1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97 * Ordering of locks:
98 *
99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100 */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 #else
129 /*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 unsigned long start, unsigned long end)
164 {
165 }
166
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
kvm_is_zone_device_pfn(kvm_pfn_t pfn)171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172 {
173 /*
174 * The metadata used by is_zone_device_page() to determine whether or
175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 * the device has been pinned, e.g. by get_user_pages(). WARN if the
177 * page_count() is zero to help detect bad usage of this helper.
178 */
179 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180 return false;
181
182 return is_zone_device_page(pfn_to_page(pfn));
183 }
184
kvm_is_reserved_pfn(kvm_pfn_t pfn)185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
186 {
187 /*
188 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189 * perspective they are "normal" pages, albeit with slightly different
190 * usage rules.
191 */
192 if (pfn_valid(pfn))
193 return PageReserved(pfn_to_page(pfn)) &&
194 !is_zero_pfn(pfn) &&
195 !kvm_is_zone_device_pfn(pfn);
196
197 return true;
198 }
199
200 /*
201 * Switches to specified vcpu, until a matching vcpu_put()
202 */
vcpu_load(struct kvm_vcpu * vcpu)203 void vcpu_load(struct kvm_vcpu *vcpu)
204 {
205 int cpu = get_cpu();
206
207 __this_cpu_write(kvm_running_vcpu, vcpu);
208 preempt_notifier_register(&vcpu->preempt_notifier);
209 kvm_arch_vcpu_load(vcpu, cpu);
210 put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_load);
213
vcpu_put(struct kvm_vcpu * vcpu)214 void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216 preempt_disable();
217 kvm_arch_vcpu_put(vcpu);
218 preempt_notifier_unregister(&vcpu->preempt_notifier);
219 __this_cpu_write(kvm_running_vcpu, NULL);
220 preempt_enable();
221 }
222 EXPORT_SYMBOL_GPL(vcpu_put);
223
224 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226 {
227 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228
229 /*
230 * We need to wait for the VCPU to reenable interrupts and get out of
231 * READING_SHADOW_PAGE_TABLES mode.
232 */
233 if (req & KVM_REQUEST_WAIT)
234 return mode != OUTSIDE_GUEST_MODE;
235
236 /*
237 * Need to kick a running VCPU, but otherwise there is nothing to do.
238 */
239 return mode == IN_GUEST_MODE;
240 }
241
ack_flush(void * _completed)242 static void ack_flush(void *_completed)
243 {
244 }
245
kvm_kick_many_cpus(cpumask_var_t tmp,bool wait)246 static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
247 {
248 const struct cpumask *cpus;
249
250 if (likely(cpumask_available(tmp)))
251 cpus = tmp;
252 else
253 cpus = cpu_online_mask;
254
255 if (cpumask_empty(cpus))
256 return false;
257
258 smp_call_function_many(cpus, ack_flush, NULL, wait);
259 return true;
260 }
261
kvm_make_vcpu_request(struct kvm * kvm,struct kvm_vcpu * vcpu,unsigned int req,cpumask_var_t tmp,int current_cpu)262 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
263 unsigned int req, cpumask_var_t tmp,
264 int current_cpu)
265 {
266 int cpu;
267
268 kvm_make_request(req, vcpu);
269
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 return;
272
273 /*
274 * tmp can be "unavailable" if cpumasks are allocated off stack as
275 * allocation of the mask is deliberately not fatal and is handled by
276 * falling back to kicking all online CPUs.
277 */
278 if (!cpumask_available(tmp))
279 return;
280
281 /*
282 * Note, the vCPU could get migrated to a different pCPU at any point
283 * after kvm_request_needs_ipi(), which could result in sending an IPI
284 * to the previous pCPU. But, that's OK because the purpose of the IPI
285 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
286 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
287 * after this point is also OK, as the requirement is only that KVM wait
288 * for vCPUs that were reading SPTEs _before_ any changes were
289 * finalized. See kvm_vcpu_kick() for more details on handling requests.
290 */
291 if (kvm_request_needs_ipi(vcpu, req)) {
292 cpu = READ_ONCE(vcpu->cpu);
293 if (cpu != -1 && cpu != current_cpu)
294 __cpumask_set_cpu(cpu, tmp);
295 }
296 }
297
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except,unsigned long * vcpu_bitmap,cpumask_var_t tmp)298 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
299 struct kvm_vcpu *except,
300 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
301 {
302 struct kvm_vcpu *vcpu;
303 int i, me;
304 bool called;
305
306 me = get_cpu();
307
308 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309 vcpu = kvm_get_vcpu(kvm, i);
310 if (!vcpu || vcpu == except)
311 continue;
312 kvm_make_vcpu_request(kvm, vcpu, req, tmp, me);
313 }
314
315 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
316 put_cpu();
317
318 return called;
319 }
320
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322 struct kvm_vcpu *except)
323 {
324 struct kvm_vcpu *vcpu;
325 struct cpumask *cpus;
326 bool called;
327 int i, me;
328
329 me = get_cpu();
330
331 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
332 cpumask_clear(cpus);
333
334 kvm_for_each_vcpu(i, vcpu, kvm) {
335 if (vcpu == except)
336 continue;
337 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
338 }
339
340 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
341 put_cpu();
342
343 return called;
344 }
345
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)346 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
347 {
348 return kvm_make_all_cpus_request_except(kvm, req, NULL);
349 }
350 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
351
352 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)353 void kvm_flush_remote_tlbs(struct kvm *kvm)
354 {
355 ++kvm->stat.generic.remote_tlb_flush_requests;
356
357 /*
358 * We want to publish modifications to the page tables before reading
359 * mode. Pairs with a memory barrier in arch-specific code.
360 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
361 * and smp_mb in walk_shadow_page_lockless_begin/end.
362 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
363 *
364 * There is already an smp_mb__after_atomic() before
365 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
366 * barrier here.
367 */
368 if (!kvm_arch_flush_remote_tlb(kvm)
369 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
370 ++kvm->stat.generic.remote_tlb_flush;
371 }
372 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
373 #endif
374
kvm_reload_remote_mmus(struct kvm * kvm)375 void kvm_reload_remote_mmus(struct kvm *kvm)
376 {
377 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
378 }
379
kvm_flush_shadow_all(struct kvm * kvm)380 static void kvm_flush_shadow_all(struct kvm *kvm)
381 {
382 kvm_arch_flush_shadow_all(kvm);
383 kvm_arch_guest_memory_reclaimed(kvm);
384 }
385
386 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)387 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
388 gfp_t gfp_flags)
389 {
390 gfp_flags |= mc->gfp_zero;
391
392 if (mc->kmem_cache)
393 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
394 else
395 return (void *)__get_free_page(gfp_flags);
396 }
397
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)398 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
399 {
400 void *obj;
401
402 if (mc->nobjs >= min)
403 return 0;
404 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
405 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
406 if (!obj)
407 return mc->nobjs >= min ? 0 : -ENOMEM;
408 mc->objects[mc->nobjs++] = obj;
409 }
410 return 0;
411 }
412
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)413 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
414 {
415 return mc->nobjs;
416 }
417
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)418 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
419 {
420 while (mc->nobjs) {
421 if (mc->kmem_cache)
422 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
423 else
424 free_page((unsigned long)mc->objects[--mc->nobjs]);
425 }
426 }
427
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)428 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
429 {
430 void *p;
431
432 if (WARN_ON(!mc->nobjs))
433 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
434 else
435 p = mc->objects[--mc->nobjs];
436 BUG_ON(!p);
437 return p;
438 }
439 #endif
440
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)441 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
442 {
443 mutex_init(&vcpu->mutex);
444 vcpu->cpu = -1;
445 vcpu->kvm = kvm;
446 vcpu->vcpu_id = id;
447 vcpu->pid = NULL;
448 rcuwait_init(&vcpu->wait);
449 kvm_async_pf_vcpu_init(vcpu);
450
451 vcpu->pre_pcpu = -1;
452 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
453
454 kvm_vcpu_set_in_spin_loop(vcpu, false);
455 kvm_vcpu_set_dy_eligible(vcpu, false);
456 vcpu->preempted = false;
457 vcpu->ready = false;
458 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
459 vcpu->last_used_slot = 0;
460 }
461
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)462 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
463 {
464 kvm_arch_vcpu_destroy(vcpu);
465 kvm_dirty_ring_free(&vcpu->dirty_ring);
466
467 /*
468 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
469 * the vcpu->pid pointer, and at destruction time all file descriptors
470 * are already gone.
471 */
472 put_pid(rcu_dereference_protected(vcpu->pid, 1));
473
474 free_page((unsigned long)vcpu->run);
475 kmem_cache_free(kvm_vcpu_cache, vcpu);
476 }
477 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
478
479 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)480 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
481 {
482 return container_of(mn, struct kvm, mmu_notifier);
483 }
484
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)485 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
486 struct mm_struct *mm,
487 unsigned long start, unsigned long end)
488 {
489 struct kvm *kvm = mmu_notifier_to_kvm(mn);
490 int idx;
491
492 idx = srcu_read_lock(&kvm->srcu);
493 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
494 srcu_read_unlock(&kvm->srcu, idx);
495 }
496
497 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
498
499 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
500 unsigned long end);
501
502 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
503
504 struct kvm_hva_range {
505 unsigned long start;
506 unsigned long end;
507 pte_t pte;
508 hva_handler_t handler;
509 on_lock_fn_t on_lock;
510 on_unlock_fn_t on_unlock;
511 bool flush_on_ret;
512 bool may_block;
513 };
514
515 /*
516 * Use a dedicated stub instead of NULL to indicate that there is no callback
517 * function/handler. The compiler technically can't guarantee that a real
518 * function will have a non-zero address, and so it will generate code to
519 * check for !NULL, whereas comparing against a stub will be elided at compile
520 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
521 */
kvm_null_fn(void)522 static void kvm_null_fn(void)
523 {
524
525 }
526 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
527
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_hva_range * range)528 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
529 const struct kvm_hva_range *range)
530 {
531 bool ret = false, locked = false;
532 struct kvm_gfn_range gfn_range;
533 struct kvm_memory_slot *slot;
534 struct kvm_memslots *slots;
535 int i, idx;
536
537 /* A null handler is allowed if and only if on_lock() is provided. */
538 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
539 IS_KVM_NULL_FN(range->handler)))
540 return 0;
541
542 idx = srcu_read_lock(&kvm->srcu);
543
544 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
545 slots = __kvm_memslots(kvm, i);
546 kvm_for_each_memslot(slot, slots) {
547 unsigned long hva_start, hva_end;
548
549 hva_start = max(range->start, slot->userspace_addr);
550 hva_end = min(range->end, slot->userspace_addr +
551 (slot->npages << PAGE_SHIFT));
552 if (hva_start >= hva_end)
553 continue;
554
555 /*
556 * To optimize for the likely case where the address
557 * range is covered by zero or one memslots, don't
558 * bother making these conditional (to avoid writes on
559 * the second or later invocation of the handler).
560 */
561 gfn_range.pte = range->pte;
562 gfn_range.may_block = range->may_block;
563
564 /*
565 * {gfn(page) | page intersects with [hva_start, hva_end)} =
566 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
567 */
568 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
569 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
570 gfn_range.slot = slot;
571
572 if (!locked) {
573 locked = true;
574 KVM_MMU_LOCK(kvm);
575 if (!IS_KVM_NULL_FN(range->on_lock))
576 range->on_lock(kvm, range->start, range->end);
577 if (IS_KVM_NULL_FN(range->handler))
578 break;
579 }
580 ret |= range->handler(kvm, &gfn_range);
581 }
582 }
583
584 if (range->flush_on_ret && ret)
585 kvm_flush_remote_tlbs(kvm);
586
587 if (locked) {
588 KVM_MMU_UNLOCK(kvm);
589 if (!IS_KVM_NULL_FN(range->on_unlock))
590 range->on_unlock(kvm);
591 }
592
593 srcu_read_unlock(&kvm->srcu, idx);
594
595 /* The notifiers are averse to booleans. :-( */
596 return (int)ret;
597 }
598
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,pte_t pte,hva_handler_t handler)599 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
600 unsigned long start,
601 unsigned long end,
602 pte_t pte,
603 hva_handler_t handler)
604 {
605 struct kvm *kvm = mmu_notifier_to_kvm(mn);
606 const struct kvm_hva_range range = {
607 .start = start,
608 .end = end,
609 .pte = pte,
610 .handler = handler,
611 .on_lock = (void *)kvm_null_fn,
612 .on_unlock = (void *)kvm_null_fn,
613 .flush_on_ret = true,
614 .may_block = false,
615 };
616
617 return __kvm_handle_hva_range(kvm, &range);
618 }
619
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,hva_handler_t handler)620 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
621 unsigned long start,
622 unsigned long end,
623 hva_handler_t handler)
624 {
625 struct kvm *kvm = mmu_notifier_to_kvm(mn);
626 const struct kvm_hva_range range = {
627 .start = start,
628 .end = end,
629 .pte = __pte(0),
630 .handler = handler,
631 .on_lock = (void *)kvm_null_fn,
632 .on_unlock = (void *)kvm_null_fn,
633 .flush_on_ret = false,
634 .may_block = false,
635 };
636
637 return __kvm_handle_hva_range(kvm, &range);
638 }
639
kvm_change_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)640 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
641 {
642 /*
643 * Skipping invalid memslots is correct if and only change_pte() is
644 * surrounded by invalidate_range_{start,end}(), which is currently
645 * guaranteed by the primary MMU. If that ever changes, KVM needs to
646 * unmap the memslot instead of skipping the memslot to ensure that KVM
647 * doesn't hold references to the old PFN.
648 */
649 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
650
651 if (range->slot->flags & KVM_MEMSLOT_INVALID)
652 return false;
653
654 return kvm_set_spte_gfn(kvm, range);
655 }
656
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)657 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
658 struct mm_struct *mm,
659 unsigned long address,
660 pte_t pte)
661 {
662 struct kvm *kvm = mmu_notifier_to_kvm(mn);
663
664 trace_kvm_set_spte_hva(address);
665
666 /*
667 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
668 * If mmu_notifier_count is zero, then no in-progress invalidations,
669 * including this one, found a relevant memslot at start(); rechecking
670 * memslots here is unnecessary. Note, a false positive (count elevated
671 * by a different invalidation) is sub-optimal but functionally ok.
672 */
673 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
674 if (!READ_ONCE(kvm->mmu_notifier_count))
675 return;
676
677 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
678 }
679
kvm_inc_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)680 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
681 unsigned long end)
682 {
683 /*
684 * The count increase must become visible at unlock time as no
685 * spte can be established without taking the mmu_lock and
686 * count is also read inside the mmu_lock critical section.
687 */
688 kvm->mmu_notifier_count++;
689 if (likely(kvm->mmu_notifier_count == 1)) {
690 kvm->mmu_notifier_range_start = start;
691 kvm->mmu_notifier_range_end = end;
692 } else {
693 /*
694 * Fully tracking multiple concurrent ranges has dimishing
695 * returns. Keep things simple and just find the minimal range
696 * which includes the current and new ranges. As there won't be
697 * enough information to subtract a range after its invalidate
698 * completes, any ranges invalidated concurrently will
699 * accumulate and persist until all outstanding invalidates
700 * complete.
701 */
702 kvm->mmu_notifier_range_start =
703 min(kvm->mmu_notifier_range_start, start);
704 kvm->mmu_notifier_range_end =
705 max(kvm->mmu_notifier_range_end, end);
706 }
707 }
708
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)709 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
710 const struct mmu_notifier_range *range)
711 {
712 struct kvm *kvm = mmu_notifier_to_kvm(mn);
713 const struct kvm_hva_range hva_range = {
714 .start = range->start,
715 .end = range->end,
716 .pte = __pte(0),
717 .handler = kvm_unmap_gfn_range,
718 .on_lock = kvm_inc_notifier_count,
719 .on_unlock = kvm_arch_guest_memory_reclaimed,
720 .flush_on_ret = true,
721 .may_block = mmu_notifier_range_blockable(range),
722 };
723
724 trace_kvm_unmap_hva_range(range->start, range->end);
725
726 /*
727 * Prevent memslot modification between range_start() and range_end()
728 * so that conditionally locking provides the same result in both
729 * functions. Without that guarantee, the mmu_notifier_count
730 * adjustments will be imbalanced.
731 *
732 * Pairs with the decrement in range_end().
733 */
734 spin_lock(&kvm->mn_invalidate_lock);
735 kvm->mn_active_invalidate_count++;
736 spin_unlock(&kvm->mn_invalidate_lock);
737
738 __kvm_handle_hva_range(kvm, &hva_range);
739
740 return 0;
741 }
742
kvm_dec_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)743 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
744 unsigned long end)
745 {
746 /*
747 * This sequence increase will notify the kvm page fault that
748 * the page that is going to be mapped in the spte could have
749 * been freed.
750 */
751 kvm->mmu_notifier_seq++;
752 smp_wmb();
753 /*
754 * The above sequence increase must be visible before the
755 * below count decrease, which is ensured by the smp_wmb above
756 * in conjunction with the smp_rmb in mmu_notifier_retry().
757 */
758 kvm->mmu_notifier_count--;
759 }
760
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)761 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
762 const struct mmu_notifier_range *range)
763 {
764 struct kvm *kvm = mmu_notifier_to_kvm(mn);
765 const struct kvm_hva_range hva_range = {
766 .start = range->start,
767 .end = range->end,
768 .pte = __pte(0),
769 .handler = (void *)kvm_null_fn,
770 .on_lock = kvm_dec_notifier_count,
771 .on_unlock = (void *)kvm_null_fn,
772 .flush_on_ret = false,
773 .may_block = mmu_notifier_range_blockable(range),
774 };
775 bool wake;
776
777 __kvm_handle_hva_range(kvm, &hva_range);
778
779 /* Pairs with the increment in range_start(). */
780 spin_lock(&kvm->mn_invalidate_lock);
781 wake = (--kvm->mn_active_invalidate_count == 0);
782 spin_unlock(&kvm->mn_invalidate_lock);
783
784 /*
785 * There can only be one waiter, since the wait happens under
786 * slots_lock.
787 */
788 if (wake)
789 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
790
791 BUG_ON(kvm->mmu_notifier_count < 0);
792 }
793
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)794 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
795 struct mm_struct *mm,
796 unsigned long start,
797 unsigned long end)
798 {
799 trace_kvm_age_hva(start, end);
800
801 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
802 }
803
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)804 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
805 struct mm_struct *mm,
806 unsigned long start,
807 unsigned long end)
808 {
809 trace_kvm_age_hva(start, end);
810
811 /*
812 * Even though we do not flush TLB, this will still adversely
813 * affect performance on pre-Haswell Intel EPT, where there is
814 * no EPT Access Bit to clear so that we have to tear down EPT
815 * tables instead. If we find this unacceptable, we can always
816 * add a parameter to kvm_age_hva so that it effectively doesn't
817 * do anything on clear_young.
818 *
819 * Also note that currently we never issue secondary TLB flushes
820 * from clear_young, leaving this job up to the regular system
821 * cadence. If we find this inaccurate, we might come up with a
822 * more sophisticated heuristic later.
