• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * fs/f2fs/data.c
4   *
5   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6   *             http://www.samsung.com/
7   */
8  #include <linux/fs.h>
9  #include <linux/f2fs_fs.h>
10  #include <linux/buffer_head.h>
11  #include <linux/mpage.h>
12  #include <linux/writeback.h>
13  #include <linux/backing-dev.h>
14  #include <linux/pagevec.h>
15  #include <linux/blkdev.h>
16  #include <linux/bio.h>
17  #include <linux/blk-crypto.h>
18  #include <linux/swap.h>
19  #include <linux/prefetch.h>
20  #include <linux/uio.h>
21  #include <linux/cleancache.h>
22  #include <linux/sched/signal.h>
23  #include <linux/fiemap.h>
24  #include <linux/iomap.h>
25  
26  #include "f2fs.h"
27  #include "node.h"
28  #include "segment.h"
29  #include "iostat.h"
30  #include <trace/events/f2fs.h>
31  
32  #define NUM_PREALLOC_POST_READ_CTXS	128
33  
34  static struct kmem_cache *bio_post_read_ctx_cache;
35  static struct kmem_cache *bio_entry_slab;
36  static mempool_t *bio_post_read_ctx_pool;
37  static struct bio_set f2fs_bioset;
38  
39  #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
40  
f2fs_init_bioset(void)41  int __init f2fs_init_bioset(void)
42  {
43  	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
44  					0, BIOSET_NEED_BVECS);
45  }
46  
f2fs_destroy_bioset(void)47  void f2fs_destroy_bioset(void)
48  {
49  	bioset_exit(&f2fs_bioset);
50  }
51  
__is_cp_guaranteed(struct page * page)52  static bool __is_cp_guaranteed(struct page *page)
53  {
54  	struct address_space *mapping = page->mapping;
55  	struct inode *inode;
56  	struct f2fs_sb_info *sbi;
57  
58  	if (!mapping)
59  		return false;
60  
61  	inode = mapping->host;
62  	sbi = F2FS_I_SB(inode);
63  
64  	if (inode->i_ino == F2FS_META_INO(sbi) ||
65  			inode->i_ino == F2FS_NODE_INO(sbi) ||
66  			S_ISDIR(inode->i_mode))
67  		return true;
68  
69  	if (f2fs_is_compressed_page(page))
70  		return false;
71  	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
72  			page_private_gcing(page))
73  		return true;
74  	return false;
75  }
76  
__read_io_type(struct page * page)77  static enum count_type __read_io_type(struct page *page)
78  {
79  	struct address_space *mapping = page_file_mapping(page);
80  
81  	if (mapping) {
82  		struct inode *inode = mapping->host;
83  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
84  
85  		if (inode->i_ino == F2FS_META_INO(sbi))
86  			return F2FS_RD_META;
87  
88  		if (inode->i_ino == F2FS_NODE_INO(sbi))
89  			return F2FS_RD_NODE;
90  	}
91  	return F2FS_RD_DATA;
92  }
93  
94  /* postprocessing steps for read bios */
95  enum bio_post_read_step {
96  #ifdef CONFIG_FS_ENCRYPTION
97  	STEP_DECRYPT	= BIT(0),
98  #else
99  	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
100  #endif
101  #ifdef CONFIG_F2FS_FS_COMPRESSION
102  	STEP_DECOMPRESS	= BIT(1),
103  #else
104  	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
105  #endif
106  #ifdef CONFIG_FS_VERITY
107  	STEP_VERITY	= BIT(2),
108  #else
109  	STEP_VERITY	= 0,	/* compile out the verity-related code */
110  #endif
111  };
112  
113  struct bio_post_read_ctx {
114  	struct bio *bio;
115  	struct f2fs_sb_info *sbi;
116  	struct work_struct work;
117  	unsigned int enabled_steps;
118  	/*
119  	 * decompression_attempted keeps track of whether
120  	 * f2fs_end_read_compressed_page() has been called on the pages in the
121  	 * bio that belong to a compressed cluster yet.
122  	 */
123  	bool decompression_attempted;
124  	block_t fs_blkaddr;
125  };
126  
127  /*
128   * Update and unlock a bio's pages, and free the bio.
129   *
130   * This marks pages up-to-date only if there was no error in the bio (I/O error,
131   * decryption error, or verity error), as indicated by bio->bi_status.
132   *
133   * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
134   * aren't marked up-to-date here, as decompression is done on a per-compression-
135   * cluster basis rather than a per-bio basis.  Instead, we only must do two
136   * things for each compressed page here: call f2fs_end_read_compressed_page()
137   * with failed=true if an error occurred before it would have normally gotten
138   * called (i.e., I/O error or decryption error, but *not* verity error), and
139   * release the bio's reference to the decompress_io_ctx of the page's cluster.
