• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 #include <linux/blk-cgroup.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-rq-qos.h"
16 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)17 static inline bool bio_will_gap(struct request_queue *q,
18 		struct request *prev_rq, struct bio *prev, struct bio *next)
19 {
20 	struct bio_vec pb, nb;
21 
22 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
23 		return false;
24 
25 	/*
26 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
27 	 * is quite difficult to respect the sg gap limit.  We work hard to
28 	 * merge a huge number of small single bios in case of mkfs.
29 	 */
30 	if (prev_rq)
31 		bio_get_first_bvec(prev_rq->bio, &pb);
32 	else
33 		bio_get_first_bvec(prev, &pb);
34 	if (pb.bv_offset & queue_virt_boundary(q))
35 		return true;
36 
37 	/*
38 	 * We don't need to worry about the situation that the merged segment
39 	 * ends in unaligned virt boundary:
40 	 *
41 	 * - if 'pb' ends aligned, the merged segment ends aligned
42 	 * - if 'pb' ends unaligned, the next bio must include
43 	 *   one single bvec of 'nb', otherwise the 'nb' can't
44 	 *   merge with 'pb'
45 	 */
46 	bio_get_last_bvec(prev, &pb);
47 	bio_get_first_bvec(next, &nb);
48 	if (biovec_phys_mergeable(q, &pb, &nb))
49 		return false;
50 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
51 }
52 
req_gap_back_merge(struct request * req,struct bio * bio)53 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
54 {
55 	return bio_will_gap(req->q, req, req->biotail, bio);
56 }
57 
req_gap_front_merge(struct request * req,struct bio * bio)58 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
59 {
60 	return bio_will_gap(req->q, NULL, bio, req->bio);
61 }
62 
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)63 static struct bio *blk_bio_discard_split(struct request_queue *q,
64 					 struct bio *bio,
65 					 struct bio_set *bs,
66 					 unsigned *nsegs)
67 {
68 	unsigned int max_discard_sectors, granularity;
69 	int alignment;
70 	sector_t tmp;
71 	unsigned split_sectors;
72 
73 	*nsegs = 1;
74 
75 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
76 	granularity = max(q->limits.discard_granularity >> 9, 1U);
77 
78 	max_discard_sectors = min(q->limits.max_discard_sectors,
79 			bio_allowed_max_sectors(q));
80 	max_discard_sectors -= max_discard_sectors % granularity;
81 
82 	if (unlikely(!max_discard_sectors)) {
83 		/* XXX: warn */
84 		return NULL;
85 	}
86 
87 	if (bio_sectors(bio) <= max_discard_sectors)
88 		return NULL;
89 
90 	split_sectors = max_discard_sectors;
91 
92 	/*
93 	 * If the next starting sector would be misaligned, stop the discard at
94 	 * the previous aligned sector.
95 	 */
96 	alignment = (q->limits.discard_alignment >> 9) % granularity;
97 
98 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
99 	tmp = sector_div(tmp, granularity);
100 
101 	if (split_sectors > tmp)
102 		split_sectors -= tmp;
103 
104 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
105 }
106 
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)107 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
108 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
109 {
110 	*nsegs = 0;
111 
112 	if (!q->limits.max_write_zeroes_sectors)
113 		return NULL;
114 
115 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
116 		return NULL;
117 
118 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
119 }
120 
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)121 static struct bio *blk_bio_write_same_split(struct request_queue *q,
122 					    struct bio *bio,
123 					    struct bio_set *bs,
124 					    unsigned *nsegs)
125 {
126 	*nsegs = 1;
127 
128 	if (!q->limits.max_write_same_sectors)
129 		return NULL;
130 
131 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
132 		return NULL;
133 
134 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
135 }
136 
137 /*
138  * Return the maximum number of sectors from the start of a bio that may be
139  * submitted as a single request to a block device. If enough sectors remain,
140  * align the end to the physical block size. Otherwise align the end to the
141  * logical block size. This approach minimizes the number of non-aligned
142  * requests that are submitted to a block device if the start of a bio is not
143  * aligned to a physical block boundary.
