				r = PTR_ERR(entries);
4611 				goto out;
4612 			}
4613 		}
4614 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4615 					routing.flags);
4616 		kvfree(entries);
4617 		break;
4618 	}
4619 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4620 	case KVM_CREATE_DEVICE: {
4621 		struct kvm_create_device cd;
4622 
4623 		r = -EFAULT;
4624 		if (copy_from_user(&cd, argp, sizeof(cd)))
4625 			goto out;
4626 
4627 		r = kvm_ioctl_create_device(kvm, &cd);
4628 		if (r)
4629 			goto out;
4630 
4631 		r = -EFAULT;
4632 		if (copy_to_user(argp, &cd, sizeof(cd)))
4633 			goto out;
4634 
4635 		r = 0;
4636 		break;
4637 	}
4638 	case KVM_CHECK_EXTENSION:
4639 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4640 		break;
4641 	case KVM_RESET_DIRTY_RINGS:
4642 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4643 		break;
4644 	case KVM_GET_STATS_FD:
4645 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4646 		break;
4647 	default:
4648 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4649 	}
4650 out:
4651 	return r;
4652 }
4653 
4654 #ifdef CONFIG_KVM_COMPAT
4655 struct compat_kvm_dirty_log {
4656 	__u32 slot;
4657 	__u32 padding1;
4658 	union {
4659 		compat_uptr_t dirty_bitmap; /* one bit per page */
4660 		__u64 padding2;
4661 	};
4662 };
4663 
4664 struct compat_kvm_clear_dirty_log {
4665 	__u32 slot;
4666 	__u32 num_pages;
4667 	__u64 first_page;
4668 	union {
4669 		compat_uptr_t dirty_bitmap; /* one bit per page */
4670 		__u64 padding2;
4671 	};
4672 };
4673 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4674 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4675 				     unsigned long arg)
4676 {
4677 	return -ENOTTY;
4678 }
4679 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4680 static long kvm_vm_compat_ioctl(struct file *filp,
4681 			   unsigned int ioctl, unsigned long arg)
4682 {
4683 	struct kvm *kvm = filp->private_data;
4684 	int r;
4685 
4686 	if (kvm->mm != current->mm || kvm->vm_bugged)
4687 		return -EIO;
4688 
4689 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4690 	if (r != -ENOTTY)
4691 		return r;
4692 
4693 	switch (ioctl) {
4694 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4695 	case KVM_CLEAR_DIRTY_LOG: {
4696 		struct compat_kvm_clear_dirty_log compat_log;
4697 		struct kvm_clear_dirty_log log;
4698 
4699 		if (copy_from_user(&compat_log, (void __user *)arg,
4700 				   sizeof(compat_log)))
4701 			return -EFAULT;
4702 		log.slot	 = compat_log.slot;
4703 		log.num_pages	 = compat_log.num_pages;
4704 		log.first_page	 = compat_log.first_page;
4705 		log.padding2	 = compat_log.padding2;
4706 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4707 
4708 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4709 		break;
4710 	}
4711 #endif
4712 	case KVM_GET_DIRTY_LOG: {
4713 		struct compat_kvm_dirty_log compat_log;
4714 		struct kvm_dirty_log log;
4715 
4716 		if (copy_from_user(&compat_log, (void __user *)arg,
4717 				   sizeof(compat_log)))
4718 			return -EFAULT;
4719 		log.slot	 = compat_log.slot;
4720 		log.padding1	 = compat_log.padding1;
4721 		log.padding2	 = compat_log.padding2;
4722 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4723 
4724 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4725 		break;
4726 	}
4727 	default:
4728 		r = kvm_vm_ioctl(filp, ioctl, arg);
4729 	}
4730 	return r;
4731 }
4732 #endif
4733 
4734 static struct file_operations kvm_vm_fops = {
4735 	.release        = kvm_vm_release,
4736 	.unlocked_ioctl = kvm_vm_ioctl,
4737 	.llseek		= noop_llseek,
4738 	KVM_COMPAT(kvm_vm_compat_ioctl),
4739 };
4740 
file_is_kvm(struct file * file)4741 bool file_is_kvm(struct file *file)
4742 {
4743 	return file && file->f_op == &kvm_vm_fops;
4744 }
4745 EXPORT_SYMBOL_GPL(file_is_kvm);
4746 
kvm_dev_ioctl_create_vm(unsigned long type)4747 static int kvm_dev_ioctl_create_vm(unsigned long type)
4748 {
4749 	int r;
4750 	struct kvm *kvm;
4751 	struct file *file;
4752 
4753 	kvm = kvm_create_vm(type);
4754 	if (IS_ERR(kvm))
4755 		return PTR_ERR(kvm);
4756 #ifdef CONFIG_KVM_MMIO
4757 	r = kvm_coalesced_mmio_init(kvm);
4758 	if (r < 0)
4759 		goto put_kvm;
4760 #endif
4761 	r = get_unused_fd_flags(O_CLOEXEC);
4762 	if (r < 0)
4763 		goto put_kvm;
4764 
4765 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4766 			"kvm-%d", task_pid_nr(current));
4767 
4768 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4769 	if (IS_ERR(file)) {
4770 		put_unused_fd(r);
4771 		r = PTR_ERR(file);
4772 		goto put_kvm;
4773 	}
4774 
4775 	/*
4776 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4777 	 * already set, with ->release() being kvm_vm_release().  In error
4778 	 * cases it will be called by the final fput(file) and will take
4779 	 * care of doing kvm_put_kvm(kvm).
