1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62
63 #include "audit.h"
64
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66 * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED -1
68 #define AUDIT_UNINITIALIZED 0
69 #define AUDIT_INITIALIZED 1
70 static int audit_initialized = AUDIT_UNINITIALIZED;
71
72 u32 audit_enabled = AUDIT_OFF;
73 bool audit_ever_enabled = !!AUDIT_OFF;
74
75 EXPORT_SYMBOL_GPL(audit_enabled);
76
77 /* Default state when kernel boots without any parameters. */
78 static u32 audit_default = AUDIT_OFF;
79
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32 audit_failure = AUDIT_FAIL_PRINTK;
82
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85
86 /**
87 * struct audit_net - audit private network namespace data
88 * @sk: communication socket
89 */
90 struct audit_net {
91 struct sock *sk;
92 };
93
94 /**
95 * struct auditd_connection - kernel/auditd connection state
96 * @pid: auditd PID
97 * @portid: netlink portid
98 * @net: the associated network namespace
99 * @rcu: RCU head
100 *
101 * Description:
102 * This struct is RCU protected; you must either hold the RCU lock for reading
103 * or the associated spinlock for writing.
104 */
105 struct auditd_connection {
106 struct pid *pid;
107 u32 portid;
108 struct net *net;
109 struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115 * to that number per second. This prevents DoS attacks, but results in
116 * audit records being dropped. */
117 static u32 audit_rate_limit;
118
119 /* Number of outstanding audit_buffers allowed.
120 * When set to zero, this means unlimited. */
121 static u32 audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t audit_sig_uid = INVALID_UID;
127 static pid_t audit_sig_pid = -1;
128 static u32 audit_sig_sid;
129
130 /* Records can be lost in several ways:
131 0) [suppressed in audit_alloc]
132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133 2) out of memory in audit_log_move [alloc_skb]
134 3) suppressed due to audit_rate_limit
135 4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t audit_lost = ATOMIC_INIT(0);
138
139 /* Monotonically increasing sum of time the kernel has spent
140 * waiting while the backlog limit is exceeded.
141 */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146
147 static struct kmem_cache *audit_buffer_cache;
148
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 .mask = -1,
165 .features = 0,
166 .lock = 0,};
167
168 static char *audit_feature_names[2] = {
169 "only_unset_loginuid",
170 "loginuid_immutable",
171 };
172
173 /**
174 * struct audit_ctl_mutex - serialize requests from userspace
175 * @lock: the mutex used for locking
176 * @owner: the task which owns the lock
177 *
178 * Description:
179 * This is the lock struct used to ensure we only process userspace requests
180 * in an orderly fashion. We can't simply use a mutex/lock here because we
181 * need to track lock ownership so we don't end up blocking the lock owner in
182 * audit_log_start() or similar.
183 */
184 static struct audit_ctl_mutex {
185 struct mutex lock;
186 void *owner;
187 } audit_cmd_mutex;
188
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190 * audit records. Since printk uses a 1024 byte buffer, this buffer
191 * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193
194 /* The audit_buffer is used when formatting an audit record. The caller
195 * locks briefly to get the record off the freelist or to allocate the
196 * buffer, and locks briefly to send the buffer to the netlink layer or
197 * to place it on a transmit queue. Multiple audit_buffers can be in
198 * use simultaneously. */
199 struct audit_buffer {
200 struct sk_buff *skb; /* formatted skb ready to send */
201 struct audit_context *ctx; /* NULL or associated context */
202 gfp_t gfp_mask;
203 };
204
205 struct audit_reply {
206 __u32 portid;
207 struct net *net;
208 struct sk_buff *skb;
209 };
210
211 /**
212 * auditd_test_task - Check to see if a given task is an audit daemon
213 * @task: the task to check
214 *
215 * Description:
216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
217 */
auditd_test_task(struct task_struct * task)218 int auditd_test_task(struct task_struct *task)
219 {
220 int rc;
221 struct auditd_connection *ac;
222
223 rcu_read_lock();
224 ac = rcu_dereference(auditd_conn);
225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 rcu_read_unlock();
227
228 return rc;
229 }
230
231 /**
232 * audit_ctl_lock - Take the audit control lock
233 */
audit_ctl_lock(void)234 void audit_ctl_lock(void)
235 {
236 mutex_lock(&audit_cmd_mutex.lock);
237 audit_cmd_mutex.owner = current;
238 }
239
240 /**
241 * audit_ctl_unlock - Drop the audit control lock
242 */
audit_ctl_unlock(void)243 void audit_ctl_unlock(void)
244 {
245 audit_cmd_mutex.owner = NULL;
246 mutex_unlock(&audit_cmd_mutex.lock);
247 }
248
249 /**
250 * audit_ctl_owner_current - Test to see if the current task owns the lock
251 *
252 * Description:
253 * Return true if the current task owns the audit control lock, false if it
254 * doesn't own the lock.
255 */
audit_ctl_owner_current(void)256 static bool audit_ctl_owner_current(void)
257 {
258 return (current == audit_cmd_mutex.owner);
259 }
260
261 /**
262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
263 *
264 * Description:
265 * Returns the PID in relation to the namespace, 0 on failure.
266 */
auditd_pid_vnr(void)267 static pid_t auditd_pid_vnr(void)
268 {
269 pid_t pid;
270 const struct auditd_connection *ac;
271
272 rcu_read_lock();
273 ac = rcu_dereference(auditd_conn);
274 if (!ac || !ac->pid)
275 pid = 0;
276 else
277 pid = pid_vnr(ac->pid);
278 rcu_read_unlock();
279
280 return pid;
281 }
282
283 /**
284 * audit_get_sk - Return the audit socket for the given network namespace
285 * @net: the destination network namespace
286 *
287 * Description:
288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
289 * that a reference is held for the network namespace while the sock is in use.
290 */
audit_get_sk(const struct net * net)291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 struct audit_net *aunet;
294
295 if (!net)
296 return NULL;
297
298 aunet = net_generic(net, audit_net_id);
299 return aunet->sk;
300 }
301
audit_panic(const char * message)302 void audit_panic(const char *message)
303 {
304 switch (audit_failure) {
305 case AUDIT_FAIL_SILENT:
306 break;
307 case AUDIT_FAIL_PRINTK:
308 if (printk_ratelimit())
309 pr_err("%s\n", message);
310 break;
311 case AUDIT_FAIL_PANIC:
312 panic("audit: %s\n", message);
313 break;
314 }
315 }
316
audit_rate_check(void)317 static inline int audit_rate_check(void)
318 {
319 static unsigned long last_check = 0;
320 static int messages = 0;
321 static DEFINE_SPINLOCK(lock);
322 unsigned long flags;
323 unsigned long now;
324 unsigned long elapsed;
325 int retval = 0;
326
327 if (!audit_rate_limit) return 1;
328
329 spin_lock_irqsave(&lock, flags);
330 if (++messages < audit_rate_limit) {
331 retval = 1;
332 } else {
333 now = jiffies;
334 elapsed = now - last_check;
335 if (elapsed > HZ) {
336 last_check = now;
337 messages = 0;
338 retval = 1;
339 }
340 }
341 spin_unlock_irqrestore(&lock, flags);
342
343 return retval;
344 }
345
346 /**
347 * audit_log_lost - conditionally log lost audit message event
348 * @message: the message stating reason for lost audit message
349 *
350 * Emit at least 1 message per second, even if audit_rate_check is
351 * throttling.
352 * Always increment the lost messages counter.
353 */
audit_log_lost(const char * message)354 void audit_log_lost(const char *message)
355 {
356 static unsigned long last_msg = 0;
357 static DEFINE_SPINLOCK(lock);
358 unsigned long flags;
359 unsigned long now;
360 int print;
361
362 atomic_inc(&audit_lost);
363
364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
365
366 if (!print) {
367 spin_lock_irqsave(&lock, flags);
368 now = jiffies;
369 if (now - last_msg > HZ) {
370 print = 1;
371 last_msg = now;
372 }
373 spin_unlock_irqrestore(&lock, flags);
374 }
375
376 if (print) {
377 if (printk_ratelimit())
378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
379 atomic_read(&audit_lost),
380 audit_rate_limit,
381 audit_backlog_limit);
382 audit_panic(message);
383 }
384 }
385
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)386 static int audit_log_config_change(char *function_name, u32 new, u32 old,
387 int allow_changes)
388 {
389 struct audit_buffer *ab;
390 int rc = 0;
391
392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
393 if (unlikely(!ab))
394 return rc;
395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
396 audit_log_session_info(ab);
397 rc = audit_log_task_context(ab);
398 if (rc)
399 allow_changes = 0; /* Something weird, deny request */
400 audit_log_format(ab, " res=%d", allow_changes);
401 audit_log_end(ab);
402 return rc;
403 }
404
audit_do_config_change(char * function_name,u32 * to_change,u32 new)405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
406 {
407 int allow_changes, rc = 0;
408 u32 old = *to_change;
409
410 /* check if we are locked */
411 if (audit_enabled == AUDIT_LOCKED)
412 allow_changes = 0;
413 else
414 allow_changes = 1;
415
416 if (audit_enabled != AUDIT_OFF) {
417 rc = audit_log_config_change(function_name, new, old, allow_changes);
418 if (rc)
419 allow_changes = 0;
420 }
421
422 /* If we are allowed, make the change */
423 if (allow_changes == 1)
424 *to_change = new;
425 /* Not allowed, update reason */
426 else if (rc == 0)
427 rc = -EPERM;
428 return rc;
429 }
430
audit_set_rate_limit(u32 limit)431 static int audit_set_rate_limit(u32 limit)
432 {
433 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
434 }
435
audit_set_backlog_limit(u32 limit)436 static int audit_set_backlog_limit(u32 limit)
437 {
438 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
439 }
440
audit_set_backlog_wait_time(u32 timeout)441 static int audit_set_backlog_wait_time(u32 timeout)
442 {
443 return audit_do_config_change("audit_backlog_wait_time",
444 &audit_backlog_wait_time, timeout);
445 }
446
audit_set_enabled(u32 state)447 static int audit_set_enabled(u32 state)
448 {
449 int rc;
450 if (state > AUDIT_LOCKED)
451 return -EINVAL;
452
453 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
454 if (!rc)
455 audit_ever_enabled |= !!state;
456
457 return rc;
458 }
459
audit_set_failure(u32 state)460 static int audit_set_failure(u32 state)
461 {
462 if (state != AUDIT_FAIL_SILENT
463 && state != AUDIT_FAIL_PRINTK
464 && state != AUDIT_FAIL_PANIC)
465 return -EINVAL;
466
467 return audit_do_config_change("audit_failure", &audit_failure, state);
468 }
469
470 /**
471 * auditd_conn_free - RCU helper to release an auditd connection struct
472 * @rcu: RCU head
473 *
474 * Description:
475 * Drop any references inside the auditd connection tracking struct and free
476 * the memory.
