1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 #include <linux/blk-cgroup.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-rq-qos.h"
16
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)17 static inline bool bio_will_gap(struct request_queue *q,
18 struct request *prev_rq, struct bio *prev, struct bio *next)
19 {
20 struct bio_vec pb, nb;
21
22 if (!bio_has_data(prev) || !queue_virt_boundary(q))
23 return false;
24
25 /*
26 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
27 * is quite difficult to respect the sg gap limit. We work hard to
28 * merge a huge number of small single bios in case of mkfs.
29 */
30 if (prev_rq)
31 bio_get_first_bvec(prev_rq->bio, &pb);
32 else
33 bio_get_first_bvec(prev, &pb);
34 if (pb.bv_offset & queue_virt_boundary(q))
35 return true;
36
37 /*
38 * We don't need to worry about the situation that the merged segment
39 * ends in unaligned virt boundary:
40 *
41 * - if 'pb' ends aligned, the merged segment ends aligned
42 * - if 'pb' ends unaligned, the next bio must include
43 * one single bvec of 'nb', otherwise the 'nb' can't
44 * merge with 'pb'
45 */
46 bio_get_last_bvec(prev, &pb);
47 bio_get_first_bvec(next, &nb);
48 if (biovec_phys_mergeable(q, &pb, &nb))
49 return false;
50 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
51 }
52
req_gap_back_merge(struct request * req,struct bio * bio)53 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
54 {
55 return bio_will_gap(req->q, req, req->biotail, bio);
56 }
57
req_gap_front_merge(struct request * req,struct bio * bio)58 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
59 {
60 return bio_will_gap(req->q, NULL, bio, req->bio);
61 }
62
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)63 static struct bio *blk_bio_discard_split(struct request_queue *q,
64 struct bio *bio,
65 struct bio_set *bs,
66 unsigned *nsegs)
67 {
68 unsigned int max_discard_sectors, granularity;
69 int alignment;
70 sector_t tmp;
71 unsigned split_sectors;
72
73 *nsegs = 1;
74
75 /* Zero-sector (unknown) and one-sector granularities are the same. */
76 granularity = max(q->limits.discard_granularity >> 9, 1U);
77
78 max_discard_sectors = min(q->limits.max_discard_sectors,
79 bio_allowed_max_sectors(q));
80 max_discard_sectors -= max_discard_sectors % granularity;
81
82 if (unlikely(!max_discard_sectors)) {
83 /* XXX: warn */
84 return NULL;
85 }
86
87 if (bio_sectors(bio) <= max_discard_sectors)
88 return NULL;
89
90 split_sectors = max_discard_sectors;
91
92 /*
93 * If the next starting sector would be misaligned, stop the discard at
94 * the previous aligned sector.
95 */
96 alignment = (q->limits.discard_alignment >> 9) % granularity;
97
98 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
99 tmp = sector_div(tmp, granularity);
100
101 if (split_sectors > tmp)
102 split_sectors -= tmp;
103
104 return bio_split(bio, split_sectors, GFP_NOIO, bs);
105 }
106
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)107 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
108 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
109 {
110 *nsegs = 0;
111
112 if (!q->limits.max_write_zeroes_sectors)
113 return NULL;
114
115 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
116 return NULL;
117
118 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
119 }
120
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)121 static struct bio *blk_bio_write_same_split(struct request_queue *q,
122 struct bio *bio,
123 struct bio_set *bs,
124 unsigned *nsegs)
125 {
126 *nsegs = 1;
127
128 if (!q->limits.max_write_same_sectors)
129 return NULL;
130
131 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
132 return NULL;
133
134 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
135 }
136
137 /*
138 * Return the maximum number of sectors from the start of a bio that may be
139 * submitted as a single request to a block device. If enough sectors remain,
140 * align the end to the physical block size. Otherwise align the end to the
141 * logical block size. This approach minimizes the number of non-aligned
142 * requests that are submitted to a block device if the start of a bio is not
143 * aligned to a physical block boundary.
