• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62 
63 #include "audit.h"
64 
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66  * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED		-1
68 #define AUDIT_UNINITIALIZED	0
69 #define AUDIT_INITIALIZED	1
70 static int	audit_initialized = AUDIT_UNINITIALIZED;
71 
72 u32		audit_enabled = AUDIT_OFF;
73 bool		audit_ever_enabled = !!AUDIT_OFF;
74 
75 EXPORT_SYMBOL_GPL(audit_enabled);
76 
77 /* Default state when kernel boots without any parameters. */
78 static u32	audit_default = AUDIT_OFF;
79 
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32	audit_failure = AUDIT_FAIL_PRINTK;
82 
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85 
86 /**
87  * struct audit_net - audit private network namespace data
88  * @sk: communication socket
89  */
90 struct audit_net {
91 	struct sock *sk;
92 };
93 
94 /**
95  * struct auditd_connection - kernel/auditd connection state
96  * @pid: auditd PID
97  * @portid: netlink portid
98  * @net: the associated network namespace
99  * @rcu: RCU head
100  *
101  * Description:
102  * This struct is RCU protected; you must either hold the RCU lock for reading
103  * or the associated spinlock for writing.
104  */
105 struct auditd_connection {
106 	struct pid *pid;
107 	u32 portid;
108 	struct net *net;
109 	struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113 
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115  * to that number per second.  This prevents DoS attacks, but results in
116  * audit records being dropped. */
117 static u32	audit_rate_limit;
118 
119 /* Number of outstanding audit_buffers allowed.
120  * When set to zero, this means unlimited. */
121 static u32	audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124 
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t		audit_sig_uid = INVALID_UID;
127 static pid_t		audit_sig_pid = -1;
128 static u32		audit_sig_sid;
129 
130 /* Records can be lost in several ways:
131    0) [suppressed in audit_alloc]
132    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133    2) out of memory in audit_log_move [alloc_skb]
134    3) suppressed due to audit_rate_limit
135    4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t	audit_lost = ATOMIC_INIT(0);
138 
139 /* Monotonically increasing sum of time the kernel has spent
140  * waiting while the backlog limit is exceeded.
141  */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143 
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146 
147 static struct kmem_cache *audit_buffer_cache;
148 
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155 
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159 
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162 
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 				   .mask = -1,
165 				   .features = 0,
166 				   .lock = 0,};
167 
168 static char *audit_feature_names[2] = {
169 	"only_unset_loginuid",
170 	"loginuid_immutable",
171 };
172 
173 /**
174  * struct audit_ctl_mutex - serialize requests from userspace
175  * @lock: the mutex used for locking
176  * @owner: the task which owns the lock
177  *
178  * Description:
179  * This is the lock struct used to ensure we only process userspace requests
180  * in an orderly fashion.  We can't simply use a mutex/lock here because we
181  * need to track lock ownership so we don't end up blocking the lock owner in
182  * audit_log_start() or similar.
183  */
184 static struct audit_ctl_mutex {
185 	struct mutex lock;
186 	void *owner;
187 } audit_cmd_mutex;
188 
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190  * audit records.  Since printk uses a 1024 byte buffer, this buffer
191  * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193 
194 /* The audit_buffer is used when formatting an audit record.  The caller
195  * locks briefly to get the record off the freelist or to allocate the
196  * buffer, and locks briefly to send the buffer to the netlink layer or
197  * to place it on a transmit queue.  Multiple audit_buffers can be in
198  * use simultaneously. */
199 struct audit_buffer {
200 	struct sk_buff       *skb;	/* formatted skb ready to send */
201 	struct audit_context *ctx;	/* NULL or associated context */
202 	gfp_t		     gfp_mask;
203 };
204 
205 struct audit_reply {
206 	__u32 portid;
207 	struct net *net;
208 	struct sk_buff *skb;
209 };
210 
211 /**
212  * auditd_test_task - Check to see if a given task is an audit daemon
213  * @task: the task to check
214  *
215  * Description:
216  * Return 1 if the task is a registered audit daemon, 0 otherwise.
217  */
auditd_test_task(struct task_struct * task)218 int auditd_test_task(struct task_struct *task)
219 {
220 	int rc;
221 	struct auditd_connection *ac;
222 
223 	rcu_read_lock();
224 	ac = rcu_dereference(auditd_conn);
225 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 	rcu_read_unlock();
227 
228 	return rc;
229 }
230 
231 /**
232  * audit_ctl_lock - Take the audit control lock
233  */
audit_ctl_lock(void)234 void audit_ctl_lock(void)
235 {
236 	mutex_lock(&audit_cmd_mutex.lock);
237 	audit_cmd_mutex.owner = current;
238 }
239 
240 /**
241  * audit_ctl_unlock - Drop the audit control lock
242  */
audit_ctl_unlock(void)243 void audit_ctl_unlock(void)
244 {
245 	audit_cmd_mutex.owner = NULL;
246 	mutex_unlock(&audit_cmd_mutex.lock);
247 }
248 
249 /**
250  * audit_ctl_owner_current - Test to see if the current task owns the lock
251  *
252  * Description:
253  * Return true if the current task owns the audit control lock, false if it
254  * doesn't own the lock.
255  */
audit_ctl_owner_current(void)256 static bool audit_ctl_owner_current(void)
257 {
258 	return (current == audit_cmd_mutex.owner);
259 }
260 
261 /**
262  * auditd_pid_vnr - Return the auditd PID relative to the namespace
263  *
264  * Description:
265  * Returns the PID in relation to the namespace, 0 on failure.
266  */
auditd_pid_vnr(void)267 static pid_t auditd_pid_vnr(void)
268 {
269 	pid_t pid;
270 	const struct auditd_connection *ac;
271 
272 	rcu_read_lock();
273 	ac = rcu_dereference(auditd_conn);
274 	if (!ac || !ac->pid)
275 		pid = 0;
276 	else
277 		pid = pid_vnr(ac->pid);
278 	rcu_read_unlock();
279 
280 	return pid;
281 }
282 
283 /**
284  * audit_get_sk - Return the audit socket for the given network namespace
285  * @net: the destination network namespace
286  *
287  * Description:
288  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
289  * that a reference is held for the network namespace while the sock is in use.
290  */
audit_get_sk(const struct net * net)291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 	struct audit_net *aunet;
294 
295 	if (!net)
296 		return NULL;
297 
298 	aunet = net_generic(net, audit_net_id);
299 	return aunet->sk;
300 }
301 
audit_panic(const char * message)302 void audit_panic(const char *message)
303 {
304 	switch (audit_failure) {
305 	case AUDIT_FAIL_SILENT:
306 		break;
307 	case AUDIT_FAIL_PRINTK:
308 		if (printk_ratelimit())
309 			pr_err("%s\n", message);
310 		break;
311 	case AUDIT_FAIL_PANIC:
312 		panic("audit: %s\n", message);
313 		break;
314 	}
315 }
316 
audit_rate_check(void)317 static inline int audit_rate_check(void)
318 {
319 	static unsigned long	last_check = 0;
320 	static int		messages   = 0;
321 	static DEFINE_SPINLOCK(lock);
322 	unsigned long		flags;
323 	unsigned long		now;
324 	unsigned long		elapsed;
325 	int			retval	   = 0;
326 
327 	if (!audit_rate_limit) return 1;
328 
329 	spin_lock_irqsave(&lock, flags);
330 	if (++messages < audit_rate_limit) {
331 		retval = 1;
332 	} else {
333 		now     = jiffies;
334 		elapsed = now - last_check;
335 		if (elapsed > HZ) {
336 			last_check = now;
337 			messages   = 0;
338 			retval     = 1;
339 		}
340 	}
341 	spin_unlock_irqrestore(&lock, flags);
342 
343 	return retval;
344 }
345 
346 /**
347  * audit_log_lost - conditionally log lost audit message event
348  * @message: the message stating reason for lost audit message
349  *
350  * Emit at least 1 message per second, even if audit_rate_check is
351  * throttling.
352  * Always increment the lost messages counter.