4780 	 */
4781 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4782 		put_unused_fd(r);
4783 		fput(file);
4784 		return -ENOMEM;
4785 	}
4786 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4787 
4788 	fd_install(r, file);
4789 	return r;
4790 
4791 put_kvm:
4792 	kvm_put_kvm(kvm);
4793 	return r;
4794 }
4795 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4796 static long kvm_dev_ioctl(struct file *filp,
4797 			  unsigned int ioctl, unsigned long arg)
4798 {
4799 	long r = -EINVAL;
4800 
4801 	switch (ioctl) {
4802 	case KVM_GET_API_VERSION:
4803 		if (arg)
4804 			goto out;
4805 		r = KVM_API_VERSION;
4806 		break;
4807 	case KVM_CREATE_VM:
4808 		r = kvm_dev_ioctl_create_vm(arg);
4809 		break;
4810 	case KVM_CHECK_EXTENSION:
4811 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4812 		break;
4813 	case KVM_GET_VCPU_MMAP_SIZE:
4814 		if (arg)
4815 			goto out;
4816 		r = PAGE_SIZE;     /* struct kvm_run */
4817 #ifdef CONFIG_X86
4818 		r += PAGE_SIZE;    /* pio data page */
4819 #endif
4820 #ifdef CONFIG_KVM_MMIO
4821 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4822 #endif
4823 		break;
4824 	case KVM_TRACE_ENABLE:
4825 	case KVM_TRACE_PAUSE:
4826 	case KVM_TRACE_DISABLE:
4827 		r = -EOPNOTSUPP;
4828 		break;
4829 	default:
4830 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4831 	}
4832 out:
4833 	return r;
4834 }
4835 
4836 static struct file_operations kvm_chardev_ops = {
4837 	.unlocked_ioctl = kvm_dev_ioctl,
4838 	.llseek		= noop_llseek,
4839 	KVM_COMPAT(kvm_dev_ioctl),
4840 };
4841 
4842 static struct miscdevice kvm_dev = {
4843 	KVM_MINOR,
4844 	"kvm",
4845 	&kvm_chardev_ops,
4846 };
4847 
hardware_enable_nolock(void * junk)4848 static void hardware_enable_nolock(void *junk)
4849 {
4850 	int cpu = raw_smp_processor_id();
4851 	int r;
4852 
4853 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4854 		return;
4855 
4856 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4857 
4858 	r = kvm_arch_hardware_enable();
4859 
4860 	if (r) {
4861 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4862 		atomic_inc(&hardware_enable_failed);
4863 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4864 	}
4865 }
4866 
kvm_starting_cpu(unsigned int cpu)4867 static int kvm_starting_cpu(unsigned int cpu)
4868 {
4869 	raw_spin_lock(&kvm_count_lock);
4870 	if (kvm_usage_count)
4871 		hardware_enable_nolock(NULL);
4872 	raw_spin_unlock(&kvm_count_lock);
4873 	return 0;
4874 }
4875 
hardware_disable_nolock(void * junk)4876 static void hardware_disable_nolock(void *junk)
4877 {
4878 	int cpu = raw_smp_processor_id();
4879 
4880 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4881 		return;
4882 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4883 	kvm_arch_hardware_disable();
4884 }
4885 
kvm_dying_cpu(unsigned int cpu)4886 static int kvm_dying_cpu(unsigned int cpu)
4887 {
4888 	raw_spin_lock(&kvm_count_lock);
4889 	if (kvm_usage_count)
4890 		hardware_disable_nolock(NULL);
4891 	raw_spin_unlock(&kvm_count_lock);
4892 	return 0;
4893 }
4894 
hardware_disable_all_nolock(void)4895 static void hardware_disable_all_nolock(void)
4896 {
4897 	BUG_ON(!kvm_usage_count);
4898 
4899 	kvm_usage_count--;
4900 	if (!kvm_usage_count)
4901 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4902 }
4903 
hardware_disable_all(void)4904 static void hardware_disable_all(void)
4905 {
4906 	raw_spin_lock(&kvm_count_lock);
4907 	hardware_disable_all_nolock();
4908 	raw_spin_unlock(&kvm_count_lock);
4909 }
4910 
hardware_enable_all(void)4911 static int hardware_enable_all(void)
4912 {
4913 	int r = 0;
4914 
4915 	raw_spin_lock(&kvm_count_lock);
4916 
4917 	kvm_usage_count++;
4918 	if (kvm_usage_count == 1) {
4919 		atomic_set(&hardware_enable_failed, 0);
4920 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4921 
4922 		if (atomic_read(&hardware_enable_failed)) {
4923 			hardware_disable_all_nolock();
4924 			r = -EBUSY;
4925 		}
4926 	}
4927 
4928 	raw_spin_unlock(&kvm_count_lock);
4929 
4930 	return r;
4931 }
4932 
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)4933 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4934 		      void *v)
4935 {
4936 	/*
4937 	 * Some (well, at least mine) BIOSes hang on reboot if
4938 	 * in vmx root mode.