144 */
get_max_io_size(struct request_queue * q,struct bio * bio)145 static inline unsigned get_max_io_size(struct request_queue *q,
146 struct bio *bio)
147 {
148 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
149 unsigned max_sectors = sectors;
150 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
151 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
152 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
153
154 max_sectors += start_offset;
155 max_sectors &= ~(pbs - 1);
156 if (max_sectors > start_offset)
157 return max_sectors - start_offset;
158
159 return sectors & ~(lbs - 1);
160 }
161
get_max_segment_size(const struct request_queue * q,struct page * start_page,unsigned long offset)162 static inline unsigned get_max_segment_size(const struct request_queue *q,
163 struct page *start_page,
164 unsigned long offset)
165 {
166 unsigned long mask = queue_segment_boundary(q);
167
168 offset = mask & (page_to_phys(start_page) + offset);
169
170 /*
171 * overflow may be triggered in case of zero page physical address
172 * on 32bit arch, use queue's max segment size when that happens.
173 */
174 return min_not_zero(mask - offset + 1,
175 (unsigned long)queue_max_segment_size(q));
176 }
177
178 /**
179 * bvec_split_segs - verify whether or not a bvec should be split in the middle
180 * @q: [in] request queue associated with the bio associated with @bv
181 * @bv: [in] bvec to examine
182 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
183 * by the number of segments from @bv that may be appended to that
184 * bio without exceeding @max_segs
185 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
186 * by the number of sectors from @bv that may be appended to that
187 * bio without exceeding @max_sectors
188 * @max_segs: [in] upper bound for *@nsegs
189 * @max_sectors: [in] upper bound for *@sectors
190 *
191 * When splitting a bio, it can happen that a bvec is encountered that is too
192 * big to fit in a single segment and hence that it has to be split in the
193 * middle. This function verifies whether or not that should happen. The value
194 * %true is returned if and only if appending the entire @bv to a bio with
195 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
196 * the block driver.
197 */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)198 static bool bvec_split_segs(const struct request_queue *q,
199 const struct bio_vec *bv, unsigned *nsegs,
200 unsigned *sectors, unsigned max_segs,
201 unsigned max_sectors)
202 {
203 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
204 unsigned len = min(bv->bv_len, max_len);
205 unsigned total_len = 0;
206 unsigned seg_size = 0;
207
208 while (len && *nsegs < max_segs) {
209 seg_size = get_max_segment_size(q, bv->bv_page,
210 bv->bv_offset + total_len);
211 seg_size = min(seg_size, len);
212
213 (*nsegs)++;
214 total_len += seg_size;
215 len -= seg_size;
216
217 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
218 break;
219 }
220
221 *sectors += total_len >> 9;
222
223 /* tell the caller to split the bvec if it is too big to fit */
224 return len > 0 || bv->bv_len > max_len;
225 }
226
227 /**
228 * blk_bio_segment_split - split a bio in two bios
229 * @q: [in] request queue pointer
230 * @bio: [in] bio to be split
231 * @bs: [in] bio set to allocate the clone from
232 * @segs: [out] number of segments in the bio with the first half of the sectors
233 *
234 * Clone @bio, update the bi_iter of the clone to represent the first sectors
235 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
236 * following is guaranteed for the cloned bio:
237 * - That it has at most get_max_io_size(@q, @bio) sectors.
238 * - That it has at most queue_max_segments(@q) segments.
239 *
240 * Except for discard requests the cloned bio will point at the bi_io_vec of
241 * the original bio. It is the responsibility of the caller to ensure that the
242 * original bio is not freed before the cloned bio. The caller is also
243 * responsible for ensuring that @bs is only destroyed after processing of the
244 * split bio has finished.
245 */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)246 static struct bio *blk_bio_segment_split(struct request_queue *q,
247 struct bio *bio,
248 struct bio_set *bs,
249 unsigned *segs)
250 {
251 struct bio_vec bv, bvprv, *bvprvp = NULL;
252 struct bvec_iter iter;
253 unsigned nsegs = 0, sectors = 0;
254 const unsigned max_sectors = get_max_io_size(q, bio);
255 const unsigned max_segs = queue_max_segments(q);
256
257 bio_for_each_bvec(bv, bio, iter) {
258 /*
259 * If the queue doesn't support SG gaps and adding this
260 * offset would create a gap, disallow it.
261 */
262 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
263 goto split;
264
265 if (nsegs < max_segs &&
266 sectors + (bv.bv_len >> 9) <= max_sectors &&
267 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
268 /* single-page bvec optimization */
269 nsegs += blk_segments(&q->limits, bv.bv_len);
270 sectors += bv.bv_len >> 9;
271 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs,
272 max_sectors)) {
273 goto split;
274 }
275
276 bvprv = bv;
277 bvprvp = &bvprv;
278 }
279
280 *segs = nsegs;
281 return NULL;
282 split:
283 /*
284 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
285 * with EAGAIN if splitting is required and return an error pointer.
