• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 #include <linux/iomap.h>
25 
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "iostat.h"
30 #include <trace/events/f2fs.h>
31 
32 #define NUM_PREALLOC_POST_READ_CTXS	128
33 
34 static struct kmem_cache *bio_post_read_ctx_cache;
35 static struct kmem_cache *bio_entry_slab;
36 static mempool_t *bio_post_read_ctx_pool;
37 static struct bio_set f2fs_bioset;
38 
39 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
40 
f2fs_init_bioset(void)41 int __init f2fs_init_bioset(void)
42 {
43 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
44 					0, BIOSET_NEED_BVECS);
45 }
46 
f2fs_destroy_bioset(void)47 void f2fs_destroy_bioset(void)
48 {
49 	bioset_exit(&f2fs_bioset);
50 }
51 
__is_cp_guaranteed(struct page * page)52 static bool __is_cp_guaranteed(struct page *page)
53 {
54 	struct address_space *mapping = page->mapping;
55 	struct inode *inode;
56 	struct f2fs_sb_info *sbi;
57 
58 	if (!mapping)
59 		return false;
60 
61 	inode = mapping->host;
62 	sbi = F2FS_I_SB(inode);
63 
64 	if (inode->i_ino == F2FS_META_INO(sbi) ||
65 			inode->i_ino == F2FS_NODE_INO(sbi) ||
66 			S_ISDIR(inode->i_mode))
67 		return true;
68 
69 	if (f2fs_is_compressed_page(page))
70 		return false;
71 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
72 			page_private_gcing(page))
73 		return true;
74 	return false;
75 }
76 
__read_io_type(struct page * page)77 static enum count_type __read_io_type(struct page *page)
78 {
79 	struct address_space *mapping = page_file_mapping(page);
80 
81 	if (mapping) {
82 		struct inode *inode = mapping->host;
83 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
84 
85 		if (inode->i_ino == F2FS_META_INO(sbi))
86 			return F2FS_RD_META;
87 
88 		if (inode->i_ino == F2FS_NODE_INO(sbi))
89 			return F2FS_RD_NODE;
90 	}
91 	return F2FS_RD_DATA;
92 }
93 
94 /* postprocessing steps for read bios */
95 enum bio_post_read_step {
96 #ifdef CONFIG_FS_ENCRYPTION
97 	STEP_DECRYPT	= BIT(0),
98 #else
99 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
100 #endif
101 #ifdef CONFIG_F2FS_FS_COMPRESSION
102 	STEP_DECOMPRESS	= BIT(1),
103 #else
104 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
105 #endif
106 #ifdef CONFIG_FS_VERITY
107 	STEP_VERITY	= BIT(2),
108 #else
109 	STEP_VERITY	= 0,	/* compile out the verity-related code */
110 #endif
111 };
112 
113 struct bio_post_read_ctx {
114 	struct bio *bio;
115 	struct f2fs_sb_info *sbi;
116 	struct work_struct work;
117 	unsigned int enabled_steps;
118 	/*
119 	 * decompression_attempted keeps track of whether
120 	 * f2fs_end_read_compressed_page() has been called on the pages in the
121 	 * bio that belong to a compressed cluster yet.
122 	 */
123 	bool decompression_attempted;
124 	block_t fs_blkaddr;
125 };
126 
127 /*
128  * Update and unlock a bio's pages, and free the bio.
129  *
130  * This marks pages up-to-date only if there was no error in the bio (I/O error,
131  * decryption error, or verity error), as indicated by bio->bi_status.
132  *
133  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
134  * aren't marked up-to-date here, as decompression is done on a per-compression-
135  * cluster basis rather than a per-bio basis.  Instead, we only must do two
136  * things for each compressed page here: call f2fs_end_read_compressed_page()
137  * with failed=true if an error occurred before it would have normally gotten
138  * called (i.e., I/O error or decryption error, but *not* verity error), and
139  * release the bio's reference to the decompress_io_ctx of the page's cluster.
140  */
f2fs_finish_read_bio(struct bio * bio,bool in_task)141 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
142 {
143 	struct bio_vec *bv;
144 	struct bvec_iter_all iter_all;
145 	struct bio_post_read_ctx *ctx = bio->bi_private;
146 
147 	bio_for_each_segment_all(bv, bio, iter_all) {
148 		struct page *page = bv->bv_page;
149 
150 		if (f2fs_is_compressed_page(page)) {
151 			if (ctx && !ctx->decompression_attempted)
152 				f2fs_end_read_compressed_page(page, true, 0,
153 							in_task);
154 			f2fs_put_page_dic(page, in_task);
155 			continue;
156 		}
157 
158 		if (bio->bi_status)
159 			ClearPageUptodate(page);
160 		else
161 			SetPageUptodate(page);
162 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
163 		unlock_page(page);
164 	}
165 
166 	if (ctx)
167 		mempool_free(ctx, bio_post_read_ctx_pool);
168 	bio_put(bio);
169 }
170 
f2fs_verify_bio(struct work_struct * work)171 static void f2fs_verify_bio(struct work_struct *work)
172 {
173 	struct bio_post_read_ctx *ctx =
174 		container_of(work, struct bio_post_read_ctx, work);
175 	struct bio *bio = ctx->bio;
176 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
177 
178 	/*
179 	 * fsverity_verify_bio() may call readpages() again, and while verity
180 	 * will be disabled for this, decryption and/or decompression may still
181 	 * be needed, resulting in another bio_post_read_ctx being allocated.
182 	 * So to prevent deadlocks we need to release the current ctx to the
183 	 * mempool first.  This assumes that verity is the last post-read step.
184 	 */
185 	mempool_free(ctx, bio_post_read_ctx_pool);
186 	bio->bi_private = NULL;
187 
188 	/*
189 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
190 	 * as those were handled separately by f2fs_end_read_compressed_page().
191 	 */
192 	if (may_have_compressed_pages) {
193 		struct bio_vec *bv;
194 		struct bvec_iter_all iter_all;
195 
196 		bio_for_each_segment_all(bv, bio, iter_all) {
197 			struct page *page = bv->bv_page;
198 
199 			if (!f2fs_is_compressed_page(page) &&
200 			    !fsverity_verify_page(page)) {
201 				bio->bi_status = BLK_STS_IOERR;
202 				break;
203 			}
204 		}
205 	} else {
206 		fsverity_verify_bio(bio);
207 	}
208 
209 	f2fs_finish_read_bio(bio, true);
210 }
211 
212 /*
213  * If the bio's data needs to be verified with fs-verity, then enqueue the
214  * verity work for the bio.  Otherwise finish the bio now.
215  *
216  * Note that to avoid deadlocks, the verity work can't be done on the
217  * decryption/decompression workqueue.  This is because verifying the data pages
218  * can involve reading verity metadata pages from the file, and these verity
219  * metadata pages may be encrypted and/or compressed.
220  */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)221 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
222 {
223 	struct bio_post_read_ctx *ctx = bio->bi_private;
224 
225 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
226 		INIT_WORK(&ctx->work, f2fs_verify_bio);
227 		fsverity_enqueue_verify_work(&ctx->work);
228 	} else {
229 		f2fs_finish_read_bio(bio, in_task);
230 	}
231 }
232 
233 /*
234  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
235  * remaining page was read by @ctx->bio.
236  *
237  * Note that a bio may span clusters (even a mix of compressed and uncompressed
238  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
239  * that the bio includes at least one compressed page.  The actual decompression
240  * is done on a per-cluster basis, not a per-bio basis.
241  */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)242 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
243 		bool in_task)
244 {
245 	struct bio_vec *bv;
246 	struct bvec_iter_all iter_all;
247 	bool all_compressed = true;
248 	block_t blkaddr = ctx->fs_blkaddr;
249 
250 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
251 		struct page *page = bv->bv_page;
252 
253 		if (f2fs_is_compressed_page(page))
254 			f2fs_end_read_compressed_page(page, false, blkaddr,
255 						      in_task);
256 		else
257 			all_compressed = false;
258 
259 		blkaddr++;
260 	}
261 
262 	ctx->decompression_attempted = true;
263 
264 	/*
265 	 * Optimization: if all the bio's pages are compressed, then scheduling
266 	 * the per-bio verity work is unnecessary, as verity will be fully
267 	 * handled at the compression cluster level.
268 	 */
269 	if (all_compressed)
270 		ctx->enabled_steps &= ~STEP_VERITY;
271 }
272 
f2fs_post_read_work(struct work_struct * work)273 static void f2fs_post_read_work(struct work_struct *work)
274 {
275 	struct bio_post_read_ctx *ctx =
276 		container_of(work, struct bio_post_read_ctx, work);
277 	struct bio *bio = ctx->bio;
278 
279 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
280 		f2fs_finish_read_bio(bio, true);
281 		return;
282 	}
283 
284 	if (ctx->enabled_steps & STEP_DECOMPRESS)
285 		f2fs_handle_step_decompress(ctx, true);
286 
287 	f2fs_verify_and_finish_bio(bio, true);
288 }
289 
f2fs_read_end_io(struct bio * bio)290 static void f2fs_read_end_io(struct bio *bio)
291 {
292 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
293 	struct bio_post_read_ctx *ctx;
294 	bool intask = in_task();
295 
296 	iostat_update_and_unbind_ctx(bio);
297 	ctx = bio->bi_private;
298 
299 	if (time_to_inject(sbi, FAULT_READ_IO))
300 		bio->bi_status = BLK_STS_IOERR;
301 
302 	if (bio->bi_status) {
303 		f2fs_finish_read_bio(bio, intask);
304 		return;
305 	}
306 
307 	if (ctx) {
308 		unsigned int enabled_steps = ctx->enabled_steps &
309 					(STEP_DECRYPT | STEP_DECOMPRESS);
310 
311 		/*
312 		 * If we have only decompression step between decompression and
313 		 * decrypt, we don't need post processing for this.
314 		 */
315 		if (enabled_steps == STEP_DECOMPRESS &&
316 				!f2fs_low_mem_mode(sbi)) {
317 			f2fs_handle_step_decompress(ctx, intask);
318 		} else if (enabled_steps) {
319 			INIT_WORK(&ctx->work, f2fs_post_read_work);
320 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
321 			return;
322 		}
323 	}
324 
325 	f2fs_verify_and_finish_bio(bio, intask);
326 }
327 
f2fs_write_end_io(struct bio * bio)328 static void f2fs_write_end_io(struct bio *bio)
329 {
330 	struct f2fs_sb_info *sbi;
331 	struct bio_vec *bvec;
332 	struct bvec_iter_all iter_all;
333 
334 	iostat_update_and_unbind_ctx(bio);
335 	sbi = bio->bi_private;
336 
337 	if (time_to_inject(sbi, FAULT_WRITE_IO))
338 		bio->bi_status = BLK_STS_IOERR;
339 
340 	bio_for_each_segment_all(bvec, bio, iter_all) {
341 		struct page *page = bvec->bv_page;
342 		enum count_type type = WB_DATA_TYPE(page);
343 
344 		if (page_private_dummy(page)) {
345 			clear_page_private_dummy(page);
346 			unlock_page(page);
347 			mempool_free(page, sbi->write_io_dummy);
348 
349 			if (unlikely(bio->bi_status))
350 				f2fs_stop_checkpoint(sbi, true,
351 						STOP_CP_REASON_WRITE_FAIL);
352 			continue;
353 		}
354 
355 		fscrypt_finalize_bounce_page(&page);
356 
357 #ifdef CONFIG_F2FS_FS_COMPRESSION
358 		if (f2fs_is_compressed_page(page)) {
359 			f2fs_compress_write_end_io(bio, page);
360 			continue;
361 		}
362 #endif
363 
364 		if (unlikely(bio->bi_status)) {
365 			mapping_set_error(page->mapping, -EIO);
366 			if (type == F2FS_WB_CP_DATA)
367 				f2fs_stop_checkpoint(sbi, true,
368 						STOP_CP_REASON_WRITE_FAIL);
369 		}
370 
371 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
372 					page->index != nid_of_node(page));
373 
374 		dec_page_count(sbi, type);
375 		if (f2fs_in_warm_node_list(sbi, page))
376 			f2fs_del_fsync_node_entry(sbi, page);
377 		clear_page_private_gcing(page);
378 		end_page_writeback(page);
379 	}
380 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
381 				wq_has_sleeper(&sbi->cp_wait))
382 		wake_up(&sbi->cp_wait);
383 
384 	bio_put(bio);
385 }
386 
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)387 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
388 		block_t blk_addr, sector_t *sector)
389 {
390 	struct block_device *bdev = sbi->sb->s_bdev;
391 	int i;
392 
393 	if (f2fs_is_multi_device(sbi)) {
394 		for (i = 0; i < sbi->s_ndevs; i++) {
395 			if (FDEV(i).start_blk <= blk_addr &&
396 			    FDEV(i).end_blk >= blk_addr) {
397 				blk_addr -= FDEV(i).start_blk;
398 				bdev = FDEV(i).bdev;
399 				break;
400 			}
401 		}
402 	}
403 
404 	if (sector)
405 		*sector = SECTOR_FROM_BLOCK(blk_addr);
406 	return bdev;
407 }
408 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)409 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
410 {
411 	int i;
412 
413 	if (!f2fs_is_multi_device(sbi))
414 		return 0;
415 
416 	for (i = 0; i < sbi->s_ndevs; i++)
417 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
418 			return i;
419 	return 0;
420 }
421 
f2fs_io_flags(struct f2fs_io_info * fio)422 static unsigned int f2fs_io_flags(struct f2fs_io_info *fio)
423 {
424 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
425 	unsigned int fua_flag, meta_flag, io_flag;
426 	unsigned int op_flags = 0;
427 
428 	if (fio->op != REQ_OP_WRITE)
429 		return 0;
430 	if (fio->type == DATA)
431 		io_flag = fio->sbi->data_io_flag;
432 	else if (fio->type == NODE)
433 		io_flag = fio->sbi->node_io_flag;
434 	else
435 		return 0;
436 
437 	fua_flag = io_flag & temp_mask;
438 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
439 
440 	/*
441 	 * data/node io flag bits per temp:
442 	 *      REQ_META     |      REQ_FUA      |
443 	 *    5 |    4 |   3 |    2 |    1 |   0 |
444 	 * Cold | Warm | Hot | Cold | Warm | Hot |
445 	 */
446 	if (BIT(fio->temp) & meta_flag)
447 		op_flags |= REQ_META;
448 	if (BIT(fio->temp) & fua_flag)
449 		op_flags |= REQ_FUA;
450 	return op_flags;
451 }
452 
__bio_alloc(struct f2fs_io_info * fio,int npages)453 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
454 {
455 	struct f2fs_sb_info *sbi = fio->sbi;
456 	struct block_device *bdev;
457 	sector_t sector;
458 	struct bio *bio;
459 
460 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
461 	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
462 	bio_set_dev(bio, bdev);
463 	bio_set_op_attrs(bio, fio->op, fio->op_flags | f2fs_io_flags(fio));
464 	bio->bi_iter.bi_sector = sector;
465 	if (is_read_io(fio->op)) {
466 		bio->bi_end_io = f2fs_read_end_io;
467 		bio->bi_private = NULL;
468 	} else {
469 		bio->bi_end_io = f2fs_write_end_io;
470 		bio->bi_private = sbi;
471 	}
472 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
473 
474 	if (fio->io_wbc)
475 		wbc_init_bio(fio->io_wbc, bio);
476 
477 	return bio;
478 }
479 
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)480 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
481 				  pgoff_t first_idx,
482 				  const struct f2fs_io_info *fio,
483 				  gfp_t gfp_mask)
484 {
485 	/*
486 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
487 	 * read/write raw data without encryption.
488 	 */
489 	if (!fio || !fio->encrypted_page)
490 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
491 	else if (fscrypt_inode_should_skip_dm_default_key(inode))
492 		bio_set_skip_dm_default_key(bio);
493 }
494 
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)495 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
496 				     pgoff_t next_idx,
497 				     const struct f2fs_io_info *fio)
498 {
499 	/*
500 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
501 	 * read/write raw data without encryption.