477 */
auditd_conn_free(struct rcu_head * rcu)478 static void auditd_conn_free(struct rcu_head *rcu)
479 {
480 struct auditd_connection *ac;
481
482 ac = container_of(rcu, struct auditd_connection, rcu);
483 put_pid(ac->pid);
484 put_net(ac->net);
485 kfree(ac);
486 }
487
488 /**
489 * auditd_set - Set/Reset the auditd connection state
490 * @pid: auditd PID
491 * @portid: auditd netlink portid
492 * @net: auditd network namespace pointer
493 * @skb: the netlink command from the audit daemon
494 * @ack: netlink ack flag, cleared if ack'd here
495 *
496 * Description:
497 * This function will obtain and drop network namespace references as
498 * necessary. Returns zero on success, negative values on failure.
499 */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)500 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
501 struct sk_buff *skb, bool *ack)
502 {
503 unsigned long flags;
504 struct auditd_connection *ac_old, *ac_new;
505 struct nlmsghdr *nlh;
506
507 if (!pid || !net)
508 return -EINVAL;
509
510 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
511 if (!ac_new)
512 return -ENOMEM;
513 ac_new->pid = get_pid(pid);
514 ac_new->portid = portid;
515 ac_new->net = get_net(net);
516
517 /* send the ack now to avoid a race with the queue backlog */
518 if (*ack) {
519 nlh = nlmsg_hdr(skb);
520 netlink_ack(skb, nlh, 0, NULL);
521 *ack = false;
522 }
523
524 spin_lock_irqsave(&auditd_conn_lock, flags);
525 ac_old = rcu_dereference_protected(auditd_conn,
526 lockdep_is_held(&auditd_conn_lock));
527 rcu_assign_pointer(auditd_conn, ac_new);
528 spin_unlock_irqrestore(&auditd_conn_lock, flags);
529
530 if (ac_old)
531 call_rcu(&ac_old->rcu, auditd_conn_free);
532
533 return 0;
534 }
535
536 /**
537 * kauditd_printk_skb - Print the audit record to the ring buffer
538 * @skb: audit record
539 *
540 * Whatever the reason, this packet may not make it to the auditd connection
541 * so write it via printk so the information isn't completely lost.
542 */
kauditd_printk_skb(struct sk_buff * skb)543 static void kauditd_printk_skb(struct sk_buff *skb)
544 {
545 struct nlmsghdr *nlh = nlmsg_hdr(skb);
546 char *data = nlmsg_data(nlh);
547
548 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
549 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
550 }
551
552 /**
553 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
554 * @skb: audit record
555 * @error: error code (unused)
556 *
557 * Description:
558 * This should only be used by the kauditd_thread when it fails to flush the
559 * hold queue.
560 */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)561 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
562 {
563 /* put the record back in the queue */
564 skb_queue_tail(&audit_hold_queue, skb);
565 }
566
567 /**
568 * kauditd_hold_skb - Queue an audit record, waiting for auditd
569 * @skb: audit record
570 * @error: error code
571 *
572 * Description:
573 * Queue the audit record, waiting for an instance of auditd. When this
574 * function is called we haven't given up yet on sending the record, but things
575 * are not looking good. The first thing we want to do is try to write the
576 * record via printk and then see if we want to try and hold on to the record
577 * and queue it, if we have room. If we want to hold on to the record, but we
578 * don't have room, record a record lost message.
579 */
kauditd_hold_skb(struct sk_buff * skb,int error)580 static void kauditd_hold_skb(struct sk_buff *skb, int error)
581 {
582 /* at this point it is uncertain if we will ever send this to auditd so
583 * try to send the message via printk before we go any further */
584 kauditd_printk_skb(skb);
585
586 /* can we just silently drop the message? */
587 if (!audit_default)
588 goto drop;
589
590 /* the hold queue is only for when the daemon goes away completely,
591 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
592 * record on the retry queue unless it's full, in which case drop it
593 */
594 if (error == -EAGAIN) {
595 if (!audit_backlog_limit ||
596 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
597 skb_queue_tail(&audit_retry_queue, skb);
598 return;
599 }
600 audit_log_lost("kauditd retry queue overflow");
601 goto drop;
602 }
603
604 /* if we have room in the hold queue, queue the message */
605 if (!audit_backlog_limit ||
606 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
607 skb_queue_tail(&audit_hold_queue, skb);
608 return;
609 }
610
611 /* we have no other options - drop the message */
612 audit_log_lost("kauditd hold queue overflow");
613 drop:
614 kfree_skb(skb);
615 }
616
617 /**
618 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
619 * @skb: audit record
620 * @error: error code (unused)
621 *
622 * Description:
623 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
624 * but for some reason we are having problems sending it audit records so
625 * queue the given record and attempt to resend.
626 */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)627 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
628 {
629 if (!audit_backlog_limit ||
630 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
631 skb_queue_tail(&audit_retry_queue, skb);
632 return;
633 }
634
635 /* we have to drop the record, send it via printk as a last effort */
636 kauditd_printk_skb(skb);
637 audit_log_lost("kauditd retry queue overflow");
638 kfree_skb(skb);
639 }
640
641 /**
642 * auditd_reset - Disconnect the auditd connection
643 * @ac: auditd connection state
644 *
645 * Description:
646 * Break the auditd/kauditd connection and move all the queued records into the
647 * hold queue in case auditd reconnects. It is important to note that the @ac
648 * pointer should never be dereferenced inside this function as it may be NULL
649 * or invalid, you can only compare the memory address! If @ac is NULL then
650 * the connection will always be reset.
651 */
auditd_reset(const struct auditd_connection * ac)652 static void auditd_reset(const struct auditd_connection *ac)
653 {
654 unsigned long flags;
655 struct sk_buff *skb;
656 struct auditd_connection *ac_old;
657
658 /* if it isn't already broken, break the connection */
659 spin_lock_irqsave(&auditd_conn_lock, flags);
660 ac_old = rcu_dereference_protected(auditd_conn,
661 lockdep_is_held(&auditd_conn_lock));
662 if (ac && ac != ac_old) {
663 /* someone already registered a new auditd connection */
664 spin_unlock_irqrestore(&auditd_conn_lock, flags);
665 return;
666 }
667 rcu_assign_pointer(auditd_conn, NULL);
668 spin_unlock_irqrestore(&auditd_conn_lock, flags);
669
670 if (ac_old)
671 call_rcu(&ac_old->rcu, auditd_conn_free);
672
673 /* flush the retry queue to the hold queue, but don't touch the main
674 * queue since we need to process that normally for multicast */
675 while ((skb = skb_dequeue(&audit_retry_queue)))
676 kauditd_hold_skb(skb, -ECONNREFUSED);
677 }
678
679 /**
680 * auditd_send_unicast_skb - Send a record via unicast to auditd
681 * @skb: audit record
682 *
683 * Description:
684 * Send a skb to the audit daemon, returns positive/zero values on success and
685 * negative values on failure; in all cases the skb will be consumed by this
686 * function. If the send results in -ECONNREFUSED the connection with auditd
687 * will be reset. This function may sleep so callers should not hold any locks
688 * where this would cause a problem.