144  */
get_max_io_size(struct request_queue * q,struct bio * bio)145 static inline unsigned get_max_io_size(struct request_queue *q,
146 				       struct bio *bio)
147 {
148 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
149 	unsigned max_sectors = sectors;
150 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
151 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
152 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
153 
154 	max_sectors += start_offset;
155 	max_sectors &= ~(pbs - 1);
156 	if (max_sectors > start_offset)
157 		return max_sectors - start_offset;
158 
159 	return sectors & ~(lbs - 1);
160 }
161 
get_max_segment_size(const struct request_queue * q,struct page * start_page,unsigned long offset)162 static inline unsigned get_max_segment_size(const struct request_queue *q,
163 					    struct page *start_page,
164 					    unsigned long offset)
165 {
166 	unsigned long mask = queue_segment_boundary(q);
167 
168 	offset = mask & (page_to_phys(start_page) + offset);
169 
170 	/*
171 	 * overflow may be triggered in case of zero page physical address
172 	 * on 32bit arch, use queue's max segment size when that happens.
173 	 */
174 	return min_not_zero(mask - offset + 1,
175 			(unsigned long)queue_max_segment_size(q));
176 }
177 
178 /**
179  * bvec_split_segs - verify whether or not a bvec should be split in the middle
180  * @q:        [in] request queue associated with the bio associated with @bv
181  * @bv:       [in] bvec to examine
182  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
183  *            by the number of segments from @bv that may be appended to that
184  *            bio without exceeding @max_segs
185  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
186  *            by the number of sectors from @bv that may be appended to that
187  *            bio without exceeding @max_sectors
188  * @max_segs: [in] upper bound for *@nsegs
189  * @max_sectors: [in] upper bound for *@sectors
190  *
191  * When splitting a bio, it can happen that a bvec is encountered that is too
192  * big to fit in a single segment and hence that it has to be split in the
193  * middle. This function verifies whether or not that should happen. The value
194  * %true is returned if and only if appending the entire @bv to a bio with
195  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
196  * the block driver.
197  */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)198 static bool bvec_split_segs(const struct request_queue *q,
199 			    const struct bio_vec *bv, unsigned *nsegs,
200 			    unsigned *sectors, unsigned max_segs,
201 			    unsigned max_sectors)
202 {
203 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
204 	unsigned len = min(bv->bv_len, max_len);
205 	unsigned total_len = 0;
206 	unsigned seg_size = 0;
207 
208 	while (len && *nsegs < max_segs) {
209 		seg_size = get_max_segment_size(q, bv->bv_page,
210 						bv->bv_offset + total_len);
211 		seg_size = min(seg_size, len);
212 
213 		(*nsegs)++;
214 		total_len += seg_size;
215 		len -= seg_size;
216 
217 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
218 			break;
219 	}
220 
221 	*sectors += total_len >> 9;
222 
223 	/* tell the caller to split the bvec if it is too big to fit */
224 	return len > 0 || bv->bv_len > max_len;
225 }
226 
227 /**
228  * blk_bio_segment_split - split a bio in two bios
229  * @q:    [in] request queue pointer
230  * @bio:  [in] bio to be split
231  * @bs:	  [in] bio set to allocate the clone from
232  * @segs: [out] number of segments in the bio with the first half of the sectors
233  *
234  * Clone @bio, update the bi_iter of the clone to represent the first sectors
235  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
236  * following is guaranteed for the cloned bio:
237  * - That it has at most get_max_io_size(@q, @bio) sectors.
238  * - That it has at most queue_max_segments(@q) segments.
239  *
240  * Except for discard requests the cloned bio will point at the bi_io_vec of
241  * the original bio. It is the responsibility of the caller to ensure that the
242  * original bio is not freed before the cloned bio. The caller is also
243  * responsible for ensuring that @bs is only destroyed after processing of the
244  * split bio has finished.
245  */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)246 static struct bio *blk_bio_segment_split(struct request_queue *q,
247 					 struct bio *bio,
248 					 struct bio_set *bs,
249 					 unsigned *segs)
250 {
251 	struct bio_vec bv, bvprv, *bvprvp = NULL;
252 	struct bvec_iter iter;
253 	unsigned nsegs = 0, sectors = 0;
254 	const unsigned max_sectors = get_max_io_size(q, bio);
255 	const unsigned max_segs = queue_max_segments(q);
256 
257 	bio_for_each_bvec(bv, bio, iter) {
258 		/*
259 		 * If the queue doesn't support SG gaps and adding this
260 		 * offset would create a gap, disallow it.
261 		 */
262 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
263 			goto split;
264 
265 		if (nsegs < max_segs &&
266 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
267 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
268 			/* single-page bvec optimization */
269 			nsegs += blk_segments(&q->limits, bv.bv_len);
270 			sectors += bv.bv_len >> 9;
271 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
272 					 max_sectors)) {
273 			goto split;
274 		}
275 
276 		bvprv = bv;
277 		bvprvp = &bvprv;
278 	}
279 
280 	*segs = nsegs;
281 	return NULL;
282 split:
283 	/*
284 	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
285 	 * with EAGAIN if splitting is required and return an error pointer.