286 */
287 if (bio->bi_opf & REQ_NOWAIT) {
288 bio->bi_status = BLK_STS_AGAIN;
289 bio_endio(bio);
290 return ERR_PTR(-EAGAIN);
291 }
292
293 *segs = nsegs;
294
295 /*
296 * Bio splitting may cause subtle trouble such as hang when doing sync
297 * iopoll in direct IO routine. Given performance gain of iopoll for
298 * big IO can be trival, disable iopoll when split needed.
299 */
300 bio_clear_hipri(bio);
301
302 return bio_split(bio, sectors, GFP_NOIO, bs);
303 }
304
305 /**
306 * __blk_queue_split - split a bio and submit the second half
307 * @bio: [in, out] bio to be split
308 * @nr_segs: [out] number of segments in the first bio
309 *
310 * Split a bio into two bios, chain the two bios, submit the second half and
311 * store a pointer to the first half in *@bio. If the second bio is still too
312 * big it will be split by a recursive call to this function. Since this
313 * function may allocate a new bio from q->bio_split, it is the responsibility
314 * of the caller to ensure that q->bio_split is only released after processing
315 * of the split bio has finished.
316 */
__blk_queue_split(struct bio ** bio,unsigned int * nr_segs)317 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
318 {
319 struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
320 struct bio *split = NULL;
321
322 switch (bio_op(*bio)) {
323 case REQ_OP_DISCARD:
324 case REQ_OP_SECURE_ERASE:
325 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
326 break;
327 case REQ_OP_WRITE_ZEROES:
328 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
329 nr_segs);
330 break;
331 case REQ_OP_WRITE_SAME:
332 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
333 nr_segs);
334 break;
335 default:
336 /*
337 * Check whether bio splitting should be performed. This check may
338 * trigger the bio splitting code even if splitting is not necessary.
339 */
340 if (!q->limits.chunk_sectors &&
341 (*bio)->bi_vcnt == 1 &&
342 (!blk_queue_sub_page_limits(&q->limits) ||
343 (*bio)->bi_io_vec->bv_len <= q->limits.max_segment_size) &&
344 ((*bio)->bi_io_vec[0].bv_len +
345 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
346 *nr_segs = blk_segments(&q->limits,
347 (*bio)->bi_io_vec[0].bv_len);
348 break;
349 }
350 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
351 if (IS_ERR(split))
352 *bio = split = NULL;
353 break;
354 }
355
356 if (split) {
357 /* there isn't chance to merge the split bio */
358 split->bi_opf |= REQ_NOMERGE;
359
360 bio_chain(split, *bio);
361 trace_block_split(split, (*bio)->bi_iter.bi_sector);
362 submit_bio_noacct(*bio);
363 *bio = split;
364
365 blk_throtl_charge_bio_split(*bio);
366 }
367 }
368
369 /**
370 * blk_queue_split - split a bio and submit the second half
371 * @bio: [in, out] bio to be split
372 *
373 * Split a bio into two bios, chains the two bios, submit the second half and
374 * store a pointer to the first half in *@bio. Since this function may allocate
375 * a new bio from q->bio_split, it is the responsibility of the caller to ensure
376 * that q->bio_split is only released after processing of the split bio has
377 * finished.
378 */
blk_queue_split(struct bio ** bio)379 void blk_queue_split(struct bio **bio)
380 {
381 unsigned int nr_segs;
382
383 __blk_queue_split(bio, &nr_segs);
384 }
385 EXPORT_SYMBOL(blk_queue_split);
386
blk_recalc_rq_segments(struct request * rq)387 unsigned int blk_recalc_rq_segments(struct request *rq)
388 {
389 unsigned int nr_phys_segs = 0;
390 unsigned int nr_sectors = 0;
391 struct req_iterator iter;
392 struct bio_vec bv;
393
394 if (!rq->bio)
395 return 0;
396
397 switch (bio_op(rq->bio)) {
398 case REQ_OP_DISCARD:
399 case REQ_OP_SECURE_ERASE:
400 if (queue_max_discard_segments(rq->q) > 1) {
401 struct bio *bio = rq->bio;
402
403 for_each_bio(bio)
404 nr_phys_segs++;
405 return nr_phys_segs;
406 }
407 return 1;
408 case REQ_OP_WRITE_ZEROES:
409 return 0;
410 case REQ_OP_WRITE_SAME:
411 return 1;
412 }
413
414 rq_for_each_bvec(bv, rq, iter)
415 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
416 UINT_MAX, UINT_MAX);
417 return nr_phys_segs;
418 }
419
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)420 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
421 struct scatterlist *sglist)
422 {
423 if (!*sg)
424 return sglist;
425
426 /*
427 * If the driver previously mapped a shorter list, we could see a
428 * termination bit prematurely unless it fully inits the sg table
429 * on each mapping. We KNOW that there must be more entries here
430 * or the driver would be buggy, so force clear the termination bit
431 * to avoid doing a full sg_init_table() in drivers for each command.