689 */
auditd_send_unicast_skb(struct sk_buff * skb)690 static int auditd_send_unicast_skb(struct sk_buff *skb)
691 {
692 int rc;
693 u32 portid;
694 struct net *net;
695 struct sock *sk;
696 struct auditd_connection *ac;
697
698 /* NOTE: we can't call netlink_unicast while in the RCU section so
699 * take a reference to the network namespace and grab local
700 * copies of the namespace, the sock, and the portid; the
701 * namespace and sock aren't going to go away while we hold a
702 * reference and if the portid does become invalid after the RCU
703 * section netlink_unicast() should safely return an error */
704
705 rcu_read_lock();
706 ac = rcu_dereference(auditd_conn);
707 if (!ac) {
708 rcu_read_unlock();
709 kfree_skb(skb);
710 rc = -ECONNREFUSED;
711 goto err;
712 }
713 net = get_net(ac->net);
714 sk = audit_get_sk(net);
715 portid = ac->portid;
716 rcu_read_unlock();
717
718 rc = netlink_unicast(sk, skb, portid, 0);
719 put_net(net);
720 if (rc < 0)
721 goto err;
722
723 return rc;
724
725 err:
726 if (ac && rc == -ECONNREFUSED)
727 auditd_reset(ac);
728 return rc;
729 }
730
731 /**
732 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
733 * @sk: the sending sock
734 * @portid: the netlink destination
735 * @queue: the skb queue to process
736 * @retry_limit: limit on number of netlink unicast failures
737 * @skb_hook: per-skb hook for additional processing
738 * @err_hook: hook called if the skb fails the netlink unicast send
739 *
740 * Description:
741 * Run through the given queue and attempt to send the audit records to auditd,
742 * returns zero on success, negative values on failure. It is up to the caller
743 * to ensure that the @sk is valid for the duration of this function.
744 *
745 */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))746 static int kauditd_send_queue(struct sock *sk, u32 portid,
747 struct sk_buff_head *queue,
748 unsigned int retry_limit,
749 void (*skb_hook)(struct sk_buff *skb),
750 void (*err_hook)(struct sk_buff *skb, int error))
751 {
752 int rc = 0;
753 struct sk_buff *skb = NULL;
754 struct sk_buff *skb_tail;
755 unsigned int failed = 0;
756
757 /* NOTE: kauditd_thread takes care of all our locking, we just use
758 * the netlink info passed to us (e.g. sk and portid) */
759
760 skb_tail = skb_peek_tail(queue);
761 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
762 /* call the skb_hook for each skb we touch */
763 if (skb_hook)
764 (*skb_hook)(skb);
765
766 /* can we send to anyone via unicast? */
767 if (!sk) {
768 if (err_hook)
769 (*err_hook)(skb, -ECONNREFUSED);
770 continue;
771 }
772
773 retry:
774 /* grab an extra skb reference in case of error */
775 skb_get(skb);
776 rc = netlink_unicast(sk, skb, portid, 0);
777 if (rc < 0) {
778 /* send failed - try a few times unless fatal error */
779 if (++failed >= retry_limit ||
780 rc == -ECONNREFUSED || rc == -EPERM) {
781 sk = NULL;
782 if (err_hook)
783 (*err_hook)(skb, rc);
784 if (rc == -EAGAIN)
785 rc = 0;
786 /* continue to drain the queue */
787 continue;
788 } else
789 goto retry;
790 } else {
791 /* skb sent - drop the extra reference and continue */
792 consume_skb(skb);
793 failed = 0;
794 }
795 }
796
797 return (rc >= 0 ? 0 : rc);
798 }
799
800 /*
801 * kauditd_send_multicast_skb - Send a record to any multicast listeners
802 * @skb: audit record
803 *
804 * Description:
805 * Write a multicast message to anyone listening in the initial network
806 * namespace. This function doesn't consume an skb as might be expected since
807 * it has to copy it anyways.
808 */
kauditd_send_multicast_skb(struct sk_buff * skb)809 static void kauditd_send_multicast_skb(struct sk_buff *skb)
810 {
811 struct sk_buff *copy;
812 struct sock *sock = audit_get_sk(&init_net);
813 struct nlmsghdr *nlh;
814
815 /* NOTE: we are not taking an additional reference for init_net since
816 * we don't have to worry about it going away */
817
818 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
819 return;
820
821 /*
822 * The seemingly wasteful skb_copy() rather than bumping the refcount
823 * using skb_get() is necessary because non-standard mods are made to
824 * the skb by the original kaudit unicast socket send routine. The
825 * existing auditd daemon assumes this breakage. Fixing this would
826 * require co-ordinating a change in the established protocol between
827 * the kaudit kernel subsystem and the auditd userspace code. There is
828 * no reason for new multicast clients to continue with this
829 * non-compliance.
830 */
831 copy = skb_copy(skb, GFP_KERNEL);
832 if (!copy)
833 return;
834 nlh = nlmsg_hdr(copy);
835 nlh->nlmsg_len = skb->len;
836
837 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
838 }
839
840 /**
841 * kauditd_thread - Worker thread to send audit records to userspace
842 * @dummy: unused
843 */
kauditd_thread(void * dummy)844 static int kauditd_thread(void *dummy)
845 {
846 int rc;
847 u32 portid = 0;
848 struct net *net = NULL;
849 struct sock *sk = NULL;
850 struct auditd_connection *ac;
851
852 #define UNICAST_RETRIES 5
853
854 set_freezable();
855 while (!kthread_should_stop()) {
856 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
857 rcu_read_lock();
858 ac = rcu_dereference(auditd_conn);
859 if (!ac) {
860 rcu_read_unlock();
861 goto main_queue;
862 }
863 net = get_net(ac->net);
864 sk = audit_get_sk(net);
865 portid = ac->portid;
866 rcu_read_unlock();
867
868 /* attempt to flush the hold queue */
869 rc = kauditd_send_queue(sk, portid,
870 &audit_hold_queue, UNICAST_RETRIES,
871 NULL, kauditd_rehold_skb);
872 if (rc < 0) {
873 sk = NULL;
874 auditd_reset(ac);
875 goto main_queue;
876 }
877
878 /* attempt to flush the retry queue */
879 rc = kauditd_send_queue(sk, portid,
880 &audit_retry_queue, UNICAST_RETRIES,
881 NULL, kauditd_hold_skb);
882 if (rc < 0) {
883 sk = NULL;
884 auditd_reset(ac);
885 goto main_queue;
886 }
887
888 main_queue:
889 /* process the main queue - do the multicast send and attempt
890 * unicast, dump failed record sends to the retry queue; if
891 * sk == NULL due to previous failures we will just do the
892 * multicast send and move the record to the hold queue */
893 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
894 kauditd_send_multicast_skb,
895 (sk ?
896 kauditd_retry_skb : kauditd_hold_skb));
897 if (ac && rc < 0)
898 auditd_reset(ac);
899 sk = NULL;
900
901 /* drop our netns reference, no auditd sends past this line */
902 if (net) {
903 put_net(net);
904 net = NULL;
905 }
906
907 /* we have processed all the queues so wake everyone */
908 wake_up(&audit_backlog_wait);
909
910 /* NOTE: we want to wake up if there is anything on the queue,
911 * regardless of if an auditd is connected, as we need to
912 * do the multicast send and rotate records from the
913 * main queue to the retry/hold queues */
914 wait_event_freezable(kauditd_wait,
915 (skb_queue_len(&audit_queue) ? 1 : 0));
916 }
917
918 return 0;
919 }
920
audit_send_list_thread(void * _dest)921 int audit_send_list_thread(void *_dest)
922 {
923 struct audit_netlink_list *dest = _dest;
924 struct sk_buff *skb;
925 struct sock *sk = audit_get_sk(dest->net);
926
927 /* wait for parent to finish and send an ACK */
928 audit_ctl_lock();
929 audit_ctl_unlock();
930
931 while ((skb = __skb_dequeue(&dest->q)) != NULL)
932 netlink_unicast(sk, skb, dest->portid, 0);
933
934 put_net(dest->net);
935 kfree(dest);
936
937 return 0;
938 }
939
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)940 struct sk_buff *audit_make_reply(int seq, int type, int done,
941 int multi, const void *payload, int size)
942 {
943 struct sk_buff *skb;
944 struct nlmsghdr *nlh;
945 void *data;
946 int flags = multi ? NLM_F_MULTI : 0;
947 int t = done ? NLMSG_DONE : type;
948
949 skb = nlmsg_new(size, GFP_KERNEL);
950 if (!skb)
951 return NULL;
952
953 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
954 if (!nlh)
955 goto out_kfree_skb;
956 data = nlmsg_data(nlh);
957 memcpy(data, payload, size);
958 return skb;
959
960 out_kfree_skb:
961 kfree_skb(skb);
962 return NULL;
963 }
964
audit_free_reply(struct audit_reply * reply)965 static void audit_free_reply(struct audit_reply *reply)
966 {
967 if (!reply)
968 return;
969
970 kfree_skb(reply->skb);
971 if (reply->net)
972 put_net(reply->net);
973 kfree(reply);
974 }
975
audit_send_reply_thread(void * arg)976 static int audit_send_reply_thread(void *arg)
977 {
978 struct audit_reply *reply = (struct audit_reply *)arg;
979
980 audit_ctl_lock();
981 audit_ctl_unlock();
982
983 /* Ignore failure. It'll only happen if the sender goes away,
984 because our timeout is set to infinite. */
985 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
986 reply->skb = NULL;
987 audit_free_reply(reply);
988 return 0;
989 }
990
991 /**
992 * audit_send_reply - send an audit reply message via netlink
993 * @request_skb: skb of request we are replying to (used to target the reply)
994 * @seq: sequence number
995 * @type: audit message type
996 * @done: done (last) flag
997 * @multi: multi-part message flag
998 * @payload: payload data
999 * @size: payload size
1000 *
1001 * Allocates a skb, builds the netlink message, and sends it to the port id.