286 	 */
287 	if (bio->bi_opf & REQ_NOWAIT) {
288 		bio->bi_status = BLK_STS_AGAIN;
289 		bio_endio(bio);
290 		return ERR_PTR(-EAGAIN);
291 	}
292 
293 	*segs = nsegs;
294 
295 	/*
296 	 * Bio splitting may cause subtle trouble such as hang when doing sync
297 	 * iopoll in direct IO routine. Given performance gain of iopoll for
298 	 * big IO can be trival, disable iopoll when split needed.
299 	 */
300 	bio_clear_hipri(bio);
301 
302 	return bio_split(bio, sectors, GFP_NOIO, bs);
303 }
304 
305 /**
306  * __blk_queue_split - split a bio and submit the second half
307  * @bio:     [in, out] bio to be split
308  * @nr_segs: [out] number of segments in the first bio
309  *
310  * Split a bio into two bios, chain the two bios, submit the second half and
311  * store a pointer to the first half in *@bio. If the second bio is still too
312  * big it will be split by a recursive call to this function. Since this
313  * function may allocate a new bio from q->bio_split, it is the responsibility
314  * of the caller to ensure that q->bio_split is only released after processing
315  * of the split bio has finished.
316  */
__blk_queue_split(struct bio ** bio,unsigned int * nr_segs)317 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
318 {
319 	struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
320 	struct bio *split = NULL;
321 
322 	switch (bio_op(*bio)) {
323 	case REQ_OP_DISCARD:
324 	case REQ_OP_SECURE_ERASE:
325 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
326 		break;
327 	case REQ_OP_WRITE_ZEROES:
328 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
329 				nr_segs);
330 		break;
331 	case REQ_OP_WRITE_SAME:
332 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
333 				nr_segs);
334 		break;
335 	default:
336 		/*
337 		 * Check whether bio splitting should be performed. This check may
338 		 * trigger the bio splitting code even if splitting is not necessary.
339 		 */
340 		if (!q->limits.chunk_sectors &&
341 		    (*bio)->bi_vcnt == 1 &&
342 			(!blk_queue_sub_page_limits(&q->limits) ||
343 			 (*bio)->bi_io_vec->bv_len <= q->limits.max_segment_size) &&
344 		    ((*bio)->bi_io_vec[0].bv_len +
345 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
346 			*nr_segs = blk_segments(&q->limits,
347 						(*bio)->bi_io_vec[0].bv_len);
348 			break;
349 		}
350 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
351 		if (IS_ERR(split))
352 			*bio = split = NULL;
353 		break;
354 	}
355 
356 	if (split) {
357 		/* there isn't chance to merge the split bio */
358 		split->bi_opf |= REQ_NOMERGE;
359 
360 		bio_chain(split, *bio);
361 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
362 		submit_bio_noacct(*bio);
363 		*bio = split;
364 
365 		blk_throtl_charge_bio_split(*bio);
366 	}
367 }
368 
369 /**
370  * blk_queue_split - split a bio and submit the second half
371  * @bio: [in, out] bio to be split
372  *
373  * Split a bio into two bios, chains the two bios, submit the second half and
374  * store a pointer to the first half in *@bio. Since this function may allocate
375  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
376  * that q->bio_split is only released after processing of the split bio has
377  * finished.
378  */
blk_queue_split(struct bio ** bio)379 void blk_queue_split(struct bio **bio)
380 {
381 	unsigned int nr_segs;
382 
383 	__blk_queue_split(bio, &nr_segs);
384 }
385 EXPORT_SYMBOL(blk_queue_split);
386 
blk_recalc_rq_segments(struct request * rq)387 unsigned int blk_recalc_rq_segments(struct request *rq)
388 {
389 	unsigned int nr_phys_segs = 0;
390 	unsigned int nr_sectors = 0;
391 	struct req_iterator iter;
392 	struct bio_vec bv;
393 
394 	if (!rq->bio)
395 		return 0;
396 
397 	switch (bio_op(rq->bio)) {
398 	case REQ_OP_DISCARD:
399 	case REQ_OP_SECURE_ERASE:
400 		if (queue_max_discard_segments(rq->q) > 1) {
401 			struct bio *bio = rq->bio;
402 
403 			for_each_bio(bio)
404 				nr_phys_segs++;
405 			return nr_phys_segs;
406 		}
407 		return 1;
408 	case REQ_OP_WRITE_ZEROES:
409 		return 0;
410 	case REQ_OP_WRITE_SAME:
411 		return 1;
412 	}
413 
414 	rq_for_each_bvec(bv, rq, iter)
415 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
416 				UINT_MAX, UINT_MAX);
417 	return nr_phys_segs;
418 }
419 
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)420 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
421 		struct scatterlist *sglist)
422 {
423 	if (!*sg)
424 		return sglist;
425 
426 	/*
427 	 * If the driver previously mapped a shorter list, we could see a
428 	 * termination bit prematurely unless it fully inits the sg table
429 	 * on each mapping. We KNOW that there must be more entries here
430 	 * or the driver would be buggy, so force clear the termination bit
431 	 * to avoid doing a full sg_init_table() in drivers for each command.