4939 	 *
4940 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4941 	 */
4942 	pr_info("kvm: exiting hardware virtualization\n");
4943 	kvm_rebooting = true;
4944 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4945 	return NOTIFY_OK;
4946 }
4947 
4948 static struct notifier_block kvm_reboot_notifier = {
4949 	.notifier_call = kvm_reboot,
4950 	.priority = 0,
4951 };
4952 
kvm_io_bus_destroy(struct kvm_io_bus * bus)4953 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4954 {
4955 	int i;
4956 
4957 	for (i = 0; i < bus->dev_count; i++) {
4958 		struct kvm_io_device *pos = bus->range[i].dev;
4959 
4960 		kvm_iodevice_destructor(pos);
4961 	}
4962 	kfree(bus);
4963 }
4964 
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)4965 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4966 				 const struct kvm_io_range *r2)
4967 {
4968 	gpa_t addr1 = r1->addr;
4969 	gpa_t addr2 = r2->addr;
4970 
4971 	if (addr1 < addr2)
4972 		return -1;
4973 
4974 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4975 	 * accept any overlapping write.  Any order is acceptable for
4976 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4977 	 * we process all of them.
4978 	 */
4979 	if (r2->len) {
4980 		addr1 += r1->len;
4981 		addr2 += r2->len;
4982 	}
4983 
4984 	if (addr1 > addr2)
4985 		return 1;
4986 
4987 	return 0;
4988 }
4989 
kvm_io_bus_sort_cmp(const void * p1,const void * p2)4990 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4991 {
4992 	return kvm_io_bus_cmp(p1, p2);
4993 }
4994 
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)4995 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4996 			     gpa_t addr, int len)
4997 {
4998 	struct kvm_io_range *range, key;
4999 	int off;
5000 
5001 	key = (struct kvm_io_range) {
5002 		.addr = addr,
5003 		.len = len,
5004 	};
5005 
5006 	range = bsearch(&key, bus->range, bus->dev_count,
5007 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5008 	if (range == NULL)
5009 		return -ENOENT;
5010 
5011 	off = range - bus->range;
5012 
5013 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5014 		off--;
5015 
5016 	return off;
5017 }
5018 
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5019 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5020 			      struct kvm_io_range *range, const void *val)
5021 {
5022 	int idx;
5023 
5024 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5025 	if (idx < 0)
5026 		return -EOPNOTSUPP;
5027 
5028 	while (idx < bus->dev_count &&
5029 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5030 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5031 					range->len, val))
5032 			return idx;
5033 		idx++;
5034 	}
5035 
5036 	return -EOPNOTSUPP;
5037 }
5038 
5039 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5040 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5041 		     int len, const void *val)
5042 {
5043 	struct kvm_io_bus *bus;
5044 	struct kvm_io_range range;
5045 	int r;
5046 
5047 	range = (struct kvm_io_range) {
5048 		.addr = addr,
5049 		.len = len,
5050 	};
5051 
5052 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5053 	if (!bus)
5054 		return -ENOMEM;
5055 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5056 	return r < 0 ? r : 0;
5057 }
5058 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5059 
5060 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5061 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5062 			    gpa_t addr, int len, const void *val, long cookie)
5063 {
5064 	struct kvm_io_bus *bus;
5065 	struct kvm_io_range range;
5066 
5067 	range = (struct kvm_io_range) {
5068 		.addr = addr,
5069 		.len = len,
5070 	};
5071 
5072 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5073 	if (!bus)
5074 		return -ENOMEM;
5075 
5076 	/* First try the device referenced by cookie. */
5077 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5078 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5079 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5080 					val))
5081 			return cookie;
5082 
5083 	/*
5084 	 * cookie contained garbage; fall back to search and return the
5085 	 * correct cookie value.