823 */
824 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
825 }
826
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)827 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
828 struct mm_struct *mm,
829 unsigned long address)
830 {
831 trace_kvm_test_age_hva(address);
832
833 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
834 kvm_test_age_gfn);
835 }
836
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)837 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
838 struct mm_struct *mm)
839 {
840 struct kvm *kvm = mmu_notifier_to_kvm(mn);
841 int idx;
842
843 idx = srcu_read_lock(&kvm->srcu);
844 kvm_flush_shadow_all(kvm);
845 srcu_read_unlock(&kvm->srcu, idx);
846 }
847
848 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
849 .invalidate_range = kvm_mmu_notifier_invalidate_range,
850 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
851 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
852 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
853 .clear_young = kvm_mmu_notifier_clear_young,
854 .test_young = kvm_mmu_notifier_test_young,
855 .change_pte = kvm_mmu_notifier_change_pte,
856 .release = kvm_mmu_notifier_release,
857 };
858
kvm_init_mmu_notifier(struct kvm * kvm)859 static int kvm_init_mmu_notifier(struct kvm *kvm)
860 {
861 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
862 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
863 }
864
865 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
866
kvm_init_mmu_notifier(struct kvm * kvm)867 static int kvm_init_mmu_notifier(struct kvm *kvm)
868 {
869 return 0;
870 }
871
872 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
873
874 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)875 static int kvm_pm_notifier_call(struct notifier_block *bl,
876 unsigned long state,
877 void *unused)
878 {
879 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
880
881 return kvm_arch_pm_notifier(kvm, state);
882 }
883
kvm_init_pm_notifier(struct kvm * kvm)884 static void kvm_init_pm_notifier(struct kvm *kvm)
885 {
886 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
887 /* Suspend KVM before we suspend ftrace, RCU, etc. */
888 kvm->pm_notifier.priority = INT_MAX;
889 register_pm_notifier(&kvm->pm_notifier);
890 }
891
kvm_destroy_pm_notifier(struct kvm * kvm)892 static void kvm_destroy_pm_notifier(struct kvm *kvm)
893 {
894 unregister_pm_notifier(&kvm->pm_notifier);
895 }
896 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)897 static void kvm_init_pm_notifier(struct kvm *kvm)
898 {
899 }
900
kvm_destroy_pm_notifier(struct kvm * kvm)901 static void kvm_destroy_pm_notifier(struct kvm *kvm)
902 {
903 }
904 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
905
kvm_alloc_memslots(void)906 static struct kvm_memslots *kvm_alloc_memslots(void)
907 {
908 int i;
909 struct kvm_memslots *slots;
910
911 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
912 if (!slots)
913 return NULL;
914
915 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
916 slots->id_to_index[i] = -1;
917
918 return slots;
919 }
920
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)921 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
922 {
923 if (!memslot->dirty_bitmap)
924 return;
925
926 kvfree(memslot->dirty_bitmap);
927 memslot->dirty_bitmap = NULL;
928 }
929
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)930 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
931 {
932 kvm_destroy_dirty_bitmap(slot);
933
934 kvm_arch_free_memslot(kvm, slot);
935
936 slot->flags = 0;
937 slot->npages = 0;
938 }
939
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)940 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
941 {
942 struct kvm_memory_slot *memslot;
943
944 if (!slots)
945 return;
946
947 kvm_for_each_memslot(memslot, slots)
948 kvm_free_memslot(kvm, memslot);
949
950 kvfree(slots);
951 }
952
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)953 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
954 {
955 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
956 case KVM_STATS_TYPE_INSTANT:
957 return 0444;
958 case KVM_STATS_TYPE_CUMULATIVE:
959 case KVM_STATS_TYPE_PEAK:
960 default:
961 return 0644;
962 }
963 }
964
965
kvm_destroy_vm_debugfs(struct kvm * kvm)966 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
967 {
968 int i;
969 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
970 kvm_vcpu_stats_header.num_desc;
971
972 if (IS_ERR(kvm->debugfs_dentry))
973 return;
974
975 debugfs_remove_recursive(kvm->debugfs_dentry);
976
977 if (kvm->debugfs_stat_data) {
978 for (i = 0; i < kvm_debugfs_num_entries; i++)
979 kfree(kvm->debugfs_stat_data[i]);
980 kfree(kvm->debugfs_stat_data);
981 }
982 }
983
kvm_create_vm_debugfs(struct kvm * kvm,int fd)984 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
985 {
986 static DEFINE_MUTEX(kvm_debugfs_lock);
987 struct dentry *dent;
988 char dir_name[ITOA_MAX_LEN * 2];
989 struct kvm_stat_data *stat_data;
990 const struct _kvm_stats_desc *pdesc;
991 int i, ret;
992 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
993 kvm_vcpu_stats_header.num_desc;
994
995 if (!debugfs_initialized())
996 return 0;
997
998 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
999 mutex_lock(&kvm_debugfs_lock);
1000 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1001 if (dent) {
1002 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1003 dput(dent);
1004 mutex_unlock(&kvm_debugfs_lock);
1005 return 0;
1006 }
1007 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1008 mutex_unlock(&kvm_debugfs_lock);
1009 if (IS_ERR(dent))
1010 return 0;
1011
1012 kvm->debugfs_dentry = dent;
1013 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1014 sizeof(*kvm->debugfs_stat_data),
1015 GFP_KERNEL_ACCOUNT);
1016 if (!kvm->debugfs_stat_data)
1017 return -ENOMEM;
1018
1019 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1020 pdesc = &kvm_vm_stats_desc[i];
1021 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1022 if (!stat_data)
1023 return -ENOMEM;
1024
1025 stat_data->kvm = kvm;
1026 stat_data->desc = pdesc;
1027 stat_data->kind = KVM_STAT_VM;
1028 kvm->debugfs_stat_data[i] = stat_data;
1029 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1030 kvm->debugfs_dentry, stat_data,
1031 &stat_fops_per_vm);
1032 }
1033
1034 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1035 pdesc = &kvm_vcpu_stats_desc[i];
1036 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1037 if (!stat_data)
1038 return -ENOMEM;
1039
1040 stat_data->kvm = kvm;
1041 stat_data->desc = pdesc;
1042 stat_data->kind = KVM_STAT_VCPU;
1043 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1044 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1045 kvm->debugfs_dentry, stat_data,
1046 &stat_fops_per_vm);
1047 }
1048
1049 ret = kvm_arch_create_vm_debugfs(kvm);
1050 if (ret) {
1051 kvm_destroy_vm_debugfs(kvm);
1052 return i;
1053 }
1054
1055 return 0;
1056 }
1057
1058 /*
1059 * Called after the VM is otherwise initialized, but just before adding it to
1060 * the vm_list.
1061 */
kvm_arch_post_init_vm(struct kvm * kvm)1062 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1063 {
1064 return 0;
1065 }
1066
1067 /*
1068 * Called just after removing the VM from the vm_list, but before doing any
1069 * other destruction.
1070 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1071 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1072 {
1073 }
1074
1075 /*
1076 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1077 * be setup already, so we can create arch-specific debugfs entries under it.
1078 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1079 * a per-arch destroy interface is not needed.
1080 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1081 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1082 {
1083 return 0;
1084 }
1085
kvm_create_vm(unsigned long type)1086 static struct kvm *kvm_create_vm(unsigned long type)
1087 {
1088 struct kvm *kvm = kvm_arch_alloc_vm();
1089 int r = -ENOMEM;
1090 int i;
1091
1092 if (!kvm)
1093 return ERR_PTR(-ENOMEM);
1094
1095 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1096 __module_get(kvm_chardev_ops.owner);
1097
1098 KVM_MMU_LOCK_INIT(kvm);
1099 mmgrab(current->mm);
1100 kvm->mm = current->mm;
1101 kvm_eventfd_init(kvm);
1102 mutex_init(&kvm->lock);
1103 mutex_init(&kvm->irq_lock);
1104 mutex_init(&kvm->slots_lock);
1105 mutex_init(&kvm->slots_arch_lock);
1106 spin_lock_init(&kvm->mn_invalidate_lock);
1107 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1108
1109 INIT_LIST_HEAD(&kvm->devices);
1110
1111 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1112
1113 /*
1114 * Force subsequent debugfs file creations to fail if the VM directory
1115 * is not created (by kvm_create_vm_debugfs()).
1116 */
1117 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1118
1119 if (init_srcu_struct(&kvm->srcu))
1120 goto out_err_no_srcu;
1121 if (init_srcu_struct(&kvm->irq_srcu))
1122 goto out_err_no_irq_srcu;
1123
1124 refcount_set(&kvm->users_count, 1);
1125 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1126 struct kvm_memslots *slots = kvm_alloc_memslots();
1127
1128 if (!slots)
1129 goto out_err_no_arch_destroy_vm;
1130 /* Generations must be different for each address space. */
1131 slots->generation = i;
1132 rcu_assign_pointer(kvm->memslots[i], slots);
1133 }
1134
1135 for (i = 0; i < KVM_NR_BUSES; i++) {
1136 rcu_assign_pointer(kvm->buses[i],
1137 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1138 if (!kvm->buses[i])
1139 goto out_err_no_arch_destroy_vm;
1140 }
1141
1142 kvm->max_halt_poll_ns = halt_poll_ns;
1143
1144 r = kvm_arch_init_vm(kvm, type);
1145 if (r)
1146 goto out_err_no_arch_destroy_vm;
1147
1148 r = hardware_enable_all();
1149 if (r)
1150 goto out_err_no_disable;
1151
1152 #ifdef CONFIG_HAVE_KVM_IRQFD
1153 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1154 #endif
1155
1156 r = kvm_init_mmu_notifier(kvm);
1157 if (r)
1158 goto out_err_no_mmu_notifier;
1159
1160 r = kvm_arch_post_init_vm(kvm);
1161 if (r)
1162 goto out_err;
1163
1164 mutex_lock(&kvm_lock);
1165 list_add(&kvm->vm_list, &vm_list);
1166 mutex_unlock(&kvm_lock);
1167
1168 preempt_notifier_inc();
1169 kvm_init_pm_notifier(kvm);
1170
1171 return kvm;
1172
1173 out_err:
1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1175 if (kvm->mmu_notifier.ops)
1176 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1177 #endif
1178 out_err_no_mmu_notifier:
1179 hardware_disable_all();
1180 out_err_no_disable:
1181 kvm_arch_destroy_vm(kvm);
1182 out_err_no_arch_destroy_vm:
1183 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1184 for (i = 0; i < KVM_NR_BUSES; i++)
1185 kfree(kvm_get_bus(kvm, i));
1186 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1187 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1188 cleanup_srcu_struct(&kvm->irq_srcu);
1189 out_err_no_irq_srcu:
1190 cleanup_srcu_struct(&kvm->srcu);
1191 out_err_no_srcu:
1192 kvm_arch_free_vm(kvm);
1193 mmdrop(current->mm);
1194 module_put(kvm_chardev_ops.owner);
1195 return ERR_PTR(r);
1196 }
1197
kvm_destroy_devices(struct kvm * kvm)1198 static void kvm_destroy_devices(struct kvm *kvm)
1199 {
1200 struct kvm_device *dev, *tmp;
1201
1202 /*
1203 * We do not need to take the kvm->lock here, because nobody else
1204 * has a reference to the struct kvm at this point and therefore
1205 * cannot access the devices list anyhow.
1206 */
1207 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1208 list_del(&dev->vm_node);
1209 dev->ops->destroy(dev);
1210 }
1211 }
1212
kvm_destroy_vm(struct kvm * kvm)1213 static void kvm_destroy_vm(struct kvm *kvm)
1214 {
1215 int i;
1216 struct mm_struct *mm = kvm->mm;
1217
1218 kvm_destroy_pm_notifier(kvm);
1219 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1220 kvm_destroy_vm_debugfs(kvm);
1221 kvm_arch_sync_events(kvm);
1222 mutex_lock(&kvm_lock);
1223 list_del(&kvm->vm_list);
1224 mutex_unlock(&kvm_lock);
1225 kvm_arch_pre_destroy_vm(kvm);
1226
1227 kvm_free_irq_routing(kvm);
1228 for (i = 0; i < KVM_NR_BUSES; i++) {
1229 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1230
1231 if (bus)
1232 kvm_io_bus_destroy(bus);
1233 kvm->buses[i] = NULL;
1234 }
1235 kvm_coalesced_mmio_free(kvm);
1236 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1237 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1238 /*
1239 * At this point, pending calls to invalidate_range_start()
1240 * have completed but no more MMU notifiers will run, so
1241 * mn_active_invalidate_count may remain unbalanced.
1242 * No threads can be waiting in install_new_memslots as the
1243 * last reference on KVM has been dropped, but freeing
1244 * memslots would deadlock without this manual intervention.
1245 */
1246 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1247 kvm->mn_active_invalidate_count = 0;
1248 #else
1249 kvm_flush_shadow_all(kvm);
1250 #endif
1251 kvm_arch_destroy_vm(kvm);
1252 kvm_destroy_devices(kvm);
1253 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1254 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1255 cleanup_srcu_struct(&kvm->irq_srcu);
1256 cleanup_srcu_struct(&kvm->srcu);
1257 kvm_arch_free_vm(kvm);
1258 preempt_notifier_dec();
1259 hardware_disable_all();
1260 mmdrop(mm);
1261 module_put(kvm_chardev_ops.owner);
1262 }
1263
kvm_get_kvm(struct kvm * kvm)1264 void kvm_get_kvm(struct kvm *kvm)
1265 {
1266 refcount_inc(&kvm->users_count);
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1269
1270 /*
1271 * Make sure the vm is not during destruction, which is a safe version of
1272 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1273 */
kvm_get_kvm_safe(struct kvm * kvm)1274 bool kvm_get_kvm_safe(struct kvm *kvm)
1275 {
1276 return refcount_inc_not_zero(&kvm->users_count);
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1279
kvm_put_kvm(struct kvm * kvm)1280 void kvm_put_kvm(struct kvm *kvm)
1281 {
1282 if (refcount_dec_and_test(&kvm->users_count))
1283 kvm_destroy_vm(kvm);
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1286
1287 /*
1288 * Used to put a reference that was taken on behalf of an object associated
1289 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1290 * of the new file descriptor fails and the reference cannot be transferred to
1291 * its final owner. In such cases, the caller is still actively using @kvm and
1292 * will fail miserably if the refcount unexpectedly hits zero.
1293 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1294 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1295 {
1296 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1299
kvm_vm_release(struct inode * inode,struct file * filp)1300 static int kvm_vm_release(struct inode *inode, struct file *filp)
1301 {
1302 struct kvm *kvm = filp->private_data;
1303
1304 kvm_irqfd_release(kvm);
1305
1306 kvm_put_kvm(kvm);
1307 return 0;
1308 }
1309
1310 /*
1311 * Allocation size is twice as large as the actual dirty bitmap size.
1312 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1313 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1314 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1315 {
1316 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1317
1318 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1319 if (!memslot->dirty_bitmap)
1320 return -ENOMEM;
1321
1322 return 0;
1323 }
1324
1325 /*
1326 * Delete a memslot by decrementing the number of used slots and shifting all
1327 * other entries in the array forward one spot.
1328 */
kvm_memslot_delete(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1329 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1330 struct kvm_memory_slot *memslot)
1331 {
1332 struct kvm_memory_slot *mslots = slots->memslots;
1333 int i;
1334
1335 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1336 return;
1337
1338 slots->used_slots--;
1339
1340 if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1341 atomic_set(&slots->last_used_slot, 0);
1342
1343 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1344 mslots[i] = mslots[i + 1];
1345 slots->id_to_index[mslots[i].id] = i;
1346 }
1347 mslots[i] = *memslot;
1348 slots->id_to_index[memslot->id] = -1;
1349 }
1350
1351 /*
1352 * "Insert" a new memslot by incrementing the number of used slots. Returns
1353 * the new slot's initial index into the memslots array.
1354 */
kvm_memslot_insert_back(struct kvm_memslots * slots)1355 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1356 {
1357 return slots->used_slots++;
1358 }
1359
1360 /*
1361 * Move a changed memslot backwards in the array by shifting existing slots
1362 * with a higher GFN toward the front of the array. Note, the changed memslot
1363 * itself is not preserved in the array, i.e. not swapped at this time, only
1364 * its new index into the array is tracked. Returns the changed memslot's
1365 * current index into the memslots array.
1366 */
kvm_memslot_move_backward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1367 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1368 struct kvm_memory_slot *memslot)
1369 {
1370 struct kvm_memory_slot *mslots = slots->memslots;
1371 int i;
1372
1373 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1374 WARN_ON_ONCE(!slots->used_slots))
1375 return -1;
1376
1377 /*
1378 * Move the target memslot backward in the array by shifting existing
1379 * memslots with a higher GFN (than the target memslot) towards the
1380 * front of the array.
1381 */
1382 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1383 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1384 break;
1385
1386 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1387
1388 /* Shift the next memslot forward one and update its index. */
1389 mslots[i] = mslots[i + 1];
1390 slots->id_to_index[mslots[i].id] = i;
1391 }
1392 return i;
1393 }
1394
1395 /*
1396 * Move a changed memslot forwards in the array by shifting existing slots with
1397 * a lower GFN toward the back of the array. Note, the changed memslot itself
1398 * is not preserved in the array, i.e. not swapped at this time, only its new
1399 * index into the array is tracked. Returns the changed memslot's final index
1400 * into the memslots array.
1401 */
kvm_memslot_move_forward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,int start)1402 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1403 struct kvm_memory_slot *memslot,
1404 int start)
1405 {
1406 struct kvm_memory_slot *mslots = slots->memslots;
1407 int i;
1408
1409 for (i = start; i > 0; i--) {
1410 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1411 break;
1412
1413 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1414
1415 /* Shift the next memslot back one and update its index. */
1416 mslots[i] = mslots[i - 1];
1417 slots->id_to_index[mslots[i].id] = i;
1418 }
1419 return i;
1420 }
1421
1422 /*
1423 * Re-sort memslots based on their GFN to account for an added, deleted, or
1424 * moved memslot. Sorting memslots by GFN allows using a binary search during
1425 * memslot lookup.
1426 *
1427 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1428 * at memslots[0] has the highest GFN.
1429 *
1430 * The sorting algorithm takes advantage of having initially sorted memslots
1431 * and knowing the position of the changed memslot. Sorting is also optimized
1432 * by not swapping the updated memslot and instead only shifting other memslots
1433 * and tracking the new index for the update memslot. Only once its final
1434 * index is known is the updated memslot copied into its position in the array.
1435 *
1436 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1437 * the end of the array.
1438 *
1439 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1440 * end of the array and then it forward to its correct location.
1441 *
1442 * - When moving a memslot, the algorithm first moves the updated memslot
1443 * backward to handle the scenario where the memslot's GFN was changed to a
1444 * lower value. update_memslots() then falls through and runs the same flow
1445 * as creating a memslot to move the memslot forward to handle the scenario
1446 * where its GFN was changed to a higher value.
1447 *
1448 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1449 * historical reasons. Originally, invalid memslots where denoted by having
1450 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1451 * to the end of the array. The current algorithm uses dedicated logic to
1452 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1453 *
1454 * The other historical motiviation for highest->lowest was to improve the
1455 * performance of memslot lookup. KVM originally used a linear search starting
1456 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1457 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1458 * single memslot above the 4gb boundary. As the largest memslot is also the
1459 * most likely to be referenced, sorting it to the front of the array was
1460 * advantageous. The current binary search starts from the middle of the array
1461 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1462 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,enum kvm_mr_change change)1463 static void update_memslots(struct kvm_memslots *slots,
1464 struct kvm_memory_slot *memslot,
1465 enum kvm_mr_change change)
1466 {
1467 int i;
1468
1469 if (change == KVM_MR_DELETE) {
1470 kvm_memslot_delete(slots, memslot);
1471 } else {
1472 if (change == KVM_MR_CREATE)
1473 i = kvm_memslot_insert_back(slots);
1474 else
1475 i = kvm_memslot_move_backward(slots, memslot);
1476 i = kvm_memslot_move_forward(slots, memslot, i);
1477
1478 /*
1479 * Copy the memslot to its new position in memslots and update
1480 * its index accordingly.
1481 */
1482 slots->memslots[i] = *memslot;
1483 slots->id_to_index[memslot->id] = i;
1484 }
1485 }
1486
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1487 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1488 {
1489 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1490
1491 #ifdef __KVM_HAVE_READONLY_MEM
1492 valid_flags |= KVM_MEM_READONLY;
1493 #endif
1494
1495 if (mem->flags & ~valid_flags)
1496 return -EINVAL;
1497
1498 return 0;
1499 }
1500
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)1501 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1502 int as_id, struct kvm_memslots *slots)
1503 {
1504 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1505 u64 gen = old_memslots->generation;
1506
1507 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1508 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1509
1510 /*
1511 * Do not store the new memslots while there are invalidations in
1512 * progress, otherwise the locking in invalidate_range_start and
1513 * invalidate_range_end will be unbalanced.