432 */
433 sg_unmark_end(*sg);
434 return sg_next(*sg);
435 }
436
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)437 static unsigned blk_bvec_map_sg(struct request_queue *q,
438 struct bio_vec *bvec, struct scatterlist *sglist,
439 struct scatterlist **sg)
440 {
441 unsigned nbytes = bvec->bv_len;
442 unsigned nsegs = 0, total = 0;
443
444 while (nbytes > 0) {
445 unsigned offset = bvec->bv_offset + total;
446 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
447 offset), nbytes);
448 struct page *page = bvec->bv_page;
449
450 /*
451 * Unfortunately a fair number of drivers barf on scatterlists
452 * that have an offset larger than PAGE_SIZE, despite other
453 * subsystems dealing with that invariant just fine. For now
454 * stick to the legacy format where we never present those from
455 * the block layer, but the code below should be removed once
456 * these offenders (mostly MMC/SD drivers) are fixed.
457 */
458 page += (offset >> PAGE_SHIFT);
459 offset &= ~PAGE_MASK;
460
461 *sg = blk_next_sg(sg, sglist);
462 sg_set_page(*sg, page, len, offset);
463
464 total += len;
465 nbytes -= len;
466 nsegs++;
467 }
468
469 return nsegs;
470 }
471
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)472 static inline int __blk_bvec_map_sg(struct bio_vec bv,
473 struct scatterlist *sglist, struct scatterlist **sg)
474 {
475 *sg = blk_next_sg(sg, sglist);
476 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
477 return 1;
478 }
479
480 /* only try to merge bvecs into one sg if they are from two bios */
481 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)482 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
483 struct bio_vec *bvprv, struct scatterlist **sg)
484 {
485
486 int nbytes = bvec->bv_len;
487
488 if (!*sg)
489 return false;
490
491 if ((*sg)->length + nbytes > queue_max_segment_size(q))
492 return false;
493
494 if (!biovec_phys_mergeable(q, bvprv, bvec))
495 return false;
496
497 (*sg)->length += nbytes;
498
499 return true;
500 }
501
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)502 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
503 struct scatterlist *sglist,
504 struct scatterlist **sg)
505 {
506 struct bio_vec bvec, bvprv = { NULL };
507 struct bvec_iter iter;
508 int nsegs = 0;
509 bool new_bio = false;
510
511 for_each_bio(bio) {
512 bio_for_each_bvec(bvec, bio, iter) {
513 /*
514 * Only try to merge bvecs from two bios given we
515 * have done bio internal merge when adding pages
516 * to bio
517 */
518 if (new_bio &&
519 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
520 goto next_bvec;
521
522 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE &&
523 (!blk_queue_sub_page_limits(&q->limits) ||
524 bvec.bv_len <= q->limits.max_segment_size))
525 /* single-segment bvec optimization */
526 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
527 else
528 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
529 next_bvec:
530 new_bio = false;
531 }
532 if (likely(bio->bi_iter.bi_size)) {
533 bvprv = bvec;
534 new_bio = true;
535 }
536 }
537
538 return nsegs;
539 }
540
541 /*
542 * map a request to scatterlist, return number of sg entries setup. Caller
543 * must make sure sg can hold rq->nr_phys_segments entries
544 */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)545 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
546 struct scatterlist *sglist, struct scatterlist **last_sg)
547 {
548 int nsegs = 0;
549
550 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
551 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
552 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
553 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
554 else if (rq->bio)
555 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
556
557 if (*last_sg)
558 sg_mark_end(*last_sg);
559
560 /*
561 * Something must have been wrong if the figured number of
562 * segment is bigger than number of req's physical segments
563 */
564 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
565
566 return nsegs;
567 }
568 EXPORT_SYMBOL(__blk_rq_map_sg);
569
blk_rq_get_max_segments(struct request * rq)570 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
571 {
572 if (req_op(rq) == REQ_OP_DISCARD)
573 return queue_max_discard_segments(rq->q);
574 return queue_max_segments(rq->q);
575 }
576
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)577 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
578 unsigned int nr_phys_segs)
579 {
580 if (!blk_cgroup_mergeable(req, bio))
581 goto no_merge;
582
583 if (blk_integrity_merge_bio(req->q, req, bio) == false)
584 goto no_merge;
585
586 /* discard request merge won't add new segment */
587 if (req_op(req) == REQ_OP_DISCARD)
588 return 1;
589
590 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
591 goto no_merge;
592
593 /*
594 * This will form the start of a new hw segment. Bump both
595 * counters.