5086 	 */
5087 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5088 }
5089 
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5090 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5091 			     struct kvm_io_range *range, void *val)
5092 {
5093 	int idx;
5094 
5095 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5096 	if (idx < 0)
5097 		return -EOPNOTSUPP;
5098 
5099 	while (idx < bus->dev_count &&
5100 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5101 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5102 				       range->len, val))
5103 			return idx;
5104 		idx++;
5105 	}
5106 
5107 	return -EOPNOTSUPP;
5108 }
5109 
5110 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5111 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5112 		    int len, void *val)
5113 {
5114 	struct kvm_io_bus *bus;
5115 	struct kvm_io_range range;
5116 	int r;
5117 
5118 	range = (struct kvm_io_range) {
5119 		.addr = addr,
5120 		.len = len,
5121 	};
5122 
5123 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5124 	if (!bus)
5125 		return -ENOMEM;
5126 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5127 	return r < 0 ? r : 0;
5128 }
5129 
5130 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5131 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5132 			    int len, struct kvm_io_device *dev)
5133 {
5134 	int i;
5135 	struct kvm_io_bus *new_bus, *bus;
5136 	struct kvm_io_range range;
5137 
5138 	bus = kvm_get_bus(kvm, bus_idx);
5139 	if (!bus)
5140 		return -ENOMEM;
5141 
5142 	/* exclude ioeventfd which is limited by maximum fd */
5143 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5144 		return -ENOSPC;
5145 
5146 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5147 			  GFP_KERNEL_ACCOUNT);
5148 	if (!new_bus)
5149 		return -ENOMEM;
5150 
5151 	range = (struct kvm_io_range) {
5152 		.addr = addr,
5153 		.len = len,
5154 		.dev = dev,
5155 	};
5156 
5157 	for (i = 0; i < bus->dev_count; i++)
5158 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5159 			break;
5160 
5161 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5162 	new_bus->dev_count++;
5163 	new_bus->range[i] = range;
5164 	memcpy(new_bus->range + i + 1, bus->range + i,
5165 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5166 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5167 	synchronize_srcu_expedited(&kvm->srcu);
5168 	kfree(bus);
5169 
5170 	return 0;
5171 }
5172 
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5173 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5174 			      struct kvm_io_device *dev)
5175 {
5176 	int i, j;
5177 	struct kvm_io_bus *new_bus, *bus;
5178 
5179 	lockdep_assert_held(&kvm->slots_lock);
5180 
5181 	bus = kvm_get_bus(kvm, bus_idx);
5182 	if (!bus)
5183 		return 0;
5184 
5185 	for (i = 0; i < bus->dev_count; i++) {
5186 		if (bus->range[i].dev == dev) {
5187 			break;
5188 		}
5189 	}
5190 
5191 	if (i == bus->dev_count)
5192 		return 0;
5193 
5194 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5195 			  GFP_KERNEL_ACCOUNT);
5196 	if (new_bus) {
5197 		memcpy(new_bus, bus, struct_size(bus, range, i));
5198 		new_bus->dev_count--;
5199 		memcpy(new_bus->range + i, bus->range + i + 1,
5200 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5201 	}
5202 
5203 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5204 	synchronize_srcu_expedited(&kvm->srcu);
5205 
5206 	/* Destroy the old bus _after_ installing the (null) bus. */
5207 	if (!new_bus) {
5208 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5209 		for (j = 0; j < bus->dev_count; j++) {
5210 			if (j == i)
5211 				continue;
5212 			kvm_iodevice_destructor(bus->range[j].dev);
5213 		}
5214 	}
5215 
5216 	kfree(bus);
5217 	return new_bus ? 0 : -ENOMEM;
5218 }
5219 
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5220 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5221 					 gpa_t addr)
5222 {
5223 	struct kvm_io_bus *bus;
5224 	int dev_idx, srcu_idx;
5225 	struct kvm_io_device *iodev = NULL;
5226 
5227 	srcu_idx = srcu_read_lock(&kvm->srcu);
5228 
5229 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5230 	if (!bus)
5231 		goto out_unlock;
5232 
5233 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5234 	if (dev_idx < 0)
5235 		goto out_unlock;
5236 
5237 	iodev = bus->range[dev_idx].dev;
5238 
5239 out_unlock:
5240 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5241 
5242 	return iodev;
5243 }
5244 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5245 
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5246 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5247 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5248 			   const char *fmt)
5249 {
5250 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5251 					  inode->i_private;
5252 
5253 	/*
5254 	 * The debugfs files are a reference to the kvm struct which
5255         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5256         * avoids the race between open and the removal of the debugfs directory.