1514 */
1515 spin_lock(&kvm->mn_invalidate_lock);
1516 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1517 while (kvm->mn_active_invalidate_count) {
1518 set_current_state(TASK_UNINTERRUPTIBLE);
1519 spin_unlock(&kvm->mn_invalidate_lock);
1520 schedule();
1521 spin_lock(&kvm->mn_invalidate_lock);
1522 }
1523 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1524 rcu_assign_pointer(kvm->memslots[as_id], slots);
1525 spin_unlock(&kvm->mn_invalidate_lock);
1526
1527 /*
1528 * Acquired in kvm_set_memslot. Must be released before synchronize
1529 * SRCU below in order to avoid deadlock with another thread
1530 * acquiring the slots_arch_lock in an srcu critical section.
1531 */
1532 mutex_unlock(&kvm->slots_arch_lock);
1533
1534 synchronize_srcu_expedited(&kvm->srcu);
1535
1536 /*
1537 * Increment the new memslot generation a second time, dropping the
1538 * update in-progress flag and incrementing the generation based on
1539 * the number of address spaces. This provides a unique and easily
1540 * identifiable generation number while the memslots are in flux.
1541 */
1542 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1543
1544 /*
1545 * Generations must be unique even across address spaces. We do not need
1546 * a global counter for that, instead the generation space is evenly split
1547 * across address spaces. For example, with two address spaces, address
1548 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1549 * use generations 1, 3, 5, ...
1550 */
1551 gen += KVM_ADDRESS_SPACE_NUM;
1552
1553 kvm_arch_memslots_updated(kvm, gen);
1554
1555 slots->generation = gen;
1556
1557 return old_memslots;
1558 }
1559
kvm_memslots_size(int slots)1560 static size_t kvm_memslots_size(int slots)
1561 {
1562 return sizeof(struct kvm_memslots) +
1563 (sizeof(struct kvm_memory_slot) * slots);
1564 }
1565
kvm_copy_memslots(struct kvm_memslots * to,struct kvm_memslots * from)1566 static void kvm_copy_memslots(struct kvm_memslots *to,
1567 struct kvm_memslots *from)
1568 {
1569 memcpy(to, from, kvm_memslots_size(from->used_slots));
1570 }
1571
1572 /*
1573 * Note, at a minimum, the current number of used slots must be allocated, even
1574 * when deleting a memslot, as we need a complete duplicate of the memslots for
1575 * use when invalidating a memslot prior to deleting/moving the memslot.
1576 */
kvm_dup_memslots(struct kvm_memslots * old,enum kvm_mr_change change)1577 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1578 enum kvm_mr_change change)
1579 {
1580 struct kvm_memslots *slots;
1581 size_t new_size;
1582
1583 if (change == KVM_MR_CREATE)
1584 new_size = kvm_memslots_size(old->used_slots + 1);
1585 else
1586 new_size = kvm_memslots_size(old->used_slots);
1587
1588 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1589 if (likely(slots))
1590 kvm_copy_memslots(slots, old);
1591
1592 return slots;
1593 }
1594
kvm_set_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * new,int as_id,enum kvm_mr_change change)1595 static int kvm_set_memslot(struct kvm *kvm,
1596 const struct kvm_userspace_memory_region *mem,
1597 struct kvm_memory_slot *new, int as_id,
1598 enum kvm_mr_change change)
1599 {
1600 struct kvm_memory_slot *slot, old;
1601 struct kvm_memslots *slots;
1602 int r;
1603
1604 /*
1605 * Released in install_new_memslots.
1606 *
1607 * Must be held from before the current memslots are copied until
1608 * after the new memslots are installed with rcu_assign_pointer,
1609 * then released before the synchronize srcu in install_new_memslots.
1610 *
1611 * When modifying memslots outside of the slots_lock, must be held
1612 * before reading the pointer to the current memslots until after all
1613 * changes to those memslots are complete.
1614 *
1615 * These rules ensure that installing new memslots does not lose
1616 * changes made to the previous memslots.
1617 */
1618 mutex_lock(&kvm->slots_arch_lock);
1619
1620 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1621 if (!slots) {
1622 mutex_unlock(&kvm->slots_arch_lock);
1623 return -ENOMEM;
1624 }
1625
1626 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1627 /*
1628 * Note, the INVALID flag needs to be in the appropriate entry
1629 * in the freshly allocated memslots, not in @old or @new.
1630 */
1631 slot = id_to_memslot(slots, new->id);
1632 slot->flags |= KVM_MEMSLOT_INVALID;
1633
1634 /*
1635 * We can re-use the memory from the old memslots.
1636 * It will be overwritten with a copy of the new memslots
1637 * after reacquiring the slots_arch_lock below.
1638 */
1639 slots = install_new_memslots(kvm, as_id, slots);
1640
1641 /* From this point no new shadow pages pointing to a deleted,
1642 * or moved, memslot will be created.
1643 *
1644 * validation of sp->gfn happens in:
1645 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1646 * - kvm_is_visible_gfn (mmu_check_root)
1647 */
1648 kvm_arch_flush_shadow_memslot(kvm, slot);
1649 kvm_arch_guest_memory_reclaimed(kvm);
1650
1651 /* Released in install_new_memslots. */
1652 mutex_lock(&kvm->slots_arch_lock);
1653
1654 /*
1655 * The arch-specific fields of the memslots could have changed
1656 * between releasing the slots_arch_lock in
1657 * install_new_memslots and here, so get a fresh copy of the
1658 * slots.
1659 */
1660 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1661 }
1662
1663 /*
1664 * Make a full copy of the old memslot, the pointer will become stale
1665 * when the memslots are re-sorted by update_memslots(), and the old
1666 * memslot needs to be referenced after calling update_memslots(), e.g.
1667 * to free its resources and for arch specific behavior. This needs to
1668 * happen *after* (re)acquiring slots_arch_lock.
1669 */
1670 slot = id_to_memslot(slots, new->id);
1671 if (slot) {
1672 old = *slot;
1673 } else {
1674 WARN_ON_ONCE(change != KVM_MR_CREATE);
1675 memset(&old, 0, sizeof(old));
1676 old.id = new->id;
1677 old.as_id = as_id;
1678 }
1679
1680 /* Copy the arch-specific data, again after (re)acquiring slots_arch_lock. */
1681 memcpy(&new->arch, &old.arch, sizeof(old.arch));
1682
1683 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1684 if (r)
1685 goto out_slots;
1686
1687 update_memslots(slots, new, change);
1688 slots = install_new_memslots(kvm, as_id, slots);
1689
1690 kvm_arch_commit_memory_region(kvm, mem, &old, new, change);
1691
1692 /* Free the old memslot's metadata. Note, this is the full copy!!! */
1693 if (change == KVM_MR_DELETE)
1694 kvm_free_memslot(kvm, &old);
1695
1696 kvfree(slots);
1697 return 0;
1698
1699 out_slots:
1700 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1701 slot = id_to_memslot(slots, new->id);
1702 slot->flags &= ~KVM_MEMSLOT_INVALID;
1703 slots = install_new_memslots(kvm, as_id, slots);
1704 } else {
1705 mutex_unlock(&kvm->slots_arch_lock);
1706 }
1707 kvfree(slots);
1708 return r;
1709 }
1710
kvm_delete_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,int as_id)1711 static int kvm_delete_memslot(struct kvm *kvm,
1712 const struct kvm_userspace_memory_region *mem,
1713 struct kvm_memory_slot *old, int as_id)
1714 {
1715 struct kvm_memory_slot new;
1716
1717 if (!old->npages)
1718 return -EINVAL;
1719
1720 memset(&new, 0, sizeof(new));
1721 new.id = old->id;
1722 /*
1723 * This is only for debugging purpose; it should never be referenced
1724 * for a removed memslot.
1725 */
1726 new.as_id = as_id;
1727
1728 return kvm_set_memslot(kvm, mem, &new, as_id, KVM_MR_DELETE);
1729 }
1730
1731 /*
1732 * Allocate some memory and give it an address in the guest physical address
1733 * space.
1734 *
1735 * Discontiguous memory is allowed, mostly for framebuffers.
1736 *
1737 * Must be called holding kvm->slots_lock for write.
1738 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1739 int __kvm_set_memory_region(struct kvm *kvm,
1740 const struct kvm_userspace_memory_region *mem)
1741 {
1742 struct kvm_memory_slot old, new;
1743 struct kvm_memory_slot *tmp;
1744 enum kvm_mr_change change;
1745 int as_id, id;
1746 int r;
1747
1748 r = check_memory_region_flags(mem);
1749 if (r)
1750 return r;
1751
1752 as_id = mem->slot >> 16;
1753 id = (u16)mem->slot;
1754
1755 /* General sanity checks */
1756 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1757 (mem->memory_size != (unsigned long)mem->memory_size))
1758 return -EINVAL;
1759 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1760 return -EINVAL;
1761 /* We can read the guest memory with __xxx_user() later on. */
1762 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1763 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1764 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1765 mem->memory_size))
1766 return -EINVAL;
1767 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1768 return -EINVAL;
1769 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1770 return -EINVAL;
1771
1772 /*
1773 * Make a full copy of the old memslot, the pointer will become stale
1774 * when the memslots are re-sorted by update_memslots(), and the old
1775 * memslot needs to be referenced after calling update_memslots(), e.g.
1776 * to free its resources and for arch specific behavior.
1777 */
1778 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1779 if (tmp) {
1780 old = *tmp;
1781 tmp = NULL;
1782 } else {
1783 memset(&old, 0, sizeof(old));
1784 old.id = id;
1785 }
1786
1787 if (!mem->memory_size)
1788 return kvm_delete_memslot(kvm, mem, &old, as_id);
1789
1790 new.as_id = as_id;
1791 new.id = id;
1792 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1793 new.npages = mem->memory_size >> PAGE_SHIFT;
1794 new.flags = mem->flags;
1795 new.userspace_addr = mem->userspace_addr;
1796
1797 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1798 return -EINVAL;
1799
1800 if (!old.npages) {
1801 change = KVM_MR_CREATE;
1802 new.dirty_bitmap = NULL;
1803 } else { /* Modify an existing slot. */
1804 if ((new.userspace_addr != old.userspace_addr) ||
1805 (new.npages != old.npages) ||
1806 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1807 return -EINVAL;
1808
1809 if (new.base_gfn != old.base_gfn)
1810 change = KVM_MR_MOVE;
1811 else if (new.flags != old.flags)
1812 change = KVM_MR_FLAGS_ONLY;
1813 else /* Nothing to change. */
1814 return 0;
1815
1816 /* Copy dirty_bitmap from the current memslot. */
1817 new.dirty_bitmap = old.dirty_bitmap;
1818 }
1819
1820 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1821 /* Check for overlaps */
1822 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1823 if (tmp->id == id)
1824 continue;
1825 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1826 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1827 return -EEXIST;
1828 }
1829 }
1830
1831 /* Allocate/free page dirty bitmap as needed */
1832 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1833 new.dirty_bitmap = NULL;
1834 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1835 r = kvm_alloc_dirty_bitmap(&new);
1836 if (r)
1837 return r;
1838
1839 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1840 bitmap_set(new.dirty_bitmap, 0, new.npages);
1841 }
1842
1843 r = kvm_set_memslot(kvm, mem, &new, as_id, change);
1844 if (r)
1845 goto out_bitmap;
1846
1847 if (old.dirty_bitmap && !new.dirty_bitmap)
1848 kvm_destroy_dirty_bitmap(&old);
1849 return 0;
1850
1851 out_bitmap:
1852 if (new.dirty_bitmap && !old.dirty_bitmap)
1853 kvm_destroy_dirty_bitmap(&new);
1854 return r;
1855 }
1856 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1857
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1858 int kvm_set_memory_region(struct kvm *kvm,
1859 const struct kvm_userspace_memory_region *mem)
1860 {
1861 int r;
1862
1863 mutex_lock(&kvm->slots_lock);
1864 r = __kvm_set_memory_region(kvm, mem);
1865 mutex_unlock(&kvm->slots_lock);
1866 return r;
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1869
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1870 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1871 struct kvm_userspace_memory_region *mem)
1872 {
1873 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1874 return -EINVAL;
1875
1876 return kvm_set_memory_region(kvm, mem);
1877 }
1878
1879 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1880 /**
1881 * kvm_get_dirty_log - get a snapshot of dirty pages
1882 * @kvm: pointer to kvm instance
1883 * @log: slot id and address to which we copy the log
1884 * @is_dirty: set to '1' if any dirty pages were found
1885 * @memslot: set to the associated memslot, always valid on success
1886 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)1887 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1888 int *is_dirty, struct kvm_memory_slot **memslot)
1889 {
1890 struct kvm_memslots *slots;
1891 int i, as_id, id;
1892 unsigned long n;
1893 unsigned long any = 0;
1894
1895 /* Dirty ring tracking is exclusive to dirty log tracking */
1896 if (kvm->dirty_ring_size)
1897 return -ENXIO;
1898
1899 *memslot = NULL;
1900 *is_dirty = 0;
1901
1902 as_id = log->slot >> 16;
1903 id = (u16)log->slot;
1904 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1905 return -EINVAL;
1906
1907 slots = __kvm_memslots(kvm, as_id);
1908 *memslot = id_to_memslot(slots, id);
1909 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1910 return -ENOENT;
1911
1912 kvm_arch_sync_dirty_log(kvm, *memslot);
1913
1914 n = kvm_dirty_bitmap_bytes(*memslot);
1915
1916 for (i = 0; !any && i < n/sizeof(long); ++i)
1917 any = (*memslot)->dirty_bitmap[i];
1918
1919 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1920 return -EFAULT;
1921
1922 if (any)
1923 *is_dirty = 1;
1924 return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1927
1928 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1929 /**
1930 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1931 * and reenable dirty page tracking for the corresponding pages.
1932 * @kvm: pointer to kvm instance
1933 * @log: slot id and address to which we copy the log
1934 *
1935 * We need to keep it in mind that VCPU threads can write to the bitmap
1936 * concurrently. So, to avoid losing track of dirty pages we keep the
1937 * following order:
1938 *
1939 * 1. Take a snapshot of the bit and clear it if needed.
1940 * 2. Write protect the corresponding page.
1941 * 3. Copy the snapshot to the userspace.
1942 * 4. Upon return caller flushes TLB's if needed.
1943 *
1944 * Between 2 and 4, the guest may write to the page using the remaining TLB
1945 * entry. This is not a problem because the page is reported dirty using
1946 * the snapshot taken before and step 4 ensures that writes done after
1947 * exiting to userspace will be logged for the next call.
1948 *
1949 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)1950 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1951 {
1952 struct kvm_memslots *slots;
1953 struct kvm_memory_slot *memslot;
1954 int i, as_id, id;
1955 unsigned long n;
1956 unsigned long *dirty_bitmap;
1957 unsigned long *dirty_bitmap_buffer;
1958 bool flush;
1959
1960 /* Dirty ring tracking is exclusive to dirty log tracking */
1961 if (kvm->dirty_ring_size)
1962 return -ENXIO;
1963
1964 as_id = log->slot >> 16;
1965 id = (u16)log->slot;
1966 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1967 return -EINVAL;
1968
1969 slots = __kvm_memslots(kvm, as_id);
1970 memslot = id_to_memslot(slots, id);
1971 if (!memslot || !memslot->dirty_bitmap)
1972 return -ENOENT;
1973
1974 dirty_bitmap = memslot->dirty_bitmap;
1975
1976 kvm_arch_sync_dirty_log(kvm, memslot);
1977
1978 n = kvm_dirty_bitmap_bytes(memslot);
1979 flush = false;
1980 if (kvm->manual_dirty_log_protect) {
1981 /*
1982 * Unlike kvm_get_dirty_log, we always return false in *flush,
1983 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1984 * is some code duplication between this function and
1985 * kvm_get_dirty_log, but hopefully all architecture
1986 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1987 * can be eliminated.
1988 */
1989 dirty_bitmap_buffer = dirty_bitmap;
1990 } else {
1991 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1992 memset(dirty_bitmap_buffer, 0, n);
1993
1994 KVM_MMU_LOCK(kvm);
1995 for (i = 0; i < n / sizeof(long); i++) {
1996 unsigned long mask;
1997 gfn_t offset;
1998
1999 if (!dirty_bitmap[i])
2000 continue;
2001
2002 flush = true;
2003 mask = xchg(&dirty_bitmap[i], 0);
2004 dirty_bitmap_buffer[i] = mask;
2005
2006 offset = i * BITS_PER_LONG;
2007 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2008 offset, mask);
2009 }
2010 KVM_MMU_UNLOCK(kvm);
2011 }
2012
2013 if (flush)
2014 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2015
2016 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2017 return -EFAULT;
2018 return 0;
2019 }
2020
2021
2022 /**
2023 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2024 * @kvm: kvm instance
2025 * @log: slot id and address to which we copy the log
2026 *
2027 * Steps 1-4 below provide general overview of dirty page logging. See
2028 * kvm_get_dirty_log_protect() function description for additional details.
2029 *
2030 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2031 * always flush the TLB (step 4) even if previous step failed and the dirty
2032 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2033 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2034 * writes will be marked dirty for next log read.
2035 *
2036 * 1. Take a snapshot of the bit and clear it if needed.
2037 * 2. Write protect the corresponding page.
2038 * 3. Copy the snapshot to the userspace.
2039 * 4. Flush TLB's if needed.
2040 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2041 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2042 struct kvm_dirty_log *log)
2043 {
2044 int r;
2045
2046 mutex_lock(&kvm->slots_lock);
2047
2048 r = kvm_get_dirty_log_protect(kvm, log);
2049
2050 mutex_unlock(&kvm->slots_lock);
2051 return r;
2052 }
2053
2054 /**
2055 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2056 * and reenable dirty page tracking for the corresponding pages.
2057 * @kvm: pointer to kvm instance
2058 * @log: slot id and address from which to fetch the bitmap of dirty pages
2059 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2060 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2061 struct kvm_clear_dirty_log *log)
2062 {
2063 struct kvm_memslots *slots;
2064 struct kvm_memory_slot *memslot;
2065 int as_id, id;
2066 gfn_t offset;
2067 unsigned long i, n;
2068 unsigned long *dirty_bitmap;
2069 unsigned long *dirty_bitmap_buffer;
2070 bool flush;
2071
2072 /* Dirty ring tracking is exclusive to dirty log tracking */
2073 if (kvm->dirty_ring_size)
2074 return -ENXIO;
2075
2076 as_id = log->slot >> 16;
2077 id = (u16)log->slot;
2078 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2079 return -EINVAL;
2080
2081 if (log->first_page & 63)
2082 return -EINVAL;
2083
2084 slots = __kvm_memslots(kvm, as_id);
2085 memslot = id_to_memslot(slots, id);
2086 if (!memslot || !memslot->dirty_bitmap)
2087 return -ENOENT;
2088
2089 dirty_bitmap = memslot->dirty_bitmap;
2090
2091 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2092
2093 if (log->first_page > memslot->npages ||
2094 log->num_pages > memslot->npages - log->first_page ||
2095 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2096 return -EINVAL;
2097
2098 kvm_arch_sync_dirty_log(kvm, memslot);
2099
2100 flush = false;
2101 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2102 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2103 return -EFAULT;
2104
2105 KVM_MMU_LOCK(kvm);
2106 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2107 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2108 i++, offset += BITS_PER_LONG) {
2109 unsigned long mask = *dirty_bitmap_buffer++;
2110 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2111 if (!mask)
2112 continue;
2113
2114 mask &= atomic_long_fetch_andnot(mask, p);
2115
2116 /*
2117 * mask contains the bits that really have been cleared. This
2118 * never includes any bits beyond the length of the memslot (if
2119 * the length is not aligned to 64 pages), therefore it is not
2120 * a problem if userspace sets them in log->dirty_bitmap.
2121 */
2122 if (mask) {
2123 flush = true;
2124 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2125 offset, mask);
2126 }
2127 }
2128 KVM_MMU_UNLOCK(kvm);
2129
2130 if (flush)
2131 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2132
2133 return 0;
2134 }
2135
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2136 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2137 struct kvm_clear_dirty_log *log)
2138 {
2139 int r;
2140
2141 mutex_lock(&kvm->slots_lock);
2142
2143 r = kvm_clear_dirty_log_protect(kvm, log);
2144
2145 mutex_unlock(&kvm->slots_lock);
2146 return r;
2147 }
2148 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2149
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2150 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2151 {
2152 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2153 }
2154 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2155
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2156 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2157 {
2158 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2159 struct kvm_memory_slot *slot;
2160 int slot_index;
2161
2162 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2163 if (slot)
2164 return slot;
2165
2166 /*
2167 * Fall back to searching all memslots. We purposely use
2168 * search_memslots() instead of __gfn_to_memslot() to avoid
2169 * thrashing the VM-wide last_used_index in kvm_memslots.