353 */
audit_log_lost(const char * message)354 void audit_log_lost(const char *message)
355 {
356 	static unsigned long	last_msg = 0;
357 	static DEFINE_SPINLOCK(lock);
358 	unsigned long		flags;
359 	unsigned long		now;
360 	int			print;
361 
362 	atomic_inc(&audit_lost);
363 
364 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
365 
366 	if (!print) {
367 		spin_lock_irqsave(&lock, flags);
368 		now = jiffies;
369 		if (now - last_msg > HZ) {
370 			print = 1;
371 			last_msg = now;
372 		}
373 		spin_unlock_irqrestore(&lock, flags);
374 	}
375 
376 	if (print) {
377 		if (printk_ratelimit())
378 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
379 				atomic_read(&audit_lost),
380 				audit_rate_limit,
381 				audit_backlog_limit);
382 		audit_panic(message);
383 	}
384 }
385 
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)386 static int audit_log_config_change(char *function_name, u32 new, u32 old,
387 				   int allow_changes)
388 {
389 	struct audit_buffer *ab;
390 	int rc = 0;
391 
392 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
393 	if (unlikely(!ab))
394 		return rc;
395 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
396 	audit_log_session_info(ab);
397 	rc = audit_log_task_context(ab);
398 	if (rc)
399 		allow_changes = 0; /* Something weird, deny request */
400 	audit_log_format(ab, " res=%d", allow_changes);
401 	audit_log_end(ab);
402 	return rc;
403 }
404 
audit_do_config_change(char * function_name,u32 * to_change,u32 new)405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
406 {
407 	int allow_changes, rc = 0;
408 	u32 old = *to_change;
409 
410 	/* check if we are locked */
411 	if (audit_enabled == AUDIT_LOCKED)
412 		allow_changes = 0;
413 	else
414 		allow_changes = 1;
415 
416 	if (audit_enabled != AUDIT_OFF) {
417 		rc = audit_log_config_change(function_name, new, old, allow_changes);
418 		if (rc)
419 			allow_changes = 0;
420 	}
421 
422 	/* If we are allowed, make the change */
423 	if (allow_changes == 1)
424 		*to_change = new;
425 	/* Not allowed, update reason */
426 	else if (rc == 0)
427 		rc = -EPERM;
428 	return rc;
429 }
430 
audit_set_rate_limit(u32 limit)431 static int audit_set_rate_limit(u32 limit)
432 {
433 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
434 }
435 
audit_set_backlog_limit(u32 limit)436 static int audit_set_backlog_limit(u32 limit)
437 {
438 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
439 }
440 
audit_set_backlog_wait_time(u32 timeout)441 static int audit_set_backlog_wait_time(u32 timeout)
442 {
443 	return audit_do_config_change("audit_backlog_wait_time",
444 				      &audit_backlog_wait_time, timeout);
445 }
446 
audit_set_enabled(u32 state)447 static int audit_set_enabled(u32 state)
448 {
449 	int rc;
450 	if (state > AUDIT_LOCKED)
451 		return -EINVAL;
452 
453 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
454 	if (!rc)
455 		audit_ever_enabled |= !!state;
456 
457 	return rc;
458 }
459 
audit_set_failure(u32 state)460 static int audit_set_failure(u32 state)
461 {
462 	if (state != AUDIT_FAIL_SILENT
463 	    && state != AUDIT_FAIL_PRINTK
464 	    && state != AUDIT_FAIL_PANIC)
465 		return -EINVAL;
466 
467 	return audit_do_config_change("audit_failure", &audit_failure, state);
468 }
469 
470 /**
471  * auditd_conn_free - RCU helper to release an auditd connection struct
472  * @rcu: RCU head
473  *
474  * Description:
475  * Drop any references inside the auditd connection tracking struct and free
476  * the memory.
477  */
auditd_conn_free(struct rcu_head * rcu)478 static void auditd_conn_free(struct rcu_head *rcu)
479 {
480 	struct auditd_connection *ac;
481 
482 	ac = container_of(rcu, struct auditd_connection, rcu);
483 	put_pid(ac->pid);
484 	put_net(ac->net);
485 	kfree(ac);
486 }
487 
488 /**
489  * auditd_set - Set/Reset the auditd connection state
490  * @pid: auditd PID
491  * @portid: auditd netlink portid
492  * @net: auditd network namespace pointer
493  * @skb: the netlink command from the audit daemon
494  * @ack: netlink ack flag, cleared if ack'd here
495  *
496  * Description:
497  * This function will obtain and drop network namespace references as
498  * necessary.  Returns zero on success, negative values on failure.
499  */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)500 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
501 		      struct sk_buff *skb, bool *ack)
502 {
503 	unsigned long flags;
504 	struct auditd_connection *ac_old, *ac_new;
505 	struct nlmsghdr *nlh;
506 
507 	if (!pid || !net)
508 		return -EINVAL;
509 
510 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
511 	if (!ac_new)
512 		return -ENOMEM;
513 	ac_new->pid = get_pid(pid);
514 	ac_new->portid = portid;
515 	ac_new->net = get_net(net);
516 
517 	/* send the ack now to avoid a race with the queue backlog */
518 	if (*ack) {
519 		nlh = nlmsg_hdr(skb);
520 		netlink_ack(skb, nlh, 0, NULL);
521 		*ack = false;
522 	}
523 
524 	spin_lock_irqsave(&auditd_conn_lock, flags);
525 	ac_old = rcu_dereference_protected(auditd_conn,
526 					   lockdep_is_held(&auditd_conn_lock));
527 	rcu_assign_pointer(auditd_conn, ac_new);
528 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
529 
530 	if (ac_old)
531 		call_rcu(&ac_old->rcu, auditd_conn_free);
532 
533 	return 0;
534 }
535 
536 /**
537  * kauditd_printk_skb - Print the audit record to the ring buffer
538  * @skb: audit record
539  *
540  * Whatever the reason, this packet may not make it to the auditd connection
541  * so write it via printk so the information isn't completely lost.
542  */
kauditd_printk_skb(struct sk_buff * skb)543 static void kauditd_printk_skb(struct sk_buff *skb)
544 {
545 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
546 	char *data = nlmsg_data(nlh);
547 
548 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
549 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
550 }
551 
552 /**
553  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
554  * @skb: audit record
555  * @error: error code (unused)
556  *
557  * Description:
558  * This should only be used by the kauditd_thread when it fails to flush the
559  * hold queue.
560  */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)561 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
562 {
563 	/* put the record back in the queue */
564 	skb_queue_tail(&audit_hold_queue, skb);
565 }
566 
567 /**
568  * kauditd_hold_skb - Queue an audit record, waiting for auditd
569  * @skb: audit record
570  * @error: error code
571  *
572  * Description:
573  * Queue the audit record, waiting for an instance of auditd.  When this
574  * function is called we haven't given up yet on sending the record, but things
575  * are not looking good.  The first thing we want to do is try to write the
576  * record via printk and then see if we want to try and hold on to the record
577  * and queue it, if we have room.  If we want to hold on to the record, but we
578  * don't have room, record a record lost message.
579  */
kauditd_hold_skb(struct sk_buff * skb,int error)580 static void kauditd_hold_skb(struct sk_buff *skb, int error)
581 {
582 	/* at this point it is uncertain if we will ever send this to auditd so
583 	 * try to send the message via printk before we go any further */
584 	kauditd_printk_skb(skb);
585 
586 	/* can we just silently drop the message? */
587 	if (!audit_default)
588 		goto drop;
589 
590 	/* the hold queue is only for when the daemon goes away completely,
591 	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
592 	 * record on the retry queue unless it's full, in which case drop it
593 	 */
594 	if (error == -EAGAIN) {
595 		if (!audit_backlog_limit ||
596 		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
597 			skb_queue_tail(&audit_retry_queue, skb);
598 			return;
599 		}
600 		audit_log_lost("kauditd retry queue overflow");
601 		goto drop;
602 	}
603 
604 	/* if we have room in the hold queue, queue the message */
605 	if (!audit_backlog_limit ||
606 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
607 		skb_queue_tail(&audit_hold_queue, skb);
608 		return;
609 	}
610 
611 	/* we have no other options - drop the message */
612 	audit_log_lost("kauditd hold queue overflow");
613 drop:
614 	kfree_skb(skb);
615 }
616 
617 /**
618  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
619  * @skb: audit record
620  * @error: error code (unused)
621  *
622  * Description:
623  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
624  * but for some reason we are having problems sending it audit records so
625  * queue the given record and attempt to resend.
626  */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)627 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
628 {
629 	if (!audit_backlog_limit ||
630 	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
631 		skb_queue_tail(&audit_retry_queue, skb);
632 		return;
633 	}
634 
635 	/* we have to drop the record, send it via printk as a last effort */
636 	kauditd_printk_skb(skb);
637 	audit_log_lost("kauditd retry queue overflow");
638 	kfree_skb(skb);
639 }
640 
641 /**
642  * auditd_reset - Disconnect the auditd connection
643  * @ac: auditd connection state
644  *
645  * Description:
646  * Break the auditd/kauditd connection and move all the queued records into the
647  * hold queue in case auditd reconnects.  It is important to note that the @ac
648  * pointer should never be dereferenced inside this function as it may be NULL
649  * or invalid, you can only compare the memory address!  If @ac is NULL then
650  * the connection will always be reset.
651  */
auditd_reset(const struct auditd_connection * ac)652 static void auditd_reset(const struct auditd_connection *ac)
653 {
654 	unsigned long flags;
655 	struct sk_buff *skb;
656 	struct auditd_connection *ac_old;
657 
658 	/* if it isn't already broken, break the connection */
659 	spin_lock_irqsave(&auditd_conn_lock, flags);
660 	ac_old = rcu_dereference_protected(auditd_conn,
661 					   lockdep_is_held(&auditd_conn_lock));
662 	if (ac && ac != ac_old) {
663 		/* someone already registered a new auditd connection */
664 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
665 		return;
666 	}
667 	rcu_assign_pointer(auditd_conn, NULL);
668 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
669 
670 	if (ac_old)
671 		call_rcu(&ac_old->rcu, auditd_conn_free);
672 
673 	/* flush the retry queue to the hold queue, but don't touch the main
674 	 * queue since we need to process that normally for multicast */
675 	while ((skb = skb_dequeue(&audit_retry_queue)))
676 		kauditd_hold_skb(skb, -ECONNREFUSED);
677 }
678 
679 /**
680  * auditd_send_unicast_skb - Send a record via unicast to auditd
681  * @skb: audit record
682  *
683  * Description:
684  * Send a skb to the audit daemon, returns positive/zero values on success and
685  * negative values on failure; in all cases the skb will be consumed by this
686  * function.  If the send results in -ECONNREFUSED the connection with auditd
687  * will be reset.  This function may sleep so callers should not hold any locks
688  * where this would cause a problem.