502 	 */
503 	if (fio && fio->encrypted_page)
504 		return !bio_has_crypt_ctx(bio) &&
505 			(bio_should_skip_dm_default_key(bio) ==
506 			 fscrypt_inode_should_skip_dm_default_key(inode));
507 
508 	return fscrypt_mergeable_bio(bio, inode, next_idx);
509 }
510 
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)511 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
512 				 enum page_type type)
513 {
514 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
515 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
516 
517 	iostat_update_submit_ctx(bio, type);
518 	submit_bio(bio);
519 }
520 
f2fs_align_write_bio(struct f2fs_sb_info * sbi,struct bio * bio)521 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
522 {
523 	unsigned int start =
524 		(bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
525 
526 	if (start == 0)
527 		return;
528 
529 	/* fill dummy pages */
530 	for (; start < F2FS_IO_SIZE(sbi); start++) {
531 		struct page *page =
532 			mempool_alloc(sbi->write_io_dummy,
533 				      GFP_NOIO | __GFP_NOFAIL);
534 		f2fs_bug_on(sbi, !page);
535 
536 		lock_page(page);
537 
538 		zero_user_segment(page, 0, PAGE_SIZE);
539 		set_page_private_dummy(page);
540 
541 		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
542 			f2fs_bug_on(sbi, 1);
543 	}
544 }
545 
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)546 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
547 				  enum page_type type)
548 {
549 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
550 
551 	if (type == DATA || type == NODE) {
552 		if (f2fs_lfs_mode(sbi) && current->plug)
553 			blk_finish_plug(current->plug);
554 
555 		if (F2FS_IO_ALIGNED(sbi)) {
556 			f2fs_align_write_bio(sbi, bio);
557 			/*
558 			 * In the NODE case, we lose next block address chain.
559 			 * So, we need to do checkpoint in f2fs_sync_file.
560 			 */
561 			if (type == NODE)
562 				set_sbi_flag(sbi, SBI_NEED_CP);
563 		}
564 	}
565 
566 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
567 	iostat_update_submit_ctx(bio, type);
568 	submit_bio(bio);
569 }
570 
__submit_merged_bio(struct f2fs_bio_info * io)571 static void __submit_merged_bio(struct f2fs_bio_info *io)
572 {
573 	struct f2fs_io_info *fio = &io->fio;
574 
575 	if (!io->bio)
576 		return;
577 
578 	if (is_read_io(fio->op)) {
579 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
580 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
581 	} else {
582 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
583 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
584 	}
585 	io->bio = NULL;
586 }
587 
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)588 static bool __has_merged_page(struct bio *bio, struct inode *inode,
589 						struct page *page, nid_t ino)
590 {
591 	struct bio_vec *bvec;
592 	struct bvec_iter_all iter_all;
593 
594 	if (!bio)
595 		return false;
596 
597 	if (!inode && !page && !ino)
598 		return true;
599 
600 	bio_for_each_segment_all(bvec, bio, iter_all) {
601 		struct page *target = bvec->bv_page;
602 
603 		if (fscrypt_is_bounce_page(target)) {
604 			target = fscrypt_pagecache_page(target);
605 			if (IS_ERR(target))
606 				continue;
607 		}
608 		if (f2fs_is_compressed_page(target)) {
609 			target = f2fs_compress_control_page(target);
610 			if (IS_ERR(target))
611 				continue;
612 		}
613 
614 		if (inode && inode == target->mapping->host)
615 			return true;
616 		if (page && page == target)
617 			return true;
618 		if (ino && ino == ino_of_node(target))
619 			return true;
620 	}
621 
622 	return false;
623 }
624 
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)625 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
626 {
627 	int i;
628 
629 	for (i = 0; i < NR_PAGE_TYPE; i++) {
630 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
631 		int j;
632 
633 		sbi->write_io[i] = f2fs_kmalloc(sbi,
634 				array_size(n, sizeof(struct f2fs_bio_info)),
635 				GFP_KERNEL);
636 		if (!sbi->write_io[i])
637 			return -ENOMEM;
638 
639 		for (j = HOT; j < n; j++) {
640 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
641 			sbi->write_io[i][j].sbi = sbi;
642 			sbi->write_io[i][j].bio = NULL;
643 			spin_lock_init(&sbi->write_io[i][j].io_lock);
644 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
645 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
646 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
647 		}
648 	}
649 
650 	return 0;
651 }
652 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)653 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
654 				enum page_type type, enum temp_type temp)
655 {
656 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
657 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
658 
659 	f2fs_down_write(&io->io_rwsem);
660 
661 	if (!io->bio)
662 		goto unlock_out;
663 
664 	/* change META to META_FLUSH in the checkpoint procedure */
665 	if (type >= META_FLUSH) {
666 		io->fio.type = META_FLUSH;
667 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
668 		if (!test_opt(sbi, NOBARRIER))
669 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
670 	}
671 	__submit_merged_bio(io);
672 unlock_out:
673 	f2fs_up_write(&io->io_rwsem);
674 }
675 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)676 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
677 				struct inode *inode, struct page *page,
678 				nid_t ino, enum page_type type, bool force)
679 {
680 	enum temp_type temp;
681 	bool ret = true;
682 
683 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
684 		if (!force)	{
685 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
686 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
687 
688 			f2fs_down_read(&io->io_rwsem);
689 			ret = __has_merged_page(io->bio, inode, page, ino);
690 			f2fs_up_read(&io->io_rwsem);
691 		}
692 		if (ret)
693 			__f2fs_submit_merged_write(sbi, type, temp);
694 
695 		/* TODO: use HOT temp only for meta pages now. */
696 		if (type >= META)
697 			break;
698 	}
699 }
700 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)701 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
702 {
703 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
704 }
705 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)706 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
707 				struct inode *inode, struct page *page,
708 				nid_t ino, enum page_type type)
709 {
710 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
711 }
712 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)713 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
714 {
715 	f2fs_submit_merged_write(sbi, DATA);
716 	f2fs_submit_merged_write(sbi, NODE);
717 	f2fs_submit_merged_write(sbi, META);
718 }
719 
720 /*
721  * Fill the locked page with data located in the block address.
722  * A caller needs to unlock the page on failure.
723  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)724 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
725 {
726 	struct bio *bio;
727 	struct page *page = fio->encrypted_page ?
728 			fio->encrypted_page : fio->page;
729 
730 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
731 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
732 			META_GENERIC : DATA_GENERIC_ENHANCE))) {
733 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
734 		return -EFSCORRUPTED;
735 	}
736 
737 	trace_f2fs_submit_page_bio(page, fio);
738 
739 	/* Allocate a new bio */
740 	bio = __bio_alloc(fio, 1);
741 
742 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
743 			       fio->page->index, fio, GFP_NOIO);
744 
745 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
746 		bio_put(bio);
747 		return -EFAULT;
748 	}
749 
750 	if (fio->io_wbc && !is_read_io(fio->op))
751 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
752 
753 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
754 			__read_io_type(page) : WB_DATA_TYPE(fio->page));
755 
756 	if (is_read_io(bio_op(bio)))
757 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
758 	else
759 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
760 	return 0;
761 }
762 
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)763 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
764 				block_t last_blkaddr, block_t cur_blkaddr)
765 {
766 	if (unlikely(sbi->max_io_bytes &&
767 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
768 		return false;
769 	if (last_blkaddr + 1 != cur_blkaddr)
770 		return false;
771 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
772 }
773 
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)774 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
775 						struct f2fs_io_info *fio)
776 {
777 	if (io->fio.op != fio->op)
778 		return false;
779 	return io->fio.op_flags == fio->op_flags;
780 }
781 
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)782 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
783 					struct f2fs_bio_info *io,
784 					struct f2fs_io_info *fio,
785 					block_t last_blkaddr,
786 					block_t cur_blkaddr)
787 {
788 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
789 		unsigned int filled_blocks =
790 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
791 		unsigned int io_size = F2FS_IO_SIZE(sbi);
792 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
793 
794 		/* IOs in bio is aligned and left space of vectors is not enough */
795 		if (!(filled_blocks % io_size) && left_vecs < io_size)
796 			return false;
797 	}
798 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
799 		return false;
800 	return io_type_is_mergeable(io, fio);
801 }
802 
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)803 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
804 				struct page *page, enum temp_type temp)
805 {
806 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807 	struct bio_entry *be;
808 
809 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
810 	be->bio = bio;
811 	bio_get(bio);
812 
813 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
814 		f2fs_bug_on(sbi, 1);
815 
816 	f2fs_down_write(&io->bio_list_lock);
817 	list_add_tail(&be->list, &io->bio_list);
818 	f2fs_up_write(&io->bio_list_lock);
819 }
820 
del_bio_entry(struct bio_entry * be)821 static void del_bio_entry(struct bio_entry *be)
822 {
823 	list_del(&be->list);
824 	kmem_cache_free(bio_entry_slab, be);
825 }
826 
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)827 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
828 							struct page *page)
829 {
830 	struct f2fs_sb_info *sbi = fio->sbi;
831 	enum temp_type temp;
832 	bool found = false;
833 	int ret = -EAGAIN;
834 
835 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837 		struct list_head *head = &io->bio_list;
838 		struct bio_entry *be;
839 
840 		f2fs_down_write(&io->bio_list_lock);
841 		list_for_each_entry(be, head, list) {
842 			if (be->bio != *bio)
843 				continue;
844 
845 			found = true;
846 
847 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
848 							    *fio->last_block,
849 							    fio->new_blkaddr));
850 			if (f2fs_crypt_mergeable_bio(*bio,
851 					fio->page->mapping->host,
852 					fio->page->index, fio) &&
853 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
854 					PAGE_SIZE) {
855 				ret = 0;
856 				break;
857 			}
858 
859 			/* page can't be merged into bio; submit the bio */
860 			del_bio_entry(be);
861 			f2fs_submit_write_bio(sbi, *bio, DATA);
862 			break;
863 		}
864 		f2fs_up_write(&io->bio_list_lock);
865 	}
866 
867 	if (ret) {
868 		bio_put(*bio);
869 		*bio = NULL;
870 	}
871 
872 	return ret;
873 }
874 
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)875 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
876 					struct bio **bio, struct page *page)
877 {
878 	enum temp_type temp;
879 	bool found = false;
880 	struct bio *target = bio ? *bio : NULL;
881 
882 	f2fs_bug_on(sbi, !target && !page);
883 
884 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
885 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
886 		struct list_head *head = &io->bio_list;
887 		struct bio_entry *be;
888 
889 		if (list_empty(head))
890 			continue;
891 
892 		f2fs_down_read(&io->bio_list_lock);
893 		list_for_each_entry(be, head, list) {
894 			if (target)
895 				found = (target == be->bio);
896 			else
897 				found = __has_merged_page(be->bio, NULL,
898 								page, 0);
899 			if (found)
900 				break;
901 		}
902 		f2fs_up_read(&io->bio_list_lock);
903 
904 		if (!found)
905 			continue;
906 
907 		found = false;
908 
909 		f2fs_down_write(&io->bio_list_lock);
910 		list_for_each_entry(be, head, list) {
911 			if (target)
912 				found = (target == be->bio);
913 			else
914 				found = __has_merged_page(be->bio, NULL,
915 								page, 0);
916 			if (found) {
917 				target = be->bio;
918 				del_bio_entry(be);
919 				break;
920 			}
921 		}
922 		f2fs_up_write(&io->bio_list_lock);
923 	}
924 
925 	if (found)
926 		f2fs_submit_write_bio(sbi, target, DATA);
927 	if (bio && *bio) {
928 		bio_put(*bio);
929 		*bio = NULL;
930 	}
931 }
932 
f2fs_merge_page_bio(struct f2fs_io_info * fio)933 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
934 {
935 	struct bio *bio = *fio->bio;
936 	struct page *page = fio->encrypted_page ?