2170 */
2171 slot = search_memslots(slots, gfn, &slot_index);
2172 if (slot) {
2173 vcpu->last_used_slot = slot_index;
2174 return slot;
2175 }
2176
2177 return NULL;
2178 }
2179
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2180 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2181 {
2182 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2183
2184 return kvm_is_visible_memslot(memslot);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2187
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2188 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2189 {
2190 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2191
2192 return kvm_is_visible_memslot(memslot);
2193 }
2194 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2195
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2196 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2197 {
2198 struct vm_area_struct *vma;
2199 unsigned long addr, size;
2200
2201 size = PAGE_SIZE;
2202
2203 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2204 if (kvm_is_error_hva(addr))
2205 return PAGE_SIZE;
2206
2207 mmap_read_lock(current->mm);
2208 vma = find_vma(current->mm, addr);
2209 if (!vma)
2210 goto out;
2211
2212 size = vma_kernel_pagesize(vma);
2213
2214 out:
2215 mmap_read_unlock(current->mm);
2216
2217 return size;
2218 }
2219
memslot_is_readonly(struct kvm_memory_slot * slot)2220 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2221 {
2222 return slot->flags & KVM_MEM_READONLY;
2223 }
2224
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2225 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2226 gfn_t *nr_pages, bool write)
2227 {
2228 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2229 return KVM_HVA_ERR_BAD;
2230
2231 if (memslot_is_readonly(slot) && write)
2232 return KVM_HVA_ERR_RO_BAD;
2233
2234 if (nr_pages)
2235 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2236
2237 return __gfn_to_hva_memslot(slot, gfn);
2238 }
2239
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2240 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2241 gfn_t *nr_pages)
2242 {
2243 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2244 }
2245
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2246 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2247 gfn_t gfn)
2248 {
2249 return gfn_to_hva_many(slot, gfn, NULL);
2250 }
2251 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2252
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2253 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2254 {
2255 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2256 }
2257 EXPORT_SYMBOL_GPL(gfn_to_hva);
2258
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2259 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2260 {
2261 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2262 }
2263 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2264
2265 /*
2266 * Return the hva of a @gfn and the R/W attribute if possible.
2267 *
2268 * @slot: the kvm_memory_slot which contains @gfn
2269 * @gfn: the gfn to be translated
2270 * @writable: used to return the read/write attribute of the @slot if the hva
2271 * is valid and @writable is not NULL
2272 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2273 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2274 gfn_t gfn, bool *writable)
2275 {
2276 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2277
2278 if (!kvm_is_error_hva(hva) && writable)
2279 *writable = !memslot_is_readonly(slot);
2280
2281 return hva;
2282 }
2283
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2284 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2285 {
2286 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2287
2288 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2289 }
2290
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2291 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2292 {
2293 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2294
2295 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2296 }
2297
check_user_page_hwpoison(unsigned long addr)2298 static inline int check_user_page_hwpoison(unsigned long addr)
2299 {
2300 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2301
2302 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2303 return rc == -EHWPOISON;
2304 }
2305
2306 /*
2307 * The fast path to get the writable pfn which will be stored in @pfn,
2308 * true indicates success, otherwise false is returned. It's also the
2309 * only part that runs if we can in atomic context.
2310 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2311 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2312 bool *writable, kvm_pfn_t *pfn)
2313 {
2314 struct page *page[1];
2315
2316 /*
2317 * Fast pin a writable pfn only if it is a write fault request
2318 * or the caller allows to map a writable pfn for a read fault
2319 * request.
2320 */
2321 if (!(write_fault || writable))
2322 return false;
2323
2324 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2325 *pfn = page_to_pfn(page[0]);
2326
2327 if (writable)
2328 *writable = true;
2329 return true;
2330 }
2331
2332 return false;
2333 }
2334
2335 /*
2336 * The slow path to get the pfn of the specified host virtual address,
2337 * 1 indicates success, -errno is returned if error is detected.
2338 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)2339 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2340 bool *writable, kvm_pfn_t *pfn)
2341 {
2342 unsigned int flags = FOLL_HWPOISON;
2343 struct page *page;
2344 int npages = 0;
2345
2346 might_sleep();
2347
2348 if (writable)
2349 *writable = write_fault;
2350
2351 if (write_fault)
2352 flags |= FOLL_WRITE;
2353 if (async)
2354 flags |= FOLL_NOWAIT;
2355
2356 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2357 if (npages != 1)
2358 return npages;
2359
2360 /* map read fault as writable if possible */
2361 if (unlikely(!write_fault) && writable) {
2362 struct page *wpage;
2363
2364 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2365 *writable = true;
2366 put_page(page);
2367 page = wpage;
2368 }
2369 }
2370 *pfn = page_to_pfn(page);
2371 return npages;
2372 }
2373
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2374 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2375 {
2376 if (unlikely(!(vma->vm_flags & VM_READ)))
2377 return false;
2378
2379 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2380 return false;
2381
2382 return true;
2383 }
2384
kvm_try_get_pfn(kvm_pfn_t pfn)2385 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2386 {
2387 if (kvm_is_reserved_pfn(pfn))
2388 return 1;
2389 return get_page_unless_zero(pfn_to_page(pfn));
2390 }
2391
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2392 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2393 unsigned long addr, bool *async,
2394 bool write_fault, bool *writable,
2395 kvm_pfn_t *p_pfn)
2396 {
2397 kvm_pfn_t pfn;
2398 pte_t *ptep;
2399 spinlock_t *ptl;
2400 int r;
2401
2402 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2403 if (r) {
2404 /*
2405 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2406 * not call the fault handler, so do it here.
2407 */
2408 bool unlocked = false;
2409 r = fixup_user_fault(current->mm, addr,
2410 (write_fault ? FAULT_FLAG_WRITE : 0),
2411 &unlocked);
2412 if (unlocked)
2413 return -EAGAIN;
2414 if (r)
2415 return r;
2416
2417 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2418 if (r)
2419 return r;
2420 }
2421
2422 if (write_fault && !pte_write(*ptep)) {
2423 pfn = KVM_PFN_ERR_RO_FAULT;
2424 goto out;
2425 }
2426
2427 if (writable)
2428 *writable = pte_write(*ptep);
2429 pfn = pte_pfn(*ptep);
2430
2431 /*
2432 * Get a reference here because callers of *hva_to_pfn* and
2433 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2434 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2435 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2436 * simply do nothing for reserved pfns.
2437 *
2438 * Whoever called remap_pfn_range is also going to call e.g.
2439 * unmap_mapping_range before the underlying pages are freed,
2440 * causing a call to our MMU notifier.
2441 *
2442 * Certain IO or PFNMAP mappings can be backed with valid
2443 * struct pages, but be allocated without refcounting e.g.,
2444 * tail pages of non-compound higher order allocations, which
2445 * would then underflow the refcount when the caller does the
2446 * required put_page. Don't allow those pages here.
2447 */
2448 if (!kvm_try_get_pfn(pfn))
2449 r = -EFAULT;
2450
2451 out:
2452 pte_unmap_unlock(ptep, ptl);
2453 *p_pfn = pfn;
2454
2455 return r;
2456 }
2457
2458 /*
2459 * Pin guest page in memory and return its pfn.
2460 * @addr: host virtual address which maps memory to the guest
2461 * @atomic: whether this function can sleep
2462 * @async: whether this function need to wait IO complete if the
2463 * host page is not in the memory
2464 * @write_fault: whether we should get a writable host page
2465 * @writable: whether it allows to map a writable host page for !@write_fault
2466 *
2467 * The function will map a writable host page for these two cases:
2468 * 1): @write_fault = true
2469 * 2): @write_fault = false && @writable, @writable will tell the caller
2470 * whether the mapping is writable.
2471 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)2472 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2473 bool write_fault, bool *writable)
2474 {
2475 struct vm_area_struct *vma;
2476 kvm_pfn_t pfn = 0;
2477 int npages, r;
2478
2479 /* we can do it either atomically or asynchronously, not both */
2480 BUG_ON(atomic && async);
2481
2482 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2483 return pfn;
2484
2485 if (atomic)
2486 return KVM_PFN_ERR_FAULT;
2487
2488 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2489 if (npages == 1)
2490 return pfn;
2491
2492 mmap_read_lock(current->mm);
2493 if (npages == -EHWPOISON ||
2494 (!async && check_user_page_hwpoison(addr))) {
2495 pfn = KVM_PFN_ERR_HWPOISON;
2496 goto exit;
2497 }
2498
2499 retry:
2500 vma = vma_lookup(current->mm, addr);
2501
2502 if (vma == NULL)
2503 pfn = KVM_PFN_ERR_FAULT;
2504 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2505 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2506 if (r == -EAGAIN)
2507 goto retry;
2508 if (r < 0)
2509 pfn = KVM_PFN_ERR_FAULT;
2510 } else {
2511 if (async && vma_is_valid(vma, write_fault))
2512 *async = true;
2513 pfn = KVM_PFN_ERR_FAULT;
2514 }
2515 exit:
2516 mmap_read_unlock(current->mm);
2517 return pfn;
2518 }
2519
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable,hva_t * hva)2520 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2521 bool atomic, bool *async, bool write_fault,
2522 bool *writable, hva_t *hva)
2523 {
2524 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2525
2526 if (hva)
2527 *hva = addr;
2528
2529 if (addr == KVM_HVA_ERR_RO_BAD) {
2530 if (writable)
2531 *writable = false;
2532 return KVM_PFN_ERR_RO_FAULT;
2533 }
2534
2535 if (kvm_is_error_hva(addr)) {
2536 if (writable)
2537 *writable = false;
2538 return KVM_PFN_NOSLOT;
2539 }
2540
2541 /* Do not map writable pfn in the readonly memslot. */
2542 if (writable && memslot_is_readonly(slot)) {
2543 *writable = false;
2544 writable = NULL;
2545 }
2546
2547 return hva_to_pfn(addr, atomic, async, write_fault,
2548 writable);
2549 }
2550 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2551
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2552 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2553 bool *writable)
2554 {
2555 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2556 write_fault, writable, NULL);
2557 }
2558 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2559
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2560 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2561 {
2562 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2563 }
2564 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2565
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)2566 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2567 {
2568 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2569 }
2570 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2571
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2572 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2573 {
2574 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2577
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2578 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2579 {
2580 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2581 }
2582 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2583
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2584 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2585 {
2586 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2589
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2590 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2591 struct page **pages, int nr_pages)
2592 {
2593 unsigned long addr;
2594 gfn_t entry = 0;
2595
2596 addr = gfn_to_hva_many(slot, gfn, &entry);
2597 if (kvm_is_error_hva(addr))
2598 return -1;
2599
2600 if (entry < nr_pages)
2601 return 0;
2602
2603 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2604 }
2605 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2606
kvm_pfn_to_page(kvm_pfn_t pfn)2607 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2608 {
2609 if (is_error_noslot_pfn(pfn))
2610 return KVM_ERR_PTR_BAD_PAGE;
2611
2612 if (kvm_is_reserved_pfn(pfn)) {
2613 WARN_ON(1);
2614 return KVM_ERR_PTR_BAD_PAGE;
2615 }
2616
2617 return pfn_to_page(pfn);
2618 }
2619
gfn_to_page(struct kvm * kvm,gfn_t gfn)2620 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2621 {
2622 kvm_pfn_t pfn;
2623
2624 pfn = gfn_to_pfn(kvm, gfn);
2625
2626 return kvm_pfn_to_page(pfn);
2627 }
2628 EXPORT_SYMBOL_GPL(gfn_to_page);
2629
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)2630 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2631 {
2632 if (pfn == 0)
2633 return;
2634
2635 if (cache)
2636 cache->pfn = cache->gfn = 0;
2637
2638 if (dirty)
2639 kvm_release_pfn_dirty(pfn);
2640 else
2641 kvm_release_pfn_clean(pfn);
2642 }
2643
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)2644 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2645 struct gfn_to_pfn_cache *cache, u64 gen)
2646 {
2647 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2648
2649 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2650 cache->gfn = gfn;
2651 cache->dirty = false;
2652 cache->generation = gen;
2653 }
2654
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2655 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2656 struct kvm_host_map *map,
2657 struct gfn_to_pfn_cache *cache,
2658 bool atomic)
2659 {
2660 kvm_pfn_t pfn;
2661 void *hva = NULL;
2662 struct page *page = KVM_UNMAPPED_PAGE;
2663 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2664 u64 gen = slots->generation;
2665
2666 if (!map)
2667 return -EINVAL;
2668
2669 if (cache) {
2670 if (!cache->pfn || cache->gfn != gfn ||
2671 cache->generation != gen) {
2672 if (atomic)
2673 return -EAGAIN;
2674 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2675 }
2676 pfn = cache->pfn;
2677 } else {
2678 if (atomic)
2679 return -EAGAIN;
2680 pfn = gfn_to_pfn_memslot(slot, gfn);
2681 }
2682 if (is_error_noslot_pfn(pfn))
2683 return -EINVAL;
2684
2685 if (pfn_valid(pfn)) {
2686 page = pfn_to_page(pfn);
2687 if (atomic)
2688 hva = kmap_atomic(page);
2689 else
2690 hva = kmap(page);
2691 #ifdef CONFIG_HAS_IOMEM
2692 } else if (!atomic) {
2693 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2694 } else {
2695 return -EINVAL;
2696 #endif
2697 }
2698
2699 if (!hva)
2700 return -EFAULT;
2701
2702 map->page = page;
2703 map->hva = hva;
2704 map->pfn = pfn;
2705 map->gfn = gfn;
2706
2707 return 0;
2708 }
2709
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2710 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2711 struct gfn_to_pfn_cache *cache, bool atomic)
2712 {
2713 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2714 cache, atomic);
2715 }
2716 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2717
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2718 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2719 {
2720 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2721 NULL, false);
2722 }
2723 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2724
__kvm_unmap_gfn(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2725 static void __kvm_unmap_gfn(struct kvm *kvm,
2726 struct kvm_memory_slot *memslot,
2727 struct kvm_host_map *map,
2728 struct gfn_to_pfn_cache *cache,
2729 bool dirty, bool atomic)
2730 {
2731 if (!map)
2732 return;
2733
2734 if (!map->hva)
2735 return;
2736
2737 if (map->page != KVM_UNMAPPED_PAGE) {
2738 if (atomic)
2739 kunmap_atomic(map->hva);
2740 else
2741 kunmap(map->page);
2742 }
2743 #ifdef CONFIG_HAS_IOMEM
2744 else if (!atomic)
2745 memunmap(map->hva);
2746 else
2747 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2748 #endif
2749
2750 if (dirty)
2751 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2752
2753 if (cache)
2754 cache->dirty |= dirty;
2755 else
2756 kvm_release_pfn(map->pfn, dirty, NULL);
2757
2758 map->hva = NULL;
2759 map->page = NULL;
2760 }
2761
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2762 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2763 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2764 {
2765 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2766 cache, dirty, atomic);
2767 return 0;
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2770
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2771 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2772 {
2773 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2774 map, NULL, dirty, false);
2775 }
2776 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2777
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)2778 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2779 {
2780 kvm_pfn_t pfn;
2781
2782 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2783
2784 return kvm_pfn_to_page(pfn);
2785 }
2786 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2787
kvm_release_page_clean(struct page * page)2788 void kvm_release_page_clean(struct page *page)
2789 {
2790 WARN_ON(is_error_page(page));
2791
2792 kvm_release_pfn_clean(page_to_pfn(page));
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2795
kvm_release_pfn_clean(kvm_pfn_t pfn)2796 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2797 {
2798 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2799 put_page(pfn_to_page(pfn));
2800 }
2801 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2802
kvm_release_page_dirty(struct page * page)2803 void kvm_release_page_dirty(struct page *page)
2804 {
2805 WARN_ON(is_error_page(page));
2806
2807 kvm_release_pfn_dirty(page_to_pfn(page));
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2810
kvm_release_pfn_dirty(kvm_pfn_t pfn)2811 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2812 {
2813 kvm_set_pfn_dirty(pfn);
2814 kvm_release_pfn_clean(pfn);
2815 }
2816 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2817
kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)2818 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2819 {
2820 if (!pfn_valid(pfn))
2821 return false;
2822
2823 /*
2824 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2825 * touched (e.g. set dirty) except by its owner".
2826 */
2827 return !PageReserved(pfn_to_page(pfn));
2828 }
2829
kvm_set_pfn_dirty(kvm_pfn_t pfn)2830 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2831 {
2832 if (kvm_is_ad_tracked_pfn(pfn))
2833 SetPageDirty(pfn_to_page(pfn));
2834 }
2835 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2836
kvm_set_pfn_accessed(kvm_pfn_t pfn)2837 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2838 {
2839 if (kvm_is_ad_tracked_pfn(pfn))
2840 mark_page_accessed(pfn_to_page(pfn));
2841 }
2842 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2843
next_segment(unsigned long len,int offset)2844 static int next_segment(unsigned long len, int offset)
2845 {
2846 if (len > PAGE_SIZE - offset)
2847 return PAGE_SIZE - offset;
2848 else
2849 return len;
2850 }
2851
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2852 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2853 void *data, int offset, int len)
2854 {
2855 int r;
2856 unsigned long addr;
2857
2858 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2859 if (kvm_is_error_hva(addr))
2860 return -EFAULT;
2861 r = __copy_from_user(data, (void __user *)addr + offset, len);
2862 if (r)
2863 return -EFAULT;
2864 return 0;
2865 }
2866
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2867 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2868 int len)
2869 {
2870 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2871
2872 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2873 }
2874 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2875
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)2876 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2877 int offset, int len)
2878 {
2879 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2880
2881 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2882 }
2883 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2884
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2885 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2886 {
2887 gfn_t gfn = gpa >> PAGE_SHIFT;
2888 int seg;
2889 int offset = offset_in_page(gpa);
2890 int ret;
2891
2892 while ((seg = next_segment(len, offset)) != 0) {
2893 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2894 if (ret < 0)
2895 return ret;
2896 offset = 0;
2897 len -= seg;
2898 data += seg;
2899 ++gfn;
2900 }
2901 return 0;
2902 }
2903 EXPORT_SYMBOL_GPL(kvm_read_guest);
2904
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2905 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2906 {
2907 gfn_t gfn = gpa >> PAGE_SHIFT;
2908 int seg;
2909 int offset = offset_in_page(gpa);
2910 int ret;
2911
2912 while ((seg = next_segment(len, offset)) != 0) {
2913 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2914 if (ret < 0)
2915 return ret;
2916 offset = 0;
2917 len -= seg;
2918 data += seg;
2919 ++gfn;
2920 }
2921 return 0;
2922 }
2923 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2924
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2925 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2926 void *data, int offset, unsigned long len)
2927 {
2928 int r;
2929 unsigned long addr;
2930
2931 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2932 if (kvm_is_error_hva(addr))
2933 return -EFAULT;
2934 pagefault_disable();
2935 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2936 pagefault_enable();
2937 if (r)
2938 return -EFAULT;
2939 return 0;
2940 }
2941
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2942 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2943 void *data, unsigned long len)
2944 {
2945 gfn_t gfn = gpa >> PAGE_SHIFT;
2946 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2947 int offset = offset_in_page(gpa);
2948
2949 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2950 }
2951 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2952
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2953 static int __kvm_write_guest_page(struct kvm *kvm,
2954 struct kvm_memory_slot *memslot, gfn_t gfn,
2955 const void *data, int offset, int len)
2956 {
2957 int r;
2958 unsigned long addr;
2959
2960 addr = gfn_to_hva_memslot(memslot, gfn);
2961 if (kvm_is_error_hva(addr))
2962 return -EFAULT;
2963 r = __copy_to_user((void __user *)addr + offset, data, len);
2964 if (r)
2965 return -EFAULT;
2966 mark_page_dirty_in_slot(kvm, memslot, gfn);
2967 return 0;
2968 }
2969
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2970 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2971 const void *data, int offset, int len)
2972 {
2973 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2974
2975 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2976 }
2977 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2978
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2979 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2980 const void *data, int offset, int len)
2981 {
2982 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2983
2984 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2987
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2988 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2989 unsigned long len)
2990 {
2991 gfn_t gfn = gpa >> PAGE_SHIFT;
2992 int seg;
2993 int offset = offset_in_page(gpa);
2994 int ret;
2995
2996 while ((seg = next_segment(len, offset)) != 0) {
2997 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2998 if (ret < 0)
2999 return ret;
3000 offset = 0;
3001 len -= seg;
3002 data += seg;
3003 ++gfn;
3004 }
3005 return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_write_guest);
3008
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3009 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3010 unsigned long len)
3011 {
3012 gfn_t gfn = gpa >> PAGE_SHIFT;
3013 int seg;
3014 int offset = offset_in_page(gpa);
3015 int ret;
3016
3017 while ((seg = next_segment(len, offset)) != 0) {
3018 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3019 if (ret < 0)
3020 return ret;
3021 offset = 0;
3022 len -= seg;
3023 data += seg;
3024 ++gfn;
3025 }
3026 return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3029
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3030 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3031 struct gfn_to_hva_cache *ghc,
3032 gpa_t gpa, unsigned long len)
3033 {
3034 int offset = offset_in_page(gpa);
3035 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3036 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3037 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3038 gfn_t nr_pages_avail;
3039
3040 /* Update ghc->generation before performing any error checks. */
3041 ghc->generation = slots->generation;
3042
3043 if (start_gfn > end_gfn) {
3044 ghc->hva = KVM_HVA_ERR_BAD;
3045 return -EINVAL;
3046 }
3047
3048 /*
3049 * If the requested region crosses two memslots, we still
3050 * verify that the entire region is valid here.