432 	 */
433 	sg_unmark_end(*sg);
434 	return sg_next(*sg);
435 }
436 
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)437 static unsigned blk_bvec_map_sg(struct request_queue *q,
438 		struct bio_vec *bvec, struct scatterlist *sglist,
439 		struct scatterlist **sg)
440 {
441 	unsigned nbytes = bvec->bv_len;
442 	unsigned nsegs = 0, total = 0;
443 
444 	while (nbytes > 0) {
445 		unsigned offset = bvec->bv_offset + total;
446 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
447 					offset), nbytes);
448 		struct page *page = bvec->bv_page;
449 
450 		/*
451 		 * Unfortunately a fair number of drivers barf on scatterlists
452 		 * that have an offset larger than PAGE_SIZE, despite other
453 		 * subsystems dealing with that invariant just fine.  For now
454 		 * stick to the legacy format where we never present those from
455 		 * the block layer, but the code below should be removed once
456 		 * these offenders (mostly MMC/SD drivers) are fixed.
457 		 */
458 		page += (offset >> PAGE_SHIFT);
459 		offset &= ~PAGE_MASK;
460 
461 		*sg = blk_next_sg(sg, sglist);
462 		sg_set_page(*sg, page, len, offset);
463 
464 		total += len;
465 		nbytes -= len;
466 		nsegs++;
467 	}
468 
469 	return nsegs;
470 }
471 
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)472 static inline int __blk_bvec_map_sg(struct bio_vec bv,
473 		struct scatterlist *sglist, struct scatterlist **sg)
474 {
475 	*sg = blk_next_sg(sg, sglist);
476 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
477 	return 1;
478 }
479 
480 /* only try to merge bvecs into one sg if they are from two bios */
481 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)482 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
483 			   struct bio_vec *bvprv, struct scatterlist **sg)
484 {
485 
486 	int nbytes = bvec->bv_len;
487 
488 	if (!*sg)
489 		return false;
490 
491 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
492 		return false;
493 
494 	if (!biovec_phys_mergeable(q, bvprv, bvec))
495 		return false;
496 
497 	(*sg)->length += nbytes;
498 
499 	return true;
500 }
501 
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)502 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
503 			     struct scatterlist *sglist,
504 			     struct scatterlist **sg)
505 {
506 	struct bio_vec bvec, bvprv = { NULL };
507 	struct bvec_iter iter;
508 	int nsegs = 0;
509 	bool new_bio = false;
510 
511 	for_each_bio(bio) {
512 		bio_for_each_bvec(bvec, bio, iter) {
513 			/*
514 			 * Only try to merge bvecs from two bios given we
515 			 * have done bio internal merge when adding pages
516 			 * to bio
517 			 */
518 			if (new_bio &&
519 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
520 				goto next_bvec;
521 
522 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE &&
523 			    (!blk_queue_sub_page_limits(&q->limits) ||
524 			     bvec.bv_len <= q->limits.max_segment_size))
525 				/* single-segment bvec optimization */
526 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
527 			else
528 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
529  next_bvec:
530 			new_bio = false;
531 		}
532 		if (likely(bio->bi_iter.bi_size)) {
533 			bvprv = bvec;
534 			new_bio = true;
535 		}
536 	}
537 
538 	return nsegs;
539 }
540 
541 /*
542  * map a request to scatterlist, return number of sg entries setup. Caller
543  * must make sure sg can hold rq->nr_phys_segments entries
544  */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)545 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
546 		struct scatterlist *sglist, struct scatterlist **last_sg)
547 {
548 	int nsegs = 0;
549 
550 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
551 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
552 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
553 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
554 	else if (rq->bio)
555 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
556 
557 	if (*last_sg)
558 		sg_mark_end(*last_sg);
559 
560 	/*
561 	 * Something must have been wrong if the figured number of
562 	 * segment is bigger than number of req's physical segments
563 	 */
564 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
565 
566 	return nsegs;
567 }
568 EXPORT_SYMBOL(__blk_rq_map_sg);
569 
blk_rq_get_max_segments(struct request * rq)570 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
571 {
572 	if (req_op(rq) == REQ_OP_DISCARD)
573 		return queue_max_discard_segments(rq->q);
574 	return queue_max_segments(rq->q);
575 }
576 
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)577 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
578 		unsigned int nr_phys_segs)
579 {
580 	if (!blk_cgroup_mergeable(req, bio))
581 		goto no_merge;
582 
583 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
584 		goto no_merge;
585 
586 	/* discard request merge won't add new segment */
587 	if (req_op(req) == REQ_OP_DISCARD)
588 		return 1;
589 
590 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
591 		goto no_merge;
592 
593 	/*
594 	 * This will form the start of a new hw segment.  Bump both
595 	 * counters.