689  */
auditd_send_unicast_skb(struct sk_buff * skb)690 static int auditd_send_unicast_skb(struct sk_buff *skb)
691 {
692 	int rc;
693 	u32 portid;
694 	struct net *net;
695 	struct sock *sk;
696 	struct auditd_connection *ac;
697 
698 	/* NOTE: we can't call netlink_unicast while in the RCU section so
699 	 *       take a reference to the network namespace and grab local
700 	 *       copies of the namespace, the sock, and the portid; the
701 	 *       namespace and sock aren't going to go away while we hold a
702 	 *       reference and if the portid does become invalid after the RCU
703 	 *       section netlink_unicast() should safely return an error */
704 
705 	rcu_read_lock();
706 	ac = rcu_dereference(auditd_conn);
707 	if (!ac) {
708 		rcu_read_unlock();
709 		kfree_skb(skb);
710 		rc = -ECONNREFUSED;
711 		goto err;
712 	}
713 	net = get_net(ac->net);
714 	sk = audit_get_sk(net);
715 	portid = ac->portid;
716 	rcu_read_unlock();
717 
718 	rc = netlink_unicast(sk, skb, portid, 0);
719 	put_net(net);
720 	if (rc < 0)
721 		goto err;
722 
723 	return rc;
724 
725 err:
726 	if (ac && rc == -ECONNREFUSED)
727 		auditd_reset(ac);
728 	return rc;
729 }
730 
731 /**
732  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
733  * @sk: the sending sock
734  * @portid: the netlink destination
735  * @queue: the skb queue to process
736  * @retry_limit: limit on number of netlink unicast failures
737  * @skb_hook: per-skb hook for additional processing
738  * @err_hook: hook called if the skb fails the netlink unicast send
739  *
740  * Description:
741  * Run through the given queue and attempt to send the audit records to auditd,
742  * returns zero on success, negative values on failure.  It is up to the caller
743  * to ensure that the @sk is valid for the duration of this function.
744  *
745  */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))746 static int kauditd_send_queue(struct sock *sk, u32 portid,
747 			      struct sk_buff_head *queue,
748 			      unsigned int retry_limit,
749 			      void (*skb_hook)(struct sk_buff *skb),
750 			      void (*err_hook)(struct sk_buff *skb, int error))
751 {
752 	int rc = 0;
753 	struct sk_buff *skb = NULL;
754 	struct sk_buff *skb_tail;
755 	unsigned int failed = 0;
756 
757 	/* NOTE: kauditd_thread takes care of all our locking, we just use
758 	 *       the netlink info passed to us (e.g. sk and portid) */
759 
760 	skb_tail = skb_peek_tail(queue);
761 	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
762 		/* call the skb_hook for each skb we touch */
763 		if (skb_hook)
764 			(*skb_hook)(skb);
765 
766 		/* can we send to anyone via unicast? */
767 		if (!sk) {
768 			if (err_hook)
769 				(*err_hook)(skb, -ECONNREFUSED);
770 			continue;
771 		}
772 
773 retry:
774 		/* grab an extra skb reference in case of error */
775 		skb_get(skb);
776 		rc = netlink_unicast(sk, skb, portid, 0);
777 		if (rc < 0) {
778 			/* send failed - try a few times unless fatal error */
779 			if (++failed >= retry_limit ||
780 			    rc == -ECONNREFUSED || rc == -EPERM) {
781 				sk = NULL;
782 				if (err_hook)
783 					(*err_hook)(skb, rc);
784 				if (rc == -EAGAIN)
785 					rc = 0;
786 				/* continue to drain the queue */
787 				continue;
788 			} else
789 				goto retry;
790 		} else {
791 			/* skb sent - drop the extra reference and continue */
792 			consume_skb(skb);
793 			failed = 0;
794 		}
795 	}
796 
797 	return (rc >= 0 ? 0 : rc);
798 }
799 
800 /*
801  * kauditd_send_multicast_skb - Send a record to any multicast listeners
802  * @skb: audit record
803  *
804  * Description:
805  * Write a multicast message to anyone listening in the initial network
806  * namespace.  This function doesn't consume an skb as might be expected since
807  * it has to copy it anyways.
808  */
kauditd_send_multicast_skb(struct sk_buff * skb)809 static void kauditd_send_multicast_skb(struct sk_buff *skb)
810 {
811 	struct sk_buff *copy;
812 	struct sock *sock = audit_get_sk(&init_net);
813 	struct nlmsghdr *nlh;
814 
815 	/* NOTE: we are not taking an additional reference for init_net since
816 	 *       we don't have to worry about it going away */
817 
818 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
819 		return;
820 
821 	/*
822 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
823 	 * using skb_get() is necessary because non-standard mods are made to
824 	 * the skb by the original kaudit unicast socket send routine.  The
825 	 * existing auditd daemon assumes this breakage.  Fixing this would
826 	 * require co-ordinating a change in the established protocol between
827 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
828 	 * no reason for new multicast clients to continue with this
829 	 * non-compliance.
830 	 */
831 	copy = skb_copy(skb, GFP_KERNEL);
832 	if (!copy)
833 		return;
834 	nlh = nlmsg_hdr(copy);
835 	nlh->nlmsg_len = skb->len;
836 
837 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
838 }
839 
840 /**
841  * kauditd_thread - Worker thread to send audit records to userspace
842  * @dummy: unused
843  */
kauditd_thread(void * dummy)844 static int kauditd_thread(void *dummy)
845 {
846 	int rc;
847 	u32 portid = 0;
848 	struct net *net = NULL;
849 	struct sock *sk = NULL;
850 	struct auditd_connection *ac;
851 
852 #define UNICAST_RETRIES 5
853 
854 	set_freezable();
855 	while (!kthread_should_stop()) {
856 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
857 		rcu_read_lock();
858 		ac = rcu_dereference(auditd_conn);
859 		if (!ac) {
860 			rcu_read_unlock();
861 			goto main_queue;
862 		}
863 		net = get_net(ac->net);
864 		sk = audit_get_sk(net);
865 		portid = ac->portid;
866 		rcu_read_unlock();
867 
868 		/* attempt to flush the hold queue */
869 		rc = kauditd_send_queue(sk, portid,
870 					&audit_hold_queue, UNICAST_RETRIES,
871 					NULL, kauditd_rehold_skb);
872 		if (rc < 0) {
873 			sk = NULL;
874 			auditd_reset(ac);
875 			goto main_queue;
876 		}
877 
878 		/* attempt to flush the retry queue */
879 		rc = kauditd_send_queue(sk, portid,
880 					&audit_retry_queue, UNICAST_RETRIES,
881 					NULL, kauditd_hold_skb);
882 		if (rc < 0) {
883 			sk = NULL;
884 			auditd_reset(ac);
885 			goto main_queue;
886 		}
887 
888 main_queue:
889 		/* process the main queue - do the multicast send and attempt
890 		 * unicast, dump failed record sends to the retry queue; if
891 		 * sk == NULL due to previous failures we will just do the
892 		 * multicast send and move the record to the hold queue */
893 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
894 					kauditd_send_multicast_skb,
895 					(sk ?
896 					 kauditd_retry_skb : kauditd_hold_skb));
897 		if (ac && rc < 0)
898 			auditd_reset(ac);
899 		sk = NULL;
900 
901 		/* drop our netns reference, no auditd sends past this line */
902 		if (net) {
903 			put_net(net);
904 			net = NULL;
905 		}
906 
907 		/* we have processed all the queues so wake everyone */
908 		wake_up(&audit_backlog_wait);
909 
910 		/* NOTE: we want to wake up if there is anything on the queue,
911 		 *       regardless of if an auditd is connected, as we need to
912 		 *       do the multicast send and rotate records from the
913 		 *       main queue to the retry/hold queues */
914 		wait_event_freezable(kauditd_wait,
915 				     (skb_queue_len(&audit_queue) ? 1 : 0));
916 	}
917 
918 	return 0;
919 }
920 
audit_send_list_thread(void * _dest)921 int audit_send_list_thread(void *_dest)
922 {
923 	struct audit_netlink_list *dest = _dest;
924 	struct sk_buff *skb;
925 	struct sock *sk = audit_get_sk(dest->net);
926 
927 	/* wait for parent to finish and send an ACK */
928 	audit_ctl_lock();
929 	audit_ctl_unlock();
930 
931 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
932 		netlink_unicast(sk, skb, dest->portid, 0);
933 
934 	put_net(dest->net);
935 	kfree(dest);
936 
937 	return 0;
938 }
939 
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)940 struct sk_buff *audit_make_reply(int seq, int type, int done,
941 				 int multi, const void *payload, int size)
942 {
943 	struct sk_buff	*skb;
944 	struct nlmsghdr	*nlh;
945 	void		*data;
946 	int		flags = multi ? NLM_F_MULTI : 0;
947 	int		t     = done  ? NLMSG_DONE  : type;
948 
949 	skb = nlmsg_new(size, GFP_KERNEL);
950 	if (!skb)
951 		return NULL;
952 
953 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
954 	if (!nlh)
955 		goto out_kfree_skb;
956 	data = nlmsg_data(nlh);
957 	memcpy(data, payload, size);
958 	return skb;
959 
960 out_kfree_skb:
961 	kfree_skb(skb);
962 	return NULL;
963 }
964 
audit_free_reply(struct audit_reply * reply)965 static void audit_free_reply(struct audit_reply *reply)
966 {
967 	if (!reply)
968 		return;
969 
970 	kfree_skb(reply->skb);
971 	if (reply->net)
972 		put_net(reply->net);
973 	kfree(reply);
974 }
975 
audit_send_reply_thread(void * arg)976 static int audit_send_reply_thread(void *arg)
977 {
978 	struct audit_reply *reply = (struct audit_reply *)arg;
979 
980 	audit_ctl_lock();
981 	audit_ctl_unlock();
982 
983 	/* Ignore failure. It'll only happen if the sender goes away,
984 	   because our timeout is set to infinite. */
985 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
986 	reply->skb = NULL;
987 	audit_free_reply(reply);
988 	return 0;
989 }
990 
991 /**
992  * audit_send_reply - send an audit reply message via netlink
993  * @request_skb: skb of request we are replying to (used to target the reply)
994  * @seq: sequence number
995  * @type: audit message type
996  * @done: done (last) flag
997  * @multi: multi-part message flag
998  * @payload: payload data
999  * @size: payload size
1000  *
1001  * Allocates a skb, builds the netlink message, and sends it to the port id.