937 			fio->encrypted_page : fio->page;
938 
939 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
940 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
941 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
942 		return -EFSCORRUPTED;
943 	}
944 
945 	trace_f2fs_submit_page_bio(page, fio);
946 
947 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
948 						fio->new_blkaddr))
949 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
950 alloc_new:
951 	if (!bio) {
952 		bio = __bio_alloc(fio, BIO_MAX_VECS);
953 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
954 				       fio->page->index, fio, GFP_NOIO);
955 
956 		add_bio_entry(fio->sbi, bio, page, fio->temp);
957 	} else {
958 		if (add_ipu_page(fio, &bio, page))
959 			goto alloc_new;
960 	}
961 
962 	if (fio->io_wbc)
963 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
964 
965 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
966 
967 	*fio->last_block = fio->new_blkaddr;
968 	*fio->bio = bio;
969 
970 	return 0;
971 }
972 
f2fs_submit_page_write(struct f2fs_io_info * fio)973 void f2fs_submit_page_write(struct f2fs_io_info *fio)
974 {
975 	struct f2fs_sb_info *sbi = fio->sbi;
976 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
977 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
978 	struct page *bio_page;
979 
980 	f2fs_bug_on(sbi, is_read_io(fio->op));
981 
982 	f2fs_down_write(&io->io_rwsem);
983 next:
984 	if (fio->in_list) {
985 		spin_lock(&io->io_lock);
986 		if (list_empty(&io->io_list)) {
987 			spin_unlock(&io->io_lock);
988 			goto out;
989 		}
990 		fio = list_first_entry(&io->io_list,
991 						struct f2fs_io_info, list);
992 		list_del(&fio->list);
993 		spin_unlock(&io->io_lock);
994 	}
995 
996 	verify_fio_blkaddr(fio);
997 
998 	if (fio->encrypted_page)
999 		bio_page = fio->encrypted_page;
1000 	else if (fio->compressed_page)
1001 		bio_page = fio->compressed_page;
1002 	else
1003 		bio_page = fio->page;
1004 
1005 	/* set submitted = true as a return value */
1006 	fio->submitted = 1;
1007 
1008 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1009 
1010 	if (io->bio &&
1011 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1012 			      fio->new_blkaddr) ||
1013 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1014 				       bio_page->index, fio)))
1015 		__submit_merged_bio(io);
1016 alloc_new:
1017 	if (io->bio == NULL) {
1018 		if (F2FS_IO_ALIGNED(sbi) &&
1019 				(fio->type == DATA || fio->type == NODE) &&
1020 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1021 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1022 			fio->retry = 1;
1023 			goto skip;
1024 		}
1025 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1026 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1027 				       bio_page->index, fio, GFP_NOIO);
1028 		io->fio = *fio;
1029 	}
1030 
1031 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1032 		__submit_merged_bio(io);
1033 		goto alloc_new;
1034 	}
1035 
1036 	if (fio->io_wbc)
1037 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1038 
1039 	io->last_block_in_bio = fio->new_blkaddr;
1040 
1041 	trace_f2fs_submit_page_write(fio->page, fio);
1042 skip:
1043 	if (fio->in_list)
1044 		goto next;
1045 out:
1046 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1047 				!f2fs_is_checkpoint_ready(sbi))
1048 		__submit_merged_bio(io);
1049 	f2fs_up_write(&io->io_rwsem);
1050 }
1051 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1052 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1053 				      unsigned nr_pages, unsigned op_flag,
1054 				      pgoff_t first_idx, bool for_write)
1055 {
1056 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1057 	struct bio *bio;
1058 	struct bio_post_read_ctx *ctx = NULL;
1059 	unsigned int post_read_steps = 0;
1060 	sector_t sector;
1061 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1062 
1063 	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
1064 			       bio_max_segs(nr_pages), &f2fs_bioset);
1065 	bio_set_dev(bio, bdev);
1066 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1067 	if (!bio)
1068 		return ERR_PTR(-ENOMEM);
1069 	bio->bi_iter.bi_sector = sector;
1070 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1071 	bio->bi_end_io = f2fs_read_end_io;
1072 
1073 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1074 		post_read_steps |= STEP_DECRYPT;
1075 
1076 	if (f2fs_need_verity(inode, first_idx))
1077 		post_read_steps |= STEP_VERITY;
1078 
1079 	/*
1080 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1081 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1082 	 * bio_post_read_ctx if the file is compressed, but the caller is
1083 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1084 	 */
1085 
1086 	if (post_read_steps || f2fs_compressed_file(inode)) {
1087 		/* Due to the mempool, this never fails. */
1088 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1089 		ctx->bio = bio;
1090 		ctx->sbi = sbi;
1091 		ctx->enabled_steps = post_read_steps;
1092 		ctx->fs_blkaddr = blkaddr;
1093 		ctx->decompression_attempted = false;
1094 		bio->bi_private = ctx;
1095 	}
1096 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1097 
1098 	return bio;
1099 }
1100 
1101 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1102 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1103 				 block_t blkaddr, int op_flags, bool for_write)
1104 {
1105 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1106 	struct bio *bio;
1107 
1108 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1109 					page->index, for_write);
1110 	if (IS_ERR(bio))
1111 		return PTR_ERR(bio);
1112 
1113 	/* wait for GCed page writeback via META_MAPPING */
1114 	f2fs_wait_on_block_writeback(inode, blkaddr);
1115 
1116 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1117 		bio_put(bio);
1118 		return -EFAULT;
1119 	}
1120 	inc_page_count(sbi, F2FS_RD_DATA);
1121 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1122 	f2fs_submit_read_bio(sbi, bio, DATA);
1123 	return 0;
1124 }
1125 
__set_data_blkaddr(struct dnode_of_data * dn)1126 static void __set_data_blkaddr(struct dnode_of_data *dn)
1127 {
1128 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1129 	__le32 *addr_array;
1130 	int base = 0;
1131 
1132 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1133 		base = get_extra_isize(dn->inode);
1134 
1135 	/* Get physical address of data block */
1136 	addr_array = blkaddr_in_node(rn);
1137 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1138 }
1139 
1140 /*
1141  * Lock ordering for the change of data block address:
1142  * ->data_page
1143  *  ->node_page
1144  *    update block addresses in the node page
1145  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1146 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1147 {
1148 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1149 	__set_data_blkaddr(dn);
1150 	if (set_page_dirty(dn->node_page))
1151 		dn->node_changed = true;
1152 }
1153 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1154 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1155 {
1156 	dn->data_blkaddr = blkaddr;
1157 	f2fs_set_data_blkaddr(dn);
1158 	f2fs_update_read_extent_cache(dn);
1159 }
1160 
1161 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1162 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1163 {
1164 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1165 	int err;
1166 
1167 	if (!count)
1168 		return 0;
1169 
1170 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1171 		return -EPERM;
1172 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1173 		return err;
1174 
1175 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1176 						dn->ofs_in_node, count);
1177 
1178 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1179 
1180 	for (; count > 0; dn->ofs_in_node++) {
1181 		block_t blkaddr = f2fs_data_blkaddr(dn);
1182 
1183 		if (blkaddr == NULL_ADDR) {
1184 			dn->data_blkaddr = NEW_ADDR;
1185 			__set_data_blkaddr(dn);
1186 			count--;
1187 		}
1188 	}
1189 
1190 	if (set_page_dirty(dn->node_page))
1191 		dn->node_changed = true;
1192 	return 0;
1193 }
1194 
1195 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1196 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1197 {
1198 	unsigned int ofs_in_node = dn->ofs_in_node;
1199 	int ret;
1200 
1201 	ret = f2fs_reserve_new_blocks(dn, 1);
1202 	dn->ofs_in_node = ofs_in_node;
1203 	return ret;
1204 }
1205 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1206 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1207 {
1208 	bool need_put = dn->inode_page ? false : true;
1209 	int err;
1210 
1211 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1212 	if (err)
1213 		return err;
1214 
1215 	if (dn->data_blkaddr == NULL_ADDR)
1216 		err = f2fs_reserve_new_block(dn);
1217 	if (err || need_put)
1218 		f2fs_put_dnode(dn);
1219 	return err;
1220 }
1221 
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write,pgoff_t * next_pgofs)1222 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1223 				     int op_flags, bool for_write,
1224 				     pgoff_t *next_pgofs)
1225 {
1226 	struct address_space *mapping = inode->i_mapping;
1227 	struct dnode_of_data dn;
1228 	struct page *page;
1229 	int err;
1230 
1231 	page = f2fs_grab_cache_page(mapping, index, for_write);
1232 	if (!page)
1233 		return ERR_PTR(-ENOMEM);
1234 
1235 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1236 						&dn.data_blkaddr)) {
1237 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1238 						DATA_GENERIC_ENHANCE_READ)) {
1239 			err = -EFSCORRUPTED;
1240 			f2fs_handle_error(F2FS_I_SB(inode),
1241 						ERROR_INVALID_BLKADDR);
1242 			goto put_err;
1243 		}
1244 		goto got_it;
1245 	}
1246 
1247 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1248 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1249 	if (err) {
1250 		if (err == -ENOENT && next_pgofs)
1251 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1252 		goto put_err;
1253 	}
1254 	f2fs_put_dnode(&dn);
1255 
1256 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1257 		err = -ENOENT;
1258 		if (next_pgofs)
1259 			*next_pgofs = index + 1;
1260 		goto put_err;
1261 	}
1262 	if (dn.data_blkaddr != NEW_ADDR &&
1263 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1264 						dn.data_blkaddr,
1265 						DATA_GENERIC_ENHANCE)) {
1266 		err = -EFSCORRUPTED;
1267 		f2fs_handle_error(F2FS_I_SB(inode),
1268 					ERROR_INVALID_BLKADDR);
1269 		goto put_err;
1270 	}
1271 got_it:
1272 	if (PageUptodate(page)) {
1273 		unlock_page(page);
1274 		return page;
1275 	}
1276 
1277 	/*
1278 	 * A new dentry page is allocated but not able to be written, since its
1279 	 * new inode page couldn't be allocated due to -ENOSPC.
1280 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1281 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1282 	 * f2fs_init_inode_metadata.
1283 	 */
1284 	if (dn.data_blkaddr == NEW_ADDR) {
1285 		zero_user_segment(page, 0, PAGE_SIZE);
1286 		if (!PageUptodate(page))
1287 			SetPageUptodate(page);
1288 		unlock_page(page);
1289 		return page;
1290 	}
1291 
1292 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1293 						op_flags, for_write);
1294 	if (err)
1295 		goto put_err;
1296 	return page;
1297 
1298 put_err:
1299 	f2fs_put_page(page, 1);
1300 	return ERR_PTR(err);
1301 }
1302 
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1303 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1304 					pgoff_t *next_pgofs)
1305 {
1306 	struct address_space *mapping = inode->i_mapping;
1307 	struct page *page;
1308 
1309 	page = find_get_page(mapping, index);
1310 	if (page && PageUptodate(page))
1311 		return page;
1312 	f2fs_put_page(page, 0);
1313 
1314 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1315 	if (IS_ERR(page))
1316 		return page;
1317 
1318 	if (PageUptodate(page))
1319 		return page;
1320 
1321 	wait_on_page_locked(page);
1322 	if (unlikely(!PageUptodate(page))) {
1323 		f2fs_put_page(page, 0);
1324 		return ERR_PTR(-EIO);
1325 	}
1326 	return page;
1327 }
1328 
1329 /*
1330  * If it tries to access a hole, return an error.
1331  * Because, the callers, functions in dir.c and GC, should be able to know
1332  * whether this page exists or not.
1333  */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1334 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1335 							bool for_write)
1336 {
1337 	struct address_space *mapping = inode->i_mapping;
1338 	struct page *page;
1339 repeat:
1340 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1341 	if (IS_ERR(page))
1342 		return page;
1343 
1344 	/* wait for read completion */
1345 	lock_page(page);
1346 	if (unlikely(page->mapping != mapping)) {
1347 		f2fs_put_page(page, 1);
1348 		goto repeat;
1349 	}
1350 	if (unlikely(!PageUptodate(page))) {
1351 		f2fs_put_page(page, 1);
1352 		return ERR_PTR(-EIO);
1353 	}
1354 	return page;
1355 }
1356 
1357 /*
1358  * Caller ensures that this data page is never allocated.
1359  * A new zero-filled data page is allocated in the page cache.
1360  *
1361  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1362  * f2fs_unlock_op().
1363  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1364  * ipage should be released by this function.
1365  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1366 struct page *f2fs_get_new_data_page(struct inode *inode,
1367 		struct page *ipage, pgoff_t index, bool new_i_size)
1368 {
1369 	struct address_space *mapping = inode->i_mapping;
1370 	struct page *page;
1371 	struct dnode_of_data dn;
1372 	int err;
1373 
1374 	page = f2fs_grab_cache_page(mapping, index, true);
1375 	if (!page) {
1376 		/*
1377 		 * before exiting, we should make sure ipage will be released
1378 		 * if any error occur.
1379 		 */
1380 		f2fs_put_page(ipage, 1);
1381 		return ERR_PTR(-ENOMEM);
1382 	}
1383 
1384 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1385 	err = f2fs_reserve_block(&dn, index);
1386 	if (err) {
1387 		f2fs_put_page(page, 1);
1388 		return ERR_PTR(err);
1389 	}
1390 	if (!ipage)
1391 		f2fs_put_dnode(&dn);
1392 
1393 	if (PageUptodate(page))
1394 		goto got_it;
1395 
1396 	if (dn.data_blkaddr == NEW_ADDR) {
1397 		zero_user_segment(page, 0, PAGE_SIZE);
1398 		if (!PageUptodate(page))
1399 			SetPageUptodate(page);
1400 	} else {
1401 		f2fs_put_page(page, 1);
1402 
1403 		/* if ipage exists, blkaddr should be NEW_ADDR */
1404 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1405 		page = f2fs_get_lock_data_page(inode, index, true);
1406 		if (IS_ERR(page))
1407 			return page;
1408 	}
1409 got_it:
1410 	if (new_i_size && i_size_read(inode) <
1411 				((loff_t)(index + 1) << PAGE_SHIFT))
1412 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1413 	return page;
1414 }
1415 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1416 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1417 {
1418 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1419 	struct f2fs_summary sum;
1420 	struct node_info ni;
1421 	block_t old_blkaddr;
1422 	blkcnt_t count = 1;
1423 	int err;
1424 
1425 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1426 		return -EPERM;
1427 
1428 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1429 	if (err)
1430 		return err;
1431 
1432 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1433 	if (dn->data_blkaddr == NULL_ADDR) {
1434 		err = inc_valid_block_count(sbi, dn->inode, &count);
1435 		if (unlikely(err))
1436 			return err;
1437 	}
1438 
1439 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1440 	old_blkaddr = dn->data_blkaddr;
1441 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1442 				&sum, seg_type, NULL);
1443 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1444 		invalidate_mapping_pages(META_MAPPING(sbi),
1445 					old_blkaddr, old_blkaddr);
1446 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1447 	}
1448 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1449 	return 0;
1450 }
1451 
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1452 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1453 {
1454 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1455 		f2fs_down_read(&sbi->node_change);
1456 	else
1457 		f2fs_lock_op(sbi);
1458 }
1459 
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1460 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1461 {
1462 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1463 		f2fs_up_read(&sbi->node_change);
1464 	else
1465 		f2fs_unlock_op(sbi);
1466 }
1467 
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1468 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1469 {
1470 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471 	int err = 0;
1472 
1473 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1474 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1475 						&dn->data_blkaddr))
1476 		err = f2fs_reserve_block(dn, index);
1477 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1478 
1479 	return err;
1480 }
1481 
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1482 static int f2fs_map_no_dnode(struct inode *inode,
1483 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1484 		pgoff_t pgoff)
1485 {
1486 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487 
1488 	/*
1489 	 * There is one exceptional case that read_node_page() may return
1490 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1491 	 * -EIO in that case.
1492 	 */
1493 	if (map->m_may_create &&
1494 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1495 		return -EIO;
1496 
1497 	if (map->m_next_pgofs)
1498 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1499 	if (map->m_next_extent)
1500 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1501 	return 0;
1502 }
1503 
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1504 static bool f2fs_map_blocks_cached(struct inode *inode,
1505 		struct f2fs_map_blocks *map, int flag)
1506 {
1507 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1508 	unsigned int maxblocks = map->m_len;
1509 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1510 	struct extent_info ei = {};
1511 
1512 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1513 		return false;
1514 
1515 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1516 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1517 	map->m_flags = F2FS_MAP_MAPPED;
1518 	if (map->m_next_extent)
1519 		*map->m_next_extent = pgoff + map->m_len;
1520 
1521 	/* for hardware encryption, but to avoid potential issue in future */
1522 	if (flag == F2FS_GET_BLOCK_DIO)
1523 		f2fs_wait_on_block_writeback_range(inode,
1524 					map->m_pblk, map->m_len);
1525 
1526 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1527 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1528 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1529 
1530 		map->m_bdev = dev->bdev;
1531 		map->m_pblk -= dev->start_blk;
1532 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1533 	} else {
1534 		map->m_bdev = inode->i_sb->s_bdev;
1535 	}
1536 	return true;
1537 }
1538 
1539 /*
1540  * f2fs_map_blocks() tries to find or build mapping relationship which
1541  * maps continuous logical blocks to physical blocks, and return such
1542  * info via f2fs_map_blocks structure.