596 	 */
597 	req->nr_phys_segments += nr_phys_segs;
598 	return 1;
599 
600 no_merge:
601 	req_set_nomerge(req->q, req);
602 	return 0;
603 }
604 
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)605 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
606 {
607 	if (req_gap_back_merge(req, bio))
608 		return 0;
609 	if (blk_integrity_rq(req) &&
610 	    integrity_req_gap_back_merge(req, bio))
611 		return 0;
612 	if (!bio_crypt_ctx_back_mergeable(req, bio))
613 		return 0;
614 	if (blk_rq_sectors(req) + bio_sectors(bio) >
615 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
616 		req_set_nomerge(req->q, req);
617 		return 0;
618 	}
619 
620 	return ll_new_hw_segment(req, bio, nr_segs);
621 }
622 
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)623 static int ll_front_merge_fn(struct request *req, struct bio *bio,
624 		unsigned int nr_segs)
625 {
626 	if (req_gap_front_merge(req, bio))
627 		return 0;
628 	if (blk_integrity_rq(req) &&
629 	    integrity_req_gap_front_merge(req, bio))
630 		return 0;
631 	if (!bio_crypt_ctx_front_mergeable(req, bio))
632 		return 0;
633 	if (blk_rq_sectors(req) + bio_sectors(bio) >
634 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
635 		req_set_nomerge(req->q, req);
636 		return 0;
637 	}
638 
639 	return ll_new_hw_segment(req, bio, nr_segs);
640 }
641 
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)642 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
643 		struct request *next)
644 {
645 	unsigned short segments = blk_rq_nr_discard_segments(req);
646 
647 	if (segments >= queue_max_discard_segments(q))
648 		goto no_merge;
649 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
650 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
651 		goto no_merge;
652 
653 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
654 	return true;
655 no_merge:
656 	req_set_nomerge(q, req);
657 	return false;
658 }
659 
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)660 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
661 				struct request *next)
662 {
663 	int total_phys_segments;
664 
665 	if (req_gap_back_merge(req, next->bio))
666 		return 0;
667 
668 	/*
669 	 * Will it become too large?
670 	 */
671 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
672 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
673 		return 0;
674 
675 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
676 	if (total_phys_segments > blk_rq_get_max_segments(req))
677 		return 0;
678 
679 	if (!blk_cgroup_mergeable(req, next->bio))
680 		return 0;
681 
682 	if (blk_integrity_merge_rq(q, req, next) == false)
683 		return 0;
684 
685 	if (!bio_crypt_ctx_merge_rq(req, next))
686 		return 0;
687 
688 	/* Merge is OK... */
689 	req->nr_phys_segments = total_phys_segments;
690 	return 1;
691 }
692 
693 /**
694  * blk_rq_set_mixed_merge - mark a request as mixed merge
695  * @rq: request to mark as mixed merge
696  *
697  * Description:
698  *     @rq is about to be mixed merged.  Make sure the attributes
699  *     which can be mixed are set in each bio and mark @rq as mixed
700  *     merged.
701  */
blk_rq_set_mixed_merge(struct request * rq)702 void blk_rq_set_mixed_merge(struct request *rq)
703 {
704 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
705 	struct bio *bio;
706 
707 	if (rq->rq_flags & RQF_MIXED_MERGE)
708 		return;
709 
710 	/*
711 	 * @rq will no longer represent mixable attributes for all the
712 	 * contained bios.  It will just track those of the first one.
713 	 * Distributes the attributs to each bio.