140   */
f2fs_finish_read_bio(struct bio * bio,bool in_task)141  static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
142  {
143  	struct bio_vec *bv;
144  	struct bvec_iter_all iter_all;
145  	struct bio_post_read_ctx *ctx = bio->bi_private;
146  
147  	bio_for_each_segment_all(bv, bio, iter_all) {
148  		struct page *page = bv->bv_page;
149  
150  		if (f2fs_is_compressed_page(page)) {
151  			if (ctx && !ctx->decompression_attempted)
152  				f2fs_end_read_compressed_page(page, true, 0,
153  							in_task);
154  			f2fs_put_page_dic(page, in_task);
155  			continue;
156  		}
157  
158  		if (bio->bi_status)
159  			ClearPageUptodate(page);
160  		else
161  			SetPageUptodate(page);
162  		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
163  		unlock_page(page);
164  	}
165  
166  	if (ctx)
167  		mempool_free(ctx, bio_post_read_ctx_pool);
168  	bio_put(bio);
169  }
170  
f2fs_verify_bio(struct work_struct * work)171  static void f2fs_verify_bio(struct work_struct *work)
172  {
173  	struct bio_post_read_ctx *ctx =
174  		container_of(work, struct bio_post_read_ctx, work);
175  	struct bio *bio = ctx->bio;
176  	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
177  
178  	/*
179  	 * fsverity_verify_bio() may call readpages() again, and while verity
180  	 * will be disabled for this, decryption and/or decompression may still
181  	 * be needed, resulting in another bio_post_read_ctx being allocated.
182  	 * So to prevent deadlocks we need to release the current ctx to the
183  	 * mempool first.  This assumes that verity is the last post-read step.
184  	 */
185  	mempool_free(ctx, bio_post_read_ctx_pool);
186  	bio->bi_private = NULL;
187  
188  	/*
189  	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
190  	 * as those were handled separately by f2fs_end_read_compressed_page().
191  	 */
192  	if (may_have_compressed_pages) {
193  		struct bio_vec *bv;
194  		struct bvec_iter_all iter_all;
195  
196  		bio_for_each_segment_all(bv, bio, iter_all) {
197  			struct page *page = bv->bv_page;
198  
199  			if (!f2fs_is_compressed_page(page) &&
200  			    !fsverity_verify_page(page)) {
201  				bio->bi_status = BLK_STS_IOERR;
202  				break;
203  			}
204  		}
205  	} else {
206  		fsverity_verify_bio(bio);
207  	}
208  
209  	f2fs_finish_read_bio(bio, true);
210  }
211  
212  /*
213   * If the bio's data needs to be verified with fs-verity, then enqueue the
214   * verity work for the bio.  Otherwise finish the bio now.
215   *
216   * Note that to avoid deadlocks, the verity work can't be done on the
217   * decryption/decompression workqueue.  This is because verifying the data pages
218   * can involve reading verity metadata pages from the file, and these verity
219   * metadata pages may be encrypted and/or compressed.
220   */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)221  static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
222  {
223  	struct bio_post_read_ctx *ctx = bio->bi_private;
224  
225  	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
226  		INIT_WORK(&ctx->work, f2fs_verify_bio);
227  		fsverity_enqueue_verify_work(&ctx->work);
228  	} else {
229  		f2fs_finish_read_bio(bio, in_task);
230  	}
231  }
232  
233  /*
234   * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
235   * remaining page was read by @ctx->bio.
236   *
237   * Note that a bio may span clusters (even a mix of compressed and uncompressed
238   * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
239   * that the bio includes at least one compressed page.  The actual decompression
240   * is done on a per-cluster basis, not a per-bio basis.
241   */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)242  static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
243  		bool in_task)
244  {
245  	struct bio_vec *bv;
246  	struct bvec_iter_all iter_all;
247  	bool all_compressed = true;
248  	block_t blkaddr = ctx->fs_blkaddr;
249  
250  	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
251  		struct page *page = bv->bv_page;
252  
253  		if (f2fs_is_compressed_page(page))
254  			f2fs_end_read_compressed_page(page, false, blkaddr,
255  						      in_task);
256  		else
257  			all_compressed = false;
258  
259  		blkaddr++;
260  	}
261  
262  	ctx->decompression_attempted = true;
263  
264  	/*
265  	 * Optimization: if all the bio's pages are compressed, then scheduling
266  	 * the per-bio verity work is unnecessary, as verity will be fully
267  	 * handled at the compression cluster level.