1543  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1544 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1545 {
1546 	unsigned int maxblocks = map->m_len;
1547 	struct dnode_of_data dn;
1548 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1549 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1550 	pgoff_t pgofs, end_offset, end;
1551 	int err = 0, ofs = 1;
1552 	unsigned int ofs_in_node, last_ofs_in_node;
1553 	blkcnt_t prealloc;
1554 	block_t blkaddr;
1555 	unsigned int start_pgofs;
1556 	int bidx = 0;
1557 	bool is_hole;
1558 
1559 	if (!maxblocks)
1560 		return 0;
1561 
1562 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1563 		goto out;
1564 
1565 	map->m_bdev = inode->i_sb->s_bdev;
1566 	map->m_multidev_dio =
1567 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1568 
1569 	map->m_len = 0;
1570 	map->m_flags = 0;
1571 
1572 	/* it only supports block size == page size */
1573 	pgofs =	(pgoff_t)map->m_lblk;
1574 	end = pgofs + maxblocks;
1575 
1576 next_dnode:
1577 	if (map->m_may_create)
1578 		f2fs_map_lock(sbi, flag);
1579 
1580 	/* When reading holes, we need its node page */
1581 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1582 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1583 	if (err) {
1584 		if (flag == F2FS_GET_BLOCK_BMAP)
1585 			map->m_pblk = 0;
1586 		if (err == -ENOENT)
1587 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1588 		goto unlock_out;
1589 	}
1590 
1591 	start_pgofs = pgofs;
1592 	prealloc = 0;
1593 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1594 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1595 
1596 next_block:
1597 	blkaddr = f2fs_data_blkaddr(&dn);
1598 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1599 	if (!is_hole &&
1600 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1601 		err = -EFSCORRUPTED;
1602 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1603 		goto sync_out;
1604 	}
1605 
1606 	/* use out-place-update for direct IO under LFS mode */
1607 	if (map->m_may_create &&
1608 	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1609 		if (unlikely(f2fs_cp_error(sbi))) {
1610 			err = -EIO;
1611 			goto sync_out;
1612 		}
1613 
1614 		switch (flag) {
1615 		case F2FS_GET_BLOCK_PRE_AIO:
1616 			if (blkaddr == NULL_ADDR) {
1617 				prealloc++;
1618 				last_ofs_in_node = dn.ofs_in_node;
1619 			}
1620 			break;
1621 		case F2FS_GET_BLOCK_PRE_DIO:
1622 		case F2FS_GET_BLOCK_DIO:
1623 			err = __allocate_data_block(&dn, map->m_seg_type);
1624 			if (err)
1625 				goto sync_out;
1626 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1627 				file_need_truncate(inode);
1628 			set_inode_flag(inode, FI_APPEND_WRITE);
1629 			break;
1630 		default:
1631 			WARN_ON_ONCE(1);
1632 			err = -EIO;
1633 			goto sync_out;
1634 		}
1635 
1636 		blkaddr = dn.data_blkaddr;
1637 		if (is_hole)
1638 			map->m_flags |= F2FS_MAP_NEW;
1639 	} else if (is_hole) {
1640 		if (f2fs_compressed_file(inode) &&
1641 		    f2fs_sanity_check_cluster(&dn) &&
1642 		    (flag != F2FS_GET_BLOCK_FIEMAP ||
1643 		     IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1644 			err = -EFSCORRUPTED;
1645 			f2fs_handle_error(sbi,
1646 					ERROR_CORRUPTED_CLUSTER);
1647 			goto sync_out;
1648 		}
1649 
1650 		switch (flag) {
1651 		case F2FS_GET_BLOCK_PRECACHE:
1652 			goto sync_out;
1653 		case F2FS_GET_BLOCK_BMAP:
1654 			map->m_pblk = 0;
1655 			goto sync_out;
1656 		case F2FS_GET_BLOCK_FIEMAP:
1657 			if (blkaddr == NULL_ADDR) {
1658 				if (map->m_next_pgofs)
1659 					*map->m_next_pgofs = pgofs + 1;
1660 				goto sync_out;
1661 			}
1662 			break;
1663 		default:
1664 			/* for defragment case */
1665 			if (map->m_next_pgofs)
1666 				*map->m_next_pgofs = pgofs + 1;
1667 			goto sync_out;
1668 		}
1669 	}
1670 
1671 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1672 		goto skip;
1673 
1674 	if (map->m_multidev_dio)
1675 		bidx = f2fs_target_device_index(sbi, blkaddr);
1676 
1677 	if (map->m_len == 0) {
1678 		/* reserved delalloc block should be mapped for fiemap. */
1679 		if (blkaddr == NEW_ADDR)
1680 			map->m_flags |= F2FS_MAP_DELALLOC;
1681 		map->m_flags |= F2FS_MAP_MAPPED;
1682 
1683 		map->m_pblk = blkaddr;
1684 		map->m_len = 1;
1685 
1686 		if (map->m_multidev_dio)
1687 			map->m_bdev = FDEV(bidx).bdev;
1688 	} else if ((map->m_pblk != NEW_ADDR &&
1689 			blkaddr == (map->m_pblk + ofs)) ||
1690 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1691 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1692 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1693 			goto sync_out;
1694 		ofs++;
1695 		map->m_len++;
1696 	} else {
1697 		goto sync_out;
1698 	}
1699 
1700 skip:
1701 	dn.ofs_in_node++;
1702 	pgofs++;
1703 
1704 	/* preallocate blocks in batch for one dnode page */
1705 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1706 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1707 
1708 		dn.ofs_in_node = ofs_in_node;
1709 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1710 		if (err)
1711 			goto sync_out;
1712 
1713 		map->m_len += dn.ofs_in_node - ofs_in_node;
1714 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1715 			err = -ENOSPC;
1716 			goto sync_out;
1717 		}
1718 		dn.ofs_in_node = end_offset;
1719 	}
1720 
1721 	if (pgofs >= end)
1722 		goto sync_out;
1723 	else if (dn.ofs_in_node < end_offset)
1724 		goto next_block;
1725 
1726 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1727 		if (map->m_flags & F2FS_MAP_MAPPED) {
1728 			unsigned int ofs = start_pgofs - map->m_lblk;
1729 
1730 			f2fs_update_read_extent_cache_range(&dn,
1731 				start_pgofs, map->m_pblk + ofs,
1732 				map->m_len - ofs);
1733 		}
1734 	}
1735 
1736 	f2fs_put_dnode(&dn);
1737 
1738 	if (map->m_may_create) {
1739 		f2fs_map_unlock(sbi, flag);
1740 		f2fs_balance_fs(sbi, dn.node_changed);
1741 	}
1742 	goto next_dnode;
1743 
1744 sync_out:
1745 
1746 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1747 		/*
1748 		 * for hardware encryption, but to avoid potential issue
1749 		 * in future
1750 		 */
1751 		f2fs_wait_on_block_writeback_range(inode,
1752 						map->m_pblk, map->m_len);
1753 
1754 		if (map->m_multidev_dio) {
1755 			block_t blk_addr = map->m_pblk;
1756 
1757 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1758 
1759 			map->m_bdev = FDEV(bidx).bdev;
1760 			map->m_pblk -= FDEV(bidx).start_blk;
1761 
1762 			if (map->m_may_create)
1763 				f2fs_update_device_state(sbi, inode->i_ino,
1764 							blk_addr, map->m_len);
1765 
1766 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1767 						FDEV(bidx).end_blk + 1);
1768 		}
1769 	}
1770 
1771 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1772 		if (map->m_flags & F2FS_MAP_MAPPED) {
1773 			unsigned int ofs = start_pgofs - map->m_lblk;
1774 
1775 			f2fs_update_read_extent_cache_range(&dn,
1776 				start_pgofs, map->m_pblk + ofs,
1777 				map->m_len - ofs);
1778 		}
1779 		if (map->m_next_extent)
1780 			*map->m_next_extent = pgofs + 1;
1781 	}
1782 	f2fs_put_dnode(&dn);
1783 unlock_out:
1784 	if (map->m_may_create) {
1785 		f2fs_map_unlock(sbi, flag);
1786 		f2fs_balance_fs(sbi, dn.node_changed);
1787 	}
1788 out:
1789 	trace_f2fs_map_blocks(inode, map, flag, err);
1790 	return err;
1791 }
1792 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1793 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1794 {
1795 	struct f2fs_map_blocks map;
1796 	block_t last_lblk;
1797 	int err;
1798 
1799 	if (pos + len > i_size_read(inode))
1800 		return false;
1801 
1802 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1803 	map.m_next_pgofs = NULL;
1804 	map.m_next_extent = NULL;
1805 	map.m_seg_type = NO_CHECK_TYPE;
1806 	map.m_may_create = false;
1807 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1808 
1809 	while (map.m_lblk < last_lblk) {
1810 		map.m_len = last_lblk - map.m_lblk;
1811 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1812 		if (err || map.m_len == 0)
1813 			return false;
1814 		map.m_lblk += map.m_len;
1815 	}
1816 	return true;
1817 }
1818 
bytes_to_blks(struct inode * inode,u64 bytes)1819 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1820 {
1821 	return (bytes >> inode->i_blkbits);
1822 }
1823 
blks_to_bytes(struct inode * inode,u64 blks)1824 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1825 {
1826 	return (blks << inode->i_blkbits);
1827 }
1828 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1829 static int f2fs_xattr_fiemap(struct inode *inode,
1830 				struct fiemap_extent_info *fieinfo)
1831 {
1832 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1833 	struct page *page;
1834 	struct node_info ni;
1835 	__u64 phys = 0, len;
1836 	__u32 flags;
1837 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1838 	int err = 0;
1839 
1840 	if (f2fs_has_inline_xattr(inode)) {
1841 		int offset;
1842 
1843 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1844 						inode->i_ino, false);
1845 		if (!page)
1846 			return -ENOMEM;
1847 
1848 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1849 		if (err) {
1850 			f2fs_put_page(page, 1);
1851 			return err;
1852 		}
1853 
1854 		phys = blks_to_bytes(inode, ni.blk_addr);
1855 		offset = offsetof(struct f2fs_inode, i_addr) +
1856 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1857 					get_inline_xattr_addrs(inode));
1858 
1859 		phys += offset;
1860 		len = inline_xattr_size(inode);
1861 
1862 		f2fs_put_page(page, 1);
1863 
1864 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1865 
1866 		if (!xnid)
1867 			flags |= FIEMAP_EXTENT_LAST;
1868 
1869 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1870 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1871 		if (err)
1872 			return err;
1873 	}
1874 
1875 	if (xnid) {
1876 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1877 		if (!page)
1878 			return -ENOMEM;
1879 
1880 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1881 		if (err) {
1882 			f2fs_put_page(page, 1);
1883 			return err;
1884 		}
1885 
1886 		phys = blks_to_bytes(inode, ni.blk_addr);
1887 		len = inode->i_sb->s_blocksize;
1888 
1889 		f2fs_put_page(page, 1);
1890 
1891 		flags = FIEMAP_EXTENT_LAST;
1892 	}
1893 
1894 	if (phys) {
1895 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1896 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1897 	}
1898 
1899 	return (err < 0 ? err : 0);
1900 }
1901 
max_inode_blocks(struct inode * inode)1902 static loff_t max_inode_blocks(struct inode *inode)
1903 {
1904 	loff_t result = ADDRS_PER_INODE(inode);
1905 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1906 
1907 	/* two direct node blocks */
1908 	result += (leaf_count * 2);
1909 
1910 	/* two indirect node blocks */
1911 	leaf_count *= NIDS_PER_BLOCK;
1912 	result += (leaf_count * 2);
1913 
1914 	/* one double indirect node block */
1915 	leaf_count *= NIDS_PER_BLOCK;
1916 	result += leaf_count;
1917 
1918 	return result;
1919 }
1920 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1921 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1922 		u64 start, u64 len)
1923 {
1924 	struct f2fs_map_blocks map;
1925 	sector_t start_blk, last_blk;
1926 	pgoff_t next_pgofs;
1927 	u64 logical = 0, phys = 0, size = 0;
1928 	u32 flags = 0;
1929 	int ret = 0;
1930 	bool compr_cluster = false, compr_appended;
1931 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1932 	unsigned int count_in_cluster = 0;
1933 	loff_t maxbytes;
1934 
1935 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1936 		ret = f2fs_precache_extents(inode);
1937 		if (ret)
1938 			return ret;
1939 	}
1940 
1941 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1942 	if (ret)
1943 		return ret;
1944 
1945 	inode_lock(inode);
1946 
1947 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1948 	if (start > maxbytes) {
1949 		ret = -EFBIG;
1950 		goto out;
1951 	}
1952 
1953 	if (len > maxbytes || (maxbytes - len) < start)
1954 		len = maxbytes - start;
1955 
1956 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1957 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1958 		goto out;
1959 	}
1960 
1961 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1962 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1963 		if (ret != -EAGAIN)
1964 			goto out;
1965 	}
1966 
1967 	if (bytes_to_blks(inode, len) == 0)
1968 		len = blks_to_bytes(inode, 1);
1969 
1970 	start_blk = bytes_to_blks(inode, start);
1971 	last_blk = bytes_to_blks(inode, start + len - 1);
1972 
1973 next:
1974 	memset(&map, 0, sizeof(map));
1975 	map.m_lblk = start_blk;
1976 	map.m_len = bytes_to_blks(inode, len);
1977 	map.m_next_pgofs = &next_pgofs;
1978 	map.m_seg_type = NO_CHECK_TYPE;
1979 
1980 	if (compr_cluster) {
1981 		map.m_lblk += 1;
1982 		map.m_len = cluster_size - count_in_cluster;
1983 	}
1984 
1985 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1986 	if (ret)
1987 		goto out;
1988 
1989 	/* HOLE */
1990 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1991 		start_blk = next_pgofs;
1992 
1993 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1994 						max_inode_blocks(inode)))
1995 			goto prep_next;
1996 
1997 		flags |= FIEMAP_EXTENT_LAST;
1998 	}
1999 
2000 	compr_appended = false;
2001 	/* In a case of compressed cluster, append this to the last extent */
2002 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2003 			!(map.m_flags & F2FS_MAP_FLAGS))) {
2004 		compr_appended = true;
2005 		goto skip_fill;
2006 	}
2007 
2008 	if (size) {
2009 		flags |= FIEMAP_EXTENT_MERGED;
2010 		if (IS_ENCRYPTED(inode))
2011 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2012 
2013 		ret = fiemap_fill_next_extent(fieinfo, logical,
2014 				phys, size, flags);
2015 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2016 		if (ret)
2017 			goto out;
2018 		size = 0;
2019 	}
2020 
2021 	if (start_blk > last_blk)
2022 		goto out;
2023 
2024 skip_fill:
2025 	if (map.m_pblk == COMPRESS_ADDR) {
2026 		compr_cluster = true;
2027 		count_in_cluster = 1;
2028 	} else if (compr_appended) {
2029 		unsigned int appended_blks = cluster_size -
2030 						count_in_cluster + 1;
2031 		size += blks_to_bytes(inode, appended_blks);
2032 		start_blk += appended_blks;
2033 		compr_cluster = false;
2034 	} else {
2035 		logical = blks_to_bytes(inode, start_blk);
2036 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2037 			blks_to_bytes(inode, map.m_pblk) : 0;
2038 		size = blks_to_bytes(inode, map.m_len);
2039 		flags = 0;
2040 
2041 		if (compr_cluster) {
2042 			flags = FIEMAP_EXTENT_ENCODED;
2043 			count_in_cluster += map.m_len;
2044 			if (count_in_cluster == cluster_size) {
2045 				compr_cluster = false;
2046 				size += blks_to_bytes(inode, 1);
2047 			}
2048 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2049 			flags = FIEMAP_EXTENT_UNWRITTEN;
2050 		}
2051 
2052 		start_blk += bytes_to_blks(inode, size);
2053 	}
2054 
2055 prep_next:
2056 	cond_resched();
2057 	if (fatal_signal_pending(current))
2058 		ret = -EINTR;
2059 	else
2060 		goto next;
2061 out:
2062 	if (ret == 1)
2063 		ret = 0;
2064 
2065 	inode_unlock(inode);
2066 	return ret;
2067 }
2068 
f2fs_readpage_limit(struct inode * inode)2069 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2070 {
2071 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2072 		return inode->i_sb->s_maxbytes;
2073 
2074 	return i_size_read(inode);
2075 }
2076 
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2077 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2078 					unsigned nr_pages,
2079 					struct f2fs_map_blocks *map,
2080 					struct bio **bio_ret,
2081 					sector_t *last_block_in_bio,
2082 					bool is_readahead)
2083 {
2084 	struct bio *bio = *bio_ret;
2085 	const unsigned blocksize = blks_to_bytes(inode, 1);
2086 	sector_t block_in_file;
2087 	sector_t last_block;
2088 	sector_t last_block_in_file;
2089 	sector_t block_nr;
2090 	int ret = 0;
2091 
2092 	block_in_file = (sector_t)page_index(page);
2093 	last_block = block_in_file + nr_pages;
2094 	last_block_in_file = bytes_to_blks(inode,
2095 			f2fs_readpage_limit(inode) + blocksize - 1);
2096 	if (last_block > last_block_in_file)
2097 		last_block = last_block_in_file;
2098 
2099 	/* just zeroing out page which is beyond EOF */
2100 	if (block_in_file >= last_block)
2101 		goto zero_out;
2102 	/*
2103 	 * Map blocks using the previous result first.
2104 	 */
2105 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2106 			block_in_file > map->m_lblk &&
2107 			block_in_file < (map->m_lblk + map->m_len))
2108 		goto got_it;
2109 
2110 	/*
2111 	 * Then do more f2fs_map_blocks() calls until we are
2112 	 * done with this page.
2113 	 */
2114 	map->m_lblk = block_in_file;
2115 	map->m_len = last_block - block_in_file;
2116 
2117 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2118 	if (ret)
2119 		goto out;
2120 got_it:
2121 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2122 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2123 		SetPageMappedToDisk(page);
2124 
2125 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2126 					!cleancache_get_page(page))) {
2127 			SetPageUptodate(page);
2128 			goto confused;
2129 		}
2130 
2131 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2132 						DATA_GENERIC_ENHANCE_READ)) {
2133 			ret = -EFSCORRUPTED;
2134 			f2fs_handle_error(F2FS_I_SB(inode),
2135 						ERROR_INVALID_BLKADDR);
2136 			goto out;
2137 		}
2138 	} else {
2139 zero_out:
2140 		zero_user_segment(page, 0, PAGE_SIZE);
2141 		if (f2fs_need_verity(inode, page->index) &&
2142 		    !fsverity_verify_page(page)) {
2143 			ret = -EIO;
2144 			goto out;
2145 		}
2146 		if (!PageUptodate(page))
2147 			SetPageUptodate(page);
2148 		unlock_page(page);
2149 		goto out;
2150 	}
2151 
2152 	/*
2153 	 * This page will go to BIO.  Do we need to send this
2154 	 * BIO off first?
2155 	 */
2156 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2157 				       *last_block_in_bio, block_nr) ||
2158 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2159 submit_and_realloc:
2160 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2161 		bio = NULL;
2162 	}
2163 	if (bio == NULL) {
2164 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2165 				is_readahead ? REQ_RAHEAD : 0, page->index,
2166 				false);
2167 		if (IS_ERR(bio)) {
2168 			ret = PTR_ERR(bio);
2169 			bio = NULL;
2170 			goto out;
2171 		}
2172 	}
2173 
2174 	/*
2175 	 * If the page is under writeback, we need to wait for
2176 	 * its completion to see the correct decrypted data.