1002 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)1003 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1004 int multi, const void *payload, int size)
1005 {
1006 struct task_struct *tsk;
1007 struct audit_reply *reply;
1008
1009 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1010 if (!reply)
1011 return;
1012
1013 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1014 if (!reply->skb)
1015 goto err;
1016 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1017 reply->portid = NETLINK_CB(request_skb).portid;
1018
1019 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1020 if (IS_ERR(tsk))
1021 goto err;
1022
1023 return;
1024
1025 err:
1026 audit_free_reply(reply);
1027 }
1028
1029 /*
1030 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1031 * control messages.
1032 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1033 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1034 {
1035 int err = 0;
1036
1037 /* Only support initial user namespace for now. */
1038 /*
1039 * We return ECONNREFUSED because it tricks userspace into thinking
1040 * that audit was not configured into the kernel. Lots of users
1041 * configure their PAM stack (because that's what the distro does)
1042 * to reject login if unable to send messages to audit. If we return
1043 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1044 * configured in and will let login proceed. If we return EPERM
1045 * userspace will reject all logins. This should be removed when we
1046 * support non init namespaces!!
1047 */
1048 if (current_user_ns() != &init_user_ns)
1049 return -ECONNREFUSED;
1050
1051 switch (msg_type) {
1052 case AUDIT_LIST:
1053 case AUDIT_ADD:
1054 case AUDIT_DEL:
1055 return -EOPNOTSUPP;
1056 case AUDIT_GET:
1057 case AUDIT_SET:
1058 case AUDIT_GET_FEATURE:
1059 case AUDIT_SET_FEATURE:
1060 case AUDIT_LIST_RULES:
1061 case AUDIT_ADD_RULE:
1062 case AUDIT_DEL_RULE:
1063 case AUDIT_SIGNAL_INFO:
1064 case AUDIT_TTY_GET:
1065 case AUDIT_TTY_SET:
1066 case AUDIT_TRIM:
1067 case AUDIT_MAKE_EQUIV:
1068 /* Only support auditd and auditctl in initial pid namespace
1069 * for now. */
1070 if (task_active_pid_ns(current) != &init_pid_ns)
1071 return -EPERM;
1072
1073 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1074 err = -EPERM;
1075 break;
1076 case AUDIT_USER:
1077 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1078 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1079 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1080 err = -EPERM;
1081 break;
1082 default: /* bad msg */
1083 err = -EINVAL;
1084 }
1085
1086 return err;
1087 }
1088
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1089 static void audit_log_common_recv_msg(struct audit_context *context,
1090 struct audit_buffer **ab, u16 msg_type)
1091 {
1092 uid_t uid = from_kuid(&init_user_ns, current_uid());
1093 pid_t pid = task_tgid_nr(current);
1094
1095 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1096 *ab = NULL;
1097 return;
1098 }
1099
1100 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1101 if (unlikely(!*ab))
1102 return;
1103 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1104 audit_log_session_info(*ab);
1105 audit_log_task_context(*ab);
1106 }
1107
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1108 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1109 u16 msg_type)
1110 {
1111 audit_log_common_recv_msg(NULL, ab, msg_type);
1112 }
1113
is_audit_feature_set(int i)1114 int is_audit_feature_set(int i)
1115 {
1116 return af.features & AUDIT_FEATURE_TO_MASK(i);
1117 }
1118
1119
audit_get_feature(struct sk_buff * skb)1120 static int audit_get_feature(struct sk_buff *skb)
1121 {
1122 u32 seq;
1123
1124 seq = nlmsg_hdr(skb)->nlmsg_seq;
1125
1126 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1127
1128 return 0;
1129 }
1130
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1131 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1132 u32 old_lock, u32 new_lock, int res)
1133 {
1134 struct audit_buffer *ab;
1135
1136 if (audit_enabled == AUDIT_OFF)
1137 return;
1138
1139 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1140 if (!ab)
1141 return;
1142 audit_log_task_info(ab);
1143 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1144 audit_feature_names[which], !!old_feature, !!new_feature,
1145 !!old_lock, !!new_lock, res);
1146 audit_log_end(ab);
1147 }
1148
audit_set_feature(struct audit_features * uaf)1149 static int audit_set_feature(struct audit_features *uaf)
1150 {
1151 int i;
1152
1153 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1154
1155 /* if there is ever a version 2 we should handle that here */
1156
1157 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1158 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1159 u32 old_feature, new_feature, old_lock, new_lock;
1160
1161 /* if we are not changing this feature, move along */
1162 if (!(feature & uaf->mask))
1163 continue;
1164
1165 old_feature = af.features & feature;
1166 new_feature = uaf->features & feature;
1167 new_lock = (uaf->lock | af.lock) & feature;
1168 old_lock = af.lock & feature;
1169
1170 /* are we changing a locked feature? */
1171 if (old_lock && (new_feature != old_feature)) {
1172 audit_log_feature_change(i, old_feature, new_feature,
1173 old_lock, new_lock, 0);
1174 return -EPERM;
1175 }
1176 }
1177 /* nothing invalid, do the changes */
1178 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1179 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1180 u32 old_feature, new_feature, old_lock, new_lock;
1181
1182 /* if we are not changing this feature, move along */
1183 if (!(feature & uaf->mask))
1184 continue;
1185
1186 old_feature = af.features & feature;
1187 new_feature = uaf->features & feature;
1188 old_lock = af.lock & feature;
1189 new_lock = (uaf->lock | af.lock) & feature;
1190
1191 if (new_feature != old_feature)
1192 audit_log_feature_change(i, old_feature, new_feature,
1193 old_lock, new_lock, 1);
1194
1195 if (new_feature)
1196 af.features |= feature;
1197 else
1198 af.features &= ~feature;
1199 af.lock |= new_lock;
1200 }
1201
1202 return 0;
1203 }
1204
audit_replace(struct pid * pid)1205 static int audit_replace(struct pid *pid)
1206 {
1207 pid_t pvnr;
1208 struct sk_buff *skb;
1209
1210 pvnr = pid_vnr(pid);
1211 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1212 if (!skb)
1213 return -ENOMEM;
1214 return auditd_send_unicast_skb(skb);
1215 }
1216
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1217 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1218 bool *ack)
1219 {
1220 u32 seq;
1221 void *data;
1222 int data_len;
1223 int err;
1224 struct audit_buffer *ab;
1225 u16 msg_type = nlh->nlmsg_type;
1226 struct audit_sig_info *sig_data;
1227 char *ctx = NULL;
1228 u32 len;
1229
1230 err = audit_netlink_ok(skb, msg_type);
1231 if (err)
1232 return err;
1233
1234 seq = nlh->nlmsg_seq;
1235 data = nlmsg_data(nlh);
1236 data_len = nlmsg_len(nlh);
1237
1238 switch (msg_type) {
1239 case AUDIT_GET: {
1240 struct audit_status s;
1241 memset(&s, 0, sizeof(s));
1242 s.enabled = audit_enabled;
1243 s.failure = audit_failure;
1244 /* NOTE: use pid_vnr() so the PID is relative to the current
1245 * namespace */
1246 s.pid = auditd_pid_vnr();
1247 s.rate_limit = audit_rate_limit;
1248 s.backlog_limit = audit_backlog_limit;
1249 s.lost = atomic_read(&audit_lost);
1250 s.backlog = skb_queue_len(&audit_queue);
1251 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1252 s.backlog_wait_time = audit_backlog_wait_time;
1253 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1254 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1255 break;
1256 }
1257 case AUDIT_SET: {
1258 struct audit_status s;
1259 memset(&s, 0, sizeof(s));
1260 /* guard against past and future API changes */
1261 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1262 if (s.mask & AUDIT_STATUS_ENABLED) {
1263 err = audit_set_enabled(s.enabled);
1264 if (err < 0)
1265 return err;
1266 }
1267 if (s.mask & AUDIT_STATUS_FAILURE) {
1268 err = audit_set_failure(s.failure);
1269 if (err < 0)
1270 return err;
1271 }
1272 if (s.mask & AUDIT_STATUS_PID) {
1273 /* NOTE: we are using the vnr PID functions below