3051 */
3052 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3053 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3054 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3055 &nr_pages_avail);
3056 if (kvm_is_error_hva(ghc->hva))
3057 return -EFAULT;
3058 }
3059
3060 /* Use the slow path for cross page reads and writes. */
3061 if (nr_pages_needed == 1)
3062 ghc->hva += offset;
3063 else
3064 ghc->memslot = NULL;
3065
3066 ghc->gpa = gpa;
3067 ghc->len = len;
3068 return 0;
3069 }
3070
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3071 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3072 gpa_t gpa, unsigned long len)
3073 {
3074 struct kvm_memslots *slots = kvm_memslots(kvm);
3075 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3076 }
3077 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3078
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3079 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3080 void *data, unsigned int offset,
3081 unsigned long len)
3082 {
3083 struct kvm_memslots *slots = kvm_memslots(kvm);
3084 int r;
3085 gpa_t gpa = ghc->gpa + offset;
3086
3087 if (WARN_ON_ONCE(len + offset > ghc->len))
3088 return -EINVAL;
3089
3090 if (slots->generation != ghc->generation) {
3091 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3092 return -EFAULT;
3093 }
3094
3095 if (kvm_is_error_hva(ghc->hva))
3096 return -EFAULT;
3097
3098 if (unlikely(!ghc->memslot))
3099 return kvm_write_guest(kvm, gpa, data, len);
3100
3101 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3102 if (r)
3103 return -EFAULT;
3104 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3105
3106 return 0;
3107 }
3108 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3109
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3110 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3111 void *data, unsigned long len)
3112 {
3113 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3114 }
3115 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3116
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3117 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3118 void *data, unsigned int offset,
3119 unsigned long len)
3120 {
3121 struct kvm_memslots *slots = kvm_memslots(kvm);
3122 int r;
3123 gpa_t gpa = ghc->gpa + offset;
3124
3125 if (WARN_ON_ONCE(len + offset > ghc->len))
3126 return -EINVAL;
3127
3128 if (slots->generation != ghc->generation) {
3129 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3130 return -EFAULT;
3131 }
3132
3133 if (kvm_is_error_hva(ghc->hva))
3134 return -EFAULT;
3135
3136 if (unlikely(!ghc->memslot))
3137 return kvm_read_guest(kvm, gpa, data, len);
3138
3139 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3140 if (r)
3141 return -EFAULT;
3142
3143 return 0;
3144 }
3145 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3146
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3147 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3148 void *data, unsigned long len)
3149 {
3150 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3151 }
3152 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3153
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3154 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3155 {
3156 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3157 gfn_t gfn = gpa >> PAGE_SHIFT;
3158 int seg;
3159 int offset = offset_in_page(gpa);
3160 int ret;
3161
3162 while ((seg = next_segment(len, offset)) != 0) {
3163 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3164 if (ret < 0)
3165 return ret;
3166 offset = 0;
3167 len -= seg;
3168 ++gfn;
3169 }
3170 return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3173
mark_page_dirty_in_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn)3174 void mark_page_dirty_in_slot(struct kvm *kvm,
3175 struct kvm_memory_slot *memslot,
3176 gfn_t gfn)
3177 {
3178 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3179 unsigned long rel_gfn = gfn - memslot->base_gfn;
3180 u32 slot = (memslot->as_id << 16) | memslot->id;
3181
3182 if (kvm->dirty_ring_size)
3183 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3184 slot, rel_gfn);
3185 else
3186 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3187 }
3188 }
3189 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3190
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3191 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3192 {
3193 struct kvm_memory_slot *memslot;
3194
3195 memslot = gfn_to_memslot(kvm, gfn);
3196 mark_page_dirty_in_slot(kvm, memslot, gfn);
3197 }
3198 EXPORT_SYMBOL_GPL(mark_page_dirty);
3199
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3200 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3201 {
3202 struct kvm_memory_slot *memslot;
3203
3204 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3205 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3206 }
3207 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3208
kvm_sigset_activate(struct kvm_vcpu * vcpu)3209 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3210 {
3211 if (!vcpu->sigset_active)
3212 return;
3213
3214 /*
3215 * This does a lockless modification of ->real_blocked, which is fine
3216 * because, only current can change ->real_blocked and all readers of
3217 * ->real_blocked don't care as long ->real_blocked is always a subset
3218 * of ->blocked.
3219 */
3220 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3221 }
3222
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3223 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3224 {
3225 if (!vcpu->sigset_active)
3226 return;
3227
3228 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3229 sigemptyset(¤t->real_blocked);
3230 }
3231
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3232 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3233 {
3234 unsigned int old, val, grow, grow_start;
3235
3236 old = val = vcpu->halt_poll_ns;
3237 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3238 grow = READ_ONCE(halt_poll_ns_grow);
3239 if (!grow)
3240 goto out;
3241
3242 val *= grow;
3243 if (val < grow_start)
3244 val = grow_start;
3245
3246 if (val > vcpu->kvm->max_halt_poll_ns)
3247 val = vcpu->kvm->max_halt_poll_ns;
3248
3249 vcpu->halt_poll_ns = val;
3250 out:
3251 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3252 }
3253
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3254 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3255 {
3256 unsigned int old, val, shrink, grow_start;
3257
3258 old = val = vcpu->halt_poll_ns;
3259 shrink = READ_ONCE(halt_poll_ns_shrink);
3260 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3261 if (shrink == 0)
3262 val = 0;
3263 else
3264 val /= shrink;
3265
3266 if (val < grow_start)
3267 val = 0;
3268
3269 vcpu->halt_poll_ns = val;
3270 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3271 }
3272
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3273 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3274 {
3275 int ret = -EINTR;
3276 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3277
3278 if (kvm_arch_vcpu_runnable(vcpu)) {
3279 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3280 goto out;
3281 }
3282 if (kvm_cpu_has_pending_timer(vcpu))
3283 goto out;
3284 if (signal_pending(current))
3285 goto out;
3286 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3287 goto out;
3288
3289 ret = 0;
3290 out:
3291 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3292 return ret;
3293 }
3294
3295 static inline void
update_halt_poll_stats(struct kvm_vcpu * vcpu,u64 poll_ns,bool waited)3296 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3297 {
3298 if (waited)
3299 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3300 else
3301 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3302 }
3303
3304 /*
3305 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3306 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3307 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3308 {
3309 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3310 ktime_t start, cur, poll_end;
3311 bool waited = false;
3312 u64 block_ns;
3313
3314 kvm_arch_vcpu_blocking(vcpu);
3315
3316 start = cur = poll_end = ktime_get();
3317 if (vcpu->halt_poll_ns && halt_poll_allowed) {
3318 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3319
3320 ++vcpu->stat.generic.halt_attempted_poll;
3321 do {
3322 /*
3323 * This sets KVM_REQ_UNHALT if an interrupt
3324 * arrives.
3325 */
3326 if (kvm_vcpu_check_block(vcpu) < 0) {
3327 ++vcpu->stat.generic.halt_successful_poll;
3328 if (!vcpu_valid_wakeup(vcpu))
3329 ++vcpu->stat.generic.halt_poll_invalid;
3330
3331 KVM_STATS_LOG_HIST_UPDATE(
3332 vcpu->stat.generic.halt_poll_success_hist,
3333 ktime_to_ns(ktime_get()) -
3334 ktime_to_ns(start));
3335 goto out;
3336 }
3337 cpu_relax();
3338 poll_end = cur = ktime_get();
3339 } while (kvm_vcpu_can_poll(cur, stop));
3340
3341 KVM_STATS_LOG_HIST_UPDATE(
3342 vcpu->stat.generic.halt_poll_fail_hist,
3343 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3344 }
3345
3346
3347 prepare_to_rcuwait(&vcpu->wait);
3348 for (;;) {
3349 set_current_state(TASK_INTERRUPTIBLE);
3350
3351 if (kvm_vcpu_check_block(vcpu) < 0)
3352 break;
3353
3354 waited = true;
3355 schedule();
3356 }
3357 finish_rcuwait(&vcpu->wait);
3358 cur = ktime_get();
3359 if (waited) {
3360 vcpu->stat.generic.halt_wait_ns +=
3361 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3362 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3363 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3364 }
3365 out:
3366 kvm_arch_vcpu_unblocking(vcpu);
3367 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3368
3369 update_halt_poll_stats(
3370 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3371
3372 if (halt_poll_allowed) {
3373 if (!vcpu_valid_wakeup(vcpu)) {
3374 shrink_halt_poll_ns(vcpu);
3375 } else if (vcpu->kvm->max_halt_poll_ns) {
3376 if (block_ns <= vcpu->halt_poll_ns)
3377 ;
3378 /* we had a long block, shrink polling */
3379 else if (vcpu->halt_poll_ns &&
3380 block_ns > vcpu->kvm->max_halt_poll_ns)
3381 shrink_halt_poll_ns(vcpu);
3382 /* we had a short halt and our poll time is too small */
3383 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3384 block_ns < vcpu->kvm->max_halt_poll_ns)
3385 grow_halt_poll_ns(vcpu);
3386 } else {
3387 vcpu->halt_poll_ns = 0;
3388 }
3389 }
3390
3391 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3392 kvm_arch_vcpu_block_finish(vcpu);
3393 }
3394 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3395
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3396 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3397 {
3398 struct rcuwait *waitp;
3399
3400 waitp = kvm_arch_vcpu_get_wait(vcpu);
3401 if (rcuwait_wake_up(waitp)) {
3402 WRITE_ONCE(vcpu->ready, true);
3403 ++vcpu->stat.generic.halt_wakeup;
3404 return true;
3405 }
3406
3407 return false;
3408 }
3409 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3410
3411 #ifndef CONFIG_S390
3412 /*
3413 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3414 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3415 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3416 {
3417 int me, cpu;
3418
3419 if (kvm_vcpu_wake_up(vcpu))
3420 return;
3421
3422 /*
3423 * Note, the vCPU could get migrated to a different pCPU at any point
3424 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3425 * IPI to the previous pCPU. But, that's ok because the purpose of the
3426 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3427 * vCPU also requires it to leave IN_GUEST_MODE.
3428 */
3429 me = get_cpu();
3430 if (kvm_arch_vcpu_should_kick(vcpu)) {
3431 cpu = READ_ONCE(vcpu->cpu);
3432 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3433 smp_send_reschedule(cpu);
3434 }
3435 put_cpu();
3436 }
3437 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3438 #endif /* !CONFIG_S390 */
3439
kvm_vcpu_yield_to(struct kvm_vcpu * target)3440 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3441 {
3442 struct pid *pid;
3443 struct task_struct *task = NULL;
3444 int ret = 0;
3445
3446 rcu_read_lock();
3447 pid = rcu_dereference(target->pid);
3448 if (pid)
3449 task = get_pid_task(pid, PIDTYPE_PID);
3450 rcu_read_unlock();
3451 if (!task)
3452 return ret;
3453 ret = yield_to(task, 1);
3454 put_task_struct(task);
3455
3456 return ret;
3457 }
3458 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3459
3460 /*
3461 * Helper that checks whether a VCPU is eligible for directed yield.
3462 * Most eligible candidate to yield is decided by following heuristics:
3463 *
3464 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3465 * (preempted lock holder), indicated by @in_spin_loop.
3466 * Set at the beginning and cleared at the end of interception/PLE handler.
3467 *
3468 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3469 * chance last time (mostly it has become eligible now since we have probably
3470 * yielded to lockholder in last iteration. This is done by toggling
3471 * @dy_eligible each time a VCPU checked for eligibility.)
3472 *
3473 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3474 * to preempted lock-holder could result in wrong VCPU selection and CPU
3475 * burning. Giving priority for a potential lock-holder increases lock
3476 * progress.
3477 *
3478 * Since algorithm is based on heuristics, accessing another VCPU data without
3479 * locking does not harm. It may result in trying to yield to same VCPU, fail
3480 * and continue with next VCPU and so on.
3481 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3482 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3483 {
3484 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3485 bool eligible;
3486
3487 eligible = !vcpu->spin_loop.in_spin_loop ||
3488 vcpu->spin_loop.dy_eligible;
3489
3490 if (vcpu->spin_loop.in_spin_loop)
3491 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3492
3493 return eligible;
3494 #else
3495 return true;
3496 #endif
3497 }
3498
3499 /*
3500 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3501 * a vcpu_load/vcpu_put pair. However, for most architectures
3502 * kvm_arch_vcpu_runnable does not require vcpu_load.
3503 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3504 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3505 {
3506 return kvm_arch_vcpu_runnable(vcpu);
3507 }
3508
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3509 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3510 {
3511 if (kvm_arch_dy_runnable(vcpu))
3512 return true;
3513
3514 #ifdef CONFIG_KVM_ASYNC_PF
3515 if (!list_empty_careful(&vcpu->async_pf.done))
3516 return true;
3517 #endif
3518
3519 return false;
3520 }
3521
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3522 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3523 {
3524 return false;
3525 }
3526
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3527 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3528 {
3529 struct kvm *kvm = me->kvm;
3530 struct kvm_vcpu *vcpu;
3531 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3532 int yielded = 0;
3533 int try = 3;
3534 int pass;
3535 int i;
3536
3537 kvm_vcpu_set_in_spin_loop(me, true);
3538 /*
3539 * We boost the priority of a VCPU that is runnable but not
3540 * currently running, because it got preempted by something
3541 * else and called schedule in __vcpu_run. Hopefully that
3542 * VCPU is holding the lock that we need and will release it.
3543 * We approximate round-robin by starting at the last boosted VCPU.
3544 */
3545 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3546 kvm_for_each_vcpu(i, vcpu, kvm) {
3547 if (!pass && i <= last_boosted_vcpu) {
3548 i = last_boosted_vcpu;
3549 continue;
3550 } else if (pass && i > last_boosted_vcpu)
3551 break;
3552 if (!READ_ONCE(vcpu->ready))
3553 continue;
3554 if (vcpu == me)
3555 continue;
3556 if (rcuwait_active(&vcpu->wait) &&
3557 !vcpu_dy_runnable(vcpu))
3558 continue;
3559 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3560 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3561 !kvm_arch_vcpu_in_kernel(vcpu))
3562 continue;
3563 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3564 continue;
3565
3566 yielded = kvm_vcpu_yield_to(vcpu);
3567 if (yielded > 0) {
3568 kvm->last_boosted_vcpu = i;
3569 break;
3570 } else if (yielded < 0) {
3571 try--;
3572 if (!try)
3573 break;
3574 }
3575 }
3576 }
3577 kvm_vcpu_set_in_spin_loop(me, false);
3578
3579 /* Ensure vcpu is not eligible during next spinloop */
3580 kvm_vcpu_set_dy_eligible(me, false);
3581 }
3582 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3583
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3584 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3585 {
3586 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3587 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3588 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3589 kvm->dirty_ring_size / PAGE_SIZE);
3590 #else
3591 return false;
3592 #endif
3593 }
3594
kvm_vcpu_fault(struct vm_fault * vmf)3595 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3596 {
3597 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3598 struct page *page;
3599
3600 if (vmf->pgoff == 0)
3601 page = virt_to_page(vcpu->run);
3602 #ifdef CONFIG_X86
3603 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3604 page = virt_to_page(vcpu->arch.pio_data);
3605 #endif
3606 #ifdef CONFIG_KVM_MMIO
3607 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3608 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3609 #endif
3610 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3611 page = kvm_dirty_ring_get_page(
3612 &vcpu->dirty_ring,
3613 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3614 else
3615 return kvm_arch_vcpu_fault(vcpu, vmf);
3616 get_page(page);
3617 vmf->page = page;
3618 return 0;
3619 }
3620
3621 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3622 .fault = kvm_vcpu_fault,
3623 };
3624
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3625 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3626 {
3627 struct kvm_vcpu *vcpu = file->private_data;
3628 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3629
3630 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3631 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3632 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3633 return -EINVAL;
3634
3635 vma->vm_ops = &kvm_vcpu_vm_ops;
3636 return 0;
3637 }
3638
kvm_vcpu_release(struct inode * inode,struct file * filp)3639 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3640 {
3641 struct kvm_vcpu *vcpu = filp->private_data;
3642
3643 kvm_put_kvm(vcpu->kvm);
3644 return 0;
3645 }
3646
3647 static struct file_operations kvm_vcpu_fops = {
3648 .release = kvm_vcpu_release,
3649 .unlocked_ioctl = kvm_vcpu_ioctl,
3650 .mmap = kvm_vcpu_mmap,
3651 .llseek = noop_llseek,
3652 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3653 };
3654
3655 /*
3656 * Allocates an inode for the vcpu.
3657 */
create_vcpu_fd(struct kvm_vcpu * vcpu)3658 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3659 {
3660 char name[8 + 1 + ITOA_MAX_LEN + 1];
3661
3662 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3663 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3664 }
3665
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3666 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3667 {
3668 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3669 struct dentry *debugfs_dentry;
3670 char dir_name[ITOA_MAX_LEN * 2];
3671
3672 if (!debugfs_initialized())
3673 return;
3674
3675 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3676 debugfs_dentry = debugfs_create_dir(dir_name,
3677 vcpu->kvm->debugfs_dentry);
3678
3679 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3680 #endif
3681 }
3682
3683 /*
3684 * Creates some virtual cpus. Good luck creating more than one.
3685 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3686 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3687 {
3688 int r;
3689 struct kvm_vcpu *vcpu;
3690 struct page *page;
3691
3692 if (id >= KVM_MAX_VCPU_ID)
3693 return -EINVAL;
3694
3695 mutex_lock(&kvm->lock);
3696 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3697 mutex_unlock(&kvm->lock);
3698 return -EINVAL;
3699 }
3700
3701 kvm->created_vcpus++;
3702 mutex_unlock(&kvm->lock);
3703
3704 r = kvm_arch_vcpu_precreate(kvm, id);
3705 if (r)
3706 goto vcpu_decrement;
3707
3708 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3709 if (!vcpu) {
3710 r = -ENOMEM;
3711 goto vcpu_decrement;
3712 }
3713
3714 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3715 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3716 if (!page) {
3717 r = -ENOMEM;
3718 goto vcpu_free;
3719 }
3720 vcpu->run = page_address(page);
3721
3722 kvm_vcpu_init(vcpu, kvm, id);
3723
3724 r = kvm_arch_vcpu_create(vcpu);
3725 if (r)
3726 goto vcpu_free_run_page;
3727
3728 if (kvm->dirty_ring_size) {
3729 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3730 id, kvm->dirty_ring_size);
3731 if (r)
3732 goto arch_vcpu_destroy;
3733 }
3734
3735 mutex_lock(&kvm->lock);
3736 if (kvm_get_vcpu_by_id(kvm, id)) {
3737 r = -EEXIST;
3738 goto unlock_vcpu_destroy;
3739 }
3740
3741 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3742 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3743
3744 /* Fill the stats id string for the vcpu */
3745 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3746 task_pid_nr(current), id);
3747
3748 /* Now it's all set up, let userspace reach it */
3749 kvm_get_kvm(kvm);
3750 r = create_vcpu_fd(vcpu);
3751 if (r < 0) {
3752 kvm_put_kvm_no_destroy(kvm);
3753 goto unlock_vcpu_destroy;
3754 }
3755
3756 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3757
3758 /*
3759 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3760 * before kvm->online_vcpu's incremented value.