2177 	 */
2178 	f2fs_wait_on_block_writeback(inode, block_nr);
2179 
2180 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2181 		goto submit_and_realloc;
2182 
2183 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2184 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2185 							F2FS_BLKSIZE);
2186 	*last_block_in_bio = block_nr;
2187 	goto out;
2188 confused:
2189 	if (bio) {
2190 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2191 		bio = NULL;
2192 	}
2193 	unlock_page(page);
2194 out:
2195 	*bio_ret = bio;
2196 	return ret;
2197 }
2198 
2199 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2200 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2201 				unsigned nr_pages, sector_t *last_block_in_bio,
2202 				bool is_readahead, bool for_write)
2203 {
2204 	struct dnode_of_data dn;
2205 	struct inode *inode = cc->inode;
2206 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2207 	struct bio *bio = *bio_ret;
2208 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2209 	sector_t last_block_in_file;
2210 	const unsigned blocksize = blks_to_bytes(inode, 1);
2211 	struct decompress_io_ctx *dic = NULL;
2212 	struct extent_info ei = {};
2213 	bool from_dnode = true;
2214 	int i;
2215 	int ret = 0;
2216 
2217 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2218 
2219 	last_block_in_file = bytes_to_blks(inode,
2220 			f2fs_readpage_limit(inode) + blocksize - 1);
2221 
2222 	/* get rid of pages beyond EOF */
2223 	for (i = 0; i < cc->cluster_size; i++) {
2224 		struct page *page = cc->rpages[i];
2225 
2226 		if (!page)
2227 			continue;
2228 		if ((sector_t)page->index >= last_block_in_file) {
2229 			zero_user_segment(page, 0, PAGE_SIZE);
2230 			if (!PageUptodate(page))
2231 				SetPageUptodate(page);
2232 		} else if (!PageUptodate(page)) {
2233 			continue;
2234 		}
2235 		unlock_page(page);
2236 		if (for_write)
2237 			put_page(page);
2238 		cc->rpages[i] = NULL;
2239 		cc->nr_rpages--;
2240 	}
2241 
2242 	/* we are done since all pages are beyond EOF */
2243 	if (f2fs_cluster_is_empty(cc))
2244 		goto out;
2245 
2246 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2247 		from_dnode = false;
2248 
2249 	if (!from_dnode)
2250 		goto skip_reading_dnode;
2251 
2252 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2253 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2254 	if (ret)
2255 		goto out;
2256 
2257 	if (unlikely(f2fs_cp_error(sbi))) {
2258 		ret = -EIO;
2259 		goto out_put_dnode;
2260 	}
2261 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2262 
2263 skip_reading_dnode:
2264 	for (i = 1; i < cc->cluster_size; i++) {
2265 		block_t blkaddr;
2266 
2267 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2268 					dn.ofs_in_node + i) :
2269 					ei.blk + i - 1;
2270 
2271 		if (!__is_valid_data_blkaddr(blkaddr))
2272 			break;
2273 
2274 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2275 			ret = -EFAULT;
2276 			goto out_put_dnode;
2277 		}
2278 		cc->nr_cpages++;
2279 
2280 		if (!from_dnode && i >= ei.c_len)
2281 			break;
2282 	}
2283 
2284 	/* nothing to decompress */
2285 	if (cc->nr_cpages == 0) {
2286 		ret = 0;
2287 		goto out_put_dnode;
2288 	}
2289 
2290 	dic = f2fs_alloc_dic(cc);
2291 	if (IS_ERR(dic)) {
2292 		ret = PTR_ERR(dic);
2293 		goto out_put_dnode;
2294 	}
2295 
2296 	for (i = 0; i < cc->nr_cpages; i++) {
2297 		struct page *page = dic->cpages[i];
2298 		block_t blkaddr;
2299 		struct bio_post_read_ctx *ctx;
2300 
2301 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2302 					dn.ofs_in_node + i + 1) :
2303 					ei.blk + i;
2304 
2305 		f2fs_wait_on_block_writeback(inode, blkaddr);
2306 
2307 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2308 			if (atomic_dec_and_test(&dic->remaining_pages))
2309 				f2fs_decompress_cluster(dic, true);
2310 			continue;
2311 		}
2312 
2313 		if (bio && (!page_is_mergeable(sbi, bio,
2314 					*last_block_in_bio, blkaddr) ||
2315 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2316 submit_and_realloc:
2317 			f2fs_submit_read_bio(sbi, bio, DATA);
2318 			bio = NULL;
2319 		}
2320 
2321 		if (!bio) {
2322 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2323 					is_readahead ? REQ_RAHEAD : 0,
2324 					page->index, for_write);
2325 			if (IS_ERR(bio)) {
2326 				ret = PTR_ERR(bio);
2327 				f2fs_decompress_end_io(dic, ret, true);
2328 				f2fs_put_dnode(&dn);
2329 				*bio_ret = NULL;
2330 				return ret;
2331 			}
2332 		}
2333 
2334 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2335 			goto submit_and_realloc;
2336 
2337 		ctx = get_post_read_ctx(bio);
2338 		ctx->enabled_steps |= STEP_DECOMPRESS;
2339 		refcount_inc(&dic->refcnt);
2340 
2341 		inc_page_count(sbi, F2FS_RD_DATA);
2342 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2343 		*last_block_in_bio = blkaddr;
2344 	}
2345 
2346 	if (from_dnode)
2347 		f2fs_put_dnode(&dn);
2348 
2349 	*bio_ret = bio;
2350 	return 0;
2351 
2352 out_put_dnode:
2353 	if (from_dnode)
2354 		f2fs_put_dnode(&dn);
2355 out:
2356 	for (i = 0; i < cc->cluster_size; i++) {
2357 		if (cc->rpages[i]) {
2358 			ClearPageUptodate(cc->rpages[i]);
2359 			unlock_page(cc->rpages[i]);
2360 		}
2361 	}
2362 	*bio_ret = bio;
2363 	return ret;
2364 }
2365 #endif
2366 
2367 /*
2368  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2369  * Major change was from block_size == page_size in f2fs by default.
2370  */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2371 static int f2fs_mpage_readpages(struct inode *inode,
2372 		struct readahead_control *rac, struct page *page)
2373 {
2374 	struct bio *bio = NULL;
2375 	sector_t last_block_in_bio = 0;
2376 	struct f2fs_map_blocks map;
2377 #ifdef CONFIG_F2FS_FS_COMPRESSION
2378 	struct compress_ctx cc = {
2379 		.inode = inode,
2380 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2381 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2382 		.cluster_idx = NULL_CLUSTER,
2383 		.rpages = NULL,
2384 		.cpages = NULL,
2385 		.nr_rpages = 0,
2386 		.nr_cpages = 0,
2387 	};
2388 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2389 #endif
2390 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2391 	unsigned max_nr_pages = nr_pages;
2392 	int ret = 0;
2393 
2394 	map.m_pblk = 0;
2395 	map.m_lblk = 0;
2396 	map.m_len = 0;
2397 	map.m_flags = 0;
2398 	map.m_next_pgofs = NULL;
2399 	map.m_next_extent = NULL;
2400 	map.m_seg_type = NO_CHECK_TYPE;
2401 	map.m_may_create = false;
2402 
2403 	for (; nr_pages; nr_pages--) {
2404 		if (rac) {
2405 			page = readahead_page(rac);
2406 			prefetchw(&page->flags);
2407 		}
2408 
2409 #ifdef CONFIG_F2FS_FS_COMPRESSION
2410 		if (f2fs_compressed_file(inode)) {
2411 			/* there are remained compressed pages, submit them */
2412 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2413 				ret = f2fs_read_multi_pages(&cc, &bio,
2414 							max_nr_pages,
2415 							&last_block_in_bio,
2416 							rac != NULL, false);
2417 				f2fs_destroy_compress_ctx(&cc, false);
2418 				if (ret)
2419 					goto set_error_page;
2420 			}
2421 			if (cc.cluster_idx == NULL_CLUSTER) {
2422 				if (nc_cluster_idx ==
2423 					page->index >> cc.log_cluster_size) {
2424 					goto read_single_page;
2425 				}
2426 
2427 				ret = f2fs_is_compressed_cluster(inode, page->index);
2428 				if (ret < 0)
2429 					goto set_error_page;
2430 				else if (!ret) {
2431 					nc_cluster_idx =
2432 						page->index >> cc.log_cluster_size;
2433 					goto read_single_page;
2434 				}
2435 
2436 				nc_cluster_idx = NULL_CLUSTER;
2437 			}
2438 			ret = f2fs_init_compress_ctx(&cc);
2439 			if (ret)
2440 				goto set_error_page;
2441 
2442 			f2fs_compress_ctx_add_page(&cc, page);
2443 
2444 			goto next_page;
2445 		}
2446 read_single_page:
2447 #endif
2448 
2449 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2450 					&bio, &last_block_in_bio, rac);
2451 		if (ret) {
2452 #ifdef CONFIG_F2FS_FS_COMPRESSION
2453 set_error_page:
2454 #endif
2455 			zero_user_segment(page, 0, PAGE_SIZE);
2456 			unlock_page(page);
2457 		}
2458 #ifdef CONFIG_F2FS_FS_COMPRESSION
2459 next_page:
2460 #endif
2461 		if (rac)
2462 			put_page(page);
2463 
2464 #ifdef CONFIG_F2FS_FS_COMPRESSION
2465 		if (f2fs_compressed_file(inode)) {
2466 			/* last page */
2467 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2468 				ret = f2fs_read_multi_pages(&cc, &bio,
2469 							max_nr_pages,
2470 							&last_block_in_bio,
2471 							rac != NULL, false);
2472 				f2fs_destroy_compress_ctx(&cc, false);
2473 			}
2474 		}
2475 #endif
2476 	}
2477 	if (bio)
2478 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2479 	return ret;
2480 }
2481 
f2fs_read_data_page(struct file * file,struct page * page)2482 static int f2fs_read_data_page(struct file *file, struct page *page)
2483 {
2484 	struct inode *inode = page_file_mapping(page)->host;
2485 	int ret = -EAGAIN;
2486 
2487 	trace_f2fs_readpage(page, DATA);
2488 
2489 	if (!f2fs_is_compress_backend_ready(inode)) {
2490 		unlock_page(page);
2491 		return -EOPNOTSUPP;
2492 	}
2493 
2494 	/* If the file has inline data, try to read it directly */
2495 	if (f2fs_has_inline_data(inode))
2496 		ret = f2fs_read_inline_data(inode, page);
2497 	if (ret == -EAGAIN)
2498 		ret = f2fs_mpage_readpages(inode, NULL, page);
2499 	return ret;
2500 }
2501 
f2fs_readahead(struct readahead_control * rac)2502 static void f2fs_readahead(struct readahead_control *rac)
2503 {
2504 	struct inode *inode = rac->mapping->host;
2505 
2506 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2507 
2508 	if (!f2fs_is_compress_backend_ready(inode))
2509 		return;
2510 
2511 	/* If the file has inline data, skip readpages */
2512 	if (f2fs_has_inline_data(inode))
2513 		return;
2514 
2515 	f2fs_mpage_readpages(inode, rac, NULL);
2516 }
2517 
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2518 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2519 {
2520 	struct inode *inode = fio->page->mapping->host;
2521 	struct page *mpage, *page;
2522 	gfp_t gfp_flags = GFP_NOFS;
2523 
2524 	if (!f2fs_encrypted_file(inode))
2525 		return 0;
2526 
2527 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2528 
2529 	/* wait for GCed page writeback via META_MAPPING */
2530 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2531 
2532 	if (fscrypt_inode_uses_inline_crypto(inode))
2533 		return 0;
2534 
2535 retry_encrypt:
2536 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2537 					PAGE_SIZE, 0, gfp_flags);
2538 	if (IS_ERR(fio->encrypted_page)) {
2539 		/* flush pending IOs and wait for a while in the ENOMEM case */
2540 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2541 			f2fs_flush_merged_writes(fio->sbi);
2542 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2543 			gfp_flags |= __GFP_NOFAIL;
2544 			goto retry_encrypt;
2545 		}
2546 		return PTR_ERR(fio->encrypted_page);
2547 	}
2548 
2549 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2550 	if (mpage) {
2551 		if (PageUptodate(mpage))
2552 			memcpy(page_address(mpage),
2553 				page_address(fio->encrypted_page), PAGE_SIZE);
2554 		f2fs_put_page(mpage, 1);
2555 	}
2556 	return 0;
2557 }
2558 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2559 static inline bool check_inplace_update_policy(struct inode *inode,
2560 				struct f2fs_io_info *fio)
2561 {
2562 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2563 
2564 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2565 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2566 		return false;
2567 	if (IS_F2FS_IPU_FORCE(sbi))
2568 		return true;
2569 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2570 		return true;
2571 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2572 		return true;
2573 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2574 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2575 		return true;
2576 
2577 	/*
2578 	 * IPU for rewrite async pages
2579 	 */
2580 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2581 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2582 		return true;
2583 
2584 	/* this is only set during fdatasync */
2585 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2586 		return true;
2587 
2588 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2589 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2590 		return true;
2591 
2592 	return false;
2593 }
2594 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2595 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2596 {
2597 	/* swap file is migrating in aligned write mode */
2598 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2599 		return false;
2600 
2601 	if (f2fs_is_pinned_file(inode))
2602 		return true;
2603 
2604 	/* if this is cold file, we should overwrite to avoid fragmentation */
2605 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2606 		return true;
2607 
2608 	return check_inplace_update_policy(inode, fio);
2609 }
2610 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2611 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2612 {
2613 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2614 
2615 	/* The below cases were checked when setting it. */
2616 	if (f2fs_is_pinned_file(inode))
2617 		return false;
2618 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2619 		return true;
2620 	if (f2fs_lfs_mode(sbi))
2621 		return true;
2622 	if (S_ISDIR(inode->i_mode))
2623 		return true;
2624 	if (IS_NOQUOTA(inode))
2625 		return true;
2626 	if (f2fs_is_atomic_file(inode))
2627 		return true;
2628 
2629 	/* swap file is migrating in aligned write mode */
2630 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2631 		return true;
2632 
2633 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2634 		return true;
2635 
2636 	if (fio) {
2637 		if (page_private_gcing(fio->page))
2638 			return true;
2639 		if (page_private_dummy(fio->page))
2640 			return true;
2641 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2642 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2643 			return true;
2644 	}
2645 	return false;
2646 }
2647 
need_inplace_update(struct f2fs_io_info * fio)2648 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2649 {
2650 	struct inode *inode = fio->page->mapping->host;
2651 
2652 	if (f2fs_should_update_outplace(inode, fio))
2653 		return false;
2654 
2655 	return f2fs_should_update_inplace(inode, fio);
2656 }
2657 
f2fs_do_write_data_page(struct f2fs_io_info * fio)2658 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2659 {
2660 	struct page *page = fio->page;
2661 	struct inode *inode = page->mapping->host;
2662 	struct dnode_of_data dn;
2663 	struct node_info ni;
2664 	bool ipu_force = false;
2665 	int err = 0;
2666 
2667 	/* Use COW inode to make dnode_of_data for atomic write */
2668 	if (f2fs_is_atomic_file(inode))
2669 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2670 	else
2671 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2672 
2673 	if (need_inplace_update(fio) &&
2674 	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2675 						&fio->old_blkaddr)) {
2676 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2677 						DATA_GENERIC_ENHANCE)) {
2678 			f2fs_handle_error(fio->sbi,
2679 						ERROR_INVALID_BLKADDR);
2680 			return -EFSCORRUPTED;
2681 		}
2682 
2683 		ipu_force = true;
2684 		fio->need_lock = LOCK_DONE;
2685 		goto got_it;
2686 	}
2687 
2688 	/* Deadlock due to between page->lock and f2fs_lock_op */
2689 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2690 		return -EAGAIN;
2691 
2692 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2693 	if (err)
2694 		goto out;
2695 
2696 	fio->old_blkaddr = dn.data_blkaddr;
2697 
2698 	/* This page is already truncated */
2699 	if (fio->old_blkaddr == NULL_ADDR) {
2700 		ClearPageUptodate(page);
2701 		clear_page_private_gcing(page);
2702 		goto out_writepage;
2703 	}
2704 got_it:
2705 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2706 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2707 						DATA_GENERIC_ENHANCE)) {
2708 		err = -EFSCORRUPTED;
2709 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2710 		goto out_writepage;
2711 	}
2712 
2713 	/*
2714 	 * If current allocation needs SSR,
2715 	 * it had better in-place writes for updated data.