268  	 */
269  	if (all_compressed)
270  		ctx->enabled_steps &= ~STEP_VERITY;
271  }
272  
f2fs_post_read_work(struct work_struct * work)273  static void f2fs_post_read_work(struct work_struct *work)
274  {
275  	struct bio_post_read_ctx *ctx =
276  		container_of(work, struct bio_post_read_ctx, work);
277  	struct bio *bio = ctx->bio;
278  
279  	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
280  		f2fs_finish_read_bio(bio, true);
281  		return;
282  	}
283  
284  	if (ctx->enabled_steps & STEP_DECOMPRESS)
285  		f2fs_handle_step_decompress(ctx, true);
286  
287  	f2fs_verify_and_finish_bio(bio, true);
288  }
289  
f2fs_read_end_io(struct bio * bio)290  static void f2fs_read_end_io(struct bio *bio)
291  {
292  	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
293  	struct bio_post_read_ctx *ctx;
294  	bool intask = in_task();
295  
296  	iostat_update_and_unbind_ctx(bio);
297  	ctx = bio->bi_private;
298  
299  	if (time_to_inject(sbi, FAULT_READ_IO))
300  		bio->bi_status = BLK_STS_IOERR;
301  
302  	if (bio->bi_status) {
303  		f2fs_finish_read_bio(bio, intask);
304  		return;
305  	}
306  
307  	if (ctx) {
308  		unsigned int enabled_steps = ctx->enabled_steps &
309  					(STEP_DECRYPT | STEP_DECOMPRESS);
310  
311  		/*
312  		 * If we have only decompression step between decompression and
313  		 * decrypt, we don't need post processing for this.
314  		 */
315  		if (enabled_steps == STEP_DECOMPRESS &&
316  				!f2fs_low_mem_mode(sbi)) {
317  			f2fs_handle_step_decompress(ctx, intask);
318  		} else if (enabled_steps) {
319  			INIT_WORK(&ctx->work, f2fs_post_read_work);
320  			queue_work(ctx->sbi->post_read_wq, &ctx->work);
321  			return;
322  		}
323  	}
324  
325  	f2fs_verify_and_finish_bio(bio, intask);
326  }
327  
f2fs_write_end_io(struct bio * bio)328  static void f2fs_write_end_io(struct bio *bio)
329  {
330  	struct f2fs_sb_info *sbi;
331  	struct bio_vec *bvec;
332  	struct bvec_iter_all iter_all;
333  
334  	iostat_update_and_unbind_ctx(bio);
335  	sbi = bio->bi_private;
336  
337  	if (time_to_inject(sbi, FAULT_WRITE_IO))
338  		bio->bi_status = BLK_STS_IOERR;
339  
340  	bio_for_each_segment_all(bvec, bio, iter_all) {
341  		struct page *page = bvec->bv_page;
342  		enum count_type type = WB_DATA_TYPE(page);
343  
344  		if (page_private_dummy(page)) {
345  			clear_page_private_dummy(page);
346  			unlock_page(page);
347  			mempool_free(page, sbi->write_io_dummy);
348  
349  			if (unlikely(bio->bi_status))
350  				f2fs_stop_checkpoint(sbi, true,
351  						STOP_CP_REASON_WRITE_FAIL);
352  			continue;
353  		}
354  
355  		fscrypt_finalize_bounce_page(&page);
356  
357  #ifdef CONFIG_F2FS_FS_COMPRESSION
358  		if (f2fs_is_compressed_page(page)) {
359  			f2fs_compress_write_end_io(bio, page);
360  			continue;
361  		}
362  #endif
363  
364  		if (unlikely(bio->bi_status)) {
365  			mapping_set_error(page->mapping, -EIO);
366  			if (type == F2FS_WB_CP_DATA)
367  				f2fs_stop_checkpoint(sbi, true,
368  						STOP_CP_REASON_WRITE_FAIL);
369  		}
370  
371  		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
372  					page->index != nid_of_node(page));
373  
374  		dec_page_count(sbi, type);
375  		if (f2fs_in_warm_node_list(sbi, page))
376  			f2fs_del_fsync_node_entry(sbi, page);
377  		clear_page_private_gcing(page);
378  		end_page_writeback(page);
379  	}
380  	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
381  				wq_has_sleeper(&sbi->cp_wait))
382  		wake_up(&sbi->cp_wait);
383  
384  	bio_put(bio);
385  }
386  
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)387  struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
388  		block_t blk_addr, sector_t *sector)
389  {
390  	struct block_device *bdev = sbi->sb->s_bdev;
391  	int i;
392  
393  	if (f2fs_is_multi_device(sbi)) {
394  		for (i = 0; i < sbi->s_ndevs; i++) {
395  			if (FDEV(i).start_blk <= blk_addr &&
396  			    FDEV(i).end_blk >= blk_addr) {
397  				blk_addr -= FDEV(i).start_blk;
398  				bdev = FDEV(i).bdev;
399  				break;
400  			}
401  		}
402  	}
403  
404  	if (sector)
405  		*sector = SECTOR_FROM_BLOCK(blk_addr);
406  	return bdev;
407  }
408  
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)409  int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
410  {
411  	int i;
412  
413  	if (!f2fs_is_multi_device(sbi))
414  		return 0;
415  
416  	for (i = 0; i < sbi->s_ndevs; i++)
417  		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
418  			return i;
419  	return 0;
420  }
421  
f2fs_io_flags(struct f2fs_io_info * fio)422  static unsigned int f2fs_io_flags(struct f2fs_io_info *fio)