1002  */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)1003 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1004 			     int multi, const void *payload, int size)
1005 {
1006 	struct task_struct *tsk;
1007 	struct audit_reply *reply;
1008 
1009 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1010 	if (!reply)
1011 		return;
1012 
1013 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1014 	if (!reply->skb)
1015 		goto err;
1016 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1017 	reply->portid = NETLINK_CB(request_skb).portid;
1018 
1019 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1020 	if (IS_ERR(tsk))
1021 		goto err;
1022 
1023 	return;
1024 
1025 err:
1026 	audit_free_reply(reply);
1027 }
1028 
1029 /*
1030  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1031  * control messages.
1032  */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1033 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1034 {
1035 	int err = 0;
1036 
1037 	/* Only support initial user namespace for now. */
1038 	/*
1039 	 * We return ECONNREFUSED because it tricks userspace into thinking
1040 	 * that audit was not configured into the kernel.  Lots of users
1041 	 * configure their PAM stack (because that's what the distro does)
1042 	 * to reject login if unable to send messages to audit.  If we return
1043 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1044 	 * configured in and will let login proceed.  If we return EPERM
1045 	 * userspace will reject all logins.  This should be removed when we
1046 	 * support non init namespaces!!
1047 	 */
1048 	if (current_user_ns() != &init_user_ns)
1049 		return -ECONNREFUSED;
1050 
1051 	switch (msg_type) {
1052 	case AUDIT_LIST:
1053 	case AUDIT_ADD:
1054 	case AUDIT_DEL:
1055 		return -EOPNOTSUPP;
1056 	case AUDIT_GET:
1057 	case AUDIT_SET:
1058 	case AUDIT_GET_FEATURE:
1059 	case AUDIT_SET_FEATURE:
1060 	case AUDIT_LIST_RULES:
1061 	case AUDIT_ADD_RULE:
1062 	case AUDIT_DEL_RULE:
1063 	case AUDIT_SIGNAL_INFO:
1064 	case AUDIT_TTY_GET:
1065 	case AUDIT_TTY_SET:
1066 	case AUDIT_TRIM:
1067 	case AUDIT_MAKE_EQUIV:
1068 		/* Only support auditd and auditctl in initial pid namespace
1069 		 * for now. */
1070 		if (task_active_pid_ns(current) != &init_pid_ns)
1071 			return -EPERM;
1072 
1073 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1074 			err = -EPERM;
1075 		break;
1076 	case AUDIT_USER:
1077 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1078 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1079 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1080 			err = -EPERM;
1081 		break;
1082 	default:  /* bad msg */
1083 		err = -EINVAL;
1084 	}
1085 
1086 	return err;
1087 }
1088 
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1089 static void audit_log_common_recv_msg(struct audit_context *context,
1090 					struct audit_buffer **ab, u16 msg_type)
1091 {
1092 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1093 	pid_t pid = task_tgid_nr(current);
1094 
1095 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1096 		*ab = NULL;
1097 		return;
1098 	}
1099 
1100 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1101 	if (unlikely(!*ab))
1102 		return;
1103 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1104 	audit_log_session_info(*ab);
1105 	audit_log_task_context(*ab);
1106 }
1107 
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1108 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1109 					   u16 msg_type)
1110 {
1111 	audit_log_common_recv_msg(NULL, ab, msg_type);
1112 }
1113 
is_audit_feature_set(int i)1114 int is_audit_feature_set(int i)
1115 {
1116 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1117 }
1118 
1119 
audit_get_feature(struct sk_buff * skb)1120 static int audit_get_feature(struct sk_buff *skb)
1121 {
1122 	u32 seq;
1123 
1124 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1125 
1126 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1127 
1128 	return 0;
1129 }
1130 
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1131 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1132 				     u32 old_lock, u32 new_lock, int res)
1133 {
1134 	struct audit_buffer *ab;
1135 
1136 	if (audit_enabled == AUDIT_OFF)
1137 		return;
1138 
1139 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1140 	if (!ab)
1141 		return;
1142 	audit_log_task_info(ab);
1143 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1144 			 audit_feature_names[which], !!old_feature, !!new_feature,
1145 			 !!old_lock, !!new_lock, res);
1146 	audit_log_end(ab);
1147 }
1148 
audit_set_feature(struct audit_features * uaf)1149 static int audit_set_feature(struct audit_features *uaf)
1150 {
1151 	int i;
1152 
1153 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1154 
1155 	/* if there is ever a version 2 we should handle that here */
1156 
1157 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1158 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1159 		u32 old_feature, new_feature, old_lock, new_lock;
1160 
1161 		/* if we are not changing this feature, move along */
1162 		if (!(feature & uaf->mask))
1163 			continue;
1164 
1165 		old_feature = af.features & feature;
1166 		new_feature = uaf->features & feature;
1167 		new_lock = (uaf->lock | af.lock) & feature;
1168 		old_lock = af.lock & feature;
1169 
1170 		/* are we changing a locked feature? */
1171 		if (old_lock && (new_feature != old_feature)) {
1172 			audit_log_feature_change(i, old_feature, new_feature,
1173 						 old_lock, new_lock, 0);
1174 			return -EPERM;
1175 		}
1176 	}
1177 	/* nothing invalid, do the changes */
1178 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1179 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1180 		u32 old_feature, new_feature, old_lock, new_lock;
1181 
1182 		/* if we are not changing this feature, move along */
1183 		if (!(feature & uaf->mask))
1184 			continue;
1185 
1186 		old_feature = af.features & feature;
1187 		new_feature = uaf->features & feature;
1188 		old_lock = af.lock & feature;
1189 		new_lock = (uaf->lock | af.lock) & feature;
1190 
1191 		if (new_feature != old_feature)
1192 			audit_log_feature_change(i, old_feature, new_feature,
1193 						 old_lock, new_lock, 1);
1194 
1195 		if (new_feature)
1196 			af.features |= feature;
1197 		else
1198 			af.features &= ~feature;
1199 		af.lock |= new_lock;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
audit_replace(struct pid * pid)1205 static int audit_replace(struct pid *pid)
1206 {
1207 	pid_t pvnr;
1208 	struct sk_buff *skb;
1209 
1210 	pvnr = pid_vnr(pid);
1211 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1212 	if (!skb)
1213 		return -ENOMEM;
1214 	return auditd_send_unicast_skb(skb);
1215 }
1216 
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1217 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1218 			     bool *ack)
1219 {
1220 	u32			seq;
1221 	void			*data;
1222 	int			data_len;
1223 	int			err;
1224 	struct audit_buffer	*ab;
1225 	u16			msg_type = nlh->nlmsg_type;
1226 	struct audit_sig_info   *sig_data;
1227 	char			*ctx = NULL;
1228 	u32			len;
1229 
1230 	err = audit_netlink_ok(skb, msg_type);
1231 	if (err)
1232 		return err;
1233 
1234 	seq  = nlh->nlmsg_seq;
1235 	data = nlmsg_data(nlh);
1236 	data_len = nlmsg_len(nlh);
1237 
1238 	switch (msg_type) {
1239 	case AUDIT_GET: {
1240 		struct audit_status	s;
1241 		memset(&s, 0, sizeof(s));
1242 		s.enabled		   = audit_enabled;
1243 		s.failure		   = audit_failure;
1244 		/* NOTE: use pid_vnr() so the PID is relative to the current
1245 		 *       namespace */
1246 		s.pid			   = auditd_pid_vnr();
1247 		s.rate_limit		   = audit_rate_limit;
1248 		s.backlog_limit		   = audit_backlog_limit;
1249 		s.lost			   = atomic_read(&audit_lost);
1250 		s.backlog		   = skb_queue_len(&audit_queue);
1251 		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1252 		s.backlog_wait_time	   = audit_backlog_wait_time;
1253 		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1254 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1255 		break;
1256 	}
1257 	case AUDIT_SET: {
1258 		struct audit_status	s;
1259 		memset(&s, 0, sizeof(s));
1260 		/* guard against past and future API changes */
1261 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1262 		if (s.mask & AUDIT_STATUS_ENABLED) {
1263 			err = audit_set_enabled(s.enabled);
1264 			if (err < 0)
1265 				return err;
1266 		}
1267 		if (s.mask & AUDIT_STATUS_FAILURE) {
1268 			err = audit_set_failure(s.failure);
1269 			if (err < 0)
1270 				return err;
1271 		}
1272 		if (s.mask & AUDIT_STATUS_PID) {
1273 			/* NOTE: we are using the vnr PID functions below
1274 			 *       because the s.pid value is relative to the
1275 			 *       namespace of the caller; at present this