5257 	 */
5258 	if (!kvm_get_kvm_safe(stat_data->kvm))
5259 		return -ENOENT;
5260 
5261 	if (simple_attr_open(inode, file, get,
5262 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5263 		    ? set : NULL,
5264 		    fmt)) {
5265 		kvm_put_kvm(stat_data->kvm);
5266 		return -ENOMEM;
5267 	}
5268 
5269 	return 0;
5270 }
5271 
kvm_debugfs_release(struct inode * inode,struct file * file)5272 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5273 {
5274 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5275 					  inode->i_private;
5276 
5277 	simple_attr_release(inode, file);
5278 	kvm_put_kvm(stat_data->kvm);
5279 
5280 	return 0;
5281 }
5282 
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)5283 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5284 {
5285 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5286 
5287 	return 0;
5288 }
5289 
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)5290 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5291 {
5292 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5293 
5294 	return 0;
5295 }
5296 
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)5297 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5298 {
5299 	int i;
5300 	struct kvm_vcpu *vcpu;
5301 
5302 	*val = 0;
5303 
5304 	kvm_for_each_vcpu(i, vcpu, kvm)
5305 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5306 
5307 	return 0;
5308 }
5309 
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)5310 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5311 {
5312 	int i;
5313 	struct kvm_vcpu *vcpu;
5314 
5315 	kvm_for_each_vcpu(i, vcpu, kvm)
5316 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5317 
5318 	return 0;
5319 }
5320 
kvm_stat_data_get(void * data,u64 * val)5321 static int kvm_stat_data_get(void *data, u64 *val)
5322 {
5323 	int r = -EFAULT;
5324 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5325 
5326 	switch (stat_data->kind) {
5327 	case KVM_STAT_VM:
5328 		r = kvm_get_stat_per_vm(stat_data->kvm,
5329 					stat_data->desc->desc.offset, val);
5330 		break;
5331 	case KVM_STAT_VCPU:
5332 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5333 					  stat_data->desc->desc.offset, val);
5334 		break;
5335 	}
5336 
5337 	return r;
5338 }
5339 
kvm_stat_data_clear(void * data,u64 val)5340 static int kvm_stat_data_clear(void *data, u64 val)
5341 {
5342 	int r = -EFAULT;
5343 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5344 
5345 	if (val)
5346 		return -EINVAL;
5347 
5348 	switch (stat_data->kind) {
5349 	case KVM_STAT_VM:
5350 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5351 					  stat_data->desc->desc.offset);
5352 		break;
5353 	case KVM_STAT_VCPU:
5354 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5355 					    stat_data->desc->desc.offset);
5356 		break;
5357 	}
5358 
5359 	return r;
5360 }
5361 
kvm_stat_data_open(struct inode * inode,struct file * file)5362 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5363 {
5364 	__simple_attr_check_format("%llu\n", 0ull);
5365 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5366 				kvm_stat_data_clear, "%llu\n");
5367 }
5368 
5369 static const struct file_operations stat_fops_per_vm = {
5370 	.owner = THIS_MODULE,
5371 	.open = kvm_stat_data_open,
5372 	.release = kvm_debugfs_release,
5373 	.read = simple_attr_read,
5374 	.write = simple_attr_write,
5375 	.llseek = no_llseek,
5376 };
5377 
vm_stat_get(void * _offset,u64 * val)5378 static int vm_stat_get(void *_offset, u64 *val)
5379 {
5380 	unsigned offset = (long)_offset;
5381 	struct kvm *kvm;
5382 	u64 tmp_val;
5383 
5384 	*val = 0;
5385 	mutex_lock(&kvm_lock);
5386 	list_for_each_entry(kvm, &vm_list, vm_list) {
5387 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5388 		*val += tmp_val;
5389 	}
5390 	mutex_unlock(&kvm_lock);
5391 	return 0;
5392 }
5393 
vm_stat_clear(void * _offset,u64 val)5394 static int vm_stat_clear(void *_offset, u64 val)
5395 {
5396 	unsigned offset = (long)_offset;
5397 	struct kvm *kvm;
5398 
5399 	if (val)
5400 		return -EINVAL;
5401 
5402 	mutex_lock(&kvm_lock);
5403 	list_for_each_entry(kvm, &vm_list, vm_list) {
5404 		kvm_clear_stat_per_vm(kvm, offset);
5405 	}
5406 	mutex_unlock(&kvm_lock);
5407 
5408 	return 0;
5409 }
5410 
5411 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5412 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5413 
vcpu_stat_get(void * _offset,u64 * val)5414 static int vcpu_stat_get(void *_offset, u64 *val)
5415 {
5416 	unsigned offset = (long)_offset;
5417 	struct kvm *kvm;
5418 	u64 tmp_val;
5419 
5420 	*val = 0;
5421 	mutex_lock(&kvm_lock);
5422 	list_for_each_entry(kvm, &vm_list, vm_list) {
5423 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5424 		*val += tmp_val;
5425 	}
5426 	mutex_unlock(&kvm_lock);
5427 	return 0;
5428 }
5429 
vcpu_stat_clear(void * _offset,u64 val)5430 static int vcpu_stat_clear(void *_offset, u64 val)
5431 {
5432 	unsigned offset = (long)_offset;