2716 	 */
2717 	if (ipu_force ||
2718 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2719 					need_inplace_update(fio))) {
2720 		err = f2fs_encrypt_one_page(fio);
2721 		if (err)
2722 			goto out_writepage;
2723 
2724 		set_page_writeback(page);
2725 		f2fs_put_dnode(&dn);
2726 		if (fio->need_lock == LOCK_REQ)
2727 			f2fs_unlock_op(fio->sbi);
2728 		err = f2fs_inplace_write_data(fio);
2729 		if (err) {
2730 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2731 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2732 			if (PageWriteback(page))
2733 				end_page_writeback(page);
2734 		} else {
2735 			set_inode_flag(inode, FI_UPDATE_WRITE);
2736 		}
2737 		trace_f2fs_do_write_data_page(fio->page, IPU);
2738 		return err;
2739 	}
2740 
2741 	if (fio->need_lock == LOCK_RETRY) {
2742 		if (!f2fs_trylock_op(fio->sbi)) {
2743 			err = -EAGAIN;
2744 			goto out_writepage;
2745 		}
2746 		fio->need_lock = LOCK_REQ;
2747 	}
2748 
2749 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2750 	if (err)
2751 		goto out_writepage;
2752 
2753 	fio->version = ni.version;
2754 
2755 	err = f2fs_encrypt_one_page(fio);
2756 	if (err)
2757 		goto out_writepage;
2758 
2759 	set_page_writeback(page);
2760 
2761 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2762 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2763 
2764 	/* LFS mode write path */
2765 	f2fs_outplace_write_data(&dn, fio);
2766 	trace_f2fs_do_write_data_page(page, OPU);
2767 	set_inode_flag(inode, FI_APPEND_WRITE);
2768 	if (page->index == 0)
2769 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2770 out_writepage:
2771 	f2fs_put_dnode(&dn);
2772 out:
2773 	if (fio->need_lock == LOCK_REQ)
2774 		f2fs_unlock_op(fio->sbi);
2775 	return err;
2776 }
2777 
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2778 int f2fs_write_single_data_page(struct page *page, int *submitted,
2779 				struct bio **bio,
2780 				sector_t *last_block,
2781 				struct writeback_control *wbc,
2782 				enum iostat_type io_type,
2783 				int compr_blocks,
2784 				bool allow_balance)
2785 {
2786 	struct inode *inode = page->mapping->host;
2787 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2788 	loff_t i_size = i_size_read(inode);
2789 	const pgoff_t end_index = ((unsigned long long)i_size)
2790 							>> PAGE_SHIFT;
2791 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2792 	unsigned offset = 0;
2793 	bool need_balance_fs = false;
2794 	int err = 0;
2795 	struct f2fs_io_info fio = {
2796 		.sbi = sbi,
2797 		.ino = inode->i_ino,
2798 		.type = DATA,
2799 		.op = REQ_OP_WRITE,
2800 		.op_flags = wbc_to_write_flags(wbc),
2801 		.old_blkaddr = NULL_ADDR,
2802 		.page = page,
2803 		.encrypted_page = NULL,
2804 		.submitted = 0,
2805 		.compr_blocks = compr_blocks,
2806 		.need_lock = LOCK_RETRY,
2807 		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2808 		.io_type = io_type,
2809 		.io_wbc = wbc,
2810 		.bio = bio,
2811 		.last_block = last_block,
2812 	};
2813 
2814 	trace_f2fs_writepage(page, DATA);
2815 
2816 	/* we should bypass data pages to proceed the kworker jobs */
2817 	if (unlikely(f2fs_cp_error(sbi))) {
2818 		mapping_set_error(page->mapping, -EIO);
2819 		/*
2820 		 * don't drop any dirty dentry pages for keeping lastest
2821 		 * directory structure.
2822 		 */
2823 		if (S_ISDIR(inode->i_mode) &&
2824 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2825 			goto redirty_out;
2826 		goto out;
2827 	}
2828 
2829 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2830 		goto redirty_out;
2831 
2832 	if (page->index < end_index ||
2833 			f2fs_verity_in_progress(inode) ||
2834 			compr_blocks)
2835 		goto write;
2836 
2837 	/*
2838 	 * If the offset is out-of-range of file size,
2839 	 * this page does not have to be written to disk.
2840 	 */
2841 	offset = i_size & (PAGE_SIZE - 1);
2842 	if ((page->index >= end_index + 1) || !offset)
2843 		goto out;
2844 
2845 	zero_user_segment(page, offset, PAGE_SIZE);
2846 write:
2847 	if (f2fs_is_drop_cache(inode))
2848 		goto out;
2849 
2850 	/* Dentry/quota blocks are controlled by checkpoint */
2851 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2852 		/*
2853 		 * We need to wait for node_write to avoid block allocation during
2854 		 * checkpoint. This can only happen to quota writes which can cause
2855 		 * the below discard race condition.
2856 		 */
2857 		if (IS_NOQUOTA(inode))
2858 			f2fs_down_read(&sbi->node_write);
2859 
2860 		fio.need_lock = LOCK_DONE;
2861 		err = f2fs_do_write_data_page(&fio);
2862 
2863 		if (IS_NOQUOTA(inode))
2864 			f2fs_up_read(&sbi->node_write);
2865 
2866 		goto done;
2867 	}
2868 
2869 	if (!wbc->for_reclaim)
2870 		need_balance_fs = true;
2871 	else if (has_not_enough_free_secs(sbi, 0, 0))
2872 		goto redirty_out;
2873 	else
2874 		set_inode_flag(inode, FI_HOT_DATA);
2875 
2876 	err = -EAGAIN;
2877 	if (f2fs_has_inline_data(inode)) {
2878 		err = f2fs_write_inline_data(inode, page);
2879 		if (!err)
2880 			goto out;
2881 	}
2882 
2883 	if (err == -EAGAIN) {
2884 		err = f2fs_do_write_data_page(&fio);
2885 		if (err == -EAGAIN) {
2886 			fio.need_lock = LOCK_REQ;
2887 			err = f2fs_do_write_data_page(&fio);
2888 		}
2889 	}
2890 
2891 	if (err) {
2892 		file_set_keep_isize(inode);
2893 	} else {
2894 		spin_lock(&F2FS_I(inode)->i_size_lock);
2895 		if (F2FS_I(inode)->last_disk_size < psize)
2896 			F2FS_I(inode)->last_disk_size = psize;
2897 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2898 	}
2899 
2900 done:
2901 	if (err && err != -ENOENT)
2902 		goto redirty_out;
2903 
2904 out:
2905 	inode_dec_dirty_pages(inode);
2906 	if (err) {
2907 		ClearPageUptodate(page);
2908 		clear_page_private_gcing(page);
2909 	}
2910 
2911 	if (wbc->for_reclaim) {
2912 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2913 		clear_inode_flag(inode, FI_HOT_DATA);
2914 		f2fs_remove_dirty_inode(inode);
2915 		submitted = NULL;
2916 	}
2917 	unlock_page(page);
2918 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2919 			!F2FS_I(inode)->wb_task && allow_balance)
2920 		f2fs_balance_fs(sbi, need_balance_fs);
2921 
2922 	if (unlikely(f2fs_cp_error(sbi))) {
2923 		f2fs_submit_merged_write(sbi, DATA);
2924 		if (bio && *bio)
2925 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2926 		submitted = NULL;
2927 	}
2928 
2929 	if (submitted)
2930 		*submitted = fio.submitted;
2931 
2932 	return 0;
2933 
2934 redirty_out:
2935 	redirty_page_for_writepage(wbc, page);
2936 	/*
2937 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2938 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2939 	 * file_write_and_wait_range() will see EIO error, which is critical
2940 	 * to return value of fsync() followed by atomic_write failure to user.
2941 	 */
2942 	if (!err || wbc->for_reclaim)
2943 		return AOP_WRITEPAGE_ACTIVATE;
2944 	unlock_page(page);
2945 	return err;
2946 }
2947 
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2948 static int f2fs_write_data_page(struct page *page,
2949 					struct writeback_control *wbc)
2950 {
2951 #ifdef CONFIG_F2FS_FS_COMPRESSION
2952 	struct inode *inode = page->mapping->host;
2953 
2954 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2955 		goto out;
2956 
2957 	if (f2fs_compressed_file(inode)) {
2958 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2959 			redirty_page_for_writepage(wbc, page);
2960 			return AOP_WRITEPAGE_ACTIVATE;
2961 		}
2962 	}
2963 out:
2964 #endif
2965 
2966 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2967 						wbc, FS_DATA_IO, 0, true);
2968 }
2969 
2970 /*
2971  * This function was copied from write_cache_pages from mm/page-writeback.c.
2972  * The major change is making write step of cold data page separately from
2973  * warm/hot data page.
2974  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2975 static int f2fs_write_cache_pages(struct address_space *mapping,
2976 					struct writeback_control *wbc,
2977 					enum iostat_type io_type)
2978 {
2979 	int ret = 0;
2980 	int done = 0, retry = 0;
2981 	struct page *pages[F2FS_ONSTACK_PAGES];
2982 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2983 	struct bio *bio = NULL;
2984 	sector_t last_block;
2985 #ifdef CONFIG_F2FS_FS_COMPRESSION
2986 	struct inode *inode = mapping->host;
2987 	struct compress_ctx cc = {
2988 		.inode = inode,
2989 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2990 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2991 		.cluster_idx = NULL_CLUSTER,
2992 		.rpages = NULL,
2993 		.nr_rpages = 0,
2994 		.cpages = NULL,
2995 		.valid_nr_cpages = 0,
2996 		.rbuf = NULL,
2997 		.cbuf = NULL,
2998 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2999 		.private = NULL,
3000 	};
3001 #endif
3002 	int nr_pages;
3003 	pgoff_t index;
3004 	pgoff_t end;		/* Inclusive */
3005 	pgoff_t done_index;
3006 	int range_whole = 0;
3007 	xa_mark_t tag;
3008 	int nwritten = 0;
3009 	int submitted = 0;
3010 	int i;
3011 
3012 	if (get_dirty_pages(mapping->host) <=
3013 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3014 		set_inode_flag(mapping->host, FI_HOT_DATA);
3015 	else
3016 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3017 
3018 	if (wbc->range_cyclic) {
3019 		index = mapping->writeback_index; /* prev offset */
3020 		end = -1;
3021 	} else {
3022 		index = wbc->range_start >> PAGE_SHIFT;
3023 		end = wbc->range_end >> PAGE_SHIFT;
3024 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3025 			range_whole = 1;
3026 	}
3027 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3028 		tag = PAGECACHE_TAG_TOWRITE;
3029 	else
3030 		tag = PAGECACHE_TAG_DIRTY;
3031 retry:
3032 	retry = 0;
3033 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3034 		tag_pages_for_writeback(mapping, index, end);
3035 	done_index = index;
3036 	while (!done && !retry && (index <= end)) {
3037 		nr_pages = find_get_pages_range_tag(mapping, &index, end,
3038 				tag, F2FS_ONSTACK_PAGES, pages);
3039 		if (nr_pages == 0)
3040 			break;
3041 
3042 		for (i = 0; i < nr_pages; i++) {
3043 			struct page *page = pages[i];
3044 			bool need_readd;
3045 readd:
3046 			need_readd = false;
3047 #ifdef CONFIG_F2FS_FS_COMPRESSION
3048 			if (f2fs_compressed_file(inode)) {
3049 				void *fsdata = NULL;
3050 				struct page *pagep;
3051 				int ret2;
3052 
3053 				ret = f2fs_init_compress_ctx(&cc);
3054 				if (ret) {
3055 					done = 1;
3056 					break;
3057 				}
3058 
3059 				if (!f2fs_cluster_can_merge_page(&cc,
3060 								page->index)) {
3061 					ret = f2fs_write_multi_pages(&cc,
3062 						&submitted, wbc, io_type);
3063 					if (!ret)
3064 						need_readd = true;
3065 					goto result;
3066 				}
3067 
3068 				if (unlikely(f2fs_cp_error(sbi)))
3069 					goto lock_page;
3070 
3071 				if (!f2fs_cluster_is_empty(&cc))
3072 					goto lock_page;
3073 
3074 				if (f2fs_all_cluster_page_ready(&cc,
3075 					pages, i, nr_pages, true))
3076 					goto lock_page;
3077 
3078 				ret2 = f2fs_prepare_compress_overwrite(
3079 							inode, &pagep,
3080 							page->index, &fsdata);
3081 				if (ret2 < 0) {
3082 					ret = ret2;
3083 					done = 1;
3084 					break;
3085 				} else if (ret2 &&
3086 					(!f2fs_compress_write_end(inode,
3087 						fsdata, page->index, 1) ||
3088 					 !f2fs_all_cluster_page_ready(&cc,
3089 						pages, i, nr_pages, false))) {
3090 					retry = 1;
3091 					break;
3092 				}
3093 			}
3094 #endif
3095 			/* give a priority to WB_SYNC threads */
3096 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3097 					wbc->sync_mode == WB_SYNC_NONE) {
3098 				done = 1;
3099 				break;
3100 			}
3101 #ifdef CONFIG_F2FS_FS_COMPRESSION
3102 lock_page:
3103 #endif
3104 			done_index = page->index;
3105 retry_write:
3106 			lock_page(page);
3107 
3108 			if (unlikely(page->mapping != mapping)) {
3109 continue_unlock:
3110 				unlock_page(page);
3111 				continue;
3112 			}
3113 
3114 			if (!PageDirty(page)) {
3115 				/* someone wrote it for us */
3116 				goto continue_unlock;
3117 			}
3118 
3119 			if (PageWriteback(page)) {
3120 				if (wbc->sync_mode == WB_SYNC_NONE)
3121 					goto continue_unlock;
3122 				f2fs_wait_on_page_writeback(page, DATA, true, true);
3123 			}
3124 
3125 			if (!clear_page_dirty_for_io(page))
3126 				goto continue_unlock;
3127 
3128 #ifdef CONFIG_F2FS_FS_COMPRESSION
3129 			if (f2fs_compressed_file(inode)) {
3130 				get_page(page);
3131 				f2fs_compress_ctx_add_page(&cc, page);
3132 				continue;
3133 			}
3134 #endif
3135 			ret = f2fs_write_single_data_page(page, &submitted,
3136 					&bio, &last_block, wbc, io_type,
3137 					0, true);
3138 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3139 				unlock_page(page);
3140 #ifdef CONFIG_F2FS_FS_COMPRESSION
3141 result:
3142 #endif
3143 			nwritten += submitted;
3144 			wbc->nr_to_write -= submitted;
3145 
3146 			if (unlikely(ret)) {
3147 				/*
3148 				 * keep nr_to_write, since vfs uses this to
3149 				 * get # of written pages.