3761 */
3762 smp_wmb();
3763 atomic_inc(&kvm->online_vcpus);
3764
3765 mutex_unlock(&kvm->lock);
3766 kvm_arch_vcpu_postcreate(vcpu);
3767 kvm_create_vcpu_debugfs(vcpu);
3768 return r;
3769
3770 unlock_vcpu_destroy:
3771 mutex_unlock(&kvm->lock);
3772 kvm_dirty_ring_free(&vcpu->dirty_ring);
3773 arch_vcpu_destroy:
3774 kvm_arch_vcpu_destroy(vcpu);
3775 vcpu_free_run_page:
3776 free_page((unsigned long)vcpu->run);
3777 vcpu_free:
3778 kmem_cache_free(kvm_vcpu_cache, vcpu);
3779 vcpu_decrement:
3780 mutex_lock(&kvm->lock);
3781 kvm->created_vcpus--;
3782 mutex_unlock(&kvm->lock);
3783 return r;
3784 }
3785
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3786 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3787 {
3788 if (sigset) {
3789 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3790 vcpu->sigset_active = 1;
3791 vcpu->sigset = *sigset;
3792 } else
3793 vcpu->sigset_active = 0;
3794 return 0;
3795 }
3796
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)3797 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3798 size_t size, loff_t *offset)
3799 {
3800 struct kvm_vcpu *vcpu = file->private_data;
3801
3802 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3803 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3804 sizeof(vcpu->stat), user_buffer, size, offset);
3805 }
3806
kvm_vcpu_stats_release(struct inode * inode,struct file * file)3807 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
3808 {
3809 struct kvm_vcpu *vcpu = file->private_data;
3810
3811 kvm_put_kvm(vcpu->kvm);
3812 return 0;
3813 }
3814
3815 static const struct file_operations kvm_vcpu_stats_fops = {
3816 .read = kvm_vcpu_stats_read,
3817 .release = kvm_vcpu_stats_release,
3818 .llseek = noop_llseek,
3819 };
3820
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)3821 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3822 {
3823 int fd;
3824 struct file *file;
3825 char name[15 + ITOA_MAX_LEN + 1];
3826
3827 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3828
3829 fd = get_unused_fd_flags(O_CLOEXEC);
3830 if (fd < 0)
3831 return fd;
3832
3833 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3834 if (IS_ERR(file)) {
3835 put_unused_fd(fd);
3836 return PTR_ERR(file);
3837 }
3838
3839 kvm_get_kvm(vcpu->kvm);
3840
3841 file->f_mode |= FMODE_PREAD;
3842 fd_install(fd, file);
3843
3844 return fd;
3845 }
3846
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3847 static long kvm_vcpu_ioctl(struct file *filp,
3848 unsigned int ioctl, unsigned long arg)
3849 {
3850 struct kvm_vcpu *vcpu = filp->private_data;
3851 void __user *argp = (void __user *)arg;
3852 int r;
3853 struct kvm_fpu *fpu = NULL;
3854 struct kvm_sregs *kvm_sregs = NULL;
3855
3856 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3857 return -EIO;
3858
3859 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3860 return -EINVAL;
3861
3862 /*
3863 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3864 * execution; mutex_lock() would break them.
3865 */
3866 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3867 if (r != -ENOIOCTLCMD)
3868 return r;
3869
3870 if (mutex_lock_killable(&vcpu->mutex))
3871 return -EINTR;
3872 switch (ioctl) {
3873 case KVM_RUN: {
3874 struct pid *oldpid;
3875 r = -EINVAL;
3876 if (arg)
3877 goto out;
3878 oldpid = rcu_access_pointer(vcpu->pid);
3879 if (unlikely(oldpid != task_pid(current))) {
3880 /* The thread running this VCPU changed. */
3881 struct pid *newpid;
3882
3883 r = kvm_arch_vcpu_run_pid_change(vcpu);
3884 if (r)
3885 break;
3886
3887 newpid = get_task_pid(current, PIDTYPE_PID);
3888 rcu_assign_pointer(vcpu->pid, newpid);
3889 if (oldpid)
3890 synchronize_rcu();
3891 put_pid(oldpid);
3892 }
3893 r = kvm_arch_vcpu_ioctl_run(vcpu);
3894 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3895 break;
3896 }
3897 case KVM_GET_REGS: {
3898 struct kvm_regs *kvm_regs;
3899
3900 r = -ENOMEM;
3901 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3902 if (!kvm_regs)
3903 goto out;
3904 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3905 if (r)
3906 goto out_free1;
3907 r = -EFAULT;
3908 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3909 goto out_free1;
3910 r = 0;
3911 out_free1:
3912 kfree(kvm_regs);
3913 break;
3914 }
3915 case KVM_SET_REGS: {
3916 struct kvm_regs *kvm_regs;
3917
3918 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3919 if (IS_ERR(kvm_regs)) {
3920 r = PTR_ERR(kvm_regs);
3921 goto out;
3922 }
3923 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3924 kfree(kvm_regs);
3925 break;
3926 }
3927 case KVM_GET_SREGS: {
3928 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3929 GFP_KERNEL_ACCOUNT);
3930 r = -ENOMEM;
3931 if (!kvm_sregs)
3932 goto out;
3933 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3934 if (r)
3935 goto out;
3936 r = -EFAULT;
3937 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3938 goto out;
3939 r = 0;
3940 break;
3941 }
3942 case KVM_SET_SREGS: {
3943 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3944 if (IS_ERR(kvm_sregs)) {
3945 r = PTR_ERR(kvm_sregs);
3946 kvm_sregs = NULL;
3947 goto out;
3948 }
3949 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3950 break;
3951 }
3952 case KVM_GET_MP_STATE: {
3953 struct kvm_mp_state mp_state;
3954
3955 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3956 if (r)
3957 goto out;
3958 r = -EFAULT;
3959 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3960 goto out;
3961 r = 0;
3962 break;
3963 }
3964 case KVM_SET_MP_STATE: {
3965 struct kvm_mp_state mp_state;
3966
3967 r = -EFAULT;
3968 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3969 goto out;
3970 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3971 break;
3972 }
3973 case KVM_TRANSLATE: {
3974 struct kvm_translation tr;
3975
3976 r = -EFAULT;
3977 if (copy_from_user(&tr, argp, sizeof(tr)))
3978 goto out;
3979 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3980 if (r)
3981 goto out;
3982 r = -EFAULT;
3983 if (copy_to_user(argp, &tr, sizeof(tr)))
3984 goto out;
3985 r = 0;
3986 break;
3987 }
3988 case KVM_SET_GUEST_DEBUG: {
3989 struct kvm_guest_debug dbg;
3990
3991 r = -EFAULT;
3992 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3993 goto out;
3994 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3995 break;
3996 }
3997 case KVM_SET_SIGNAL_MASK: {
3998 struct kvm_signal_mask __user *sigmask_arg = argp;
3999 struct kvm_signal_mask kvm_sigmask;
4000 sigset_t sigset, *p;
4001
4002 p = NULL;
4003 if (argp) {
4004 r = -EFAULT;
4005 if (copy_from_user(&kvm_sigmask, argp,
4006 sizeof(kvm_sigmask)))
4007 goto out;
4008 r = -EINVAL;
4009 if (kvm_sigmask.len != sizeof(sigset))
4010 goto out;
4011 r = -EFAULT;
4012 if (copy_from_user(&sigset, sigmask_arg->sigset,
4013 sizeof(sigset)))
4014 goto out;
4015 p = &sigset;
4016 }
4017 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4018 break;
4019 }
4020 case KVM_GET_FPU: {
4021 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4022 r = -ENOMEM;
4023 if (!fpu)
4024 goto out;
4025 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4026 if (r)
4027 goto out;
4028 r = -EFAULT;
4029 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4030 goto out;
4031 r = 0;
4032 break;
4033 }
4034 case KVM_SET_FPU: {
4035 fpu = memdup_user(argp, sizeof(*fpu));
4036 if (IS_ERR(fpu)) {
4037 r = PTR_ERR(fpu);
4038 fpu = NULL;
4039 goto out;
4040 }
4041 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4042 break;
4043 }
4044 case KVM_GET_STATS_FD: {
4045 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4046 break;
4047 }
4048 default:
4049 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4050 }
4051 out:
4052 mutex_unlock(&vcpu->mutex);
4053 kfree(fpu);
4054 kfree(kvm_sregs);
4055 return r;
4056 }
4057
4058 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4059 static long kvm_vcpu_compat_ioctl(struct file *filp,
4060 unsigned int ioctl, unsigned long arg)
4061 {
4062 struct kvm_vcpu *vcpu = filp->private_data;
4063 void __user *argp = compat_ptr(arg);
4064 int r;
4065
4066 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
4067 return -EIO;
4068
4069 switch (ioctl) {
4070 case KVM_SET_SIGNAL_MASK: {
4071 struct kvm_signal_mask __user *sigmask_arg = argp;
4072 struct kvm_signal_mask kvm_sigmask;
4073 sigset_t sigset;
4074
4075 if (argp) {
4076 r = -EFAULT;
4077 if (copy_from_user(&kvm_sigmask, argp,
4078 sizeof(kvm_sigmask)))
4079 goto out;
4080 r = -EINVAL;
4081 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4082 goto out;
4083 r = -EFAULT;
4084 if (get_compat_sigset(&sigset,
4085 (compat_sigset_t __user *)sigmask_arg->sigset))
4086 goto out;
4087 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4088 } else
4089 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4090 break;
4091 }
4092 default:
4093 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4094 }
4095
4096 out:
4097 return r;
4098 }
4099 #endif
4100
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4101 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4102 {
4103 struct kvm_device *dev = filp->private_data;
4104
4105 if (dev->ops->mmap)
4106 return dev->ops->mmap(dev, vma);
4107
4108 return -ENODEV;
4109 }
4110
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4111 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4112 int (*accessor)(struct kvm_device *dev,
4113 struct kvm_device_attr *attr),
4114 unsigned long arg)
4115 {
4116 struct kvm_device_attr attr;
4117
4118 if (!accessor)
4119 return -EPERM;
4120
4121 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4122 return -EFAULT;
4123
4124 return accessor(dev, &attr);
4125 }
4126
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4127 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4128 unsigned long arg)
4129 {
4130 struct kvm_device *dev = filp->private_data;
4131
4132 if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
4133 return -EIO;
4134
4135 switch (ioctl) {
4136 case KVM_SET_DEVICE_ATTR:
4137 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4138 case KVM_GET_DEVICE_ATTR:
4139 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4140 case KVM_HAS_DEVICE_ATTR:
4141 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4142 default:
4143 if (dev->ops->ioctl)
4144 return dev->ops->ioctl(dev, ioctl, arg);
4145
4146 return -ENOTTY;
4147 }
4148 }
4149
kvm_device_release(struct inode * inode,struct file * filp)4150 static int kvm_device_release(struct inode *inode, struct file *filp)
4151 {
4152 struct kvm_device *dev = filp->private_data;
4153 struct kvm *kvm = dev->kvm;
4154
4155 if (dev->ops->release) {
4156 mutex_lock(&kvm->lock);
4157 list_del(&dev->vm_node);
4158 dev->ops->release(dev);
4159 mutex_unlock(&kvm->lock);
4160 }
4161
4162 kvm_put_kvm(kvm);
4163 return 0;
4164 }
4165
4166 static const struct file_operations kvm_device_fops = {
4167 .unlocked_ioctl = kvm_device_ioctl,
4168 .release = kvm_device_release,
4169 KVM_COMPAT(kvm_device_ioctl),
4170 .mmap = kvm_device_mmap,
4171 };
4172
kvm_device_from_filp(struct file * filp)4173 struct kvm_device *kvm_device_from_filp(struct file *filp)
4174 {
4175 if (filp->f_op != &kvm_device_fops)
4176 return NULL;
4177
4178 return filp->private_data;
4179 }
4180
4181 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4182 #ifdef CONFIG_KVM_MPIC
4183 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4184 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4185 #endif
4186 };
4187
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4188 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4189 {
4190 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4191 return -ENOSPC;
4192
4193 if (kvm_device_ops_table[type] != NULL)
4194 return -EEXIST;
4195
4196 kvm_device_ops_table[type] = ops;
4197 return 0;
4198 }
4199
kvm_unregister_device_ops(u32 type)4200 void kvm_unregister_device_ops(u32 type)
4201 {
4202 if (kvm_device_ops_table[type] != NULL)
4203 kvm_device_ops_table[type] = NULL;
4204 }
4205
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4206 static int kvm_ioctl_create_device(struct kvm *kvm,
4207 struct kvm_create_device *cd)
4208 {
4209 const struct kvm_device_ops *ops = NULL;
4210 struct kvm_device *dev;
4211 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4212 int type;
4213 int ret;
4214
4215 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4216 return -ENODEV;
4217
4218 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4219 ops = kvm_device_ops_table[type];
4220 if (ops == NULL)
4221 return -ENODEV;
4222
4223 if (test)
4224 return 0;
4225
4226 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4227 if (!dev)
4228 return -ENOMEM;
4229
4230 dev->ops = ops;
4231 dev->kvm = kvm;
4232
4233 mutex_lock(&kvm->lock);
4234 ret = ops->create(dev, type);
4235 if (ret < 0) {
4236 mutex_unlock(&kvm->lock);
4237 kfree(dev);
4238 return ret;
4239 }
4240 list_add(&dev->vm_node, &kvm->devices);
4241 mutex_unlock(&kvm->lock);
4242
4243 if (ops->init)
4244 ops->init(dev);
4245
4246 kvm_get_kvm(kvm);
4247 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4248 if (ret < 0) {
4249 kvm_put_kvm_no_destroy(kvm);
4250 mutex_lock(&kvm->lock);
4251 list_del(&dev->vm_node);
4252 if (ops->release)
4253 ops->release(dev);
4254 mutex_unlock(&kvm->lock);
4255 if (ops->destroy)
4256 ops->destroy(dev);
4257 return ret;
4258 }
4259
4260 cd->fd = ret;
4261 return 0;
4262 }
4263
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4264 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4265 {
4266 switch (arg) {
4267 case KVM_CAP_USER_MEMORY:
4268 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4269 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4270 case KVM_CAP_INTERNAL_ERROR_DATA:
4271 #ifdef CONFIG_HAVE_KVM_MSI
4272 case KVM_CAP_SIGNAL_MSI:
4273 #endif
4274 #ifdef CONFIG_HAVE_KVM_IRQFD
4275 case KVM_CAP_IRQFD:
4276 case KVM_CAP_IRQFD_RESAMPLE:
4277 #endif
4278 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4279 case KVM_CAP_CHECK_EXTENSION_VM:
4280 case KVM_CAP_ENABLE_CAP_VM:
4281 case KVM_CAP_HALT_POLL:
4282 return 1;
4283 #ifdef CONFIG_KVM_MMIO
4284 case KVM_CAP_COALESCED_MMIO:
4285 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4286 case KVM_CAP_COALESCED_PIO:
4287 return 1;
4288 #endif
4289 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4290 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4291 return KVM_DIRTY_LOG_MANUAL_CAPS;
4292 #endif
4293 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4294 case KVM_CAP_IRQ_ROUTING:
4295 return KVM_MAX_IRQ_ROUTES;
4296 #endif
4297 #if KVM_ADDRESS_SPACE_NUM > 1
4298 case KVM_CAP_MULTI_ADDRESS_SPACE:
4299 return KVM_ADDRESS_SPACE_NUM;
4300 #endif
4301 case KVM_CAP_NR_MEMSLOTS:
4302 return KVM_USER_MEM_SLOTS;
4303 case KVM_CAP_DIRTY_LOG_RING:
4304 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4305 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4306 #else
4307 return 0;
4308 #endif
4309 case KVM_CAP_BINARY_STATS_FD:
4310 return 1;
4311 default:
4312 break;
4313 }
4314 return kvm_vm_ioctl_check_extension(kvm, arg);
4315 }
4316
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4317 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4318 {
4319 int r;
4320
4321 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4322 return -EINVAL;
4323
4324 /* the size should be power of 2 */
4325 if (!size || (size & (size - 1)))
4326 return -EINVAL;
4327
4328 /* Should be bigger to keep the reserved entries, or a page */
4329 if (size < kvm_dirty_ring_get_rsvd_entries() *
4330 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4331 return -EINVAL;
4332
4333 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4334 sizeof(struct kvm_dirty_gfn))
4335 return -E2BIG;
4336
4337 /* We only allow it to set once */
4338 if (kvm->dirty_ring_size)
4339 return -EINVAL;
4340
4341 mutex_lock(&kvm->lock);
4342
4343 if (kvm->created_vcpus) {
4344 /* We don't allow to change this value after vcpu created */
4345 r = -EINVAL;
4346 } else {
4347 kvm->dirty_ring_size = size;
4348 r = 0;
4349 }
4350
4351 mutex_unlock(&kvm->lock);
4352 return r;
4353 }
4354
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4355 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4356 {
4357 int i;
4358 struct kvm_vcpu *vcpu;
4359 int cleared = 0;
4360
4361 if (!kvm->dirty_ring_size)
4362 return -EINVAL;
4363
4364 mutex_lock(&kvm->slots_lock);
4365
4366 kvm_for_each_vcpu(i, vcpu, kvm)
4367 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4368
4369 mutex_unlock(&kvm->slots_lock);
4370
4371 if (cleared)
4372 kvm_flush_remote_tlbs(kvm);
4373
4374 return cleared;
4375 }
4376
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4377 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4378 struct kvm_enable_cap *cap)
4379 {
4380 return -EINVAL;
4381 }
4382
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4383 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4384 struct kvm_enable_cap *cap)
4385 {
4386 switch (cap->cap) {
4387 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4388 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4389 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4390
4391 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4392 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4393
4394 if (cap->flags || (cap->args[0] & ~allowed_options))
4395 return -EINVAL;
4396 kvm->manual_dirty_log_protect = cap->args[0];
4397 return 0;
4398 }
4399 #endif
4400 case KVM_CAP_HALT_POLL: {
4401 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4402 return -EINVAL;
4403
4404 kvm->max_halt_poll_ns = cap->args[0];
4405 return 0;
4406 }
4407 case KVM_CAP_DIRTY_LOG_RING:
4408 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4409 default:
4410 return kvm_vm_ioctl_enable_cap(kvm, cap);
4411 }
4412 }
4413