1274 * because the s.pid value is relative to the
1275 * namespace of the caller; at present this
1276 * doesn't matter much since you can really only
1277 * run auditd from the initial pid namespace, but
1278 * something to keep in mind if this changes */
1279 pid_t new_pid = s.pid;
1280 pid_t auditd_pid;
1281 struct pid *req_pid = task_tgid(current);
1282
1283 /* Sanity check - PID values must match. Setting
1284 * pid to 0 is how auditd ends auditing. */
1285 if (new_pid && (new_pid != pid_vnr(req_pid)))
1286 return -EINVAL;
1287
1288 /* test the auditd connection */
1289 audit_replace(req_pid);
1290
1291 auditd_pid = auditd_pid_vnr();
1292 if (auditd_pid) {
1293 /* replacing a healthy auditd is not allowed */
1294 if (new_pid) {
1295 audit_log_config_change("audit_pid",
1296 new_pid, auditd_pid, 0);
1297 return -EEXIST;
1298 }
1299 /* only current auditd can unregister itself */
1300 if (pid_vnr(req_pid) != auditd_pid) {
1301 audit_log_config_change("audit_pid",
1302 new_pid, auditd_pid, 0);
1303 return -EACCES;
1304 }
1305 }
1306
1307 if (new_pid) {
1308 /* register a new auditd connection */
1309 err = auditd_set(req_pid,
1310 NETLINK_CB(skb).portid,
1311 sock_net(NETLINK_CB(skb).sk),
1312 skb, ack);
1313 if (audit_enabled != AUDIT_OFF)
1314 audit_log_config_change("audit_pid",
1315 new_pid,
1316 auditd_pid,
1317 err ? 0 : 1);
1318 if (err)
1319 return err;
1320
1321 /* try to process any backlog */
1322 wake_up_interruptible(&kauditd_wait);
1323 } else {
1324 if (audit_enabled != AUDIT_OFF)
1325 audit_log_config_change("audit_pid",
1326 new_pid,
1327 auditd_pid, 1);
1328
1329 /* unregister the auditd connection */
1330 auditd_reset(NULL);
1331 }
1332 }
1333 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1334 err = audit_set_rate_limit(s.rate_limit);
1335 if (err < 0)
1336 return err;
1337 }
1338 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1339 err = audit_set_backlog_limit(s.backlog_limit);
1340 if (err < 0)
1341 return err;
1342 }
1343 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1344 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1345 return -EINVAL;
1346 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1347 return -EINVAL;
1348 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1349 if (err < 0)
1350 return err;
1351 }
1352 if (s.mask == AUDIT_STATUS_LOST) {
1353 u32 lost = atomic_xchg(&audit_lost, 0);
1354
1355 audit_log_config_change("lost", 0, lost, 1);
1356 return lost;
1357 }
1358 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1359 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1360
1361 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1362 return actual;
1363 }
1364 break;
1365 }
1366 case AUDIT_GET_FEATURE:
1367 err = audit_get_feature(skb);
1368 if (err)
1369 return err;
1370 break;
1371 case AUDIT_SET_FEATURE:
1372 if (data_len < sizeof(struct audit_features))
1373 return -EINVAL;
1374 err = audit_set_feature(data);
1375 if (err)
1376 return err;
1377 break;
1378 case AUDIT_USER:
1379 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1380 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1381 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1382 return 0;
1383 /* exit early if there isn't at least one character to print */
1384 if (data_len < 2)
1385 return -EINVAL;
1386
1387 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1388 if (err == 1) { /* match or error */
1389 char *str = data;
1390
1391 err = 0;
1392 if (msg_type == AUDIT_USER_TTY) {
1393 err = tty_audit_push();
1394 if (err)
1395 break;
1396 }
1397 audit_log_user_recv_msg(&ab, msg_type);
1398 if (msg_type != AUDIT_USER_TTY) {
1399 /* ensure NULL termination */
1400 str[data_len - 1] = '\0';
1401 audit_log_format(ab, " msg='%.*s'",
1402 AUDIT_MESSAGE_TEXT_MAX,
1403 str);
1404 } else {
1405 audit_log_format(ab, " data=");
1406 if (data_len > 0 && str[data_len - 1] == '\0')
1407 data_len--;
1408 audit_log_n_untrustedstring(ab, str, data_len);
1409 }
1410 audit_log_end(ab);
1411 }
1412 break;
1413 case AUDIT_ADD_RULE:
1414 case AUDIT_DEL_RULE:
1415 if (data_len < sizeof(struct audit_rule_data))
1416 return -EINVAL;
1417 if (audit_enabled == AUDIT_LOCKED) {
1418 audit_log_common_recv_msg(audit_context(), &ab,
1419 AUDIT_CONFIG_CHANGE);
1420 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1421 msg_type == AUDIT_ADD_RULE ?
1422 "add_rule" : "remove_rule",
1423 audit_enabled);
1424 audit_log_end(ab);
1425 return -EPERM;
1426 }
1427 err = audit_rule_change(msg_type, seq, data, data_len);
1428 break;
1429 case AUDIT_LIST_RULES:
1430 err = audit_list_rules_send(skb, seq);
1431 break;
1432 case AUDIT_TRIM:
1433 audit_trim_trees();
1434 audit_log_common_recv_msg(audit_context(), &ab,
1435 AUDIT_CONFIG_CHANGE);
1436 audit_log_format(ab, " op=trim res=1");
1437 audit_log_end(ab);
1438 break;
1439 case AUDIT_MAKE_EQUIV: {
1440 void *bufp = data;
1441 u32 sizes[2];
1442 size_t msglen = data_len;
1443 char *old, *new;
1444
1445 err = -EINVAL;
1446 if (msglen < 2 * sizeof(u32))
1447 break;
1448 memcpy(sizes, bufp, 2 * sizeof(u32));
1449 bufp += 2 * sizeof(u32);
1450 msglen -= 2 * sizeof(u32);
1451 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1452 if (IS_ERR(old)) {
1453 err = PTR_ERR(old);
1454 break;
1455 }
1456 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1457 if (IS_ERR(new)) {
1458 err = PTR_ERR(new);
1459 kfree(old);
1460 break;
1461 }
1462 /* OK, here comes... */
1463 err = audit_tag_tree(old, new);
1464
1465 audit_log_common_recv_msg(audit_context(), &ab,
1466 AUDIT_CONFIG_CHANGE);
1467 audit_log_format(ab, " op=make_equiv old=");
1468 audit_log_untrustedstring(ab, old);
1469 audit_log_format(ab, " new=");
1470 audit_log_untrustedstring(ab, new);
1471 audit_log_format(ab, " res=%d", !err);
1472 audit_log_end(ab);
1473 kfree(old);
1474 kfree(new);
1475 break;
1476 }
1477 case AUDIT_SIGNAL_INFO:
1478 len = 0;
1479 if (audit_sig_sid) {
1480 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1481 if (err)
1482 return err;
1483 }
1484 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1485 if (!sig_data) {
1486 if (audit_sig_sid)
1487 security_release_secctx(ctx, len);
1488 return -ENOMEM;
1489 }
1490 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1491 sig_data->pid = audit_sig_pid;
1492 if (audit_sig_sid) {
1493 memcpy(sig_data->ctx, ctx, len);
1494 security_release_secctx(ctx, len);
1495 }
1496 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1497 sig_data, sizeof(*sig_data) + len);
1498 kfree(sig_data);
1499 break;
1500 case AUDIT_TTY_GET: {
1501 struct audit_tty_status s;
1502 unsigned int t;
1503
1504 t = READ_ONCE(current->signal->audit_tty);
1505 s.enabled = t & AUDIT_TTY_ENABLE;
1506 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1507
1508 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1509 break;
1510 }
1511 case AUDIT_TTY_SET: {
1512 struct audit_tty_status s, old;
1513 struct audit_buffer *ab;
1514 unsigned int t;
1515
1516 memset(&s, 0, sizeof(s));
1517 /* guard against past and future API changes */
1518 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1519 /* check if new data is valid */
1520 if ((s.enabled != 0 && s.enabled != 1) ||
1521 (s.log_passwd != 0 && s.log_passwd != 1))
1522 err = -EINVAL;
1523
1524 if (err)
1525 t = READ_ONCE(current->signal->audit_tty);
1526 else {
1527 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1528 t = xchg(¤t->signal->audit_tty, t);
1529 }
1530 old.enabled = t & AUDIT_TTY_ENABLE;
1531 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1532
1533 audit_log_common_recv_msg(audit_context(), &ab,
1534 AUDIT_CONFIG_CHANGE);
1535 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1536 " old-log_passwd=%d new-log_passwd=%d res=%d",
1537 old.enabled, s.enabled, old.log_passwd,
1538 s.log_passwd, !err);
1539 audit_log_end(ab);
1540 break;
1541 }
1542 default:
1543 err = -EINVAL;
1544 break;
1545 }
1546
1547 return err < 0 ? err : 0;
1548 }
1549
1550 /**
1551 * audit_receive - receive messages from a netlink control socket
1552 * @skb: the message buffer
1553 *
1554 * Parse the provided skb and deal with any messages that may be present,
1555 * malformed skbs are discarded.