714 	 */
715 	for (bio = rq->bio; bio; bio = bio->bi_next) {
716 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
717 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
718 		bio->bi_opf |= ff;
719 	}
720 	rq->rq_flags |= RQF_MIXED_MERGE;
721 }
722 
blk_account_io_merge_request(struct request * req)723 static void blk_account_io_merge_request(struct request *req)
724 {
725 	if (blk_do_io_stat(req)) {
726 		part_stat_lock();
727 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
728 		part_stat_unlock();
729 	}
730 }
731 
blk_try_req_merge(struct request * req,struct request * next)732 static enum elv_merge blk_try_req_merge(struct request *req,
733 					struct request *next)
734 {
735 	if (blk_discard_mergable(req))
736 		return ELEVATOR_DISCARD_MERGE;
737 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
738 		return ELEVATOR_BACK_MERGE;
739 
740 	return ELEVATOR_NO_MERGE;
741 }
742 
743 /*
744  * For non-mq, this has to be called with the request spinlock acquired.
745  * For mq with scheduling, the appropriate queue wide lock should be held.
746  */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)747 static struct request *attempt_merge(struct request_queue *q,
748 				     struct request *req, struct request *next)
749 {
750 	if (!rq_mergeable(req) || !rq_mergeable(next))
751 		return NULL;
752 
753 	if (req_op(req) != req_op(next))
754 		return NULL;
755 
756 	if (rq_data_dir(req) != rq_data_dir(next)
757 	    || req->rq_disk != next->rq_disk)
758 		return NULL;
759 
760 	if (req_op(req) == REQ_OP_WRITE_SAME &&
761 	    !blk_write_same_mergeable(req->bio, next->bio))
762 		return NULL;
763 
764 	/*
765 	 * Don't allow merge of different write hints, or for a hint with
766 	 * non-hint IO.
767 	 */
768 	if (req->write_hint != next->write_hint)
769 		return NULL;
770 
771 	if (req->ioprio != next->ioprio)
772 		return NULL;
773 
774 	/*
775 	 * If we are allowed to merge, then append bio list
776 	 * from next to rq and release next. merge_requests_fn
777 	 * will have updated segment counts, update sector
778 	 * counts here. Handle DISCARDs separately, as they
779 	 * have separate settings.
780 	 */
781 
782 	switch (blk_try_req_merge(req, next)) {
783 	case ELEVATOR_DISCARD_MERGE:
784 		if (!req_attempt_discard_merge(q, req, next))
785 			return NULL;
786 		break;
787 	case ELEVATOR_BACK_MERGE:
788 		if (!ll_merge_requests_fn(q, req, next))
789 			return NULL;
790 		break;
791 	default:
792 		return NULL;
793 	}
794 
795 	/*
796 	 * If failfast settings disagree or any of the two is already
797 	 * a mixed merge, mark both as mixed before proceeding.  This
798 	 * makes sure that all involved bios have mixable attributes
799 	 * set properly.
800 	 */
801 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
802 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
803 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
804 		blk_rq_set_mixed_merge(req);
805 		blk_rq_set_mixed_merge(next);
806 	}
807 
808 	/*
809 	 * At this point we have either done a back merge or front merge. We
810 	 * need the smaller start_time_ns of the merged requests to be the
811 	 * current request for accounting purposes.
812 	 */
813 	if (next->start_time_ns < req->start_time_ns)
814 		req->start_time_ns = next->start_time_ns;
815 
816 	req->biotail->bi_next = next->bio;
817 	req->biotail = next->biotail;
818 
819 	req->__data_len += blk_rq_bytes(next);
820 
821 	if (!blk_discard_mergable(req))
822 		elv_merge_requests(q, req, next);
823 
824 	blk_crypto_rq_put_keyslot(next);
825 
826 	/*
827 	 * 'next' is going away, so update stats accordingly
828 	 */
829 	blk_account_io_merge_request(next);
830 
831 	trace_block_rq_merge(next);
832 
833 	/*
834 	 * ownership of bio passed from next to req, return 'next' for
835 	 * the caller to free
836 	 */
837 	next->bio = NULL;
838 	return next;
839 }
840 
attempt_back_merge(struct request_queue * q,struct request * rq)841 static struct request *attempt_back_merge(struct request_queue *q,
842 		struct request *rq)
843 {
844 	struct request *next = elv_latter_request(q, rq);
845 
846 	if (next)
847 		return attempt_merge(q, rq, next);
848 
849 	return NULL;
850 }
851 
attempt_front_merge(struct request_queue * q,struct request * rq)852 static struct request *attempt_front_merge(struct request_queue *q,
853 		struct request *rq)
854 {
855 	struct request *prev = elv_former_request(q, rq);
856 
857 	if (prev)
858 		return attempt_merge(q, prev, rq);
859 
860 	return NULL;
861 }
862 
863 /*
864  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
865  * otherwise. The caller is responsible for freeing 'next' if the merge
866  * happened.