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4414 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4415 size_t size, loff_t *offset)
4416 {
4417 struct kvm *kvm = file->private_data;
4418
4419 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4420 &kvm_vm_stats_desc[0], &kvm->stat,
4421 sizeof(kvm->stat), user_buffer, size, offset);
4422 }
4423
kvm_vm_stats_release(struct inode * inode,struct file * file)4424 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4425 {
4426 struct kvm *kvm = file->private_data;
4427
4428 kvm_put_kvm(kvm);
4429 return 0;
4430 }
4431
4432 static const struct file_operations kvm_vm_stats_fops = {
4433 .read = kvm_vm_stats_read,
4434 .release = kvm_vm_stats_release,
4435 .llseek = noop_llseek,
4436 };
4437
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)4438 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4439 {
4440 int fd;
4441 struct file *file;
4442
4443 fd = get_unused_fd_flags(O_CLOEXEC);
4444 if (fd < 0)
4445 return fd;
4446
4447 file = anon_inode_getfile("kvm-vm-stats",
4448 &kvm_vm_stats_fops, kvm, O_RDONLY);
4449 if (IS_ERR(file)) {
4450 put_unused_fd(fd);
4451 return PTR_ERR(file);
4452 }
4453
4454 kvm_get_kvm(kvm);
4455
4456 file->f_mode |= FMODE_PREAD;
4457 fd_install(fd, file);
4458
4459 return fd;
4460 }
4461
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4462 static long kvm_vm_ioctl(struct file *filp,
4463 unsigned int ioctl, unsigned long arg)
4464 {
4465 struct kvm *kvm = filp->private_data;
4466 void __user *argp = (void __user *)arg;
4467 int r;
4468
4469 if (kvm->mm != current->mm || kvm->vm_bugged)
4470 return -EIO;
4471 switch (ioctl) {
4472 case KVM_CREATE_VCPU:
4473 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4474 break;
4475 case KVM_ENABLE_CAP: {
4476 struct kvm_enable_cap cap;
4477
4478 r = -EFAULT;
4479 if (copy_from_user(&cap, argp, sizeof(cap)))
4480 goto out;
4481 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4482 break;
4483 }
4484 case KVM_SET_USER_MEMORY_REGION: {
4485 struct kvm_userspace_memory_region kvm_userspace_mem;
4486
4487 r = -EFAULT;
4488 if (copy_from_user(&kvm_userspace_mem, argp,
4489 sizeof(kvm_userspace_mem)))
4490 goto out;
4491
4492 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4493 break;
4494 }
4495 case KVM_GET_DIRTY_LOG: {
4496 struct kvm_dirty_log log;
4497
4498 r = -EFAULT;
4499 if (copy_from_user(&log, argp, sizeof(log)))
4500 goto out;
4501 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4502 break;
4503 }
4504 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4505 case KVM_CLEAR_DIRTY_LOG: {
4506 struct kvm_clear_dirty_log log;
4507
4508 r = -EFAULT;
4509 if (copy_from_user(&log, argp, sizeof(log)))
4510 goto out;
4511 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4512 break;
4513 }
4514 #endif
4515 #ifdef CONFIG_KVM_MMIO
4516 case KVM_REGISTER_COALESCED_MMIO: {
4517 struct kvm_coalesced_mmio_zone zone;
4518
4519 r = -EFAULT;
4520 if (copy_from_user(&zone, argp, sizeof(zone)))
4521 goto out;
4522 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4523 break;
4524 }
4525 case KVM_UNREGISTER_COALESCED_MMIO: {
4526 struct kvm_coalesced_mmio_zone zone;
4527
4528 r = -EFAULT;
4529 if (copy_from_user(&zone, argp, sizeof(zone)))
4530 goto out;
4531 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4532 break;
4533 }
4534 #endif
4535 case KVM_IRQFD: {
4536 struct kvm_irqfd data;
4537
4538 r = -EFAULT;
4539 if (copy_from_user(&data, argp, sizeof(data)))
4540 goto out;
4541 r = kvm_irqfd(kvm, &data);
4542 break;
4543 }
4544 case KVM_IOEVENTFD: {
4545 struct kvm_ioeventfd data;
4546
4547 r = -EFAULT;
4548 if (copy_from_user(&data, argp, sizeof(data)))
4549 goto out;
4550 r = kvm_ioeventfd(kvm, &data);
4551 break;
4552 }
4553 #ifdef CONFIG_HAVE_KVM_MSI
4554 case KVM_SIGNAL_MSI: {
4555 struct kvm_msi msi;
4556
4557 r = -EFAULT;
4558 if (copy_from_user(&msi, argp, sizeof(msi)))
4559 goto out;
4560 r = kvm_send_userspace_msi(kvm, &msi);
4561 break;
4562 }
4563 #endif
4564 #ifdef __KVM_HAVE_IRQ_LINE
4565 case KVM_IRQ_LINE_STATUS:
4566 case KVM_IRQ_LINE: {
4567 struct kvm_irq_level irq_event;
4568
4569 r = -EFAULT;
4570 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4571 goto out;
4572
4573 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4574 ioctl == KVM_IRQ_LINE_STATUS);
4575 if (r)
4576 goto out;
4577
4578 r = -EFAULT;
4579 if (ioctl == KVM_IRQ_LINE_STATUS) {
4580 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4581 goto out;
4582 }
4583
4584 r = 0;
4585 break;
4586 }
4587 #endif
4588 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4589 case KVM_SET_GSI_ROUTING: {
4590 struct kvm_irq_routing routing;
4591 struct kvm_irq_routing __user *urouting;
4592 struct kvm_irq_routing_entry *entries = NULL;
4593
4594 r = -EFAULT;
4595 if (copy_from_user(&routing, argp, sizeof(routing)))
4596 goto out;
4597 r = -EINVAL;
4598 if (!kvm_arch_can_set_irq_routing(kvm))
4599 goto out;
4600 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4601 goto out;
4602 if (routing.flags)
4603 goto out;
4604 if (routing.nr) {
4605 urouting = argp;
4606 entries = vmemdup_user(urouting->entries,
4607 array_size(sizeof(*entries),
4608 routing.nr));
4609 if (IS_ERR(entries)) {
4610 r = PTR_ERR(entries);
4611 goto out;
4612 }
4613 }
4614 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4615 routing.flags);
4616 kvfree(entries);
4617 break;
4618 }
4619 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4620 case KVM_CREATE_DEVICE: {
4621 struct kvm_create_device cd;
4622
4623 r = -EFAULT;
4624 if (copy_from_user(&cd, argp, sizeof(cd)))
4625 goto out;
4626
4627 r = kvm_ioctl_create_device(kvm, &cd);
4628 if (r)
4629 goto out;
4630
4631 r = -EFAULT;
4632 if (copy_to_user(argp, &cd, sizeof(cd)))
4633 goto out;
4634
4635 r = 0;
4636 break;
4637 }
4638 case KVM_CHECK_EXTENSION:
4639 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4640 break;
4641 case KVM_RESET_DIRTY_RINGS:
4642 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4643 break;
4644 case KVM_GET_STATS_FD:
4645 r = kvm_vm_ioctl_get_stats_fd(kvm);
4646 break;
4647 default:
4648 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4649 }
4650 out:
4651 return r;
4652 }
4653
4654 #ifdef CONFIG_KVM_COMPAT
4655 struct compat_kvm_dirty_log {
4656 __u32 slot;
4657 __u32 padding1;
4658 union {
4659 compat_uptr_t dirty_bitmap; /* one bit per page */
4660 __u64 padding2;
4661 };
4662 };
4663
4664 struct compat_kvm_clear_dirty_log {
4665 __u32 slot;
4666 __u32 num_pages;
4667 __u64 first_page;
4668 union {
4669 compat_uptr_t dirty_bitmap; /* one bit per page */
4670 __u64 padding2;
4671 };
4672 };
4673
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4674 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4675 unsigned long arg)
4676 {
4677 return -ENOTTY;
4678 }
4679
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4680 static long kvm_vm_compat_ioctl(struct file *filp,
4681 unsigned int ioctl, unsigned long arg)
4682 {
4683 struct kvm *kvm = filp->private_data;
4684 int r;
4685
4686 if (kvm->mm != current->mm || kvm->vm_bugged)
4687 return -EIO;
4688
4689 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4690 if (r != -ENOTTY)
4691 return r;
4692
4693 switch (ioctl) {
4694 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4695 case KVM_CLEAR_DIRTY_LOG: {
4696 struct compat_kvm_clear_dirty_log compat_log;
4697 struct kvm_clear_dirty_log log;
4698
4699 if (copy_from_user(&compat_log, (void __user *)arg,
4700 sizeof(compat_log)))
4701 return -EFAULT;
4702 log.slot = compat_log.slot;
4703 log.num_pages = compat_log.num_pages;
4704 log.first_page = compat_log.first_page;
4705 log.padding2 = compat_log.padding2;
4706 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4707
4708 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4709 break;
4710 }
4711 #endif
4712 case KVM_GET_DIRTY_LOG: {
4713 struct compat_kvm_dirty_log compat_log;
4714 struct kvm_dirty_log log;
4715
4716 if (copy_from_user(&compat_log, (void __user *)arg,
4717 sizeof(compat_log)))
4718 return -EFAULT;
4719 log.slot = compat_log.slot;
4720 log.padding1 = compat_log.padding1;
4721 log.padding2 = compat_log.padding2;
4722 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4723
4724 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4725 break;
4726 }
4727 default:
4728 r = kvm_vm_ioctl(filp, ioctl, arg);
4729 }
4730 return r;
4731 }
4732 #endif
4733
4734 static struct file_operations kvm_vm_fops = {
4735 .release = kvm_vm_release,
4736 .unlocked_ioctl = kvm_vm_ioctl,
4737 .llseek = noop_llseek,
4738 KVM_COMPAT(kvm_vm_compat_ioctl),
4739 };
4740
file_is_kvm(struct file * file)4741 bool file_is_kvm(struct file *file)
4742 {
4743 return file && file->f_op == &kvm_vm_fops;
4744 }
4745 EXPORT_SYMBOL_GPL(file_is_kvm);
4746
kvm_dev_ioctl_create_vm(unsigned long type)4747 static int kvm_dev_ioctl_create_vm(unsigned long type)
4748 {
4749 int r;
4750 struct kvm *kvm;
4751 struct file *file;
4752
4753 kvm = kvm_create_vm(type);
4754 if (IS_ERR(kvm))
4755 return PTR_ERR(kvm);
4756 #ifdef CONFIG_KVM_MMIO
4757 r = kvm_coalesced_mmio_init(kvm);
4758 if (r < 0)
4759 goto put_kvm;
4760 #endif
4761 r = get_unused_fd_flags(O_CLOEXEC);
4762 if (r < 0)
4763 goto put_kvm;
4764
4765 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4766 "kvm-%d", task_pid_nr(current));
4767
4768 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4769 if (IS_ERR(file)) {
4770 put_unused_fd(r);
4771 r = PTR_ERR(file);
4772 goto put_kvm;
4773 }
4774
4775 /*
4776 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4777 * already set, with ->release() being kvm_vm_release(). In error
4778 * cases it will be called by the final fput(file) and will take
4779 * care of doing kvm_put_kvm(kvm).
4780 */
4781 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4782 put_unused_fd(r);
4783 fput(file);
4784 return -ENOMEM;
4785 }
4786 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4787
4788 fd_install(r, file);
4789 return r;
4790
4791 put_kvm:
4792 kvm_put_kvm(kvm);
4793 return r;
4794 }
4795
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4796 static long kvm_dev_ioctl(struct file *filp,
4797 unsigned int ioctl, unsigned long arg)
4798 {
4799 long r = -EINVAL;
4800
4801 switch (ioctl) {
4802 case KVM_GET_API_VERSION:
4803 if (arg)
4804 goto out;
4805 r = KVM_API_VERSION;
4806 break;
4807 case KVM_CREATE_VM:
4808 r = kvm_dev_ioctl_create_vm(arg);
4809 break;
4810 case KVM_CHECK_EXTENSION:
4811 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4812 break;
4813 case KVM_GET_VCPU_MMAP_SIZE:
4814 if (arg)
4815 goto out;
4816 r = PAGE_SIZE; /* struct kvm_run */
4817 #ifdef CONFIG_X86
4818 r += PAGE_SIZE; /* pio data page */
4819 #endif
4820 #ifdef CONFIG_KVM_MMIO
4821 r += PAGE_SIZE; /* coalesced mmio ring page */
4822 #endif
4823 break;
4824 case KVM_TRACE_ENABLE:
4825 case KVM_TRACE_PAUSE:
4826 case KVM_TRACE_DISABLE:
4827 r = -EOPNOTSUPP;
4828 break;
4829 default:
4830 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4831 }
4832 out:
4833 return r;
4834 }
4835
4836 static struct file_operations kvm_chardev_ops = {
4837 .unlocked_ioctl = kvm_dev_ioctl,
4838 .llseek = noop_llseek,
4839 KVM_COMPAT(kvm_dev_ioctl),
4840 };
4841
4842 static struct miscdevice kvm_dev = {
4843 KVM_MINOR,
4844 "kvm",
4845 &kvm_chardev_ops,
4846 };
4847
hardware_enable_nolock(void * junk)4848 static void hardware_enable_nolock(void *junk)
4849 {
4850 int cpu = raw_smp_processor_id();
4851 int r;
4852
4853 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4854 return;
4855
4856 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4857
4858 r = kvm_arch_hardware_enable();
4859
4860 if (r) {
4861 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4862 atomic_inc(&hardware_enable_failed);
4863 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4864 }
4865 }
4866
kvm_starting_cpu(unsigned int cpu)4867 static int kvm_starting_cpu(unsigned int cpu)
4868 {
4869 raw_spin_lock(&kvm_count_lock);
4870 if (kvm_usage_count)
4871 hardware_enable_nolock(NULL);
4872 raw_spin_unlock(&kvm_count_lock);
4873 return 0;
4874 }
4875
hardware_disable_nolock(void * junk)4876 static void hardware_disable_nolock(void *junk)
4877 {
4878 int cpu = raw_smp_processor_id();
4879
4880 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4881 return;
4882 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4883 kvm_arch_hardware_disable();
4884 }
4885
kvm_dying_cpu(unsigned int cpu)4886 static int kvm_dying_cpu(unsigned int cpu)
4887 {
4888 raw_spin_lock(&kvm_count_lock);
4889 if (kvm_usage_count)
4890 hardware_disable_nolock(NULL);
4891 raw_spin_unlock(&kvm_count_lock);
4892 return 0;
4893 }
4894
hardware_disable_all_nolock(void)4895 static void hardware_disable_all_nolock(void)
4896 {
4897 BUG_ON(!kvm_usage_count);
4898
4899 kvm_usage_count--;
4900 if (!kvm_usage_count)
4901 on_each_cpu(hardware_disable_nolock, NULL, 1);
4902 }
4903
hardware_disable_all(void)4904 static void hardware_disable_all(void)
4905 {
4906 raw_spin_lock(&kvm_count_lock);
4907 hardware_disable_all_nolock();
4908 raw_spin_unlock(&kvm_count_lock);
4909 }
4910
hardware_enable_all(void)4911 static int hardware_enable_all(void)
4912 {
4913 int r = 0;
4914
4915 raw_spin_lock(&kvm_count_lock);
4916
4917 kvm_usage_count++;
4918 if (kvm_usage_count == 1) {
4919 atomic_set(&hardware_enable_failed, 0);
4920 on_each_cpu(hardware_enable_nolock, NULL, 1);
4921
4922 if (atomic_read(&hardware_enable_failed)) {
4923 hardware_disable_all_nolock();
4924 r = -EBUSY;
4925 }
4926 }
4927
4928 raw_spin_unlock(&kvm_count_lock);
4929
4930 return r;
4931 }
4932
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)4933 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4934 void *v)
4935 {
4936 /*
4937 * Some (well, at least mine) BIOSes hang on reboot if
4938 * in vmx root mode.
4939 *
4940 * And Intel TXT required VMX off for all cpu when system shutdown.
4941 */
4942 pr_info("kvm: exiting hardware virtualization\n");
4943 kvm_rebooting = true;
4944 on_each_cpu(hardware_disable_nolock, NULL, 1);
4945 return NOTIFY_OK;
4946 }
4947
4948 static struct notifier_block kvm_reboot_notifier = {
4949 .notifier_call = kvm_reboot,
4950 .priority = 0,
4951 };
4952
kvm_io_bus_destroy(struct kvm_io_bus * bus)4953 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4954 {
4955 int i;
4956
4957 for (i = 0; i < bus->dev_count; i++) {
4958 struct kvm_io_device *pos = bus->range[i].dev;
4959
4960 kvm_iodevice_destructor(pos);
4961 }
4962 kfree(bus);
4963 }
4964
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)4965 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4966 const struct kvm_io_range *r2)
4967 {
4968 gpa_t addr1 = r1->addr;
4969 gpa_t addr2 = r2->addr;
4970
4971 if (addr1 < addr2)
4972 return -1;
4973
4974 /* If r2->len == 0, match the exact address. If r2->len != 0,
4975 * accept any overlapping write. Any order is acceptable for
4976 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4977 * we process all of them.
4978 */
4979 if (r2->len) {
4980 addr1 += r1->len;
4981 addr2 += r2->len;
4982 }
4983
4984 if (addr1 > addr2)
4985 return 1;
4986
4987 return 0;
4988 }
4989
kvm_io_bus_sort_cmp(const void * p1,const void * p2)4990 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4991 {
4992 return kvm_io_bus_cmp(p1, p2);
4993 }
4994
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)4995 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4996 gpa_t addr, int len)
4997 {
4998 struct kvm_io_range *range, key;
4999 int off;
5000
5001 key = (struct kvm_io_range) {
5002 .addr = addr,
5003 .len = len,
5004 };
5005
5006 range = bsearch(&key, bus->range, bus->dev_count,
5007 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5008 if (range == NULL)
5009 return -ENOENT;
5010
5011 off = range - bus->range;
5012
5013 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5014 off--;
5015
5016 return off;
5017 }
5018
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5019 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5020 struct kvm_io_range *range, const void *val)
5021 {
5022 int idx;
5023
5024 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5025 if (idx < 0)
5026 return -EOPNOTSUPP;
5027
5028 while (idx < bus->dev_count &&
5029 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5030 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5031 range->len, val))
5032 return idx;
5033 idx++;
5034 }
5035
5036 return -EOPNOTSUPP;
5037 }
5038
5039 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5040 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5041 int len, const void *val)
5042 {
5043 struct kvm_io_bus *bus;
5044 struct kvm_io_range range;
5045 int r;
5046
5047 range = (struct kvm_io_range) {
5048 .addr = addr,
5049 .len = len,
5050 };
5051
5052 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5053 if (!bus)
5054 return -ENOMEM;
5055 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5056 return r < 0 ? r : 0;
5057 }
5058 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5059
5060 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5061 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5062 gpa_t addr, int len, const void *val, long cookie)
5063 {
5064 struct kvm_io_bus *bus;
5065 struct kvm_io_range range;
5066
5067 range = (struct kvm_io_range) {
5068 .addr = addr,
5069 .len = len,
5070 };
5071
5072 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5073 if (!bus)
5074 return -ENOMEM;
5075
5076 /* First try the device referenced by cookie. */
5077 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5078 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5079 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5080 val))
5081 return cookie;
5082
5083 /*
5084 * cookie contained garbage; fall back to search and return the
5085 * correct cookie value.