1276 			 *       doesn't matter much since you can really only
1277 			 *       run auditd from the initial pid namespace, but
1278 			 *       something to keep in mind if this changes */
1279 			pid_t new_pid = s.pid;
1280 			pid_t auditd_pid;
1281 			struct pid *req_pid = task_tgid(current);
1282 
1283 			/* Sanity check - PID values must match. Setting
1284 			 * pid to 0 is how auditd ends auditing. */
1285 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1286 				return -EINVAL;
1287 
1288 			/* test the auditd connection */
1289 			audit_replace(req_pid);
1290 
1291 			auditd_pid = auditd_pid_vnr();
1292 			if (auditd_pid) {
1293 				/* replacing a healthy auditd is not allowed */
1294 				if (new_pid) {
1295 					audit_log_config_change("audit_pid",
1296 							new_pid, auditd_pid, 0);
1297 					return -EEXIST;
1298 				}
1299 				/* only current auditd can unregister itself */
1300 				if (pid_vnr(req_pid) != auditd_pid) {
1301 					audit_log_config_change("audit_pid",
1302 							new_pid, auditd_pid, 0);
1303 					return -EACCES;
1304 				}
1305 			}
1306 
1307 			if (new_pid) {
1308 				/* register a new auditd connection */
1309 				err = auditd_set(req_pid,
1310 						 NETLINK_CB(skb).portid,
1311 						 sock_net(NETLINK_CB(skb).sk),
1312 						 skb, ack);
1313 				if (audit_enabled != AUDIT_OFF)
1314 					audit_log_config_change("audit_pid",
1315 								new_pid,
1316 								auditd_pid,
1317 								err ? 0 : 1);
1318 				if (err)
1319 					return err;
1320 
1321 				/* try to process any backlog */
1322 				wake_up_interruptible(&kauditd_wait);
1323 			} else {
1324 				if (audit_enabled != AUDIT_OFF)
1325 					audit_log_config_change("audit_pid",
1326 								new_pid,
1327 								auditd_pid, 1);
1328 
1329 				/* unregister the auditd connection */
1330 				auditd_reset(NULL);
1331 			}
1332 		}
1333 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1334 			err = audit_set_rate_limit(s.rate_limit);
1335 			if (err < 0)
1336 				return err;
1337 		}
1338 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1339 			err = audit_set_backlog_limit(s.backlog_limit);
1340 			if (err < 0)
1341 				return err;
1342 		}
1343 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1344 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1345 				return -EINVAL;
1346 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1347 				return -EINVAL;
1348 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1349 			if (err < 0)
1350 				return err;
1351 		}
1352 		if (s.mask == AUDIT_STATUS_LOST) {
1353 			u32 lost = atomic_xchg(&audit_lost, 0);
1354 
1355 			audit_log_config_change("lost", 0, lost, 1);
1356 			return lost;
1357 		}
1358 		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1359 			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1360 
1361 			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1362 			return actual;
1363 		}
1364 		break;
1365 	}
1366 	case AUDIT_GET_FEATURE:
1367 		err = audit_get_feature(skb);
1368 		if (err)
1369 			return err;
1370 		break;
1371 	case AUDIT_SET_FEATURE:
1372 		if (data_len < sizeof(struct audit_features))
1373 			return -EINVAL;
1374 		err = audit_set_feature(data);
1375 		if (err)
1376 			return err;
1377 		break;
1378 	case AUDIT_USER:
1379 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1380 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1381 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1382 			return 0;
1383 		/* exit early if there isn't at least one character to print */
1384 		if (data_len < 2)
1385 			return -EINVAL;
1386 
1387 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1388 		if (err == 1) { /* match or error */
1389 			char *str = data;
1390 
1391 			err = 0;
1392 			if (msg_type == AUDIT_USER_TTY) {
1393 				err = tty_audit_push();
1394 				if (err)
1395 					break;
1396 			}
1397 			audit_log_user_recv_msg(&ab, msg_type);
1398 			if (msg_type != AUDIT_USER_TTY) {
1399 				/* ensure NULL termination */
1400 				str[data_len - 1] = '\0';
1401 				audit_log_format(ab, " msg='%.*s'",
1402 						 AUDIT_MESSAGE_TEXT_MAX,
1403 						 str);
1404 			} else {
1405 				audit_log_format(ab, " data=");
1406 				if (data_len > 0 && str[data_len - 1] == '\0')
1407 					data_len--;
1408 				audit_log_n_untrustedstring(ab, str, data_len);
1409 			}
1410 			audit_log_end(ab);
1411 		}
1412 		break;
1413 	case AUDIT_ADD_RULE:
1414 	case AUDIT_DEL_RULE:
1415 		if (data_len < sizeof(struct audit_rule_data))
1416 			return -EINVAL;
1417 		if (audit_enabled == AUDIT_LOCKED) {
1418 			audit_log_common_recv_msg(audit_context(), &ab,
1419 						  AUDIT_CONFIG_CHANGE);
1420 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1421 					 msg_type == AUDIT_ADD_RULE ?
1422 						"add_rule" : "remove_rule",
1423 					 audit_enabled);
1424 			audit_log_end(ab);
1425 			return -EPERM;
1426 		}
1427 		err = audit_rule_change(msg_type, seq, data, data_len);
1428 		break;
1429 	case AUDIT_LIST_RULES:
1430 		err = audit_list_rules_send(skb, seq);
1431 		break;
1432 	case AUDIT_TRIM:
1433 		audit_trim_trees();
1434 		audit_log_common_recv_msg(audit_context(), &ab,
1435 					  AUDIT_CONFIG_CHANGE);
1436 		audit_log_format(ab, " op=trim res=1");
1437 		audit_log_end(ab);
1438 		break;
1439 	case AUDIT_MAKE_EQUIV: {
1440 		void *bufp = data;
1441 		u32 sizes[2];
1442 		size_t msglen = data_len;
1443 		char *old, *new;
1444 
1445 		err = -EINVAL;
1446 		if (msglen < 2 * sizeof(u32))
1447 			break;
1448 		memcpy(sizes, bufp, 2 * sizeof(u32));
1449 		bufp += 2 * sizeof(u32);
1450 		msglen -= 2 * sizeof(u32);
1451 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1452 		if (IS_ERR(old)) {
1453 			err = PTR_ERR(old);
1454 			break;
1455 		}
1456 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1457 		if (IS_ERR(new)) {
1458 			err = PTR_ERR(new);
1459 			kfree(old);
1460 			break;
1461 		}
1462 		/* OK, here comes... */
1463 		err = audit_tag_tree(old, new);
1464 
1465 		audit_log_common_recv_msg(audit_context(), &ab,
1466 					  AUDIT_CONFIG_CHANGE);
1467 		audit_log_format(ab, " op=make_equiv old=");
1468 		audit_log_untrustedstring(ab, old);
1469 		audit_log_format(ab, " new=");
1470 		audit_log_untrustedstring(ab, new);
1471 		audit_log_format(ab, " res=%d", !err);
1472 		audit_log_end(ab);
1473 		kfree(old);
1474 		kfree(new);
1475 		break;
1476 	}
1477 	case AUDIT_SIGNAL_INFO:
1478 		len = 0;
1479 		if (audit_sig_sid) {
1480 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1481 			if (err)
1482 				return err;
1483 		}
1484 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1485 		if (!sig_data) {
1486 			if (audit_sig_sid)
1487 				security_release_secctx(ctx, len);
1488 			return -ENOMEM;
1489 		}
1490 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1491 		sig_data->pid = audit_sig_pid;
1492 		if (audit_sig_sid) {
1493 			memcpy(sig_data->ctx, ctx, len);
1494 			security_release_secctx(ctx, len);
1495 		}
1496 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1497 				 sig_data, sizeof(*sig_data) + len);
1498 		kfree(sig_data);
1499 		break;
1500 	case AUDIT_TTY_GET: {
1501 		struct audit_tty_status s;
1502 		unsigned int t;
1503 
1504 		t = READ_ONCE(current->signal->audit_tty);
1505 		s.enabled = t & AUDIT_TTY_ENABLE;
1506 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1507 
1508 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1509 		break;
1510 	}
1511 	case AUDIT_TTY_SET: {
1512 		struct audit_tty_status s, old;
1513 		struct audit_buffer	*ab;
1514 		unsigned int t;
1515 
1516 		memset(&s, 0, sizeof(s));
1517 		/* guard against past and future API changes */
1518 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1519 		/* check if new data is valid */
1520 		if ((s.enabled != 0 && s.enabled != 1) ||
1521 		    (s.log_passwd != 0 && s.log_passwd != 1))
1522 			err = -EINVAL;
1523 
1524 		if (err)
1525 			t = READ_ONCE(current->signal->audit_tty);
1526 		else {
1527 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1528 			t = xchg(&current->signal->audit_tty, t);
1529 		}
1530 		old.enabled = t & AUDIT_TTY_ENABLE;
1531 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1532 
1533 		audit_log_common_recv_msg(audit_context(), &ab,
1534 					  AUDIT_CONFIG_CHANGE);
1535 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1536 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1537 				 old.enabled, s.enabled, old.log_passwd,
1538 				 s.log_passwd, !err);
1539 		audit_log_end(ab);
1540 		break;
1541 	}
1542 	default:
1543 		err = -EINVAL;
1544 		break;
1545 	}
1546 
1547 	return err < 0 ? err : 0;
1548 }
1549 
1550 /**
1551  * audit_receive - receive messages from a netlink control socket
1552  * @skb: the message buffer
1553  *
1554  * Parse the provided skb and deal with any messages that may be present,
1555  * malformed skbs are discarded.