423  {
424  	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
425  	unsigned int fua_flag, meta_flag, io_flag;
426  	unsigned int op_flags = 0;
427  
428  	if (fio->op != REQ_OP_WRITE)
429  		return 0;
430  	if (fio->type == DATA)
431  		io_flag = fio->sbi->data_io_flag;
432  	else if (fio->type == NODE)
433  		io_flag = fio->sbi->node_io_flag;
434  	else
435  		return 0;
436  
437  	fua_flag = io_flag & temp_mask;
438  	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
439  
440  	/*
441  	 * data/node io flag bits per temp:
442  	 *      REQ_META     |      REQ_FUA      |
443  	 *    5 |    4 |   3 |    2 |    1 |   0 |
444  	 * Cold | Warm | Hot | Cold | Warm | Hot |
445  	 */
446  	if (BIT(fio->temp) & meta_flag)
447  		op_flags |= REQ_META;
448  	if (BIT(fio->temp) & fua_flag)
449  		op_flags |= REQ_FUA;
450  	return op_flags;
451  }
452  
__bio_alloc(struct f2fs_io_info * fio,int npages)453  static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
454  {
455  	struct f2fs_sb_info *sbi = fio->sbi;
456  	struct block_device *bdev;
457  	sector_t sector;
458  	struct bio *bio;
459  
460  	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
461  	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
462  	bio_set_dev(bio, bdev);
463  	bio_set_op_attrs(bio, fio->op, fio->op_flags | f2fs_io_flags(fio));
464  	bio->bi_iter.bi_sector = sector;
465  	if (is_read_io(fio->op)) {
466  		bio->bi_end_io = f2fs_read_end_io;
467  		bio->bi_private = NULL;
468  	} else {
469  		bio->bi_end_io = f2fs_write_end_io;
470  		bio->bi_private = sbi;
471  	}
472  	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
473  
474  	if (fio->io_wbc)
475  		wbc_init_bio(fio->io_wbc, bio);
476  
477  	return bio;
478  }
479  
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)480  static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
481  				  pgoff_t first_idx,
482  				  const struct f2fs_io_info *fio,
483  				  gfp_t gfp_mask)
484  {
485  	/*
486  	 * The f2fs garbage collector sets ->encrypted_page when it wants to
487  	 * read/write raw data without encryption.
488  	 */
489  	if (!fio || !fio->encrypted_page)
490  		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
491  	else if (fscrypt_inode_should_skip_dm_default_key(inode))
492  		bio_set_skip_dm_default_key(bio);
493  }
494  
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)495  static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
496  				     pgoff_t next_idx,
497  				     const struct f2fs_io_info *fio)
498  {
499  	/*
500  	 * The f2fs garbage collector sets ->encrypted_page when it wants to
501  	 * read/write raw data without encryption.
502  	 */
503  	if (fio && fio->encrypted_page)
504  		return !bio_has_crypt_ctx(bio) &&
505  			(bio_should_skip_dm_default_key(bio) ==
506  			 fscrypt_inode_should_skip_dm_default_key(inode));
507  
508  	return fscrypt_mergeable_bio(bio, inode, next_idx);
509  }
510  
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)511  void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
512  				 enum page_type type)
513  {
514  	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
515  	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
516  
517  	iostat_update_submit_ctx(bio, type);
518  	submit_bio(bio);
519  }
520  
f2fs_align_write_bio(struct f2fs_sb_info * sbi,struct bio * bio)521  static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
522  {
523  	unsigned int start =
524  		(bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
525  
526  	if (start == 0)
527  		return;
528  
529  	/* fill dummy pages */
530  	for (; start < F2FS_IO_SIZE(sbi); start++) {
531  		struct page *page =
532  			mempool_alloc(sbi->write_io_dummy,
533  				      GFP_NOIO | __GFP_NOFAIL);
534  		f2fs_bug_on(sbi, !page);
535  
536  		lock_page(page);
537  
538  		zero_user_segment(page, 0, PAGE_SIZE);
539  		set_page_private_dummy(page);
540  
541  		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
542  			f2fs_bug_on(sbi, 1);
543  	}
544  }
545  
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)546  static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
547  				  enum page_type type)
548  {
549  	WARN_ON_ONCE(is_read_io(bio_op(bio)));
550  
551  	if (type == DATA || type == NODE) {
552  		if (f2fs_lfs_mode(sbi) && current->plug)
553  			blk_finish_plug(current->plug);
554  
555  		if (F2FS_IO_ALIGNED(sbi)) {
556  			f2fs_align_write_bio(sbi, bio);
557  			/*
558  			 * In the NODE case, we lose next block address chain.