3150 				 */
3151 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3152 					ret = 0;
3153 					goto next;
3154 				} else if (ret == -EAGAIN) {
3155 					ret = 0;
3156 					if (wbc->sync_mode == WB_SYNC_ALL) {
3157 						f2fs_io_schedule_timeout(
3158 							DEFAULT_IO_TIMEOUT);
3159 						goto retry_write;
3160 					}
3161 					goto next;
3162 				}
3163 				done_index = page->index + 1;
3164 				done = 1;
3165 				break;
3166 			}
3167 
3168 			if (wbc->nr_to_write <= 0 &&
3169 					wbc->sync_mode == WB_SYNC_NONE) {
3170 				done = 1;
3171 				break;
3172 			}
3173 next:
3174 			if (need_readd)
3175 				goto readd;
3176 		}
3177 		release_pages(pages, nr_pages);
3178 		cond_resched();
3179 	}
3180 #ifdef CONFIG_F2FS_FS_COMPRESSION
3181 	/* flush remained pages in compress cluster */
3182 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3183 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3184 		nwritten += submitted;
3185 		wbc->nr_to_write -= submitted;
3186 		if (ret) {
3187 			done = 1;
3188 			retry = 0;
3189 		}
3190 	}
3191 	if (f2fs_compressed_file(inode))
3192 		f2fs_destroy_compress_ctx(&cc, false);
3193 #endif
3194 	if (retry) {
3195 		index = 0;
3196 		end = -1;
3197 		goto retry;
3198 	}
3199 	if (wbc->range_cyclic && !done)
3200 		done_index = 0;
3201 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3202 		mapping->writeback_index = done_index;
3203 
3204 	if (nwritten)
3205 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3206 								NULL, 0, DATA);
3207 	/* submit cached bio of IPU write */
3208 	if (bio)
3209 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3210 
3211 	return ret;
3212 }
3213 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3214 static inline bool __should_serialize_io(struct inode *inode,
3215 					struct writeback_control *wbc)
3216 {
3217 	/* to avoid deadlock in path of data flush */
3218 	if (F2FS_I(inode)->wb_task)
3219 		return false;
3220 
3221 	if (!S_ISREG(inode->i_mode))
3222 		return false;
3223 	if (IS_NOQUOTA(inode))
3224 		return false;
3225 
3226 	if (f2fs_need_compress_data(inode))
3227 		return true;
3228 	if (wbc->sync_mode != WB_SYNC_ALL)
3229 		return true;
3230 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3231 		return true;
3232 	return false;
3233 }
3234 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3235 static int __f2fs_write_data_pages(struct address_space *mapping,
3236 						struct writeback_control *wbc,
3237 						enum iostat_type io_type)
3238 {
3239 	struct inode *inode = mapping->host;
3240 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3241 	struct blk_plug plug;
3242 	int ret;
3243 	bool locked = false;
3244 
3245 	/* deal with chardevs and other special file */
3246 	if (!mapping->a_ops->writepage)
3247 		return 0;
3248 
3249 	/* skip writing if there is no dirty page in this inode */
3250 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3251 		return 0;
3252 
3253 	/* during POR, we don't need to trigger writepage at all. */
3254 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3255 		goto skip_write;
3256 
3257 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3258 			wbc->sync_mode == WB_SYNC_NONE &&
3259 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3260 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3261 		goto skip_write;
3262 
3263 	/* skip writing in file defragment preparing stage */
3264 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3265 		goto skip_write;
3266 
3267 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3268 
3269 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3270 	if (wbc->sync_mode == WB_SYNC_ALL)
3271 		atomic_inc(&sbi->wb_sync_req[DATA]);
3272 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3273 		/* to avoid potential deadlock */
3274 		if (current->plug)
3275 			blk_finish_plug(current->plug);
3276 		goto skip_write;
3277 	}
3278 
3279 	if (__should_serialize_io(inode, wbc)) {
3280 		mutex_lock(&sbi->writepages);
3281 		locked = true;
3282 	}
3283 
3284 	blk_start_plug(&plug);
3285 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3286 	blk_finish_plug(&plug);
3287 
3288 	if (locked)
3289 		mutex_unlock(&sbi->writepages);
3290 
3291 	if (wbc->sync_mode == WB_SYNC_ALL)
3292 		atomic_dec(&sbi->wb_sync_req[DATA]);
3293 	/*
3294 	 * if some pages were truncated, we cannot guarantee its mapping->host
3295 	 * to detect pending bios.
3296 	 */
3297 
3298 	f2fs_remove_dirty_inode(inode);
3299 	return ret;
3300 
3301 skip_write:
3302 	wbc->pages_skipped += get_dirty_pages(inode);
3303 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3304 	return 0;
3305 }
3306 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3307 static int f2fs_write_data_pages(struct address_space *mapping,
3308 			    struct writeback_control *wbc)
3309 {
3310 	struct inode *inode = mapping->host;
3311 
3312 	return __f2fs_write_data_pages(mapping, wbc,
3313 			F2FS_I(inode)->cp_task == current ?
3314 			FS_CP_DATA_IO : FS_DATA_IO);
3315 }
3316 
f2fs_write_failed(struct inode * inode,loff_t to)3317 void f2fs_write_failed(struct inode *inode, loff_t to)
3318 {
3319 	loff_t i_size = i_size_read(inode);
3320 
3321 	if (IS_NOQUOTA(inode))
3322 		return;
3323 
3324 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3325 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3326 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3327 		filemap_invalidate_lock(inode->i_mapping);
3328 
3329 		truncate_pagecache(inode, i_size);
3330 		f2fs_truncate_blocks(inode, i_size, true);
3331 
3332 		filemap_invalidate_unlock(inode->i_mapping);
3333 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3334 	}
3335 }
3336 
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3337 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3338 			struct page *page, loff_t pos, unsigned len,
3339 			block_t *blk_addr, bool *node_changed)
3340 {
3341 	struct inode *inode = page->mapping->host;
3342 	pgoff_t index = page->index;
3343 	struct dnode_of_data dn;
3344 	struct page *ipage;
3345 	bool locked = false;
3346 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3347 	int err = 0;
3348 
3349 	/*
3350 	 * If a whole page is being written and we already preallocated all the
3351 	 * blocks, then there is no need to get a block address now.
3352 	 */
3353 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3354 		return 0;
3355 
3356 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3357 	if (f2fs_has_inline_data(inode)) {
3358 		if (pos + len > MAX_INLINE_DATA(inode))
3359 			flag = F2FS_GET_BLOCK_DEFAULT;
3360 		f2fs_map_lock(sbi, flag);
3361 		locked = true;
3362 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3363 		f2fs_map_lock(sbi, flag);
3364 		locked = true;
3365 	}
3366 
3367 restart:
3368 	/* check inline_data */
3369 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3370 	if (IS_ERR(ipage)) {
3371 		err = PTR_ERR(ipage);
3372 		goto unlock_out;
3373 	}
3374 
3375 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3376 
3377 	if (f2fs_has_inline_data(inode)) {
3378 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3379 			f2fs_do_read_inline_data(page, ipage);
3380 			set_inode_flag(inode, FI_DATA_EXIST);
3381 			if (inode->i_nlink)
3382 				set_page_private_inline(ipage);
3383 			goto out;
3384 		}
3385 		err = f2fs_convert_inline_page(&dn, page);
3386 		if (err || dn.data_blkaddr != NULL_ADDR)
3387 			goto out;
3388 	}
3389 
3390 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3391 						 &dn.data_blkaddr)) {
3392 		if (locked) {
3393 			err = f2fs_reserve_block(&dn, index);
3394 			goto out;
3395 		}
3396 
3397 		/* hole case */
3398 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3399 		if (!err && dn.data_blkaddr != NULL_ADDR)
3400 			goto out;
3401 		f2fs_put_dnode(&dn);
3402 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3403 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3404 		locked = true;
3405 		goto restart;
3406 	}
3407 out:
3408 	if (!err) {
3409 		/* convert_inline_page can make node_changed */
3410 		*blk_addr = dn.data_blkaddr;
3411 		*node_changed = dn.node_changed;
3412 	}
3413 	f2fs_put_dnode(&dn);
3414 unlock_out:
3415 	if (locked)
3416 		f2fs_map_unlock(sbi, flag);
3417 	return err;
3418 }
3419 
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3420 static int __find_data_block(struct inode *inode, pgoff_t index,
3421 				block_t *blk_addr)
3422 {
3423 	struct dnode_of_data dn;
3424 	struct page *ipage;
3425 	int err = 0;
3426 
3427 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3428 	if (IS_ERR(ipage))
3429 		return PTR_ERR(ipage);
3430 
3431 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3432 
3433 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3434 						 &dn.data_blkaddr)) {
3435 		/* hole case */
3436 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3437 		if (err) {
3438 			dn.data_blkaddr = NULL_ADDR;
3439 			err = 0;
3440 		}
3441 	}
3442 	*blk_addr = dn.data_blkaddr;
3443 	f2fs_put_dnode(&dn);
3444 	return err;
3445 }
3446 
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3447 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3448 				block_t *blk_addr, bool *node_changed)
3449 {
3450 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3451 	struct dnode_of_data dn;
3452 	struct page *ipage;
3453 	int err = 0;
3454 
3455 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3456 
3457 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3458 	if (IS_ERR(ipage)) {
3459 		err = PTR_ERR(ipage);
3460 		goto unlock_out;
3461 	}
3462 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3463 
3464 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3465 						&dn.data_blkaddr))
3466 		err = f2fs_reserve_block(&dn, index);
3467 
3468 	*blk_addr = dn.data_blkaddr;
3469 	*node_changed = dn.node_changed;
3470 	f2fs_put_dnode(&dn);
3471 
3472 unlock_out:
3473 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3474 	return err;
3475 }
3476 
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3477 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3478 			struct page *page, loff_t pos, unsigned int len,
3479 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3480 {
3481 	struct inode *inode = page->mapping->host;
3482 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3483 	pgoff_t index = page->index;
3484 	int err = 0;
3485 	block_t ori_blk_addr = NULL_ADDR;
3486 
3487 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3488 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3489 		goto reserve_block;
3490 
3491 	/* Look for the block in COW inode first */
3492 	err = __find_data_block(cow_inode, index, blk_addr);
3493 	if (err) {
3494 		return err;
3495 	} else if (*blk_addr != NULL_ADDR) {
3496 		*use_cow = true;
3497 		return 0;
3498 	}
3499 
3500 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3501 		goto reserve_block;
3502 
3503 	/* Look for the block in the original inode */
3504 	err = __find_data_block(inode, index, &ori_blk_addr);
3505 	if (err)
3506 		return err;
3507 
3508 reserve_block:
3509 	/* Finally, we should reserve a new block in COW inode for the update */
3510 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3511 	if (err)
3512 		return err;
3513 	inc_atomic_write_cnt(inode);
3514 
3515 	if (ori_blk_addr != NULL_ADDR)
3516 		*blk_addr = ori_blk_addr;
3517 	return 0;
3518 }
3519 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3520 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3521 		loff_t pos, unsigned len, unsigned flags,
3522 		struct page **pagep, void **fsdata)
3523 {
3524 	struct inode *inode = mapping->host;
3525 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3526 	struct page *page = NULL;
3527 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3528 	bool need_balance = false;
3529 	bool use_cow = false;
3530 	block_t blkaddr = NULL_ADDR;
3531 	int err = 0;
3532 
3533 	trace_f2fs_write_begin(inode, pos, len, flags);
3534 
3535 	if (!f2fs_is_checkpoint_ready(sbi)) {
3536 		err = -ENOSPC;
3537 		goto fail;
3538 	}
3539 
3540 	/*
3541 	 * We should check this at this moment to avoid deadlock on inode page
3542 	 * and #0 page. The locking rule for inline_data conversion should be:
3543 	 * lock_page(page #0) -> lock_page(inode_page)
3544 	 */
3545 	if (index != 0) {
3546 		err = f2fs_convert_inline_inode(inode);
3547 		if (err)
3548 			goto fail;
3549 	}
3550 
3551 #ifdef CONFIG_F2FS_FS_COMPRESSION
3552 	if (f2fs_compressed_file(inode)) {
3553 		int ret;
3554 
3555 		*fsdata = NULL;
3556 
3557 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3558 			goto repeat;
3559 
3560 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3561 							index, fsdata);
3562 		if (ret < 0) {
3563 			err = ret;
3564 			goto fail;
3565 		} else if (ret) {
3566 			return 0;
3567 		}
3568 	}
3569 #endif
3570 
3571 repeat:
3572 	/*
3573 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3574 	 * wait_for_stable_page. Will wait that below with our IO control.
3575 	 */
3576 	page = f2fs_pagecache_get_page(mapping, index,
3577 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3578 	if (!page) {
3579 		err = -ENOMEM;
3580 		goto fail;
3581 	}
3582 
3583 	/* TODO: cluster can be compressed due to race with .writepage */
3584 
3585 	*pagep = page;
3586 
3587 	if (f2fs_is_atomic_file(inode))
3588 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3589 					&blkaddr, &need_balance, &use_cow);
3590 	else
3591 		err = prepare_write_begin(sbi, page, pos, len,
3592 					&blkaddr, &need_balance);
3593 	if (err)
3594 		goto fail;
3595 
3596 	if (need_balance && !IS_NOQUOTA(inode) &&
3597 			has_not_enough_free_secs(sbi, 0, 0)) {
3598 		unlock_page(page);
3599 		f2fs_balance_fs(sbi, true);
3600 		lock_page(page);
3601 		if (page->mapping != mapping) {
3602 			/* The page got truncated from under us */
3603 			f2fs_put_page(page, 1);
3604 			goto repeat;
3605 		}
3606 	}
3607 
3608 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3609 
3610 	if (len == PAGE_SIZE || PageUptodate(page))
3611 		return 0;
3612 
3613 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3614 	    !f2fs_verity_in_progress(inode)) {
3615 		zero_user_segment(page, len, PAGE_SIZE);
3616 		return 0;
3617 	}
3618 
3619 	if (blkaddr == NEW_ADDR) {
3620 		zero_user_segment(page, 0, PAGE_SIZE);
3621 		SetPageUptodate(page);
3622 	} else {
3623 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3624 				DATA_GENERIC_ENHANCE_READ)) {
3625 			err = -EFSCORRUPTED;
3626 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3627 			goto fail;
3628 		}
3629 		err = f2fs_submit_page_read(use_cow ?
3630 				F2FS_I(inode)->cow_inode : inode, page,
3631 				blkaddr, 0, true);
3632 		if (err)
3633 			goto fail;
3634 
3635 		lock_page(page);
3636 		if (unlikely(page->mapping != mapping)) {
3637 			f2fs_put_page(page, 1);
3638 			goto repeat;
3639 		}
3640 		if (unlikely(!PageUptodate(page))) {
3641 			err = -EIO;
3642 			goto fail;
3643 		}
3644 	}
3645 	return 0;
3646 
3647 fail:
3648 	f2fs_put_page(page, 1);
3649 	f2fs_write_failed(inode, pos + len);
3650 	return err;
3651 }
3652 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3653 static int f2fs_write_end(struct file *file,
3654 			struct address_space *mapping,
3655 			loff_t pos, unsigned len, unsigned copied,
3656 			struct page *page, void *fsdata)
3657 {
3658 	struct inode *inode = page->mapping->host;
3659 
3660 	trace_f2fs_write_end(inode, pos, len, copied);
3661 
3662 	/*
3663 	 * This should be come from len == PAGE_SIZE, and we expect copied
3664 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3665 	 * let generic_perform_write() try to copy data again through copied=0.