867  */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)868 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
869 			   struct request *next)
870 {
871 	return attempt_merge(q, rq, next);
872 }
873 
blk_rq_merge_ok(struct request * rq,struct bio * bio)874 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
875 {
876 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
877 		return false;
878 
879 	if (req_op(rq) != bio_op(bio))
880 		return false;
881 
882 	/* different data direction or already started, don't merge */
883 	if (bio_data_dir(bio) != rq_data_dir(rq))
884 		return false;
885 
886 	/* must be same device */
887 	if (rq->rq_disk != bio->bi_bdev->bd_disk)
888 		return false;
889 
890 	/* don't merge across cgroup boundaries */
891 	if (!blk_cgroup_mergeable(rq, bio))
892 		return false;
893 
894 	/* only merge integrity protected bio into ditto rq */
895 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
896 		return false;
897 
898 	/* Only merge if the crypt contexts are compatible */
899 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
900 		return false;
901 
902 	/* must be using the same buffer */
903 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
904 	    !blk_write_same_mergeable(rq->bio, bio))
905 		return false;
906 
907 	/*
908 	 * Don't allow merge of different write hints, or for a hint with
909 	 * non-hint IO.
910 	 */
911 	if (rq->write_hint != bio->bi_write_hint)
912 		return false;
913 
914 	if (rq->ioprio != bio_prio(bio))
915 		return false;
916 
917 	return true;
918 }
919 
blk_try_merge(struct request * rq,struct bio * bio)920 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
921 {
922 	if (blk_discard_mergable(rq))
923 		return ELEVATOR_DISCARD_MERGE;
924 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
925 		return ELEVATOR_BACK_MERGE;
926 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
927 		return ELEVATOR_FRONT_MERGE;
928 	return ELEVATOR_NO_MERGE;
929 }
930 
blk_account_io_merge_bio(struct request * req)931 static void blk_account_io_merge_bio(struct request *req)
932 {
933 	if (!blk_do_io_stat(req))
934 		return;
935 
936 	part_stat_lock();
937 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
938 	part_stat_unlock();
939 }
940 
941 enum bio_merge_status {
942 	BIO_MERGE_OK,
943 	BIO_MERGE_NONE,
944 	BIO_MERGE_FAILED,
945 };
946 
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)947 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
948 		struct bio *bio, unsigned int nr_segs)
949 {
950 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
951 
952 	if (!ll_back_merge_fn(req, bio, nr_segs))
953 		return BIO_MERGE_FAILED;
954 
955 	trace_block_bio_backmerge(bio);
956 	rq_qos_merge(req->q, req, bio);
957 
958 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
959 		blk_rq_set_mixed_merge(req);
960 
961 	req->biotail->bi_next = bio;
962 	req->biotail = bio;
963 	req->__data_len += bio->bi_iter.bi_size;
964 
965 	bio_crypt_free_ctx(bio);
966 
967 	blk_account_io_merge_bio(req);
968 	return BIO_MERGE_OK;
969 }
970 
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)971 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
972 		struct bio *bio, unsigned int nr_segs)
973 {
974 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
975 
976 	if (!ll_front_merge_fn(req, bio, nr_segs))
977 		return BIO_MERGE_FAILED;
978 
979 	trace_block_bio_frontmerge(bio);
980 	rq_qos_merge(req->q, req, bio);
981 
982 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
983 		blk_rq_set_mixed_merge(req);
984 
985 	bio->bi_next = req->bio;
986 	req->bio = bio;
987 
988 	req->__sector = bio->bi_iter.bi_sector;
989 	req->__data_len += bio->bi_iter.bi_size;
990 
991 	bio_crypt_do_front_merge(req, bio);
992 
993 	blk_account_io_merge_bio(req);
994 	return BIO_MERGE_OK;
995 }
996 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)997 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
998 		struct request *req, struct bio *bio)
999 {
1000 	unsigned short segments = blk_rq_nr_discard_segments(req);
1001 
1002 	if (segments >= queue_max_discard_segments(q))
1003 		goto no_merge;
1004 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1005 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1006 		goto no_merge;
1007 
1008 	rq_qos_merge(q, req, bio);
1009 
1010 	req->biotail->bi_next = bio;
1011 	req->biotail = bio;
1012 	req->__data_len += bio->bi_iter.bi_size;
1013 	req->nr_phys_segments = segments + 1;
1014 
1015 	blk_account_io_merge_bio(req);
1016 	return BIO_MERGE_OK;
1017 no_merge:
1018 	req_set_nomerge(q, req);
1019 	return BIO_MERGE_FAILED;
1020 }
1021 
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1022 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1023 						   struct request *rq,