559  			 * So, we need to do checkpoint in f2fs_sync_file.
560  			 */
561  			if (type == NODE)
562  				set_sbi_flag(sbi, SBI_NEED_CP);
563  		}
564  	}
565  
566  	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
567  	iostat_update_submit_ctx(bio, type);
568  	submit_bio(bio);
569  }
570  
__submit_merged_bio(struct f2fs_bio_info * io)571  static void __submit_merged_bio(struct f2fs_bio_info *io)
572  {
573  	struct f2fs_io_info *fio = &io->fio;
574  
575  	if (!io->bio)
576  		return;
577  
578  	if (is_read_io(fio->op)) {
579  		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
580  		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
581  	} else {
582  		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
583  		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
584  	}
585  	io->bio = NULL;
586  }
587  
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)588  static bool __has_merged_page(struct bio *bio, struct inode *inode,
589  						struct page *page, nid_t ino)
590  {
591  	struct bio_vec *bvec;
592  	struct bvec_iter_all iter_all;
593  
594  	if (!bio)
595  		return false;
596  
597  	if (!inode && !page && !ino)
598  		return true;
599  
600  	bio_for_each_segment_all(bvec, bio, iter_all) {
601  		struct page *target = bvec->bv_page;
602  
603  		if (fscrypt_is_bounce_page(target)) {
604  			target = fscrypt_pagecache_page(target);
605  			if (IS_ERR(target))
606  				continue;
607  		}
608  		if (f2fs_is_compressed_page(target)) {
609  			target = f2fs_compress_control_page(target);
610  			if (IS_ERR(target))
611  				continue;
612  		}
613  
614  		if (inode && inode == target->mapping->host)
615  			return true;
616  		if (page && page == target)
617  			return true;
618  		if (ino && ino == ino_of_node(target))
619  			return true;
620  	}
621  
622  	return false;
623  }
624  
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)625  int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
626  {
627  	int i;
628  
629  	for (i = 0; i < NR_PAGE_TYPE; i++) {
630  		int n = (i == META) ? 1 : NR_TEMP_TYPE;
631  		int j;
632  
633  		sbi->write_io[i] = f2fs_kmalloc(sbi,
634  				array_size(n, sizeof(struct f2fs_bio_info)),
635  				GFP_KERNEL);
636  		if (!sbi->write_io[i])
637  			return -ENOMEM;
638  
639  		for (j = HOT; j < n; j++) {
640  			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
641  			sbi->write_io[i][j].sbi = sbi;
642  			sbi->write_io[i][j].bio = NULL;
643  			spin_lock_init(&sbi->write_io[i][j].io_lock);
644  			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
645  			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
646  			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
647  		}
648  	}
649  
650  	return 0;
651  }
652  
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)653  static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
654  				enum page_type type, enum temp_type temp)
655  {
656  	enum page_type btype = PAGE_TYPE_OF_BIO(type);
657  	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
658  
659  	f2fs_down_write(&io->io_rwsem);
660  
661  	if (!io->bio)
662  		goto unlock_out;
663  
664  	/* change META to META_FLUSH in the checkpoint procedure */
665  	if (type >= META_FLUSH) {
666  		io->fio.type = META_FLUSH;
667  		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
668  		if (!test_opt(sbi, NOBARRIER))
669  			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
670  	}
671  	__submit_merged_bio(io);
672  unlock_out:
673  	f2fs_up_write(&io->io_rwsem);
674  }
675  
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)676  static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
677  				struct inode *inode, struct page *page,
678  				nid_t ino, enum page_type type, bool force)
679  {
680  	enum temp_type temp;
681  	bool ret = true;
682  
683  	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
684  		if (!force)	{
685  			enum page_type btype = PAGE_TYPE_OF_BIO(type);
686  			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
687  
688  			f2fs_down_read(&io->io_rwsem);
689  			ret = __has_merged_page(io->bio, inode, page, ino);
690  			f2fs_up_read(&io->io_rwsem);
691  		}
692  		if (ret)
693  			__f2fs_submit_merged_write(sbi, type, temp);
694  
695  		/* TODO: use HOT temp only for meta pages now. */
696  		if (type >= META)
697  			break;
698  	}
699  }
700  
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)701  void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
702  {
703  	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
704  }
705  
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)706  void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
707  				struct inode *inode, struct page *page,
708  				nid_t ino, enum page_type type)
709  {
710  	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
711  }
712  
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)713  void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
714  {
715  	f2fs_submit_merged_write(sbi, DATA);
716  	f2fs_submit_merged_write(sbi, NODE);
717  	f2fs_submit_merged_write(sbi, META);
718  }
719  
720  /*
721   * Fill the locked page with data located in the block address.