1556 */
audit_receive(struct sk_buff * skb)1557 static void audit_receive(struct sk_buff *skb)
1558 {
1559 struct nlmsghdr *nlh;
1560 bool ack;
1561 /*
1562 * len MUST be signed for nlmsg_next to be able to dec it below 0
1563 * if the nlmsg_len was not aligned
1564 */
1565 int len;
1566 int err;
1567
1568 nlh = nlmsg_hdr(skb);
1569 len = skb->len;
1570
1571 audit_ctl_lock();
1572 while (nlmsg_ok(nlh, len)) {
1573 ack = nlh->nlmsg_flags & NLM_F_ACK;
1574 err = audit_receive_msg(skb, nlh, &ack);
1575
1576 /* send an ack if the user asked for one and audit_receive_msg
1577 * didn't already do it, or if there was an error. */
1578 if (ack || err)
1579 netlink_ack(skb, nlh, err, NULL);
1580
1581 nlh = nlmsg_next(nlh, &len);
1582 }
1583 audit_ctl_unlock();
1584
1585 /* can't block with the ctrl lock, so penalize the sender now */
1586 if (audit_backlog_limit &&
1587 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1588 DECLARE_WAITQUEUE(wait, current);
1589
1590 /* wake kauditd to try and flush the queue */
1591 wake_up_interruptible(&kauditd_wait);
1592
1593 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1594 set_current_state(TASK_UNINTERRUPTIBLE);
1595 schedule_timeout(audit_backlog_wait_time);
1596 remove_wait_queue(&audit_backlog_wait, &wait);
1597 }
1598 }
1599
1600 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1601 static void audit_log_multicast(int group, const char *op, int err)
1602 {
1603 const struct cred *cred;
1604 struct tty_struct *tty;
1605 char comm[sizeof(current->comm)];
1606 struct audit_buffer *ab;
1607
1608 if (!audit_enabled)
1609 return;
1610
1611 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1612 if (!ab)
1613 return;
1614
1615 cred = current_cred();
1616 tty = audit_get_tty();
1617 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1618 task_pid_nr(current),
1619 from_kuid(&init_user_ns, cred->uid),
1620 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1621 tty ? tty_name(tty) : "(none)",
1622 audit_get_sessionid(current));
1623 audit_put_tty(tty);
1624 audit_log_task_context(ab); /* subj= */
1625 audit_log_format(ab, " comm=");
1626 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1627 audit_log_d_path_exe(ab, current->mm); /* exe= */
1628 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1629 audit_log_end(ab);
1630 }
1631
1632 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1633 static int audit_multicast_bind(struct net *net, int group)
1634 {
1635 int err = 0;
1636
1637 if (!capable(CAP_AUDIT_READ))
1638 err = -EPERM;
1639 audit_log_multicast(group, "connect", err);
1640 return err;
1641 }
1642
audit_multicast_unbind(struct net * net,int group)1643 static void audit_multicast_unbind(struct net *net, int group)
1644 {
1645 audit_log_multicast(group, "disconnect", 0);
1646 }
1647
audit_net_init(struct net * net)1648 static int __net_init audit_net_init(struct net *net)
1649 {
1650 struct netlink_kernel_cfg cfg = {
1651 .input = audit_receive,
1652 .bind = audit_multicast_bind,
1653 .unbind = audit_multicast_unbind,
1654 .flags = NL_CFG_F_NONROOT_RECV,
1655 .groups = AUDIT_NLGRP_MAX,
1656 };
1657
1658 struct audit_net *aunet = net_generic(net, audit_net_id);
1659
1660 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1661 if (aunet->sk == NULL) {
1662 audit_panic("cannot initialize netlink socket in namespace");
1663 return -ENOMEM;
1664 }
1665 /* limit the timeout in case auditd is blocked/stopped */
1666 aunet->sk->sk_sndtimeo = HZ / 10;
1667
1668 return 0;
1669 }
1670
audit_net_exit(struct net * net)1671 static void __net_exit audit_net_exit(struct net *net)
1672 {
1673 struct audit_net *aunet = net_generic(net, audit_net_id);
1674
1675 /* NOTE: you would think that we would want to check the auditd
1676 * connection and potentially reset it here if it lives in this
1677 * namespace, but since the auditd connection tracking struct holds a
1678 * reference to this namespace (see auditd_set()) we are only ever
1679 * going to get here after that connection has been released */
1680
1681 netlink_kernel_release(aunet->sk);
1682 }
1683
1684 static struct pernet_operations audit_net_ops __net_initdata = {
1685 .init = audit_net_init,
1686 .exit = audit_net_exit,
1687 .id = &audit_net_id,
1688 .size = sizeof(struct audit_net),
1689 };
1690
1691 /* Initialize audit support at boot time. */
audit_init(void)1692 static int __init audit_init(void)
1693 {
1694 int i;
1695
1696 if (audit_initialized == AUDIT_DISABLED)
1697 return 0;
1698
1699 audit_buffer_cache = kmem_cache_create("audit_buffer",
1700 sizeof(struct audit_buffer),
1701 0, SLAB_PANIC, NULL);
1702
1703 skb_queue_head_init(&audit_queue);
1704 skb_queue_head_init(&audit_retry_queue);
1705 skb_queue_head_init(&audit_hold_queue);
1706
1707 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1708 INIT_LIST_HEAD(&audit_inode_hash[i]);
1709
1710 mutex_init(&audit_cmd_mutex.lock);
1711 audit_cmd_mutex.owner = NULL;
1712
1713 pr_info("initializing netlink subsys (%s)\n",
1714 audit_default ? "enabled" : "disabled");
1715 register_pernet_subsys(&audit_net_ops);
1716
1717 audit_initialized = AUDIT_INITIALIZED;
1718
1719 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1720 if (IS_ERR(kauditd_task)) {
1721 int err = PTR_ERR(kauditd_task);
1722 panic("audit: failed to start the kauditd thread (%d)\n", err);
1723 }
1724
1725 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1726 "state=initialized audit_enabled=%u res=1",
1727 audit_enabled);
1728
1729 return 0;
1730 }
1731 postcore_initcall(audit_init);
1732
1733 /*
1734 * Process kernel command-line parameter at boot time.
1735 * audit={0|off} or audit={1|on}.
1736 */
audit_enable(char * str)1737 static int __init audit_enable(char *str)
1738 {
1739 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1740 audit_default = AUDIT_OFF;
1741 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1742 audit_default = AUDIT_ON;
1743 else {
1744 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1745 audit_default = AUDIT_ON;
1746 }
1747
1748 if (audit_default == AUDIT_OFF)
1749 audit_initialized = AUDIT_DISABLED;
1750 if (audit_set_enabled(audit_default))
1751 pr_err("audit: error setting audit state (%d)\n",
1752 audit_default);
1753
1754 pr_info("%s\n", audit_default ?
1755 "enabled (after initialization)" : "disabled (until reboot)");
1756
1757 return 1;
1758 }
1759 __setup("audit=", audit_enable);
1760
1761 /* Process kernel command-line parameter at boot time.
1762 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1763 static int __init audit_backlog_limit_set(char *str)
1764 {
1765 u32 audit_backlog_limit_arg;
1766
1767 pr_info("audit_backlog_limit: ");
1768 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1769 pr_cont("using default of %u, unable to parse %s\n",
1770 audit_backlog_limit, str);
1771 return 1;
1772 }
1773
1774 audit_backlog_limit = audit_backlog_limit_arg;
1775 pr_cont("%d\n", audit_backlog_limit);
1776
1777 return 1;
1778 }
1779 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1780
audit_buffer_free(struct audit_buffer * ab)1781 static void audit_buffer_free(struct audit_buffer *ab)
1782 {
1783 if (!ab)
1784 return;
1785
1786 kfree_skb(ab->skb);
1787 kmem_cache_free(audit_buffer_cache, ab);
1788 }
1789
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1790 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1791 gfp_t gfp_mask, int type)
1792 {
1793 struct audit_buffer *ab;
1794
1795 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1796 if (!ab)
1797 return NULL;
1798
1799 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1800 if (!ab->skb)
1801 goto err;
1802 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1803 goto err;
1804
1805 ab->ctx = ctx;
1806 ab->gfp_mask = gfp_mask;
1807
1808 return ab;
1809
1810 err:
1811 audit_buffer_free(ab);
1812 return NULL;
1813 }
1814
1815 /**
1816 * audit_serial - compute a serial number for the audit record
1817 *
1818 * Compute a serial number for the audit record. Audit records are
1819 * written to user-space as soon as they are generated, so a complete
1820 * audit record may be written in several pieces. The timestamp of the
1821 * record and this serial number are used by the user-space tools to
1822 * determine which pieces belong to the same audit record. The
1823 * (timestamp,serial) tuple is unique for each syscall and is live from
1824 * syscall entry to syscall exit.
1825 *
1826 * NOTE: Another possibility is to store the formatted records off the
1827 * audit context (for those records that have a context), and emit them
1828 * all at syscall exit. However, this could delay the reporting of
1829 * significant errors until syscall exit (or never, if the system
1830 * halts).
1831 */
audit_serial(void)1832 unsigned int audit_serial(void)
1833 {
1834 static atomic_t serial = ATOMIC_INIT(0);
1835
1836 return atomic_inc_return(&serial);
1837 }
1838
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1839 static inline void audit_get_stamp(struct audit_context *ctx,
1840 struct timespec64 *t, unsigned int *serial)
1841 {
1842 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1843 ktime_get_coarse_real_ts64(t);
1844 *serial = audit_serial();
1845 }
1846 }
1847
1848 /**
1849 * audit_log_start - obtain an audit buffer
1850 * @ctx: audit_context (may be NULL)
1851 * @gfp_mask: type of allocation
1852 * @type: audit message type
1853 *
1854 * Returns audit_buffer pointer on success or NULL on error.
1855 *
1856 * Obtain an audit buffer. This routine does locking to obtain the
1857 * audit buffer, but then no locking is required for calls to
1858 * audit_log_*format. If the task (ctx) is a task that is currently in a
1859 * syscall, then the syscall is marked as auditable and an audit record
1860 * will be written at syscall exit. If there is no associated task, then
1861 * task context (ctx) should be NULL.