5433 	struct kvm *kvm;
5434 
5435 	if (val)
5436 		return -EINVAL;
5437 
5438 	mutex_lock(&kvm_lock);
5439 	list_for_each_entry(kvm, &vm_list, vm_list) {
5440 		kvm_clear_stat_per_vcpu(kvm, offset);
5441 	}
5442 	mutex_unlock(&kvm_lock);
5443 
5444 	return 0;
5445 }
5446 
5447 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5448 			"%llu\n");
5449 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5450 
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)5451 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5452 {
5453 	struct kobj_uevent_env *env;
5454 	unsigned long long created, active;
5455 
5456 	if (!kvm_dev.this_device || !kvm)
5457 		return;
5458 
5459 	mutex_lock(&kvm_lock);
5460 	if (type == KVM_EVENT_CREATE_VM) {
5461 		kvm_createvm_count++;
5462 		kvm_active_vms++;
5463 	} else if (type == KVM_EVENT_DESTROY_VM) {
5464 		kvm_active_vms--;
5465 	}
5466 	created = kvm_createvm_count;
5467 	active = kvm_active_vms;
5468 	mutex_unlock(&kvm_lock);
5469 
5470 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5471 	if (!env)
5472 		return;
5473 
5474 	add_uevent_var(env, "CREATED=%llu", created);
5475 	add_uevent_var(env, "COUNT=%llu", active);
5476 
5477 	if (type == KVM_EVENT_CREATE_VM) {
5478 		add_uevent_var(env, "EVENT=create");
5479 		kvm->userspace_pid = task_pid_nr(current);
5480 	} else if (type == KVM_EVENT_DESTROY_VM) {
5481 		add_uevent_var(env, "EVENT=destroy");
5482 	}
5483 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5484 
5485 	if (!IS_ERR(kvm->debugfs_dentry)) {
5486 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5487 
5488 		if (p) {
5489 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5490 			if (!IS_ERR(tmp))
5491 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5492 			kfree(p);
5493 		}
5494 	}
5495 	/* no need for checks, since we are adding at most only 5 keys */
5496 	env->envp[env->envp_idx++] = NULL;
5497 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5498 	kfree(env);
5499 }
5500 
kvm_init_debug(void)5501 static void kvm_init_debug(void)
5502 {
5503 	const struct file_operations *fops;
5504 	const struct _kvm_stats_desc *pdesc;
5505 	int i;
5506 
5507 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5508 
5509 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5510 		pdesc = &kvm_vm_stats_desc[i];
5511 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5512 			fops = &vm_stat_fops;
5513 		else
5514 			fops = &vm_stat_readonly_fops;
5515 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5516 				kvm_debugfs_dir,
5517 				(void *)(long)pdesc->desc.offset, fops);
5518 	}
5519 
5520 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5521 		pdesc = &kvm_vcpu_stats_desc[i];
5522 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5523 			fops = &vcpu_stat_fops;
5524 		else
5525 			fops = &vcpu_stat_readonly_fops;
5526 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5527 				kvm_debugfs_dir,
5528 				(void *)(long)pdesc->desc.offset, fops);
5529 	}
5530 }
5531 
kvm_suspend(void)5532 static int kvm_suspend(void)
5533 {
5534 	if (kvm_usage_count)
5535 		hardware_disable_nolock(NULL);
5536 	return 0;
5537 }
5538 
kvm_resume(void)5539 static void kvm_resume(void)
5540 {
5541 	if (kvm_usage_count) {
5542 		lockdep_assert_not_held(&kvm_count_lock);
5543 		hardware_enable_nolock(NULL);
5544 	}
5545 }
5546 
5547 static struct syscore_ops kvm_syscore_ops = {
5548 	.suspend = kvm_suspend,
5549 	.resume = kvm_resume,
5550 };
5551 
5552 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)5553 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5554 {
5555 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5556 }
5557 
kvm_sched_in(struct preempt_notifier * pn,int cpu)5558 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5559 {
5560 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5561 
5562 	WRITE_ONCE(vcpu->preempted, false);
5563 	WRITE_ONCE(vcpu->ready, false);
5564 
5565 	__this_cpu_write(kvm_running_vcpu, vcpu);
5566 	kvm_arch_sched_in(vcpu, cpu);
5567 	kvm_arch_vcpu_load(vcpu, cpu);
5568 }
5569 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)5570 static void kvm_sched_out(struct preempt_notifier *pn,
5571 			  struct task_struct *next)
5572 {
5573 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5574 
5575 	if (current->on_rq) {
5576 		WRITE_ONCE(vcpu->preempted, true);
5577 		WRITE_ONCE(vcpu->ready, true);
5578 	}
5579 	kvm_arch_vcpu_put(vcpu);
5580 	__this_cpu_write(kvm_running_vcpu, NULL);
5581 }
5582 
5583 /**
5584  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5585  *
5586  * We can disable preemption locally around accessing the per-CPU variable,
5587  * and use the resolved vcpu pointer after enabling preemption again,
5588  * because even if the current thread is migrated to another CPU, reading
5589  * the per-CPU value later will give us the same value as we update the
5590  * per-CPU variable in the preempt notifier handlers.