722   * A caller needs to unlock the page on failure.
723   */
f2fs_submit_page_bio(struct f2fs_io_info * fio)724  int f2fs_submit_page_bio(struct f2fs_io_info *fio)
725  {
726  	struct bio *bio;
727  	struct page *page = fio->encrypted_page ?
728  			fio->encrypted_page : fio->page;
729  
730  	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
731  			fio->is_por ? META_POR : (__is_meta_io(fio) ?
732  			META_GENERIC : DATA_GENERIC_ENHANCE))) {
733  		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
734  		return -EFSCORRUPTED;
735  	}
736  
737  	trace_f2fs_submit_page_bio(page, fio);
738  
739  	/* Allocate a new bio */
740  	bio = __bio_alloc(fio, 1);
741  
742  	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
743  			       fio->page->index, fio, GFP_NOIO);
744  
745  	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
746  		bio_put(bio);
747  		return -EFAULT;
748  	}
749  
750  	if (fio->io_wbc && !is_read_io(fio->op))
751  		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
752  
753  	inc_page_count(fio->sbi, is_read_io(fio->op) ?
754  			__read_io_type(page) : WB_DATA_TYPE(fio->page));
755  
756  	if (is_read_io(bio_op(bio)))
757  		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
758  	else
759  		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
760  	return 0;
761  }
762  
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)763  static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
764  				block_t last_blkaddr, block_t cur_blkaddr)
765  {
766  	if (unlikely(sbi->max_io_bytes &&
767  			bio->bi_iter.bi_size >= sbi->max_io_bytes))
768  		return false;
769  	if (last_blkaddr + 1 != cur_blkaddr)
770  		return false;
771  	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
772  }
773  
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)774  static bool io_type_is_mergeable(struct f2fs_bio_info *io,
775  						struct f2fs_io_info *fio)
776  {
777  	if (io->fio.op != fio->op)
778  		return false;
779  	return io->fio.op_flags == fio->op_flags;
780  }
781  
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)782  static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
783  					struct f2fs_bio_info *io,
784  					struct f2fs_io_info *fio,
785  					block_t last_blkaddr,
786  					block_t cur_blkaddr)
787  {
788  	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
789  		unsigned int filled_blocks =
790  				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
791  		unsigned int io_size = F2FS_IO_SIZE(sbi);
792  		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
793  
794  		/* IOs in bio is aligned and left space of vectors is not enough */
795  		if (!(filled_blocks % io_size) && left_vecs < io_size)
796  			return false;
797  	}
798  	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
799  		return false;
800  	return io_type_is_mergeable(io, fio);
801  }
802  
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)803  static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
804  				struct page *page, enum temp_type temp)
805  {
806  	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807  	struct bio_entry *be;
808  
809  	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
810  	be->bio = bio;
811  	bio_get(bio);
812  
813  	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
814  		f2fs_bug_on(sbi, 1);
815  
816  	f2fs_down_write(&io->bio_list_lock);
817  	list_add_tail(&be->list, &io->bio_list);
818  	f2fs_up_write(&io->bio_list_lock);
819  }
820  
del_bio_entry(struct bio_entry * be)821  static void del_bio_entry(struct bio_entry *be)
822  {
823  	list_del(&be->list);
824  	kmem_cache_free(bio_entry_slab, be);
825  }
826  
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)827  static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
828  							struct page *page)
829  {
830  	struct f2fs_sb_info *sbi = fio->sbi;
831  	enum temp_type temp;
832  	bool found = false;
833  	int ret = -EAGAIN;
834  
835  	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836  		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837  		struct list_head *head = &io->bio_list;
838  		struct bio_entry *be;
839  
840  		f2fs_down_write(&io->bio_list_lock);
841  		list_for_each_entry(be, head, list) {
842  			if (be->bio != *bio)
843  				continue;
844  
845  			found = true;
846  
847  			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
848  							    *fio->last_block,
849  							    fio->new_blkaddr));
850  			if (f2fs_crypt_mergeable_bio(*bio,
851  					fio->page->mapping->host,
852  					fio->page->index, fio) &&
853  			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
854  					PAGE_SIZE) {
855  				ret = 0;
856  				break;
857  			}
858  
859  			/* page can't be merged into bio; submit the bio */
860  			del_bio_entry(be);
861  			f2fs_submit_write_bio(sbi, *bio, DATA);
862  			break;
863  		}
864  		f2fs_up_write(&io->bio_list_lock);
865  	}
866  
867  	if (ret) {
868  		bio_put(*bio);
869  		*bio = NULL;
870  	}
871  
872  	return ret;
873  }
874  
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)875  void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