596 */
597 req->nr_phys_segments += nr_phys_segs;
598 return 1;
599
600 no_merge:
601 req_set_nomerge(req->q, req);
602 return 0;
603 }
604
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)605 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
606 {
607 if (req_gap_back_merge(req, bio))
608 return 0;
609 if (blk_integrity_rq(req) &&
610 integrity_req_gap_back_merge(req, bio))
611 return 0;
612 if (!bio_crypt_ctx_back_mergeable(req, bio))
613 return 0;
614 if (blk_rq_sectors(req) + bio_sectors(bio) >
615 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
616 req_set_nomerge(req->q, req);
617 return 0;
618 }
619
620 return ll_new_hw_segment(req, bio, nr_segs);
621 }
622
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)623 static int ll_front_merge_fn(struct request *req, struct bio *bio,
624 unsigned int nr_segs)
625 {
626 if (req_gap_front_merge(req, bio))
627 return 0;
628 if (blk_integrity_rq(req) &&
629 integrity_req_gap_front_merge(req, bio))
630 return 0;
631 if (!bio_crypt_ctx_front_mergeable(req, bio))
632 return 0;
633 if (blk_rq_sectors(req) + bio_sectors(bio) >
634 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
635 req_set_nomerge(req->q, req);
636 return 0;
637 }
638
639 return ll_new_hw_segment(req, bio, nr_segs);
640 }
641
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)642 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
643 struct request *next)
644 {
645 unsigned short segments = blk_rq_nr_discard_segments(req);
646
647 if (segments >= queue_max_discard_segments(q))
648 goto no_merge;
649 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
650 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
651 goto no_merge;
652
653 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
654 return true;
655 no_merge:
656 req_set_nomerge(q, req);
657 return false;
658 }
659
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)660 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
661 struct request *next)
662 {
663 int total_phys_segments;
664
665 if (req_gap_back_merge(req, next->bio))
666 return 0;
667
668 /*
669 * Will it become too large?
670 */
671 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
672 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
673 return 0;
674
675 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
676 if (total_phys_segments > blk_rq_get_max_segments(req))
677 return 0;
678
679 if (!blk_cgroup_mergeable(req, next->bio))
680 return 0;
681
682 if (blk_integrity_merge_rq(q, req, next) == false)
683 return 0;
684
685 if (!bio_crypt_ctx_merge_rq(req, next))
686 return 0;
687
688 /* Merge is OK... */
689 req->nr_phys_segments = total_phys_segments;
690 return 1;
691 }
692
693 /**
694 * blk_rq_set_mixed_merge - mark a request as mixed merge
695 * @rq: request to mark as mixed merge
696 *
697 * Description:
698 * @rq is about to be mixed merged. Make sure the attributes
699 * which can be mixed are set in each bio and mark @rq as mixed
700 * merged.
701 */
blk_rq_set_mixed_merge(struct request * rq)702 void blk_rq_set_mixed_merge(struct request *rq)
703 {
704 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
705 struct bio *bio;
706
707 if (rq->rq_flags & RQF_MIXED_MERGE)
708 return;
709
710 /*
711 * @rq will no longer represent mixable attributes for all the
712 * contained bios. It will just track those of the first one.
713 * Distributes the attributs to each bio.