5591  */
kvm_get_running_vcpu(void)5592 struct kvm_vcpu *kvm_get_running_vcpu(void)
5593 {
5594 	struct kvm_vcpu *vcpu;
5595 
5596 	preempt_disable();
5597 	vcpu = __this_cpu_read(kvm_running_vcpu);
5598 	preempt_enable();
5599 
5600 	return vcpu;
5601 }
5602 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5603 
5604 /**
5605  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5606  */
kvm_get_running_vcpus(void)5607 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5608 {
5609         return &kvm_running_vcpu;
5610 }
5611 
5612 struct kvm_cpu_compat_check {
5613 	void *opaque;
5614 	int *ret;
5615 };
5616 
check_processor_compat(void * data)5617 static void check_processor_compat(void *data)
5618 {
5619 	struct kvm_cpu_compat_check *c = data;
5620 
5621 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5622 }
5623 
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)5624 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5625 		  struct module *module)
5626 {
5627 	struct kvm_cpu_compat_check c;
5628 	int r;
5629 	int cpu;
5630 
5631 	r = kvm_arch_init(opaque);
5632 	if (r)
5633 		goto out_fail;
5634 
5635 	/*
5636 	 * kvm_arch_init makes sure there's at most one caller
5637 	 * for architectures that support multiple implementations,
5638 	 * like intel and amd on x86.
5639 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5640 	 * conflicts in case kvm is already setup for another implementation.
5641 	 */
5642 	r = kvm_irqfd_init();
5643 	if (r)
5644 		goto out_irqfd;
5645 
5646 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5647 		r = -ENOMEM;
5648 		goto out_free_0;
5649 	}
5650 
5651 	r = kvm_arch_hardware_setup(opaque);
5652 	if (r < 0)
5653 		goto out_free_1;
5654 
5655 	c.ret = &r;
5656 	c.opaque = opaque;
5657 	for_each_online_cpu(cpu) {
5658 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5659 		if (r < 0)
5660 			goto out_free_2;
5661 	}
5662 
5663 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5664 				      kvm_starting_cpu, kvm_dying_cpu);
5665 	if (r)
5666 		goto out_free_2;
5667 	register_reboot_notifier(&kvm_reboot_notifier);
5668 
5669 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5670 	if (!vcpu_align)
5671 		vcpu_align = __alignof__(struct kvm_vcpu);
5672 	kvm_vcpu_cache =
5673 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5674 					   SLAB_ACCOUNT,
5675 					   offsetof(struct kvm_vcpu, arch),
5676 					   offsetofend(struct kvm_vcpu, stats_id)
5677 					   - offsetof(struct kvm_vcpu, arch),
5678 					   NULL);
5679 	if (!kvm_vcpu_cache) {
5680 		r = -ENOMEM;
5681 		goto out_free_3;
5682 	}
5683 
5684 	for_each_possible_cpu(cpu) {
5685 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5686 					    GFP_KERNEL, cpu_to_node(cpu))) {
5687 			r = -ENOMEM;
5688 			goto out_free_4;
5689 		}
5690 	}
5691 
5692 	r = kvm_async_pf_init();
5693 	if (r)
5694 		goto out_free_4;
5695 
5696 	kvm_chardev_ops.owner = module;
5697 	kvm_vm_fops.owner = module;
5698 	kvm_vcpu_fops.owner = module;
5699 
5700 	register_syscore_ops(&kvm_syscore_ops);
5701 
5702 	kvm_preempt_ops.sched_in = kvm_sched_in;
5703 	kvm_preempt_ops.sched_out = kvm_sched_out;
5704 
5705 	kvm_init_debug();
5706 
5707 	r = kvm_vfio_ops_init();
5708 	if (WARN_ON_ONCE(r))
5709 		goto err_vfio;
5710 
5711 	/*
5712 	 * Registration _must_ be the very last thing done, as this exposes
5713 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
5714 	 */
5715 	r = misc_register(&kvm_dev);
5716 	if (r) {
5717 		pr_err("kvm: misc device register failed\n");
5718 		goto err_register;
5719 	}
5720 
5721 	return 0;
5722 
5723 err_register:
5724 	kvm_vfio_ops_exit();
5725 err_vfio:
5726 	kvm_async_pf_deinit();
5727 out_free_4:
5728 	for_each_possible_cpu(cpu)
5729 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5730 	kmem_cache_destroy(kvm_vcpu_cache);
5731 out_free_3:
5732 	unregister_reboot_notifier(&kvm_reboot_notifier);
5733 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5734 out_free_2:
5735 	kvm_arch_hardware_unsetup();
5736 out_free_1:
5737 	free_cpumask_var(cpus_hardware_enabled);
5738 out_free_0:
5739 	kvm_irqfd_exit();
5740 out_irqfd:
5741 	kvm_arch_exit();
5742 out_fail:
5743 	return r;
5744 }
5745 EXPORT_SYMBOL_GPL(kvm_init);
5746 
kvm_exit(void)5747 void kvm_exit(void)
5748 {
5749 	int cpu;
5750 
5751 	/*
5752 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
5753 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
5754 	 * to KVM while the module is being stopped.