1024 						   struct bio *bio,
1025 						   unsigned int nr_segs,
1026 						   bool sched_allow_merge)
1027 {
1028 	if (!blk_rq_merge_ok(rq, bio))
1029 		return BIO_MERGE_NONE;
1030 
1031 	switch (blk_try_merge(rq, bio)) {
1032 	case ELEVATOR_BACK_MERGE:
1033 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1034 			return bio_attempt_back_merge(rq, bio, nr_segs);
1035 		break;
1036 	case ELEVATOR_FRONT_MERGE:
1037 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1038 			return bio_attempt_front_merge(rq, bio, nr_segs);
1039 		break;
1040 	case ELEVATOR_DISCARD_MERGE:
1041 		return bio_attempt_discard_merge(q, rq, bio);
1042 	default:
1043 		return BIO_MERGE_NONE;
1044 	}
1045 
1046 	return BIO_MERGE_FAILED;
1047 }
1048 
1049 /**
1050  * blk_attempt_plug_merge - try to merge with %current's plugged list
1051  * @q: request_queue new bio is being queued at
1052  * @bio: new bio being queued
1053  * @nr_segs: number of segments in @bio
1054  * @same_queue_rq: pointer to &struct request that gets filled in when
1055  * another request associated with @q is found on the plug list
1056  * (optional, may be %NULL)
1057  *
1058  * Determine whether @bio being queued on @q can be merged with a request
1059  * on %current's plugged list.  Returns %true if merge was successful,
1060  * otherwise %false.
1061  *
1062  * Plugging coalesces IOs from the same issuer for the same purpose without
1063  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1064  * than scheduling, and the request, while may have elvpriv data, is not
1065  * added on the elevator at this point.  In addition, we don't have
1066  * reliable access to the elevator outside queue lock.  Only check basic
1067  * merging parameters without querying the elevator.
1068  *
1069  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1070  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)1071 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1072 		unsigned int nr_segs, struct request **same_queue_rq)
1073 {
1074 	struct blk_plug *plug;
1075 	struct request *rq;
1076 	struct list_head *plug_list;
1077 
1078 	plug = blk_mq_plug(q, bio);
1079 	if (!plug)
1080 		return false;
1081 
1082 	plug_list = &plug->mq_list;
1083 
1084 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1085 		if (rq->q == q && same_queue_rq) {
1086 			/*
1087 			 * Only blk-mq multiple hardware queues case checks the
1088 			 * rq in the same queue, there should be only one such
1089 			 * rq in a queue
1090 			 **/
1091 			*same_queue_rq = rq;
1092 		}
1093 
1094 		if (rq->q != q)
1095 			continue;
1096 
1097 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1098 		    BIO_MERGE_OK)
1099 			return true;
1100 	}
1101 
1102 	return false;
1103 }
1104 
1105 /*
1106  * Iterate list of requests and see if we can merge this bio with any
1107  * of them.
1108  */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1109 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1110 			struct bio *bio, unsigned int nr_segs)
1111 {
1112 	struct request *rq;
1113 	int checked = 8;
1114 
1115 	list_for_each_entry_reverse(rq, list, queuelist) {
1116 		if (!checked--)
1117 			break;
1118 
1119 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1120 		case BIO_MERGE_NONE:
1121 			continue;
1122 		case BIO_MERGE_OK:
1123 			return true;
1124 		case BIO_MERGE_FAILED:
1125 			return false;
1126 		}
1127 
1128 	}
1129 
1130 	return false;
1131 }
1132 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1133 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1134 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1135 		unsigned int nr_segs, struct request **merged_request)
1136 {
1137 	struct request *rq;
1138 
1139 	switch (elv_merge(q, &rq, bio)) {
1140 	case ELEVATOR_BACK_MERGE:
1141 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1142 			return false;
1143 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1144 			return false;
1145 		*merged_request = attempt_back_merge(q, rq);
1146 		if (!*merged_request)
1147 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1148 		return true;
1149 	case ELEVATOR_FRONT_MERGE:
1150 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1151 			return false;
1152 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1153 			return false;
1154 		*merged_request = attempt_front_merge(q, rq);
1155 		if (!*merged_request)
1156 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1157 		return true;
1158 	case ELEVATOR_DISCARD_MERGE:
1159 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1160 	default:
1161 		return false;
1162 	}
1163 }
1164 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1165