1556  */
audit_receive(struct sk_buff * skb)1557 static void audit_receive(struct sk_buff *skb)
1558 {
1559 	struct nlmsghdr *nlh;
1560 	bool ack;
1561 	/*
1562 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1563 	 * if the nlmsg_len was not aligned
1564 	 */
1565 	int len;
1566 	int err;
1567 
1568 	nlh = nlmsg_hdr(skb);
1569 	len = skb->len;
1570 
1571 	audit_ctl_lock();
1572 	while (nlmsg_ok(nlh, len)) {
1573 		ack = nlh->nlmsg_flags & NLM_F_ACK;
1574 		err = audit_receive_msg(skb, nlh, &ack);
1575 
1576 		/* send an ack if the user asked for one and audit_receive_msg
1577 		 * didn't already do it, or if there was an error. */
1578 		if (ack || err)
1579 			netlink_ack(skb, nlh, err, NULL);
1580 
1581 		nlh = nlmsg_next(nlh, &len);
1582 	}
1583 	audit_ctl_unlock();
1584 
1585 	/* can't block with the ctrl lock, so penalize the sender now */
1586 	if (audit_backlog_limit &&
1587 	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1588 		DECLARE_WAITQUEUE(wait, current);
1589 
1590 		/* wake kauditd to try and flush the queue */
1591 		wake_up_interruptible(&kauditd_wait);
1592 
1593 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1594 		set_current_state(TASK_UNINTERRUPTIBLE);
1595 		schedule_timeout(audit_backlog_wait_time);
1596 		remove_wait_queue(&audit_backlog_wait, &wait);
1597 	}
1598 }
1599 
1600 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1601 static void audit_log_multicast(int group, const char *op, int err)
1602 {
1603 	const struct cred *cred;
1604 	struct tty_struct *tty;
1605 	char comm[sizeof(current->comm)];
1606 	struct audit_buffer *ab;
1607 
1608 	if (!audit_enabled)
1609 		return;
1610 
1611 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1612 	if (!ab)
1613 		return;
1614 
1615 	cred = current_cred();
1616 	tty = audit_get_tty();
1617 	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1618 			 task_pid_nr(current),
1619 			 from_kuid(&init_user_ns, cred->uid),
1620 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1621 			 tty ? tty_name(tty) : "(none)",
1622 			 audit_get_sessionid(current));
1623 	audit_put_tty(tty);
1624 	audit_log_task_context(ab); /* subj= */
1625 	audit_log_format(ab, " comm=");
1626 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1627 	audit_log_d_path_exe(ab, current->mm); /* exe= */
1628 	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1629 	audit_log_end(ab);
1630 }
1631 
1632 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1633 static int audit_multicast_bind(struct net *net, int group)
1634 {
1635 	int err = 0;
1636 
1637 	if (!capable(CAP_AUDIT_READ))
1638 		err = -EPERM;
1639 	audit_log_multicast(group, "connect", err);
1640 	return err;
1641 }
1642 
audit_multicast_unbind(struct net * net,int group)1643 static void audit_multicast_unbind(struct net *net, int group)
1644 {
1645 	audit_log_multicast(group, "disconnect", 0);
1646 }
1647 
audit_net_init(struct net * net)1648 static int __net_init audit_net_init(struct net *net)
1649 {
1650 	struct netlink_kernel_cfg cfg = {
1651 		.input	= audit_receive,
1652 		.bind	= audit_multicast_bind,
1653 		.unbind	= audit_multicast_unbind,
1654 		.flags	= NL_CFG_F_NONROOT_RECV,
1655 		.groups	= AUDIT_NLGRP_MAX,
1656 	};
1657 
1658 	struct audit_net *aunet = net_generic(net, audit_net_id);
1659 
1660 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1661 	if (aunet->sk == NULL) {
1662 		audit_panic("cannot initialize netlink socket in namespace");
1663 		return -ENOMEM;
1664 	}
1665 	/* limit the timeout in case auditd is blocked/stopped */
1666 	aunet->sk->sk_sndtimeo = HZ / 10;
1667 
1668 	return 0;
1669 }
1670 
audit_net_exit(struct net * net)1671 static void __net_exit audit_net_exit(struct net *net)
1672 {
1673 	struct audit_net *aunet = net_generic(net, audit_net_id);
1674 
1675 	/* NOTE: you would think that we would want to check the auditd
1676 	 * connection and potentially reset it here if it lives in this
1677 	 * namespace, but since the auditd connection tracking struct holds a
1678 	 * reference to this namespace (see auditd_set()) we are only ever
1679 	 * going to get here after that connection has been released */
1680 
1681 	netlink_kernel_release(aunet->sk);
1682 }
1683 
1684 static struct pernet_operations audit_net_ops __net_initdata = {
1685 	.init = audit_net_init,
1686 	.exit = audit_net_exit,
1687 	.id = &audit_net_id,
1688 	.size = sizeof(struct audit_net),
1689 };
1690 
1691 /* Initialize audit support at boot time. */
audit_init(void)1692 static int __init audit_init(void)
1693 {
1694 	int i;
1695 
1696 	if (audit_initialized == AUDIT_DISABLED)
1697 		return 0;
1698 
1699 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1700 					       sizeof(struct audit_buffer),
1701 					       0, SLAB_PANIC, NULL);
1702 
1703 	skb_queue_head_init(&audit_queue);
1704 	skb_queue_head_init(&audit_retry_queue);
1705 	skb_queue_head_init(&audit_hold_queue);
1706 
1707 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1708 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1709 
1710 	mutex_init(&audit_cmd_mutex.lock);
1711 	audit_cmd_mutex.owner = NULL;
1712 
1713 	pr_info("initializing netlink subsys (%s)\n",
1714 		audit_default ? "enabled" : "disabled");
1715 	register_pernet_subsys(&audit_net_ops);
1716 
1717 	audit_initialized = AUDIT_INITIALIZED;
1718 
1719 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1720 	if (IS_ERR(kauditd_task)) {
1721 		int err = PTR_ERR(kauditd_task);
1722 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1723 	}
1724 
1725 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1726 		"state=initialized audit_enabled=%u res=1",
1727 		 audit_enabled);
1728 
1729 	return 0;
1730 }
1731 postcore_initcall(audit_init);
1732 
1733 /*
1734  * Process kernel command-line parameter at boot time.
1735  * audit={0|off} or audit={1|on}.
1736  */
audit_enable(char * str)1737 static int __init audit_enable(char *str)
1738 {
1739 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1740 		audit_default = AUDIT_OFF;
1741 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1742 		audit_default = AUDIT_ON;
1743 	else {
1744 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1745 		audit_default = AUDIT_ON;
1746 	}
1747 
1748 	if (audit_default == AUDIT_OFF)
1749 		audit_initialized = AUDIT_DISABLED;
1750 	if (audit_set_enabled(audit_default))
1751 		pr_err("audit: error setting audit state (%d)\n",
1752 		       audit_default);
1753 
1754 	pr_info("%s\n", audit_default ?
1755 		"enabled (after initialization)" : "disabled (until reboot)");
1756 
1757 	return 1;
1758 }
1759 __setup("audit=", audit_enable);
1760 
1761 /* Process kernel command-line parameter at boot time.
1762  * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1763 static int __init audit_backlog_limit_set(char *str)
1764 {
1765 	u32 audit_backlog_limit_arg;
1766 
1767 	pr_info("audit_backlog_limit: ");
1768 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1769 		pr_cont("using default of %u, unable to parse %s\n",
1770 			audit_backlog_limit, str);
1771 		return 1;
1772 	}
1773 
1774 	audit_backlog_limit = audit_backlog_limit_arg;
1775 	pr_cont("%d\n", audit_backlog_limit);
1776 
1777 	return 1;
1778 }
1779 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1780 
audit_buffer_free(struct audit_buffer * ab)1781 static void audit_buffer_free(struct audit_buffer *ab)
1782 {
1783 	if (!ab)
1784 		return;
1785 
1786 	kfree_skb(ab->skb);
1787 	kmem_cache_free(audit_buffer_cache, ab);
1788 }
1789 
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1790 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1791 					       gfp_t gfp_mask, int type)
1792 {
1793 	struct audit_buffer *ab;
1794 
1795 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1796 	if (!ab)
1797 		return NULL;
1798 
1799 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1800 	if (!ab->skb)
1801 		goto err;
1802 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1803 		goto err;
1804 
1805 	ab->ctx = ctx;
1806 	ab->gfp_mask = gfp_mask;
1807 
1808 	return ab;
1809 
1810 err:
1811 	audit_buffer_free(ab);
1812 	return NULL;
1813 }
1814 
1815 /**
1816  * audit_serial - compute a serial number for the audit record
1817  *
1818  * Compute a serial number for the audit record.  Audit records are
1819  * written to user-space as soon as they are generated, so a complete
1820  * audit record may be written in several pieces.  The timestamp of the
1821  * record and this serial number are used by the user-space tools to
1822  * determine which pieces belong to the same audit record.  The
1823  * (timestamp,serial) tuple is unique for each syscall and is live from
1824  * syscall entry to syscall exit.
1825  *
1826  * NOTE: Another possibility is to store the formatted records off the
1827  * audit context (for those records that have a context), and emit them
1828  * all at syscall exit.  However, this could delay the reporting of
1829  * significant errors until syscall exit (or never, if the system
1830  * halts).
1831  */
audit_serial(void)1832 unsigned int audit_serial(void)
1833 {
1834 	static atomic_t serial = ATOMIC_INIT(0);
1835 
1836 	return atomic_inc_return(&serial);
1837 }
1838 
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1839 static inline void audit_get_stamp(struct audit_context *ctx,
1840 				   struct timespec64 *t, unsigned int *serial)
1841 {
1842 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1843 		ktime_get_coarse_real_ts64(t);
1844 		*serial = audit_serial();
1845 	}
1846 }
1847 
1848 /**
1849  * audit_log_start - obtain an audit buffer
1850  * @ctx: audit_context (may be NULL)
1851  * @gfp_mask: type of allocation
1852  * @type: audit message type
1853  *
1854  * Returns audit_buffer pointer on success or NULL on error.
1855  *
1856  * Obtain an audit buffer.  This routine does locking to obtain the
1857  * audit buffer, but then no locking is required for calls to
1858  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1859  * syscall, then the syscall is marked as auditable and an audit record
1860  * will be written at syscall exit.  If there is no associated task, then
1861  * task context (ctx) should be NULL.