714 */
715 for (bio = rq->bio; bio; bio = bio->bi_next) {
716 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
717 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
718 bio->bi_opf |= ff;
719 }
720 rq->rq_flags |= RQF_MIXED_MERGE;
721 }
722
blk_account_io_merge_request(struct request * req)723 static void blk_account_io_merge_request(struct request *req)
724 {
725 if (blk_do_io_stat(req)) {
726 part_stat_lock();
727 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
728 part_stat_unlock();
729 }
730 }
731
blk_try_req_merge(struct request * req,struct request * next)732 static enum elv_merge blk_try_req_merge(struct request *req,
733 struct request *next)
734 {
735 if (blk_discard_mergable(req))
736 return ELEVATOR_DISCARD_MERGE;
737 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
738 return ELEVATOR_BACK_MERGE;
739
740 return ELEVATOR_NO_MERGE;
741 }
742
743 /*
744 * For non-mq, this has to be called with the request spinlock acquired.
745 * For mq with scheduling, the appropriate queue wide lock should be held.
746 */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)747 static struct request *attempt_merge(struct request_queue *q,
748 struct request *req, struct request *next)
749 {
750 if (!rq_mergeable(req) || !rq_mergeable(next))
751 return NULL;
752
753 if (req_op(req) != req_op(next))
754 return NULL;
755
756 if (rq_data_dir(req) != rq_data_dir(next)
757 || req->rq_disk != next->rq_disk)
758 return NULL;
759
760 if (req_op(req) == REQ_OP_WRITE_SAME &&
761 !blk_write_same_mergeable(req->bio, next->bio))
762 return NULL;
763
764 /*
765 * Don't allow merge of different write hints, or for a hint with
766 * non-hint IO.
767 */
768 if (req->write_hint != next->write_hint)
769 return NULL;
770
771 if (req->ioprio != next->ioprio)
772 return NULL;
773
774 /*
775 * If we are allowed to merge, then append bio list
776 * from next to rq and release next. merge_requests_fn
777 * will have updated segment counts, update sector
778 * counts here. Handle DISCARDs separately, as they
779 * have separate settings.
780 */
781
782 switch (blk_try_req_merge(req, next)) {
783 case ELEVATOR_DISCARD_MERGE:
784 if (!req_attempt_discard_merge(q, req, next))
785 return NULL;
786 break;
787 case ELEVATOR_BACK_MERGE:
788 if (!ll_merge_requests_fn(q, req, next))
789 return NULL;
790 break;
791 default:
792 return NULL;
793 }
794
795 /*
796 * If failfast settings disagree or any of the two is already
797 * a mixed merge, mark both as mixed before proceeding. This
798 * makes sure that all involved bios have mixable attributes
799 * set properly.
800 */
801 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
802 (req->cmd_flags & REQ_FAILFAST_MASK) !=
803 (next->cmd_flags & REQ_FAILFAST_MASK)) {
804 blk_rq_set_mixed_merge(req);
805 blk_rq_set_mixed_merge(next);
806 }
807
808 /*
809 * At this point we have either done a back merge or front merge. We
810 * need the smaller start_time_ns of the merged requests to be the
811 * current request for accounting purposes.
812 */
813 if (next->start_time_ns < req->start_time_ns)
814 req->start_time_ns = next->start_time_ns;
815
816 req->biotail->bi_next = next->bio;
817 req->biotail = next->biotail;
818
819 req->__data_len += blk_rq_bytes(next);
820
821 if (!blk_discard_mergable(req))
822 elv_merge_requests(q, req, next);
823
824 blk_crypto_rq_put_keyslot(next);
825
826 /*
827 * 'next' is going away, so update stats accordingly
828 */
829 blk_account_io_merge_request(next);
830
831 trace_block_rq_merge(next);
832
833 /*
834 * ownership of bio passed from next to req, return 'next' for
835 * the caller to free
836 */
837 next->bio = NULL;
838 return next;
839 }
840
attempt_back_merge(struct request_queue * q,struct request * rq)841 static struct request *attempt_back_merge(struct request_queue *q,
842 struct request *rq)
843 {
844 struct request *next = elv_latter_request(q, rq);
845
846 if (next)
847 return attempt_merge(q, rq, next);
848
849 return NULL;
850 }
851
attempt_front_merge(struct request_queue * q,struct request * rq)852 static struct request *attempt_front_merge(struct request_queue *q,
853 struct request *rq)
854 {
855 struct request *prev = elv_former_request(q, rq);
856
857 if (prev)
858 return attempt_merge(q, prev, rq);
859
860 return NULL;
861 }
862
863 /*
864 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
865 * otherwise. The caller is responsible for freeing 'next' if the merge
866 * happened.