3666 	 */
3667 	if (!PageUptodate(page)) {
3668 		if (unlikely(copied != len))
3669 			copied = 0;
3670 		else
3671 			SetPageUptodate(page);
3672 	}
3673 
3674 #ifdef CONFIG_F2FS_FS_COMPRESSION
3675 	/* overwrite compressed file */
3676 	if (f2fs_compressed_file(inode) && fsdata) {
3677 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3678 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3679 
3680 		if (pos + copied > i_size_read(inode) &&
3681 				!f2fs_verity_in_progress(inode))
3682 			f2fs_i_size_write(inode, pos + copied);
3683 		return copied;
3684 	}
3685 #endif
3686 
3687 	if (!copied)
3688 		goto unlock_out;
3689 
3690 	set_page_dirty(page);
3691 
3692 	if (pos + copied > i_size_read(inode) &&
3693 	    !f2fs_verity_in_progress(inode)) {
3694 		f2fs_i_size_write(inode, pos + copied);
3695 		if (f2fs_is_atomic_file(inode))
3696 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3697 					pos + copied);
3698 	}
3699 unlock_out:
3700 	f2fs_put_page(page, 1);
3701 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3702 	return copied;
3703 }
3704 
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3705 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3706 							unsigned int length)
3707 {
3708 	struct inode *inode = page->mapping->host;
3709 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3710 
3711 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3712 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3713 		return;
3714 
3715 	if (PageDirty(page)) {
3716 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3717 			dec_page_count(sbi, F2FS_DIRTY_META);
3718 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3719 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3720 		} else {
3721 			inode_dec_dirty_pages(inode);
3722 			f2fs_remove_dirty_inode(inode);
3723 		}
3724 	}
3725 	clear_page_private_all(page);
3726 }
3727 
f2fs_release_page(struct page * page,gfp_t wait)3728 int f2fs_release_page(struct page *page, gfp_t wait)
3729 {
3730 	/* If this is dirty page, keep PagePrivate */
3731 	if (PageDirty(page))
3732 		return 0;
3733 
3734 	clear_page_private_all(page);
3735 	return 1;
3736 }
3737 
f2fs_set_data_page_dirty(struct page * page)3738 static int f2fs_set_data_page_dirty(struct page *page)
3739 {
3740 	struct inode *inode = page_file_mapping(page)->host;
3741 
3742 	trace_f2fs_set_page_dirty(page, DATA);
3743 
3744 	if (!PageUptodate(page))
3745 		SetPageUptodate(page);
3746 	if (PageSwapCache(page))
3747 		return __set_page_dirty_nobuffers(page);
3748 
3749 	if (__set_page_dirty_nobuffers(page)) {
3750 		f2fs_update_dirty_page(inode, page);
3751 		return 1;
3752 	}
3753 	return 0;
3754 }
3755 
3756 
f2fs_bmap_compress(struct inode * inode,sector_t block)3757 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3758 {
3759 #ifdef CONFIG_F2FS_FS_COMPRESSION
3760 	struct dnode_of_data dn;
3761 	sector_t start_idx, blknr = 0;
3762 	int ret;
3763 
3764 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3765 
3766 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3767 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3768 	if (ret)
3769 		return 0;
3770 
3771 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3772 		dn.ofs_in_node += block - start_idx;
3773 		blknr = f2fs_data_blkaddr(&dn);
3774 		if (!__is_valid_data_blkaddr(blknr))
3775 			blknr = 0;
3776 	}
3777 
3778 	f2fs_put_dnode(&dn);
3779 	return blknr;
3780 #else
3781 	return 0;
3782 #endif
3783 }
3784 
3785 
f2fs_bmap(struct address_space * mapping,sector_t block)3786 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3787 {
3788 	struct inode *inode = mapping->host;
3789 	sector_t blknr = 0;
3790 
3791 	if (f2fs_has_inline_data(inode))
3792 		goto out;
3793 
3794 	/* make sure allocating whole blocks */
3795 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3796 		filemap_write_and_wait(mapping);
3797 
3798 	/* Block number less than F2FS MAX BLOCKS */
3799 	if (unlikely(block >= max_file_blocks(inode)))
3800 		goto out;
3801 
3802 	if (f2fs_compressed_file(inode)) {
3803 		blknr = f2fs_bmap_compress(inode, block);
3804 	} else {
3805 		struct f2fs_map_blocks map;
3806 
3807 		memset(&map, 0, sizeof(map));
3808 		map.m_lblk = block;
3809 		map.m_len = 1;
3810 		map.m_next_pgofs = NULL;
3811 		map.m_seg_type = NO_CHECK_TYPE;
3812 
3813 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3814 			blknr = map.m_pblk;
3815 	}
3816 out:
3817 	trace_f2fs_bmap(inode, block, blknr);
3818 	return blknr;
3819 }
3820 
3821 #ifdef CONFIG_MIGRATION
3822 #include <linux/migrate.h>
3823 
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3824 int f2fs_migrate_page(struct address_space *mapping,
3825 		struct page *newpage, struct page *page, enum migrate_mode mode)
3826 {
3827 	int rc, extra_count = 0;
3828 
3829 	BUG_ON(PageWriteback(page));
3830 
3831 	rc = migrate_page_move_mapping(mapping, newpage,
3832 				page, extra_count);
3833 	if (rc != MIGRATEPAGE_SUCCESS)
3834 		return rc;
3835 
3836 	/* guarantee to start from no stale private field */
3837 	set_page_private(newpage, 0);
3838 	if (PagePrivate(page)) {
3839 		set_page_private(newpage, page_private(page));
3840 		SetPagePrivate(newpage);
3841 		get_page(newpage);
3842 
3843 		set_page_private(page, 0);
3844 		ClearPagePrivate(page);
3845 		put_page(page);
3846 	}
3847 
3848 	if (mode != MIGRATE_SYNC_NO_COPY)
3849 		migrate_page_copy(newpage, page);
3850 	else
3851 		migrate_page_states(newpage, page);
3852 
3853 	return MIGRATEPAGE_SUCCESS;
3854 }
3855 #endif
3856 
3857 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3858 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3859 							unsigned int blkcnt)
3860 {
3861 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3862 	unsigned int blkofs;
3863 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3864 	unsigned int secidx = start_blk / blk_per_sec;
3865 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3866 	int ret = 0;
3867 
3868 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3869 	filemap_invalidate_lock(inode->i_mapping);
3870 
3871 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3872 	set_inode_flag(inode, FI_OPU_WRITE);
3873 
3874 	for (; secidx < end_sec; secidx++) {
3875 		f2fs_down_write(&sbi->pin_sem);
3876 
3877 		f2fs_lock_op(sbi);
3878 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3879 		f2fs_unlock_op(sbi);
3880 
3881 		set_inode_flag(inode, FI_SKIP_WRITES);
3882 
3883 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3884 			struct page *page;
3885 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3886 
3887 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3888 			if (IS_ERR(page)) {
3889 				f2fs_up_write(&sbi->pin_sem);
3890 				ret = PTR_ERR(page);
3891 				goto done;
3892 			}
3893 
3894 			set_page_dirty(page);
3895 			f2fs_put_page(page, 1);
3896 		}
3897 
3898 		clear_inode_flag(inode, FI_SKIP_WRITES);
3899 
3900 		ret = filemap_fdatawrite(inode->i_mapping);
3901 
3902 		f2fs_up_write(&sbi->pin_sem);
3903 
3904 		if (ret)
3905 			break;
3906 	}
3907 
3908 done:
3909 	clear_inode_flag(inode, FI_SKIP_WRITES);
3910 	clear_inode_flag(inode, FI_OPU_WRITE);
3911 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3912 
3913 	filemap_invalidate_unlock(inode->i_mapping);
3914 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3915 
3916 	return ret;
3917 }
3918 
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3919 static int check_swap_activate(struct swap_info_struct *sis,
3920 				struct file *swap_file, sector_t *span)
3921 {
3922 	struct address_space *mapping = swap_file->f_mapping;
3923 	struct inode *inode = mapping->host;
3924 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3925 	sector_t cur_lblock;
3926 	sector_t last_lblock;
3927 	sector_t pblock;
3928 	sector_t lowest_pblock = -1;
3929 	sector_t highest_pblock = 0;
3930 	int nr_extents = 0;
3931 	unsigned long nr_pblocks;
3932 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3933 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3934 	unsigned int not_aligned = 0;
3935 	int ret = 0;
3936 
3937 	/*
3938 	 * Map all the blocks into the extent list.  This code doesn't try
3939 	 * to be very smart.
3940 	 */
3941 	cur_lblock = 0;
3942 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3943 
3944 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3945 		struct f2fs_map_blocks map;
3946 retry:
3947 		cond_resched();
3948 
3949 		memset(&map, 0, sizeof(map));
3950 		map.m_lblk = cur_lblock;
3951 		map.m_len = last_lblock - cur_lblock;
3952 		map.m_next_pgofs = NULL;
3953 		map.m_next_extent = NULL;
3954 		map.m_seg_type = NO_CHECK_TYPE;
3955 		map.m_may_create = false;
3956 
3957 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3958 		if (ret)
3959 			goto out;
3960 
3961 		/* hole */
3962 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3963 			f2fs_err(sbi, "Swapfile has holes");
3964 			ret = -EINVAL;
3965 			goto out;
3966 		}
3967 
3968 		pblock = map.m_pblk;
3969 		nr_pblocks = map.m_len;
3970 
3971 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3972 				nr_pblocks & sec_blks_mask) {
3973 			not_aligned++;
3974 
3975 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3976 			if (cur_lblock + nr_pblocks > sis->max)
3977 				nr_pblocks -= blks_per_sec;
3978 
3979 			if (!nr_pblocks) {
3980 				/* this extent is last one */
3981 				nr_pblocks = map.m_len;
3982 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3983 				goto next;
3984 			}
3985 
3986 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3987 							nr_pblocks);
3988 			if (ret)
3989 				goto out;
3990 			goto retry;
3991 		}
3992 next:
3993 		if (cur_lblock + nr_pblocks >= sis->max)
3994 			nr_pblocks = sis->max - cur_lblock;
3995 
3996 		if (cur_lblock) {	/* exclude the header page */
3997 			if (pblock < lowest_pblock)
3998 				lowest_pblock = pblock;
3999 			if (pblock + nr_pblocks - 1 > highest_pblock)
4000 				highest_pblock = pblock + nr_pblocks - 1;
4001 		}
4002 
4003 		/*
4004 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4005 		 */
4006 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4007 		if (ret < 0)
4008 			goto out;
4009 		nr_extents += ret;
4010 		cur_lblock += nr_pblocks;
4011 	}
4012 	ret = nr_extents;
4013 	*span = 1 + highest_pblock - lowest_pblock;
4014 	if (cur_lblock == 0)
4015 		cur_lblock = 1;	/* force Empty message */
4016 	sis->max = cur_lblock;
4017 	sis->pages = cur_lblock - 1;
4018 	sis->highest_bit = cur_lblock - 1;
4019 out:
4020 	if (not_aligned)
4021 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4022 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4023 	return ret;
4024 }
4025 
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4026 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4027 				sector_t *span)
4028 {
4029 	struct inode *inode = file_inode(file);
4030 	int ret;
4031 
4032 	if (!S_ISREG(inode->i_mode))
4033 		return -EINVAL;
4034 
4035 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4036 		return -EROFS;
4037 
4038 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4039 		f2fs_err(F2FS_I_SB(inode),
4040 			"Swapfile not supported in LFS mode");
4041 		return -EINVAL;
4042 	}
4043 
4044 	ret = f2fs_convert_inline_inode(inode);
4045 	if (ret)
4046 		return ret;
4047 
4048 	if (!f2fs_disable_compressed_file(inode))
4049 		return -EINVAL;
4050 
4051 	f2fs_precache_extents(inode);
4052 
4053 	ret = check_swap_activate(sis, file, span);
4054 	if (ret < 0)
4055 		return ret;
4056 
4057 	stat_inc_swapfile_inode(inode);
4058 	set_inode_flag(inode, FI_PIN_FILE);
4059 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4060 	return ret;
4061 }
4062 
f2fs_swap_deactivate(struct file * file)4063 static void f2fs_swap_deactivate(struct file *file)
4064 {
4065 	struct inode *inode = file_inode(file);
4066 
4067 	stat_dec_swapfile_inode(inode);
4068 	clear_inode_flag(inode, FI_PIN_FILE);
4069 }
4070 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4071 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4072 				sector_t *span)
4073 {
4074 	return -EOPNOTSUPP;
4075 }
4076 
f2fs_swap_deactivate(struct file * file)4077 static void f2fs_swap_deactivate(struct file *file)
4078 {
4079 }
4080 #endif
4081 
4082 const struct address_space_operations f2fs_dblock_aops = {
4083 	.readpage	= f2fs_read_data_page,
4084 	.readahead	= f2fs_readahead,
4085 	.writepage	= f2fs_write_data_page,
4086 	.writepages	= f2fs_write_data_pages,
4087 	.write_begin	= f2fs_write_begin,
4088 	.write_end	= f2fs_write_end,
4089 	.set_page_dirty	= f2fs_set_data_page_dirty,
4090 	.invalidatepage	= f2fs_invalidate_page,
4091 	.releasepage	= f2fs_release_page,
4092 	.direct_IO	= noop_direct_IO,
4093 	.bmap		= f2fs_bmap,
4094 	.swap_activate  = f2fs_swap_activate,
4095 	.swap_deactivate = f2fs_swap_deactivate,
4096 #ifdef CONFIG_MIGRATION
4097 	.migratepage    = f2fs_migrate_page,
4098 #endif
4099 };
4100 
f2fs_clear_page_cache_dirty_tag(struct page * page)4101 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4102 {
4103 	struct address_space *mapping = page_mapping(page);
4104 	unsigned long flags;
4105 
4106 	xa_lock_irqsave(&mapping->i_pages, flags);
4107 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4108 						PAGECACHE_TAG_DIRTY);
4109 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4110 }
4111 
f2fs_init_post_read_processing(void)4112 int __init f2fs_init_post_read_processing(void)
4113 {
4114 	bio_post_read_ctx_cache =
4115 		kmem_cache_create("f2fs_bio_post_read_ctx",
4116 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4117 	if (!bio_post_read_ctx_cache)
4118 		goto fail;
4119 	bio_post_read_ctx_pool =
4120 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4121 					 bio_post_read_ctx_cache);
4122 	if (!bio_post_read_ctx_pool)
4123 		goto fail_free_cache;
4124 	return 0;
4125 
4126 fail_free_cache:
4127 	kmem_cache_destroy(bio_post_read_ctx_cache);
4128 fail:
4129 	return -ENOMEM;
4130 }
4131 
f2fs_destroy_post_read_processing(void)4132 void f2fs_destroy_post_read_processing(void)
4133 {
4134 	mempool_destroy(bio_post_read_ctx_pool);
4135 	kmem_cache_destroy(bio_post_read_ctx_cache);
4136 }
4137 
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4138 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4139 {
4140 	if (!f2fs_sb_has_encrypt(sbi) &&
4141 		!f2fs_sb_has_verity(sbi) &&
4142 		!f2fs_sb_has_compression(sbi))
4143 		return 0;
4144 
4145 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4146 						 WQ_UNBOUND | WQ_HIGHPRI,
4147 						 num_online_cpus());
4148 	return sbi->post_read_wq ? 0 : -ENOMEM;
4149 }
4150 
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4151 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4152 {
4153 	if (sbi->post_read_wq)
4154 		destroy_workqueue(sbi->post_read_wq);
4155 }
4156 
f2fs_init_bio_entry_cache(void)4157 int __init f2fs_init_bio_entry_cache(void)
4158 {
4159 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4160 			sizeof(struct bio_entry));
4161 	return bio_entry_slab ? 0 : -ENOMEM;
4162 }
4163 
f2fs_destroy_bio_entry_cache(void)4164 void f2fs_destroy_bio_entry_cache(void)
4165 {
4166 	kmem_cache_destroy(bio_entry_slab);
4167 }
4168 
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4169 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4170 			    unsigned int flags, struct iomap *iomap,
4171 			    struct iomap *srcmap)
4172 {
4173 	struct f2fs_map_blocks map = {};
4174 	pgoff_t next_pgofs = 0;
4175 	int err;
4176 
4177 	map.m_lblk = bytes_to_blks(inode, offset);
4178 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4179 	map.m_next_pgofs = &next_pgofs;
4180 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4181 	if (flags & IOMAP_WRITE)
4182 		map.m_may_create = true;
4183 
4184 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4185 	if (err)
4186 		return err;
4187 
4188 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4189 
4190 	/*
4191 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4192 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4193 	 * limiting the length of the mapping returned.
4194 	 */
4195 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4196 
4197 	/*
4198 	 * We should never see delalloc or compressed extents here based on
4199 	 * prior flushing and checks.
4200 	 */
4201 	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4202 		return -EINVAL;
4203 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4204 		return -EINVAL;
4205 
4206 	if (map.m_pblk != NULL_ADDR) {
4207 		iomap->length = blks_to_bytes(inode, map.m_len);
4208 		iomap->type = IOMAP_MAPPED;
4209 		iomap->flags |= IOMAP_F_MERGED;
4210 		iomap->bdev = map.m_bdev;
4211 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4212 	} else {
4213 		if (flags & IOMAP_WRITE)
4214 			return -ENOTBLK;
4215 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4216 				iomap->offset;
4217 		iomap->type = IOMAP_HOLE;
4218 		iomap->addr = IOMAP_NULL_ADDR;
4219 	}
4220 
4221 	if (map.m_flags & F2FS_MAP_NEW)
4222 		iomap->flags |= IOMAP_F_NEW;
4223 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4224 	    offset + length > i_size_read(inode))
4225 		iomap->flags |= IOMAP_F_DIRTY;
4226 
4227 	return 0;
4228 }
4229 
4230 const struct iomap_ops f2fs_iomap_ops = {
4231 	.iomap_begin	= f2fs_iomap_begin,
4232 };
4233