5086 */
5087 return __kvm_io_bus_write(vcpu, bus, &range, val);
5088 }
5089
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5090 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5091 struct kvm_io_range *range, void *val)
5092 {
5093 int idx;
5094
5095 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5096 if (idx < 0)
5097 return -EOPNOTSUPP;
5098
5099 while (idx < bus->dev_count &&
5100 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5101 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5102 range->len, val))
5103 return idx;
5104 idx++;
5105 }
5106
5107 return -EOPNOTSUPP;
5108 }
5109
5110 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5111 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5112 int len, void *val)
5113 {
5114 struct kvm_io_bus *bus;
5115 struct kvm_io_range range;
5116 int r;
5117
5118 range = (struct kvm_io_range) {
5119 .addr = addr,
5120 .len = len,
5121 };
5122
5123 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5124 if (!bus)
5125 return -ENOMEM;
5126 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5127 return r < 0 ? r : 0;
5128 }
5129
5130 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5131 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5132 int len, struct kvm_io_device *dev)
5133 {
5134 int i;
5135 struct kvm_io_bus *new_bus, *bus;
5136 struct kvm_io_range range;
5137
5138 bus = kvm_get_bus(kvm, bus_idx);
5139 if (!bus)
5140 return -ENOMEM;
5141
5142 /* exclude ioeventfd which is limited by maximum fd */
5143 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5144 return -ENOSPC;
5145
5146 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5147 GFP_KERNEL_ACCOUNT);
5148 if (!new_bus)
5149 return -ENOMEM;
5150
5151 range = (struct kvm_io_range) {
5152 .addr = addr,
5153 .len = len,
5154 .dev = dev,
5155 };
5156
5157 for (i = 0; i < bus->dev_count; i++)
5158 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5159 break;
5160
5161 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5162 new_bus->dev_count++;
5163 new_bus->range[i] = range;
5164 memcpy(new_bus->range + i + 1, bus->range + i,
5165 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5166 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5167 synchronize_srcu_expedited(&kvm->srcu);
5168 kfree(bus);
5169
5170 return 0;
5171 }
5172
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5173 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5174 struct kvm_io_device *dev)
5175 {
5176 int i, j;
5177 struct kvm_io_bus *new_bus, *bus;
5178
5179 lockdep_assert_held(&kvm->slots_lock);
5180
5181 bus = kvm_get_bus(kvm, bus_idx);
5182 if (!bus)
5183 return 0;
5184
5185 for (i = 0; i < bus->dev_count; i++) {
5186 if (bus->range[i].dev == dev) {
5187 break;
5188 }
5189 }
5190
5191 if (i == bus->dev_count)
5192 return 0;
5193
5194 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5195 GFP_KERNEL_ACCOUNT);
5196 if (new_bus) {
5197 memcpy(new_bus, bus, struct_size(bus, range, i));
5198 new_bus->dev_count--;
5199 memcpy(new_bus->range + i, bus->range + i + 1,
5200 flex_array_size(new_bus, range, new_bus->dev_count - i));
5201 }
5202
5203 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5204 synchronize_srcu_expedited(&kvm->srcu);
5205
5206 /* Destroy the old bus _after_ installing the (null) bus. */
5207 if (!new_bus) {
5208 pr_err("kvm: failed to shrink bus, removing it completely\n");
5209 for (j = 0; j < bus->dev_count; j++) {
5210 if (j == i)
5211 continue;
5212 kvm_iodevice_destructor(bus->range[j].dev);
5213 }
5214 }
5215
5216 kfree(bus);
5217 return new_bus ? 0 : -ENOMEM;
5218 }
5219
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5220 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5221 gpa_t addr)
5222 {
5223 struct kvm_io_bus *bus;
5224 int dev_idx, srcu_idx;
5225 struct kvm_io_device *iodev = NULL;
5226
5227 srcu_idx = srcu_read_lock(&kvm->srcu);
5228
5229 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5230 if (!bus)
5231 goto out_unlock;
5232
5233 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5234 if (dev_idx < 0)
5235 goto out_unlock;
5236
5237 iodev = bus->range[dev_idx].dev;
5238
5239 out_unlock:
5240 srcu_read_unlock(&kvm->srcu, srcu_idx);
5241
5242 return iodev;
5243 }
5244 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5245
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5246 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5247 int (*get)(void *, u64 *), int (*set)(void *, u64),
5248 const char *fmt)
5249 {
5250 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5251 inode->i_private;
5252
5253 /*
5254 * The debugfs files are a reference to the kvm struct which
5255 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5256 * avoids the race between open and the removal of the debugfs directory.
5257 */
5258 if (!kvm_get_kvm_safe(stat_data->kvm))
5259 return -ENOENT;
5260
5261 if (simple_attr_open(inode, file, get,
5262 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5263 ? set : NULL,
5264 fmt)) {
5265 kvm_put_kvm(stat_data->kvm);
5266 return -ENOMEM;
5267 }
5268
5269 return 0;
5270 }
5271
kvm_debugfs_release(struct inode * inode,struct file * file)5272 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5273 {
5274 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5275 inode->i_private;
5276
5277 simple_attr_release(inode, file);
5278 kvm_put_kvm(stat_data->kvm);
5279
5280 return 0;
5281 }
5282
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)5283 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5284 {
5285 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5286
5287 return 0;
5288 }
5289
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)5290 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5291 {
5292 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5293
5294 return 0;
5295 }
5296
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)5297 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5298 {
5299 int i;
5300 struct kvm_vcpu *vcpu;
5301
5302 *val = 0;
5303
5304 kvm_for_each_vcpu(i, vcpu, kvm)
5305 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5306
5307 return 0;
5308 }
5309
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)5310 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5311 {
5312 int i;
5313 struct kvm_vcpu *vcpu;
5314
5315 kvm_for_each_vcpu(i, vcpu, kvm)
5316 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5317
5318 return 0;
5319 }
5320
kvm_stat_data_get(void * data,u64 * val)5321 static int kvm_stat_data_get(void *data, u64 *val)
5322 {
5323 int r = -EFAULT;
5324 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5325
5326 switch (stat_data->kind) {
5327 case KVM_STAT_VM:
5328 r = kvm_get_stat_per_vm(stat_data->kvm,
5329 stat_data->desc->desc.offset, val);
5330 break;
5331 case KVM_STAT_VCPU:
5332 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5333 stat_data->desc->desc.offset, val);
5334 break;
5335 }
5336
5337 return r;
5338 }
5339
kvm_stat_data_clear(void * data,u64 val)5340 static int kvm_stat_data_clear(void *data, u64 val)
5341 {
5342 int r = -EFAULT;
5343 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5344
5345 if (val)
5346 return -EINVAL;
5347
5348 switch (stat_data->kind) {
5349 case KVM_STAT_VM:
5350 r = kvm_clear_stat_per_vm(stat_data->kvm,
5351 stat_data->desc->desc.offset);
5352 break;
5353 case KVM_STAT_VCPU:
5354 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5355 stat_data->desc->desc.offset);
5356 break;
5357 }
5358
5359 return r;
5360 }
5361
kvm_stat_data_open(struct inode * inode,struct file * file)5362 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5363 {
5364 __simple_attr_check_format("%llu\n", 0ull);
5365 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5366 kvm_stat_data_clear, "%llu\n");
5367 }
5368
5369 static const struct file_operations stat_fops_per_vm = {
5370 .owner = THIS_MODULE,
5371 .open = kvm_stat_data_open,
5372 .release = kvm_debugfs_release,
5373 .read = simple_attr_read,
5374 .write = simple_attr_write,
5375 .llseek = no_llseek,
5376 };
5377
vm_stat_get(void * _offset,u64 * val)5378 static int vm_stat_get(void *_offset, u64 *val)
5379 {
5380 unsigned offset = (long)_offset;
5381 struct kvm *kvm;
5382 u64 tmp_val;
5383
5384 *val = 0;
5385 mutex_lock(&kvm_lock);
5386 list_for_each_entry(kvm, &vm_list, vm_list) {
5387 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5388 *val += tmp_val;
5389 }
5390 mutex_unlock(&kvm_lock);
5391 return 0;
5392 }
5393
vm_stat_clear(void * _offset,u64 val)5394 static int vm_stat_clear(void *_offset, u64 val)
5395 {
5396 unsigned offset = (long)_offset;
5397 struct kvm *kvm;
5398
5399 if (val)
5400 return -EINVAL;
5401
5402 mutex_lock(&kvm_lock);
5403 list_for_each_entry(kvm, &vm_list, vm_list) {
5404 kvm_clear_stat_per_vm(kvm, offset);
5405 }
5406 mutex_unlock(&kvm_lock);
5407
5408 return 0;
5409 }
5410
5411 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5412 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5413
vcpu_stat_get(void * _offset,u64 * val)5414 static int vcpu_stat_get(void *_offset, u64 *val)
5415 {
5416 unsigned offset = (long)_offset;
5417 struct kvm *kvm;
5418 u64 tmp_val;
5419
5420 *val = 0;
5421 mutex_lock(&kvm_lock);
5422 list_for_each_entry(kvm, &vm_list, vm_list) {
5423 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5424 *val += tmp_val;
5425 }
5426 mutex_unlock(&kvm_lock);
5427 return 0;
5428 }
5429
vcpu_stat_clear(void * _offset,u64 val)5430 static int vcpu_stat_clear(void *_offset, u64 val)
5431 {
5432 unsigned offset = (long)_offset;
5433 struct kvm *kvm;
5434
5435 if (val)
5436 return -EINVAL;
5437
5438 mutex_lock(&kvm_lock);
5439 list_for_each_entry(kvm, &vm_list, vm_list) {
5440 kvm_clear_stat_per_vcpu(kvm, offset);
5441 }
5442 mutex_unlock(&kvm_lock);
5443
5444 return 0;
5445 }
5446
5447 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5448 "%llu\n");
5449 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5450
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)5451 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5452 {
5453 struct kobj_uevent_env *env;
5454 unsigned long long created, active;
5455
5456 if (!kvm_dev.this_device || !kvm)
5457 return;
5458
5459 mutex_lock(&kvm_lock);
5460 if (type == KVM_EVENT_CREATE_VM) {
5461 kvm_createvm_count++;
5462 kvm_active_vms++;
5463 } else if (type == KVM_EVENT_DESTROY_VM) {
5464 kvm_active_vms--;
5465 }
5466 created = kvm_createvm_count;
5467 active = kvm_active_vms;
5468 mutex_unlock(&kvm_lock);
5469
5470 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5471 if (!env)
5472 return;
5473
5474 add_uevent_var(env, "CREATED=%llu", created);
5475 add_uevent_var(env, "COUNT=%llu", active);
5476
5477 if (type == KVM_EVENT_CREATE_VM) {
5478 add_uevent_var(env, "EVENT=create");
5479 kvm->userspace_pid = task_pid_nr(current);
5480 } else if (type == KVM_EVENT_DESTROY_VM) {
5481 add_uevent_var(env, "EVENT=destroy");
5482 }
5483 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5484
5485 if (!IS_ERR(kvm->debugfs_dentry)) {
5486 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5487
5488 if (p) {
5489 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5490 if (!IS_ERR(tmp))
5491 add_uevent_var(env, "STATS_PATH=%s", tmp);
5492 kfree(p);
5493 }
5494 }
5495 /* no need for checks, since we are adding at most only 5 keys */
5496 env->envp[env->envp_idx++] = NULL;
5497 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5498 kfree(env);
5499 }
5500
kvm_init_debug(void)5501 static void kvm_init_debug(void)
5502 {
5503 const struct file_operations *fops;
5504 const struct _kvm_stats_desc *pdesc;
5505 int i;
5506
5507 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5508
5509 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5510 pdesc = &kvm_vm_stats_desc[i];
5511 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5512 fops = &vm_stat_fops;
5513 else
5514 fops = &vm_stat_readonly_fops;
5515 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5516 kvm_debugfs_dir,
5517 (void *)(long)pdesc->desc.offset, fops);
5518 }
5519
5520 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5521 pdesc = &kvm_vcpu_stats_desc[i];
5522 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5523 fops = &vcpu_stat_fops;
5524 else
5525 fops = &vcpu_stat_readonly_fops;
5526 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5527 kvm_debugfs_dir,
5528 (void *)(long)pdesc->desc.offset, fops);
5529 }
5530 }
5531
kvm_suspend(void)5532 static int kvm_suspend(void)
5533 {
5534 if (kvm_usage_count)
5535 hardware_disable_nolock(NULL);
5536 return 0;
5537 }
5538
kvm_resume(void)5539 static void kvm_resume(void)
5540 {
5541 if (kvm_usage_count) {
5542 lockdep_assert_not_held(&kvm_count_lock);
5543 hardware_enable_nolock(NULL);
5544 }
5545 }
5546
5547 static struct syscore_ops kvm_syscore_ops = {
5548 .suspend = kvm_suspend,
5549 .resume = kvm_resume,
5550 };
5551
5552 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)5553 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5554 {
5555 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5556 }
5557
kvm_sched_in(struct preempt_notifier * pn,int cpu)5558 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5559 {
5560 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5561
5562 WRITE_ONCE(vcpu->preempted, false);
5563 WRITE_ONCE(vcpu->ready, false);
5564
5565 __this_cpu_write(kvm_running_vcpu, vcpu);
5566 kvm_arch_sched_in(vcpu, cpu);
5567 kvm_arch_vcpu_load(vcpu, cpu);
5568 }
5569
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)5570 static void kvm_sched_out(struct preempt_notifier *pn,
5571 struct task_struct *next)
5572 {
5573 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5574
5575 if (current->on_rq) {
5576 WRITE_ONCE(vcpu->preempted, true);
5577 WRITE_ONCE(vcpu->ready, true);
5578 }
5579 kvm_arch_vcpu_put(vcpu);
5580 __this_cpu_write(kvm_running_vcpu, NULL);
5581 }
5582
5583 /**
5584 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5585 *
5586 * We can disable preemption locally around accessing the per-CPU variable,
5587 * and use the resolved vcpu pointer after enabling preemption again,
5588 * because even if the current thread is migrated to another CPU, reading
5589 * the per-CPU value later will give us the same value as we update the
5590 * per-CPU variable in the preempt notifier handlers.
5591 */
kvm_get_running_vcpu(void)5592 struct kvm_vcpu *kvm_get_running_vcpu(void)
5593 {
5594 struct kvm_vcpu *vcpu;
5595
5596 preempt_disable();
5597 vcpu = __this_cpu_read(kvm_running_vcpu);
5598 preempt_enable();
5599
5600 return vcpu;
5601 }
5602 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5603
5604 /**
5605 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5606 */
kvm_get_running_vcpus(void)5607 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5608 {
5609 return &kvm_running_vcpu;
5610 }
5611
5612 struct kvm_cpu_compat_check {
5613 void *opaque;
5614 int *ret;
5615 };
5616
check_processor_compat(void * data)5617 static void check_processor_compat(void *data)
5618 {
5619 struct kvm_cpu_compat_check *c = data;
5620
5621 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5622 }
5623
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)5624 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5625 struct module *module)
5626 {
5627 struct kvm_cpu_compat_check c;
5628 int r;
5629 int cpu;
5630
5631 r = kvm_arch_init(opaque);
5632 if (r)
5633 goto out_fail;
5634
5635 /*
5636 * kvm_arch_init makes sure there's at most one caller
5637 * for architectures that support multiple implementations,
5638 * like intel and amd on x86.
5639 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5640 * conflicts in case kvm is already setup for another implementation.
5641 */
5642 r = kvm_irqfd_init();
5643 if (r)
5644 goto out_irqfd;
5645
5646 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5647 r = -ENOMEM;
5648 goto out_free_0;
5649 }
5650
5651 r = kvm_arch_hardware_setup(opaque);
5652 if (r < 0)
5653 goto out_free_1;
5654
5655 c.ret = &r;
5656 c.opaque = opaque;
5657 for_each_online_cpu(cpu) {
5658 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5659 if (r < 0)
5660 goto out_free_2;
5661 }
5662
5663 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5664 kvm_starting_cpu, kvm_dying_cpu);
5665 if (r)
5666 goto out_free_2;
5667 register_reboot_notifier(&kvm_reboot_notifier);
5668
5669 /* A kmem cache lets us meet the alignment requirements of fx_save. */
5670 if (!vcpu_align)
5671 vcpu_align = __alignof__(struct kvm_vcpu);
5672 kvm_vcpu_cache =
5673 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5674 SLAB_ACCOUNT,
5675 offsetof(struct kvm_vcpu, arch),
5676 offsetofend(struct kvm_vcpu, stats_id)
5677 - offsetof(struct kvm_vcpu, arch),
5678 NULL);
5679 if (!kvm_vcpu_cache) {
5680 r = -ENOMEM;
5681 goto out_free_3;
5682 }
5683
5684 for_each_possible_cpu(cpu) {
5685 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5686 GFP_KERNEL, cpu_to_node(cpu))) {
5687 r = -ENOMEM;
5688 goto out_free_4;
5689 }
5690 }
5691
5692 r = kvm_async_pf_init();
5693 if (r)
5694 goto out_free_4;
5695
5696 kvm_chardev_ops.owner = module;
5697 kvm_vm_fops.owner = module;
5698 kvm_vcpu_fops.owner = module;
5699
5700 register_syscore_ops(&kvm_syscore_ops);
5701
5702 kvm_preempt_ops.sched_in = kvm_sched_in;
5703 kvm_preempt_ops.sched_out = kvm_sched_out;
5704
5705 kvm_init_debug();
5706
5707 r = kvm_vfio_ops_init();
5708 if (WARN_ON_ONCE(r))
5709 goto err_vfio;
5710
5711 /*
5712 * Registration _must_ be the very last thing done, as this exposes
5713 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
5714 */
5715 r = misc_register(&kvm_dev);
5716 if (r) {
5717 pr_err("kvm: misc device register failed\n");
5718 goto err_register;
5719 }
5720
5721 return 0;
5722
5723 err_register:
5724 kvm_vfio_ops_exit();
5725 err_vfio:
5726 kvm_async_pf_deinit();
5727 out_free_4:
5728 for_each_possible_cpu(cpu)
5729 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5730 kmem_cache_destroy(kvm_vcpu_cache);
5731 out_free_3:
5732 unregister_reboot_notifier(&kvm_reboot_notifier);
5733 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5734 out_free_2:
5735 kvm_arch_hardware_unsetup();
5736 out_free_1:
5737 free_cpumask_var(cpus_hardware_enabled);
5738 out_free_0:
5739 kvm_irqfd_exit();
5740 out_irqfd:
5741 kvm_arch_exit();
5742 out_fail:
5743 return r;
5744 }
5745 EXPORT_SYMBOL_GPL(kvm_init);
5746
kvm_exit(void)5747 void kvm_exit(void)
5748 {
5749 int cpu;
5750
5751 /*
5752 * Note, unregistering /dev/kvm doesn't strictly need to come first,
5753 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
5754 * to KVM while the module is being stopped.
5755 */
5756 misc_deregister(&kvm_dev);
5757
5758 debugfs_remove_recursive(kvm_debugfs_dir);
5759 for_each_possible_cpu(cpu)
5760 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5761 kmem_cache_destroy(kvm_vcpu_cache);
5762 kvm_async_pf_deinit();
5763 unregister_syscore_ops(&kvm_syscore_ops);
5764 unregister_reboot_notifier(&kvm_reboot_notifier);
5765 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5766 on_each_cpu(hardware_disable_nolock, NULL, 1);
5767 kvm_arch_hardware_unsetup();
5768 kvm_arch_exit();
5769 kvm_irqfd_exit();
5770 free_cpumask_var(cpus_hardware_enabled);
5771 kvm_vfio_ops_exit();
5772 }
5773 EXPORT_SYMBOL_GPL(kvm_exit);
5774
5775 struct kvm_vm_worker_thread_context {
5776 struct kvm *kvm;
5777 struct task_struct *parent;
5778 struct completion init_done;
5779 kvm_vm_thread_fn_t thread_fn;
5780 uintptr_t data;
5781 int err;
5782 };
5783
kvm_vm_worker_thread(void * context)5784 static int kvm_vm_worker_thread(void *context)
5785 {
5786 /*
5787 * The init_context is allocated on the stack of the parent thread, so
5788 * we have to locally copy anything that is needed beyond initialization
5789 */
5790 struct kvm_vm_worker_thread_context *init_context = context;
5791 struct kvm *kvm = init_context->kvm;
5792 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5793 uintptr_t data = init_context->data;
5794 int err;
5795
5796 err = kthread_park(current);
5797 /* kthread_park(current) is never supposed to return an error */
5798 WARN_ON(err != 0);
5799 if (err)
5800 goto init_complete;
5801
5802 err = cgroup_attach_task_all(init_context->parent, current);
5803 if (err) {
5804 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5805 __func__, err);
5806 goto init_complete;
5807 }
5808
5809 set_user_nice(current, task_nice(init_context->parent));
5810
5811 init_complete:
5812 init_context->err = err;
5813 complete(&init_context->init_done);
5814 init_context = NULL;
5815
5816 if (err)
5817 return err;
5818
5819 /* Wait to be woken up by the spawner before proceeding. */
5820 kthread_parkme();
5821
5822 if (!kthread_should_stop())
5823 err = thread_fn(kvm, data);
5824
5825 return err;
5826 }
5827
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)5828 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5829 uintptr_t data, const char *name,
5830 struct task_struct **thread_ptr)
5831 {
5832 struct kvm_vm_worker_thread_context init_context = {};
5833 struct task_struct *thread;
5834
5835 *thread_ptr = NULL;
5836 init_context.kvm = kvm;
5837 init_context.parent = current;
5838 init_context.thread_fn = thread_fn;
5839 init_context.data = data;
5840 init_completion(&init_context.init_done);
5841
5842 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5843 "%s-%d", name, task_pid_nr(current));
5844 if (IS_ERR(thread))
5845 return PTR_ERR(thread);
5846
5847 /* kthread_run is never supposed to return NULL */
5848 WARN_ON(thread == NULL);
5849
5850 wait_for_completion(&init_context.init_done);
5851
5852 if (!init_context.err)
5853 *thread_ptr = thread;
5854
5855 return init_context.err;
5856 }
5857