1862  */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1863 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1864 				     int type)
1865 {
1866 	struct audit_buffer *ab;
1867 	struct timespec64 t;
1868 	unsigned int serial;
1869 
1870 	if (audit_initialized != AUDIT_INITIALIZED)
1871 		return NULL;
1872 
1873 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1874 		return NULL;
1875 
1876 	/* NOTE: don't ever fail/sleep on these two conditions:
1877 	 * 1. auditd generated record - since we need auditd to drain the
1878 	 *    queue; also, when we are checking for auditd, compare PIDs using
1879 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1880 	 *    using a PID anchored in the caller's namespace
1881 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1882 	 *    while holding the mutex, although we do penalize the sender
1883 	 *    later in audit_receive() when it is safe to block
1884 	 */
1885 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1886 		long stime = audit_backlog_wait_time;
1887 
1888 		while (audit_backlog_limit &&
1889 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1890 			/* wake kauditd to try and flush the queue */
1891 			wake_up_interruptible(&kauditd_wait);
1892 
1893 			/* sleep if we are allowed and we haven't exhausted our
1894 			 * backlog wait limit */
1895 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1896 				long rtime = stime;
1897 
1898 				DECLARE_WAITQUEUE(wait, current);
1899 
1900 				add_wait_queue_exclusive(&audit_backlog_wait,
1901 							 &wait);
1902 				set_current_state(TASK_UNINTERRUPTIBLE);
1903 				stime = schedule_timeout(rtime);
1904 				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1905 				remove_wait_queue(&audit_backlog_wait, &wait);
1906 			} else {
1907 				if (audit_rate_check() && printk_ratelimit())
1908 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1909 						skb_queue_len(&audit_queue),
1910 						audit_backlog_limit);
1911 				audit_log_lost("backlog limit exceeded");
1912 				return NULL;
1913 			}
1914 		}
1915 	}
1916 
1917 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1918 	if (!ab) {
1919 		audit_log_lost("out of memory in audit_log_start");
1920 		return NULL;
1921 	}
1922 
1923 	audit_get_stamp(ab->ctx, &t, &serial);
1924 	/* cancel dummy context to enable supporting records */
1925 	if (ctx)
1926 		ctx->dummy = 0;
1927 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1928 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1929 
1930 	return ab;
1931 }
1932 
1933 /**
1934  * audit_expand - expand skb in the audit buffer
1935  * @ab: audit_buffer
1936  * @extra: space to add at tail of the skb
1937  *
1938  * Returns 0 (no space) on failed expansion, or available space if
1939  * successful.
1940  */
audit_expand(struct audit_buffer * ab,int extra)1941 static inline int audit_expand(struct audit_buffer *ab, int extra)
1942 {
1943 	struct sk_buff *skb = ab->skb;
1944 	int oldtail = skb_tailroom(skb);
1945 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1946 	int newtail = skb_tailroom(skb);
1947 
1948 	if (ret < 0) {
1949 		audit_log_lost("out of memory in audit_expand");
1950 		return 0;
1951 	}
1952 
1953 	skb->truesize += newtail - oldtail;
1954 	return newtail;
1955 }
1956 
1957 /*
1958  * Format an audit message into the audit buffer.  If there isn't enough
1959  * room in the audit buffer, more room will be allocated and vsnprint
1960  * will be called a second time.  Currently, we assume that a printk
1961  * can't format message larger than 1024 bytes, so we don't either.
1962  */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1963 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1964 			      va_list args)
1965 {
1966 	int len, avail;
1967 	struct sk_buff *skb;
1968 	va_list args2;
1969 
1970 	if (!ab)
1971 		return;
1972 
1973 	BUG_ON(!ab->skb);
1974 	skb = ab->skb;
1975 	avail = skb_tailroom(skb);
1976 	if (avail == 0) {
1977 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1978 		if (!avail)
1979 			goto out;
1980 	}
1981 	va_copy(args2, args);
1982 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1983 	if (len >= avail) {
1984 		/* The printk buffer is 1024 bytes long, so if we get
1985 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1986 		 * log everything that printk could have logged. */
1987 		avail = audit_expand(ab,
1988 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1989 		if (!avail)
1990 			goto out_va_end;
1991 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1992 	}
1993 	if (len > 0)
1994 		skb_put(skb, len);
1995 out_va_end:
1996 	va_end(args2);
1997 out:
1998 	return;
1999 }
2000 
2001 /**
2002  * audit_log_format - format a message into the audit buffer.
2003  * @ab: audit_buffer
2004  * @fmt: format string
2005  * @...: optional parameters matching @fmt string
2006  *
2007  * All the work is done in audit_log_vformat.
2008  */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)2009 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2010 {
2011 	va_list args;
2012 
2013 	if (!ab)
2014 		return;
2015 	va_start(args, fmt);
2016 	audit_log_vformat(ab, fmt, args);
2017 	va_end(args);
2018 }
2019 
2020 /**
2021  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2022  * @ab: the audit_buffer
2023  * @buf: buffer to convert to hex
2024  * @len: length of @buf to be converted
2025  *
2026  * No return value; failure to expand is silently ignored.
2027  *
2028  * This function will take the passed buf and convert it into a string of
2029  * ascii hex digits. The new string is placed onto the skb.
2030  */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2031 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2032 		size_t len)
2033 {
2034 	int i, avail, new_len;
2035 	unsigned char *ptr;
2036 	struct sk_buff *skb;
2037 
2038 	if (!ab)
2039 		return;
2040 
2041 	BUG_ON(!ab->skb);
2042 	skb = ab->skb;
2043 	avail = skb_tailroom(skb);
2044 	new_len = len<<1;
2045 	if (new_len >= avail) {
2046 		/* Round the buffer request up to the next multiple */
2047 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2048 		avail = audit_expand(ab, new_len);
2049 		if (!avail)
2050 			return;
2051 	}
2052 
2053 	ptr = skb_tail_pointer(skb);
2054 	for (i = 0; i < len; i++)
2055 		ptr = hex_byte_pack_upper(ptr, buf[i]);
2056 	*ptr = 0;
2057 	skb_put(skb, len << 1); /* new string is twice the old string */
2058 }
2059 
2060 /*
2061  * Format a string of no more than slen characters into the audit buffer,
2062  * enclosed in quote marks.
2063  */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2064 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2065 			size_t slen)
2066 {
2067 	int avail, new_len;
2068 	unsigned char *ptr;
2069 	struct sk_buff *skb;
2070 
2071 	if (!ab)
2072 		return;
2073 
2074 	BUG_ON(!ab->skb);
2075 	skb = ab->skb;
2076 	avail = skb_tailroom(skb);
2077 	new_len = slen + 3;	/* enclosing quotes + null terminator */
2078 	if (new_len > avail) {
2079 		avail = audit_expand(ab, new_len);
2080 		if (!avail)
2081 			return;
2082 	}
2083 	ptr = skb_tail_pointer(skb);
2084 	*ptr++ = '"';
2085 	memcpy(ptr, string, slen);
2086 	ptr += slen;
2087 	*ptr++ = '"';
2088 	*ptr = 0;
2089 	skb_put(skb, slen + 2);	/* don't include null terminator */
2090 }
2091 
2092 /**
2093  * audit_string_contains_control - does a string need to be logged in hex
2094  * @string: string to be checked
2095  * @len: max length of the string to check
2096  */
audit_string_contains_control(const char * string,size_t len)2097 bool audit_string_contains_control(const char *string, size_t len)
2098 {
2099 	const unsigned char *p;
2100 	for (p = string; p < (const unsigned char *)string + len; p++) {
2101 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2102 			return true;
2103 	}
2104 	return false;
2105 }
2106 
2107 /**
2108  * audit_log_n_untrustedstring - log a string that may contain random characters
2109  * @ab: audit_buffer
2110  * @len: length of string (not including trailing null)
2111  * @string: string to be logged
2112  *
2113  * This code will escape a string that is passed to it if the string
2114  * contains a control character, unprintable character, double quote mark,
2115  * or a space. Unescaped strings will start and end with a double quote mark.
2116  * Strings that are escaped are printed in hex (2 digits per char).
2117  *
2118  * The caller specifies the number of characters in the string to log, which may
2119  * or may not be the entire string.
2120  */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2121 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2122 				 size_t len)
2123 {
2124 	if (audit_string_contains_control(string, len))
2125 		audit_log_n_hex(ab, string, len);
2126 	else
2127 		audit_log_n_string(ab, string, len);
2128 }
2129 
2130 /**
2131  * audit_log_untrustedstring - log a string that may contain random characters
2132  * @ab: audit_buffer
2133  * @string: string to be logged
2134  *
2135  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2136  * determine string length.