876  					struct bio **bio, struct page *page)
877  {
878  	enum temp_type temp;
879  	bool found = false;
880  	struct bio *target = bio ? *bio : NULL;
881  
882  	f2fs_bug_on(sbi, !target && !page);
883  
884  	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
885  		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
886  		struct list_head *head = &io->bio_list;
887  		struct bio_entry *be;
888  
889  		if (list_empty(head))
890  			continue;
891  
892  		f2fs_down_read(&io->bio_list_lock);
893  		list_for_each_entry(be, head, list) {
894  			if (target)
895  				found = (target == be->bio);
896  			else
897  				found = __has_merged_page(be->bio, NULL,
898  								page, 0);
899  			if (found)
900  				break;
901  		}
902  		f2fs_up_read(&io->bio_list_lock);
903  
904  		if (!found)
905  			continue;
906  
907  		found = false;
908  
909  		f2fs_down_write(&io->bio_list_lock);
910  		list_for_each_entry(be, head, list) {
911  			if (target)
912  				found = (target == be->bio);
913  			else
914  				found = __has_merged_page(be->bio, NULL,
915  								page, 0);
916  			if (found) {
917  				target = be->bio;
918  				del_bio_entry(be);
919  				break;
920  			}
921  		}
922  		f2fs_up_write(&io->bio_list_lock);
923  	}
924  
925  	if (found)
926  		f2fs_submit_write_bio(sbi, target, DATA);
927  	if (bio && *bio) {
928  		bio_put(*bio);
929  		*bio = NULL;
930  	}
931  }
932  
f2fs_merge_page_bio(struct f2fs_io_info * fio)933  int f2fs_merge_page_bio(struct f2fs_io_info *fio)
934  {
935  	struct bio *bio = *fio->bio;
936  	struct page *page = fio->encrypted_page ?
937  			fio->encrypted_page : fio->page;
938  
939  	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
940  			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
941  		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
942  		return -EFSCORRUPTED;
943  	}
944  
945  	trace_f2fs_submit_page_bio(page, fio);
946  
947  	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
948  						fio->new_blkaddr))
949  		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
950  alloc_new:
951  	if (!bio) {
952  		bio = __bio_alloc(fio, BIO_MAX_VECS);
953  		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
954  				       fio->page->index, fio, GFP_NOIO);
955  
956  		add_bio_entry(fio->sbi, bio, page, fio->temp);
957  	} else {
958  		if (add_ipu_page(fio, &bio, page))
959  			goto alloc_new;
960  	}
961  
962  	if (fio->io_wbc)
963  		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
964  
965  	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
966  
967  	*fio->last_block = fio->new_blkaddr;
968  	*fio->bio = bio;
969  
970  	return 0;
971  }
972  
f2fs_submit_page_write(struct f2fs_io_info * fio)973  void f2fs_submit_page_write(struct f2fs_io_info *fio)
974  {
975  	struct f2fs_sb_info *sbi = fio->sbi;
976  	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
977  	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
978  	struct page *bio_page;
979  
980  	f2fs_bug_on(sbi, is_read_io(fio->op));
981  
982  	f2fs_down_write(&io->io_rwsem);
983  next:
984  	if (fio->in_list) {
985  		spin_lock(&io->io_lock);
986  		if (list_empty(&io->io_list)) {
987  			spin_unlock(&io->io_lock);
988  			goto out;
989  		}
990  		fio = list_first_entry(&io->io_list,
991  						struct f2fs_io_info, list);
992  		list_del(&fio->list);
993  		spin_unlock(&io->io_lock);
994  	}
995  
996  	verify_fio_blkaddr(fio);
997  
998  	if (fio->encrypted_page)
999  		bio_page = fio->encrypted_page;
1000  	else if (fio->compressed_page)
1001  		bio_page = fio->compressed_page;
1002  	else
1003  		bio_page = fio->page;
1004  
1005  	/* set submitted = true as a return value */
1006  	fio->submitted = 1;
1007  
1008  	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1009  
1010  	if (io->bio &&
1011  	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1012  			      fio->new_blkaddr) ||
1013  	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1014  				       bio_page->index, fio)))
1015  		__submit_merged_bio(io);
1016  alloc_new:
1017  	if (io->bio == NULL) {
1018  		if (F2FS_IO_ALIGNED(sbi) &&
1019  				(fio->type == DATA || fio->type == NODE) &&
1020  				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1021  			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1022  			fio->retry = 1;
1023  			goto skip;
1024  		}
1025  		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1026  		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1027  				       bio_page->index, fio, GFP_NOIO);
1028  		io->fio = *fio;
1029  	}
1030  
1031  	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1032  		__submit_merged_bio(io);
1033  		goto alloc_new;
1034  	}
1035  
1036  	if (fio->io_wbc)
1037  		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1038  
1039  	io->last_block_in_bio = fio->new_blkaddr;
1040  
1041  	trace_f2fs_submit_page_write(fio->page, fio);
1042  skip:
1043  	if (fio->in_list)
1044  		goto next;
1045  out:
1046  	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1047  				!f2fs_is_checkpoint_ready(sbi))
1048  		__submit_merged_bio(io);
1049  	f2fs_up_write(&io->io_rwsem);
1050  }
1051  