867 */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)868 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
869 struct request *next)
870 {
871 return attempt_merge(q, rq, next);
872 }
873
blk_rq_merge_ok(struct request * rq,struct bio * bio)874 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
875 {
876 if (!rq_mergeable(rq) || !bio_mergeable(bio))
877 return false;
878
879 if (req_op(rq) != bio_op(bio))
880 return false;
881
882 /* different data direction or already started, don't merge */
883 if (bio_data_dir(bio) != rq_data_dir(rq))
884 return false;
885
886 /* must be same device */
887 if (rq->rq_disk != bio->bi_bdev->bd_disk)
888 return false;
889
890 /* don't merge across cgroup boundaries */
891 if (!blk_cgroup_mergeable(rq, bio))
892 return false;
893
894 /* only merge integrity protected bio into ditto rq */
895 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
896 return false;
897
898 /* Only merge if the crypt contexts are compatible */
899 if (!bio_crypt_rq_ctx_compatible(rq, bio))
900 return false;
901
902 /* must be using the same buffer */
903 if (req_op(rq) == REQ_OP_WRITE_SAME &&
904 !blk_write_same_mergeable(rq->bio, bio))
905 return false;
906
907 /*
908 * Don't allow merge of different write hints, or for a hint with
909 * non-hint IO.
910 */
911 if (rq->write_hint != bio->bi_write_hint)
912 return false;
913
914 if (rq->ioprio != bio_prio(bio))
915 return false;
916
917 return true;
918 }
919
blk_try_merge(struct request * rq,struct bio * bio)920 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
921 {
922 if (blk_discard_mergable(rq))
923 return ELEVATOR_DISCARD_MERGE;
924 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
925 return ELEVATOR_BACK_MERGE;
926 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
927 return ELEVATOR_FRONT_MERGE;
928 return ELEVATOR_NO_MERGE;
929 }
930
blk_account_io_merge_bio(struct request * req)931 static void blk_account_io_merge_bio(struct request *req)
932 {
933 if (!blk_do_io_stat(req))
934 return;
935
936 part_stat_lock();
937 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
938 part_stat_unlock();
939 }
940
941 enum bio_merge_status {
942 BIO_MERGE_OK,
943 BIO_MERGE_NONE,
944 BIO_MERGE_FAILED,
945 };
946
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)947 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
948 struct bio *bio, unsigned int nr_segs)
949 {
950 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
951
952 if (!ll_back_merge_fn(req, bio, nr_segs))
953 return BIO_MERGE_FAILED;
954
955 trace_block_bio_backmerge(bio);
956 rq_qos_merge(req->q, req, bio);
957
958 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
959 blk_rq_set_mixed_merge(req);
960
961 req->biotail->bi_next = bio;
962 req->biotail = bio;
963 req->__data_len += bio->bi_iter.bi_size;
964
965 bio_crypt_free_ctx(bio);
966
967 blk_account_io_merge_bio(req);
968 return BIO_MERGE_OK;
969 }
970
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)971 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
972 struct bio *bio, unsigned int nr_segs)
973 {
974 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
975
976 if (!ll_front_merge_fn(req, bio, nr_segs))
977 return BIO_MERGE_FAILED;
978
979 trace_block_bio_frontmerge(bio);
980 rq_qos_merge(req->q, req, bio);
981
982 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
983 blk_rq_set_mixed_merge(req);
984
985 bio->bi_next = req->bio;
986 req->bio = bio;
987
988 req->__sector = bio->bi_iter.bi_sector;
989 req->__data_len += bio->bi_iter.bi_size;
990
991 bio_crypt_do_front_merge(req, bio);
992
993 blk_account_io_merge_bio(req);
994 return BIO_MERGE_OK;
995 }
996
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)997 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
998 struct request *req, struct bio *bio)
999 {
1000 unsigned short segments = blk_rq_nr_discard_segments(req);
1001
1002 if (segments >= queue_max_discard_segments(q))
1003 goto no_merge;
1004 if (blk_rq_sectors(req) + bio_sectors(bio) >
1005 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1006 goto no_merge;
1007
1008 rq_qos_merge(q, req, bio);
1009
1010 req->biotail->bi_next = bio;
1011 req->biotail = bio;
1012 req->__data_len += bio->bi_iter.bi_size;
1013 req->nr_phys_segments = segments + 1;
1014
1015 blk_account_io_merge_bio(req);
1016 return BIO_MERGE_OK;
1017 no_merge:
1018 req_set_nomerge(q, req);
1019 return BIO_MERGE_FAILED;
1020 }
1021
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1022 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1023 struct request *rq,