5755 	 */
5756 	misc_deregister(&kvm_dev);
5757 
5758 	debugfs_remove_recursive(kvm_debugfs_dir);
5759 	for_each_possible_cpu(cpu)
5760 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5761 	kmem_cache_destroy(kvm_vcpu_cache);
5762 	kvm_async_pf_deinit();
5763 	unregister_syscore_ops(&kvm_syscore_ops);
5764 	unregister_reboot_notifier(&kvm_reboot_notifier);
5765 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5766 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5767 	kvm_arch_hardware_unsetup();
5768 	kvm_arch_exit();
5769 	kvm_irqfd_exit();
5770 	free_cpumask_var(cpus_hardware_enabled);
5771 	kvm_vfio_ops_exit();
5772 }
5773 EXPORT_SYMBOL_GPL(kvm_exit);
5774 
5775 struct kvm_vm_worker_thread_context {
5776 	struct kvm *kvm;
5777 	struct task_struct *parent;
5778 	struct completion init_done;
5779 	kvm_vm_thread_fn_t thread_fn;
5780 	uintptr_t data;
5781 	int err;
5782 };
5783 
kvm_vm_worker_thread(void * context)5784 static int kvm_vm_worker_thread(void *context)
5785 {
5786 	/*
5787 	 * The init_context is allocated on the stack of the parent thread, so
5788 	 * we have to locally copy anything that is needed beyond initialization
5789 	 */
5790 	struct kvm_vm_worker_thread_context *init_context = context;
5791 	struct kvm *kvm = init_context->kvm;
5792 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5793 	uintptr_t data = init_context->data;
5794 	int err;
5795 
5796 	err = kthread_park(current);
5797 	/* kthread_park(current) is never supposed to return an error */
5798 	WARN_ON(err != 0);
5799 	if (err)
5800 		goto init_complete;
5801 
5802 	err = cgroup_attach_task_all(init_context->parent, current);
5803 	if (err) {
5804 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5805 			__func__, err);
5806 		goto init_complete;
5807 	}
5808 
5809 	set_user_nice(current, task_nice(init_context->parent));
5810 
5811 init_complete:
5812 	init_context->err = err;
5813 	complete(&init_context->init_done);
5814 	init_context = NULL;
5815 
5816 	if (err)
5817 		return err;
5818 
5819 	/* Wait to be woken up by the spawner before proceeding. */
5820 	kthread_parkme();
5821 
5822 	if (!kthread_should_stop())
5823 		err = thread_fn(kvm, data);
5824 
5825 	return err;
5826 }
5827 
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)5828 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5829 				uintptr_t data, const char *name,
5830 				struct task_struct **thread_ptr)
5831 {
5832 	struct kvm_vm_worker_thread_context init_context = {};
5833 	struct task_struct *thread;
5834 
5835 	*thread_ptr = NULL;
5836 	init_context.kvm = kvm;
5837 	init_context.parent = current;
5838 	init_context.thread_fn = thread_fn;
5839 	init_context.data = data;
5840 	init_completion(&init_context.init_done);
5841 
5842 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5843 			     "%s-%d", name, task_pid_nr(current));
5844 	if (IS_ERR(thread))
5845 		return PTR_ERR(thread);
5846 
5847 	/* kthread_run is never supposed to return NULL */
5848 	WARN_ON(thread == NULL);
5849 
5850 	wait_for_completion(&init_context.init_done);
5851 
5852 	if (!init_context.err)
5853 		*thread_ptr = thread;
5854 
5855 	return init_context.err;
5856 }
5857