1862 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1863 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1864 int type)
1865 {
1866 struct audit_buffer *ab;
1867 struct timespec64 t;
1868 unsigned int serial;
1869
1870 if (audit_initialized != AUDIT_INITIALIZED)
1871 return NULL;
1872
1873 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1874 return NULL;
1875
1876 /* NOTE: don't ever fail/sleep on these two conditions:
1877 * 1. auditd generated record - since we need auditd to drain the
1878 * queue; also, when we are checking for auditd, compare PIDs using
1879 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1880 * using a PID anchored in the caller's namespace
1881 * 2. generator holding the audit_cmd_mutex - we don't want to block
1882 * while holding the mutex, although we do penalize the sender
1883 * later in audit_receive() when it is safe to block
1884 */
1885 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1886 long stime = audit_backlog_wait_time;
1887
1888 while (audit_backlog_limit &&
1889 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1890 /* wake kauditd to try and flush the queue */
1891 wake_up_interruptible(&kauditd_wait);
1892
1893 /* sleep if we are allowed and we haven't exhausted our
1894 * backlog wait limit */
1895 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1896 long rtime = stime;
1897
1898 DECLARE_WAITQUEUE(wait, current);
1899
1900 add_wait_queue_exclusive(&audit_backlog_wait,
1901 &wait);
1902 set_current_state(TASK_UNINTERRUPTIBLE);
1903 stime = schedule_timeout(rtime);
1904 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1905 remove_wait_queue(&audit_backlog_wait, &wait);
1906 } else {
1907 if (audit_rate_check() && printk_ratelimit())
1908 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1909 skb_queue_len(&audit_queue),
1910 audit_backlog_limit);
1911 audit_log_lost("backlog limit exceeded");
1912 return NULL;
1913 }
1914 }
1915 }
1916
1917 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1918 if (!ab) {
1919 audit_log_lost("out of memory in audit_log_start");
1920 return NULL;
1921 }
1922
1923 audit_get_stamp(ab->ctx, &t, &serial);
1924 /* cancel dummy context to enable supporting records */
1925 if (ctx)
1926 ctx->dummy = 0;
1927 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1928 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1929
1930 return ab;
1931 }
1932
1933 /**
1934 * audit_expand - expand skb in the audit buffer
1935 * @ab: audit_buffer
1936 * @extra: space to add at tail of the skb
1937 *
1938 * Returns 0 (no space) on failed expansion, or available space if
1939 * successful.
1940 */
audit_expand(struct audit_buffer * ab,int extra)1941 static inline int audit_expand(struct audit_buffer *ab, int extra)
1942 {
1943 struct sk_buff *skb = ab->skb;
1944 int oldtail = skb_tailroom(skb);
1945 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1946 int newtail = skb_tailroom(skb);
1947
1948 if (ret < 0) {
1949 audit_log_lost("out of memory in audit_expand");
1950 return 0;
1951 }
1952
1953 skb->truesize += newtail - oldtail;
1954 return newtail;
1955 }
1956
1957 /*
1958 * Format an audit message into the audit buffer. If there isn't enough
1959 * room in the audit buffer, more room will be allocated and vsnprint
1960 * will be called a second time. Currently, we assume that a printk
1961 * can't format message larger than 1024 bytes, so we don't either.
1962 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1963 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1964 va_list args)
1965 {
1966 int len, avail;
1967 struct sk_buff *skb;
1968 va_list args2;
1969
1970 if (!ab)
1971 return;
1972
1973 BUG_ON(!ab->skb);
1974 skb = ab->skb;
1975 avail = skb_tailroom(skb);
1976 if (avail == 0) {
1977 avail = audit_expand(ab, AUDIT_BUFSIZ);
1978 if (!avail)
1979 goto out;
1980 }
1981 va_copy(args2, args);
1982 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1983 if (len >= avail) {
1984 /* The printk buffer is 1024 bytes long, so if we get
1985 * here and AUDIT_BUFSIZ is at least 1024, then we can
1986 * log everything that printk could have logged. */
1987 avail = audit_expand(ab,
1988 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1989 if (!avail)
1990 goto out_va_end;
1991 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1992 }
1993 if (len > 0)
1994 skb_put(skb, len);
1995 out_va_end:
1996 va_end(args2);
1997 out:
1998 return;
1999 }
2000
2001 /**
2002 * audit_log_format - format a message into the audit buffer.
2003 * @ab: audit_buffer
2004 * @fmt: format string
2005 * @...: optional parameters matching @fmt string
2006 *
2007 * All the work is done in audit_log_vformat.
2008 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)2009 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2010 {
2011 va_list args;
2012
2013 if (!ab)
2014 return;
2015 va_start(args, fmt);
2016 audit_log_vformat(ab, fmt, args);
2017 va_end(args);
2018 }
2019
2020 /**
2021 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2022 * @ab: the audit_buffer
2023 * @buf: buffer to convert to hex
2024 * @len: length of @buf to be converted
2025 *
2026 * No return value; failure to expand is silently ignored.
2027 *
2028 * This function will take the passed buf and convert it into a string of
2029 * ascii hex digits. The new string is placed onto the skb.
2030 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2031 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2032 size_t len)
2033 {
2034 int i, avail, new_len;
2035 unsigned char *ptr;
2036 struct sk_buff *skb;
2037
2038 if (!ab)
2039 return;
2040
2041 BUG_ON(!ab->skb);
2042 skb = ab->skb;
2043 avail = skb_tailroom(skb);
2044 new_len = len<<1;
2045 if (new_len >= avail) {
2046 /* Round the buffer request up to the next multiple */
2047 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2048 avail = audit_expand(ab, new_len);
2049 if (!avail)
2050 return;
2051 }
2052
2053 ptr = skb_tail_pointer(skb);
2054 for (i = 0; i < len; i++)
2055 ptr = hex_byte_pack_upper(ptr, buf[i]);
2056 *ptr = 0;
2057 skb_put(skb, len << 1); /* new string is twice the old string */
2058 }
2059
2060 /*
2061 * Format a string of no more than slen characters into the audit buffer,
2062 * enclosed in quote marks.
2063 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2064 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2065 size_t slen)
2066 {
2067 int avail, new_len;
2068 unsigned char *ptr;
2069 struct sk_buff *skb;
2070
2071 if (!ab)
2072 return;
2073
2074 BUG_ON(!ab->skb);
2075 skb = ab->skb;
2076 avail = skb_tailroom(skb);
2077 new_len = slen + 3; /* enclosing quotes + null terminator */
2078 if (new_len > avail) {
2079 avail = audit_expand(ab, new_len);
2080 if (!avail)
2081 return;
2082 }
2083 ptr = skb_tail_pointer(skb);
2084 *ptr++ = '"';
2085 memcpy(ptr, string, slen);
2086 ptr += slen;
2087 *ptr++ = '"';
2088 *ptr = 0;
2089 skb_put(skb, slen + 2); /* don't include null terminator */
2090 }
2091
2092 /**
2093 * audit_string_contains_control - does a string need to be logged in hex
2094 * @string: string to be checked
2095 * @len: max length of the string to check
2096 */
audit_string_contains_control(const char * string,size_t len)2097 bool audit_string_contains_control(const char *string, size_t len)
2098 {
2099 const unsigned char *p;
2100 for (p = string; p < (const unsigned char *)string + len; p++) {
2101 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2102 return true;
2103 }
2104 return false;
2105 }
2106
2107 /**
2108 * audit_log_n_untrustedstring - log a string that may contain random characters
2109 * @ab: audit_buffer
2110 * @len: length of string (not including trailing null)
2111 * @string: string to be logged
2112 *
2113 * This code will escape a string that is passed to it if the string
2114 * contains a control character, unprintable character, double quote mark,
2115 * or a space. Unescaped strings will start and end with a double quote mark.
2116 * Strings that are escaped are printed in hex (2 digits per char).
2117 *
2118 * The caller specifies the number of characters in the string to log, which may
2119 * or may not be the entire string.
2120 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2121 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2122 size_t len)
2123 {
2124 if (audit_string_contains_control(string, len))
2125 audit_log_n_hex(ab, string, len);
2126 else
2127 audit_log_n_string(ab, string, len);
2128 }
2129
2130 /**
2131 * audit_log_untrustedstring - log a string that may contain random characters
2132 * @ab: audit_buffer
2133 * @string: string to be logged
2134 *
2135 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2136 * determine string length.