1024 struct bio *bio,
1025 unsigned int nr_segs,
1026 bool sched_allow_merge)
1027 {
1028 if (!blk_rq_merge_ok(rq, bio))
1029 return BIO_MERGE_NONE;
1030
1031 switch (blk_try_merge(rq, bio)) {
1032 case ELEVATOR_BACK_MERGE:
1033 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1034 return bio_attempt_back_merge(rq, bio, nr_segs);
1035 break;
1036 case ELEVATOR_FRONT_MERGE:
1037 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1038 return bio_attempt_front_merge(rq, bio, nr_segs);
1039 break;
1040 case ELEVATOR_DISCARD_MERGE:
1041 return bio_attempt_discard_merge(q, rq, bio);
1042 default:
1043 return BIO_MERGE_NONE;
1044 }
1045
1046 return BIO_MERGE_FAILED;
1047 }
1048
1049 /**
1050 * blk_attempt_plug_merge - try to merge with %current's plugged list
1051 * @q: request_queue new bio is being queued at
1052 * @bio: new bio being queued
1053 * @nr_segs: number of segments in @bio
1054 * @same_queue_rq: pointer to &struct request that gets filled in when
1055 * another request associated with @q is found on the plug list
1056 * (optional, may be %NULL)
1057 *
1058 * Determine whether @bio being queued on @q can be merged with a request
1059 * on %current's plugged list. Returns %true if merge was successful,
1060 * otherwise %false.
1061 *
1062 * Plugging coalesces IOs from the same issuer for the same purpose without
1063 * going through @q->queue_lock. As such it's more of an issuing mechanism
1064 * than scheduling, and the request, while may have elvpriv data, is not
1065 * added on the elevator at this point. In addition, we don't have
1066 * reliable access to the elevator outside queue lock. Only check basic
1067 * merging parameters without querying the elevator.
1068 *
1069 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1070 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)1071 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1072 unsigned int nr_segs, struct request **same_queue_rq)
1073 {
1074 struct blk_plug *plug;
1075 struct request *rq;
1076 struct list_head *plug_list;
1077
1078 plug = blk_mq_plug(q, bio);
1079 if (!plug)
1080 return false;
1081
1082 plug_list = &plug->mq_list;
1083
1084 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1085 if (rq->q == q && same_queue_rq) {
1086 /*
1087 * Only blk-mq multiple hardware queues case checks the
1088 * rq in the same queue, there should be only one such
1089 * rq in a queue
1090 **/
1091 *same_queue_rq = rq;
1092 }
1093
1094 if (rq->q != q)
1095 continue;
1096
1097 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1098 BIO_MERGE_OK)
1099 return true;
1100 }
1101
1102 return false;
1103 }
1104
1105 /*
1106 * Iterate list of requests and see if we can merge this bio with any
1107 * of them.
1108 */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1109 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1110 struct bio *bio, unsigned int nr_segs)
1111 {
1112 struct request *rq;
1113 int checked = 8;
1114
1115 list_for_each_entry_reverse(rq, list, queuelist) {
1116 if (!checked--)
1117 break;
1118
1119 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1120 case BIO_MERGE_NONE:
1121 continue;
1122 case BIO_MERGE_OK:
1123 return true;
1124 case BIO_MERGE_FAILED:
1125 return false;
1126 }
1127
1128 }
1129
1130 return false;
1131 }
1132 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1133
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1134 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1135 unsigned int nr_segs, struct request **merged_request)
1136 {
1137 struct request *rq;
1138
1139 switch (elv_merge(q, &rq, bio)) {
1140 case ELEVATOR_BACK_MERGE:
1141 if (!blk_mq_sched_allow_merge(q, rq, bio))
1142 return false;
1143 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1144 return false;
1145 *merged_request = attempt_back_merge(q, rq);
1146 if (!*merged_request)
1147 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1148 return true;
1149 case ELEVATOR_FRONT_MERGE:
1150 if (!blk_mq_sched_allow_merge(q, rq, bio))
1151 return false;
1152 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1153 return false;
1154 *merged_request = attempt_front_merge(q, rq);
1155 if (!*merged_request)
1156 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1157 return true;
1158 case ELEVATOR_DISCARD_MERGE:
1159 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1160 default:
1161 return false;
1162 }
1163 }
1164 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1165