2137  */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2138 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2139 {
2140 	audit_log_n_untrustedstring(ab, string, strlen(string));
2141 }
2142 
2143 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2144 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2145 		      const struct path *path)
2146 {
2147 	char *p, *pathname;
2148 
2149 	if (prefix)
2150 		audit_log_format(ab, "%s", prefix);
2151 
2152 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2153 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2154 	if (!pathname) {
2155 		audit_log_format(ab, "\"<no_memory>\"");
2156 		return;
2157 	}
2158 	p = d_path(path, pathname, PATH_MAX+11);
2159 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2160 		/* FIXME: can we save some information here? */
2161 		audit_log_format(ab, "\"<too_long>\"");
2162 	} else
2163 		audit_log_untrustedstring(ab, p);
2164 	kfree(pathname);
2165 }
2166 
audit_log_session_info(struct audit_buffer * ab)2167 void audit_log_session_info(struct audit_buffer *ab)
2168 {
2169 	unsigned int sessionid = audit_get_sessionid(current);
2170 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2171 
2172 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2173 }
2174 
audit_log_key(struct audit_buffer * ab,char * key)2175 void audit_log_key(struct audit_buffer *ab, char *key)
2176 {
2177 	audit_log_format(ab, " key=");
2178 	if (key)
2179 		audit_log_untrustedstring(ab, key);
2180 	else
2181 		audit_log_format(ab, "(null)");
2182 }
2183 
audit_log_task_context(struct audit_buffer * ab)2184 int audit_log_task_context(struct audit_buffer *ab)
2185 {
2186 	char *ctx = NULL;
2187 	unsigned len;
2188 	int error;
2189 	u32 sid;
2190 
2191 	security_task_getsecid_subj(current, &sid);
2192 	if (!sid)
2193 		return 0;
2194 
2195 	error = security_secid_to_secctx(sid, &ctx, &len);
2196 	if (error) {
2197 		if (error != -EINVAL)
2198 			goto error_path;
2199 		return 0;
2200 	}
2201 
2202 	audit_log_format(ab, " subj=%s", ctx);
2203 	security_release_secctx(ctx, len);
2204 	return 0;
2205 
2206 error_path:
2207 	audit_panic("error in audit_log_task_context");
2208 	return error;
2209 }
2210 EXPORT_SYMBOL(audit_log_task_context);
2211 
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2212 void audit_log_d_path_exe(struct audit_buffer *ab,
2213 			  struct mm_struct *mm)
2214 {
2215 	struct file *exe_file;
2216 
2217 	if (!mm)
2218 		goto out_null;
2219 
2220 	exe_file = get_mm_exe_file(mm);
2221 	if (!exe_file)
2222 		goto out_null;
2223 
2224 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2225 	fput(exe_file);
2226 	return;
2227 out_null:
2228 	audit_log_format(ab, " exe=(null)");
2229 }
2230 
audit_get_tty(void)2231 struct tty_struct *audit_get_tty(void)
2232 {
2233 	struct tty_struct *tty = NULL;
2234 	unsigned long flags;
2235 
2236 	spin_lock_irqsave(&current->sighand->siglock, flags);
2237 	if (current->signal)
2238 		tty = tty_kref_get(current->signal->tty);
2239 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2240 	return tty;
2241 }
2242 
audit_put_tty(struct tty_struct * tty)2243 void audit_put_tty(struct tty_struct *tty)
2244 {
2245 	tty_kref_put(tty);
2246 }
2247 
audit_log_task_info(struct audit_buffer * ab)2248 void audit_log_task_info(struct audit_buffer *ab)
2249 {
2250 	const struct cred *cred;
2251 	char comm[sizeof(current->comm)];
2252 	struct tty_struct *tty;
2253 
2254 	if (!ab)
2255 		return;
2256 
2257 	cred = current_cred();
2258 	tty = audit_get_tty();
2259 	audit_log_format(ab,
2260 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2261 			 " euid=%u suid=%u fsuid=%u"
2262 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2263 			 task_ppid_nr(current),
2264 			 task_tgid_nr(current),
2265 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2266 			 from_kuid(&init_user_ns, cred->uid),
2267 			 from_kgid(&init_user_ns, cred->gid),
2268 			 from_kuid(&init_user_ns, cred->euid),
2269 			 from_kuid(&init_user_ns, cred->suid),
2270 			 from_kuid(&init_user_ns, cred->fsuid),
2271 			 from_kgid(&init_user_ns, cred->egid),
2272 			 from_kgid(&init_user_ns, cred->sgid),
2273 			 from_kgid(&init_user_ns, cred->fsgid),
2274 			 tty ? tty_name(tty) : "(none)",
2275 			 audit_get_sessionid(current));
2276 	audit_put_tty(tty);
2277 	audit_log_format(ab, " comm=");
2278 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2279 	audit_log_d_path_exe(ab, current->mm);
2280 	audit_log_task_context(ab);
2281 }
2282 EXPORT_SYMBOL(audit_log_task_info);
2283 
2284 /**
2285  * audit_log_path_denied - report a path restriction denial
2286  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2287  * @operation: specific operation name
2288  */
audit_log_path_denied(int type,const char * operation)2289 void audit_log_path_denied(int type, const char *operation)
2290 {
2291 	struct audit_buffer *ab;
2292 
2293 	if (!audit_enabled || audit_dummy_context())
2294 		return;
2295 
2296 	/* Generate log with subject, operation, outcome. */
2297 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2298 	if (!ab)
2299 		return;
2300 	audit_log_format(ab, "op=%s", operation);
2301 	audit_log_task_info(ab);
2302 	audit_log_format(ab, " res=0");
2303 	audit_log_end(ab);
2304 }
2305 
2306 /* global counter which is incremented every time something logs in */
2307 static atomic_t session_id = ATOMIC_INIT(0);
2308 
audit_set_loginuid_perm(kuid_t loginuid)2309 static int audit_set_loginuid_perm(kuid_t loginuid)
2310 {
2311 	/* if we are unset, we don't need privs */
2312 	if (!audit_loginuid_set(current))
2313 		return 0;
2314 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2315 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2316 		return -EPERM;
2317 	/* it is set, you need permission */
2318 	if (!capable(CAP_AUDIT_CONTROL))
2319 		return -EPERM;
2320 	/* reject if this is not an unset and we don't allow that */
2321 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2322 				 && uid_valid(loginuid))
2323 		return -EPERM;
2324 	return 0;
2325 }
2326 
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2327 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2328 				   unsigned int oldsessionid,
2329 				   unsigned int sessionid, int rc)
2330 {
2331 	struct audit_buffer *ab;
2332 	uid_t uid, oldloginuid, loginuid;
2333 	struct tty_struct *tty;
2334 
2335 	if (!audit_enabled)
2336 		return;
2337 
2338 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2339 	if (!ab)
2340 		return;
2341 
2342 	uid = from_kuid(&init_user_ns, task_uid(current));
2343 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2344 	loginuid = from_kuid(&init_user_ns, kloginuid);
2345 	tty = audit_get_tty();
2346 
2347 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2348 	audit_log_task_context(ab);
2349 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2350 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2351 			 oldsessionid, sessionid, !rc);
2352 	audit_put_tty(tty);
2353 	audit_log_end(ab);
2354 }
2355 
2356 /**
2357  * audit_set_loginuid - set current task's loginuid
2358  * @loginuid: loginuid value
2359  *
2360  * Returns 0.
2361  *
2362  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2363  */
audit_set_loginuid(kuid_t loginuid)2364 int audit_set_loginuid(kuid_t loginuid)
2365 {
2366 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2367 	kuid_t oldloginuid;
2368 	int rc;
2369 
2370 	oldloginuid = audit_get_loginuid(current);
2371 	oldsessionid = audit_get_sessionid(current);
2372 
2373 	rc = audit_set_loginuid_perm(loginuid);
2374 	if (rc)
2375 		goto out;
2376 
2377 	/* are we setting or clearing? */
2378 	if (uid_valid(loginuid)) {
2379 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2380 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2381 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2382 	}
2383 
2384 	current->sessionid = sessionid;
2385 	current->loginuid = loginuid;
2386 out:
2387 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2388 	return rc;
2389 }
2390 
2391 /**
2392  * audit_signal_info - record signal info for shutting down audit subsystem
2393  * @sig: signal value
2394  * @t: task being signaled
2395  *
2396  * If the audit subsystem is being terminated, record the task (pid)
2397  * and uid that is doing that.
2398  */
audit_signal_info(int sig,struct task_struct * t)2399 int audit_signal_info(int sig, struct task_struct *t)
2400 {
2401 	kuid_t uid = current_uid(), auid;
2402 
2403 	if (auditd_test_task(t) &&
2404 	    (sig == SIGTERM || sig == SIGHUP ||
2405 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2406 		audit_sig_pid = task_tgid_nr(current);
2407 		auid = audit_get_loginuid(current);
2408 		if (uid_valid(auid))
2409 			audit_sig_uid = auid;
2410 		else
2411 			audit_sig_uid = uid;
2412 		security_task_getsecid_subj(current, &audit_sig_sid);
2413 	}
2414 
2415 	return audit_signal_info_syscall(t);
2416 }
2417 
2418 /**
2419  * audit_log_end - end one audit record
2420  * @ab: the audit_buffer
2421  *
2422  * We can not do a netlink send inside an irq context because it blocks (last
2423  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2424  * queue and a kthread is scheduled to remove them from the queue outside the
2425  * irq context.  May be called in any context.
2426  */
audit_log_end(struct audit_buffer * ab)2427 void audit_log_end(struct audit_buffer *ab)
2428 {
2429 	struct sk_buff *skb;
2430 	struct nlmsghdr *nlh;
2431 
2432 	if (!ab)
2433 		return;
2434 
2435 	if (audit_rate_check()) {
2436 		skb = ab->skb;
2437 		ab->skb = NULL;
2438 
2439 		/* setup the netlink header, see the comments in
2440 		 * kauditd_send_multicast_skb() for length quirks */
2441 		nlh = nlmsg_hdr(skb);
2442 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2443 
2444 		/* queue the netlink packet and poke the kauditd thread */
2445 		skb_queue_tail(&audit_queue, skb);
2446 		wake_up_interruptible(&kauditd_wait);
2447 	} else
2448 		audit_log_lost("rate limit exceeded");
2449 
2450 	audit_buffer_free(ab);
2451 }
2452 
2453 /**
2454  * audit_log - Log an audit record
2455  * @ctx: audit context
2456  * @gfp_mask: type of allocation
2457  * @type: audit message type
2458  * @fmt: format string to use
2459  * @...: variable parameters matching the format string
2460  *
2461  * This is a convenience function that calls audit_log_start,
2462  * audit_log_vformat, and audit_log_end.  It may be called
2463  * in any context.
2464  */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2465 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2466 	       const char *fmt, ...)
2467 {
2468 	struct audit_buffer *ab;
2469 	va_list args;
2470 
2471 	ab = audit_log_start(ctx, gfp_mask, type);
2472 	if (ab) {
2473 		va_start(args, fmt);
2474 		audit_log_vformat(ab, fmt, args);
2475 		va_end(args);
2476 		audit_log_end(ab);
2477 	}
2478 }
2479 
2480 EXPORT_SYMBOL(audit_log_start);
2481 EXPORT_SYMBOL(audit_log_end);
2482 EXPORT_SYMBOL(audit_log_format);
2483 EXPORT_SYMBOL(audit_log);
2484