2137 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2138 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2139 {
2140 audit_log_n_untrustedstring(ab, string, strlen(string));
2141 }
2142
2143 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2144 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2145 const struct path *path)
2146 {
2147 char *p, *pathname;
2148
2149 if (prefix)
2150 audit_log_format(ab, "%s", prefix);
2151
2152 /* We will allow 11 spaces for ' (deleted)' to be appended */
2153 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2154 if (!pathname) {
2155 audit_log_format(ab, "\"<no_memory>\"");
2156 return;
2157 }
2158 p = d_path(path, pathname, PATH_MAX+11);
2159 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2160 /* FIXME: can we save some information here? */
2161 audit_log_format(ab, "\"<too_long>\"");
2162 } else
2163 audit_log_untrustedstring(ab, p);
2164 kfree(pathname);
2165 }
2166
audit_log_session_info(struct audit_buffer * ab)2167 void audit_log_session_info(struct audit_buffer *ab)
2168 {
2169 unsigned int sessionid = audit_get_sessionid(current);
2170 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2171
2172 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2173 }
2174
audit_log_key(struct audit_buffer * ab,char * key)2175 void audit_log_key(struct audit_buffer *ab, char *key)
2176 {
2177 audit_log_format(ab, " key=");
2178 if (key)
2179 audit_log_untrustedstring(ab, key);
2180 else
2181 audit_log_format(ab, "(null)");
2182 }
2183
audit_log_task_context(struct audit_buffer * ab)2184 int audit_log_task_context(struct audit_buffer *ab)
2185 {
2186 char *ctx = NULL;
2187 unsigned len;
2188 int error;
2189 u32 sid;
2190
2191 security_task_getsecid_subj(current, &sid);
2192 if (!sid)
2193 return 0;
2194
2195 error = security_secid_to_secctx(sid, &ctx, &len);
2196 if (error) {
2197 if (error != -EINVAL)
2198 goto error_path;
2199 return 0;
2200 }
2201
2202 audit_log_format(ab, " subj=%s", ctx);
2203 security_release_secctx(ctx, len);
2204 return 0;
2205
2206 error_path:
2207 audit_panic("error in audit_log_task_context");
2208 return error;
2209 }
2210 EXPORT_SYMBOL(audit_log_task_context);
2211
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2212 void audit_log_d_path_exe(struct audit_buffer *ab,
2213 struct mm_struct *mm)
2214 {
2215 struct file *exe_file;
2216
2217 if (!mm)
2218 goto out_null;
2219
2220 exe_file = get_mm_exe_file(mm);
2221 if (!exe_file)
2222 goto out_null;
2223
2224 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2225 fput(exe_file);
2226 return;
2227 out_null:
2228 audit_log_format(ab, " exe=(null)");
2229 }
2230
audit_get_tty(void)2231 struct tty_struct *audit_get_tty(void)
2232 {
2233 struct tty_struct *tty = NULL;
2234 unsigned long flags;
2235
2236 spin_lock_irqsave(¤t->sighand->siglock, flags);
2237 if (current->signal)
2238 tty = tty_kref_get(current->signal->tty);
2239 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2240 return tty;
2241 }
2242
audit_put_tty(struct tty_struct * tty)2243 void audit_put_tty(struct tty_struct *tty)
2244 {
2245 tty_kref_put(tty);
2246 }
2247
audit_log_task_info(struct audit_buffer * ab)2248 void audit_log_task_info(struct audit_buffer *ab)
2249 {
2250 const struct cred *cred;
2251 char comm[sizeof(current->comm)];
2252 struct tty_struct *tty;
2253
2254 if (!ab)
2255 return;
2256
2257 cred = current_cred();
2258 tty = audit_get_tty();
2259 audit_log_format(ab,
2260 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2261 " euid=%u suid=%u fsuid=%u"
2262 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2263 task_ppid_nr(current),
2264 task_tgid_nr(current),
2265 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2266 from_kuid(&init_user_ns, cred->uid),
2267 from_kgid(&init_user_ns, cred->gid),
2268 from_kuid(&init_user_ns, cred->euid),
2269 from_kuid(&init_user_ns, cred->suid),
2270 from_kuid(&init_user_ns, cred->fsuid),
2271 from_kgid(&init_user_ns, cred->egid),
2272 from_kgid(&init_user_ns, cred->sgid),
2273 from_kgid(&init_user_ns, cred->fsgid),
2274 tty ? tty_name(tty) : "(none)",
2275 audit_get_sessionid(current));
2276 audit_put_tty(tty);
2277 audit_log_format(ab, " comm=");
2278 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2279 audit_log_d_path_exe(ab, current->mm);
2280 audit_log_task_context(ab);
2281 }
2282 EXPORT_SYMBOL(audit_log_task_info);
2283
2284 /**
2285 * audit_log_path_denied - report a path restriction denial
2286 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2287 * @operation: specific operation name
2288 */
audit_log_path_denied(int type,const char * operation)2289 void audit_log_path_denied(int type, const char *operation)
2290 {
2291 struct audit_buffer *ab;
2292
2293 if (!audit_enabled || audit_dummy_context())
2294 return;
2295
2296 /* Generate log with subject, operation, outcome. */
2297 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2298 if (!ab)
2299 return;
2300 audit_log_format(ab, "op=%s", operation);
2301 audit_log_task_info(ab);
2302 audit_log_format(ab, " res=0");
2303 audit_log_end(ab);
2304 }
2305
2306 /* global counter which is incremented every time something logs in */
2307 static atomic_t session_id = ATOMIC_INIT(0);
2308
audit_set_loginuid_perm(kuid_t loginuid)2309 static int audit_set_loginuid_perm(kuid_t loginuid)
2310 {
2311 /* if we are unset, we don't need privs */
2312 if (!audit_loginuid_set(current))
2313 return 0;
2314 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2315 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2316 return -EPERM;
2317 /* it is set, you need permission */
2318 if (!capable(CAP_AUDIT_CONTROL))
2319 return -EPERM;
2320 /* reject if this is not an unset and we don't allow that */
2321 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2322 && uid_valid(loginuid))
2323 return -EPERM;
2324 return 0;
2325 }
2326
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2327 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2328 unsigned int oldsessionid,
2329 unsigned int sessionid, int rc)
2330 {
2331 struct audit_buffer *ab;
2332 uid_t uid, oldloginuid, loginuid;
2333 struct tty_struct *tty;
2334
2335 if (!audit_enabled)
2336 return;
2337
2338 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2339 if (!ab)
2340 return;
2341
2342 uid = from_kuid(&init_user_ns, task_uid(current));
2343 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2344 loginuid = from_kuid(&init_user_ns, kloginuid);
2345 tty = audit_get_tty();
2346
2347 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2348 audit_log_task_context(ab);
2349 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2350 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2351 oldsessionid, sessionid, !rc);
2352 audit_put_tty(tty);
2353 audit_log_end(ab);
2354 }
2355
2356 /**
2357 * audit_set_loginuid - set current task's loginuid
2358 * @loginuid: loginuid value
2359 *
2360 * Returns 0.
2361 *
2362 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2363 */
audit_set_loginuid(kuid_t loginuid)2364 int audit_set_loginuid(kuid_t loginuid)
2365 {
2366 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2367 kuid_t oldloginuid;
2368 int rc;
2369
2370 oldloginuid = audit_get_loginuid(current);
2371 oldsessionid = audit_get_sessionid(current);
2372
2373 rc = audit_set_loginuid_perm(loginuid);
2374 if (rc)
2375 goto out;
2376
2377 /* are we setting or clearing? */
2378 if (uid_valid(loginuid)) {
2379 sessionid = (unsigned int)atomic_inc_return(&session_id);
2380 if (unlikely(sessionid == AUDIT_SID_UNSET))
2381 sessionid = (unsigned int)atomic_inc_return(&session_id);
2382 }
2383
2384 current->sessionid = sessionid;
2385 current->loginuid = loginuid;
2386 out:
2387 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2388 return rc;
2389 }
2390
2391 /**
2392 * audit_signal_info - record signal info for shutting down audit subsystem
2393 * @sig: signal value
2394 * @t: task being signaled
2395 *
2396 * If the audit subsystem is being terminated, record the task (pid)
2397 * and uid that is doing that.
2398 */
audit_signal_info(int sig,struct task_struct * t)2399 int audit_signal_info(int sig, struct task_struct *t)
2400 {
2401 kuid_t uid = current_uid(), auid;
2402
2403 if (auditd_test_task(t) &&
2404 (sig == SIGTERM || sig == SIGHUP ||
2405 sig == SIGUSR1 || sig == SIGUSR2)) {
2406 audit_sig_pid = task_tgid_nr(current);
2407 auid = audit_get_loginuid(current);
2408 if (uid_valid(auid))
2409 audit_sig_uid = auid;
2410 else
2411 audit_sig_uid = uid;
2412 security_task_getsecid_subj(current, &audit_sig_sid);
2413 }
2414
2415 return audit_signal_info_syscall(t);
2416 }
2417
2418 /**
2419 * audit_log_end - end one audit record
2420 * @ab: the audit_buffer
2421 *
2422 * We can not do a netlink send inside an irq context because it blocks (last
2423 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2424 * queue and a kthread is scheduled to remove them from the queue outside the
2425 * irq context. May be called in any context.
2426 */
audit_log_end(struct audit_buffer * ab)2427 void audit_log_end(struct audit_buffer *ab)
2428 {
2429 struct sk_buff *skb;
2430 struct nlmsghdr *nlh;
2431
2432 if (!ab)
2433 return;
2434
2435 if (audit_rate_check()) {
2436 skb = ab->skb;
2437 ab->skb = NULL;
2438
2439 /* setup the netlink header, see the comments in
2440 * kauditd_send_multicast_skb() for length quirks */
2441 nlh = nlmsg_hdr(skb);
2442 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2443
2444 /* queue the netlink packet and poke the kauditd thread */
2445 skb_queue_tail(&audit_queue, skb);
2446 wake_up_interruptible(&kauditd_wait);
2447 } else
2448 audit_log_lost("rate limit exceeded");
2449
2450 audit_buffer_free(ab);
2451 }
2452
2453 /**
2454 * audit_log - Log an audit record
2455 * @ctx: audit context
2456 * @gfp_mask: type of allocation
2457 * @type: audit message type
2458 * @fmt: format string to use
2459 * @...: variable parameters matching the format string
2460 *
2461 * This is a convenience function that calls audit_log_start,
2462 * audit_log_vformat, and audit_log_end. It may be called
2463 * in any context.
2464 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2465 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2466 const char *fmt, ...)
2467 {
2468 struct audit_buffer *ab;
2469 va_list args;
2470
2471 ab = audit_log_start(ctx, gfp_mask, type);
2472 if (ab) {
2473 va_start(args, fmt);
2474 audit_log_vformat(ab, fmt, args);
2475 va_end(args);
2476 audit_log_end(ab);
2477 }
2478 }
2479
2480 EXPORT_SYMBOL(audit_log_start);
2481 EXPORT_SYMBOL(audit_log_end);
2482 EXPORT_SYMBOL(audit_log_format);
2483 EXPORT_SYMBOL(audit_log);
2484