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1052  static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1053  				      unsigned nr_pages, unsigned op_flag,
1054  				      pgoff_t first_idx, bool for_write)
1055  {
1056  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1057  	struct bio *bio;
1058  	struct bio_post_read_ctx *ctx = NULL;
1059  	unsigned int post_read_steps = 0;
1060  	sector_t sector;
1061  	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1062  
1063  	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
1064  			       bio_max_segs(nr_pages), &f2fs_bioset);
1065  	bio_set_dev(bio, bdev);
1066  	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1067  	if (!bio)
1068  		return ERR_PTR(-ENOMEM);
1069  	bio->bi_iter.bi_sector = sector;
1070  	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1071  	bio->bi_end_io = f2fs_read_end_io;
1072  
1073  	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1074  		post_read_steps |= STEP_DECRYPT;
1075  
1076  	if (f2fs_need_verity(inode, first_idx))
1077  		post_read_steps |= STEP_VERITY;
1078  
1079  	/*
1080  	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1081  	 * contain both compressed and uncompressed clusters.  We'll allocate a
1082  	 * bio_post_read_ctx if the file is compressed, but the caller is
1083  	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1084  	 */
1085  
1086  	if (post_read_steps || f2fs_compressed_file(inode)) {
1087  		/* Due to the mempool, this never fails. */
1088  		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1089  		ctx->bio = bio;
1090  		ctx->sbi = sbi;
1091  		ctx->enabled_steps = post_read_steps;
1092  		ctx->fs_blkaddr = blkaddr;
1093  		ctx->decompression_attempted = false;
1094  		bio->bi_private = ctx;
1095  	}
1096  	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1097  
1098  	return bio;
1099  }
1100  
1101  /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1102  static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1103  				 block_t blkaddr, int op_flags, bool for_write)
1104  {
1105  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1106  	struct bio *bio;
1107  
1108  	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1109  					page->index, for_write);
1110  	if (IS_ERR(bio))
1111  		return PTR_ERR(bio);
1112  
1113  	/* wait for GCed page writeback via META_MAPPING */
1114  	f2fs_wait_on_block_writeback(inode, blkaddr);
1115  
1116  	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1117  		bio_put(bio);
1118  		return -EFAULT;
1119  	}
1120  	inc_page_count(sbi, F2FS_RD_DATA);
1121  	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1122  	f2fs_submit_read_bio(sbi, bio, DATA);
1123  	return 0;
1124  }
1125  
__set_data_blkaddr(struct dnode_of_data * dn)1126  static void __set_data_blkaddr(struct dnode_of_data *dn)
1127  {
1128  	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1129  	__le32 *addr_array;
1130  	int base = 0;
1131  
1132  	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1133  		base = get_extra_isize(dn->inode);
1134  
1135  	/* Get physical address of data block */
1136  	addr_array = blkaddr_in_node(rn);
1137  	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1138  }
1139  
1140  /*
1141   * Lock ordering for the change of data block address:
1142   * ->data_page
1143   *  ->node_page
1144   *    update block addresses in the node page
1145   */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1146  void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1147  {
1148  	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1149  	__set_data_blkaddr(dn);
1150  	if (set_page_dirty(dn->node_page))
1151  		dn->node_changed = true;
1152  }
1153  
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1154  void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1155  {
1156  	dn->data_blkaddr = blkaddr;
1157  	f2fs_set_data_blkaddr(dn);
1158  	f2fs_update_read_extent_cache(dn);
1159  }
1160  
1161  /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1162  int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1163  {
1164  	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1165  	int err;
1166  
1167  	if (!count)
1168  		return 0;
1169  
1170  	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1171  		return -EPERM;
1172  	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1173  		return err;
1174  
1175  	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1176  						dn->ofs_in_node, count);
1177  
1178  	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1179  
1180  	for (; count > 0; dn->ofs_in_node++) {
1181  		block_t blkaddr = f2fs_data_blkaddr(dn);
1182  
1183  		if (blkaddr == NULL_ADDR) {
1184  			dn->data_blkaddr = NEW_ADDR;
1185  			__set_data_blkaddr(dn);
1186  			count--;
1187  		}
1188  	}
1189  
1190  	if (set_page_dirty(dn->node_page))
1191  		dn->node_changed = true;
1192  	return 0;
1193  }
1194  
1195  /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1196  int f2fs_reserve_new_block(struct dnode_of_data *dn)
1197  {
1198  	unsigned int ofs_in_node = dn->ofs_in_node;
1199  	int ret;
1200  
1201  	ret = f2fs_reserve_new_blocks(dn, 1);
1202  	dn->ofs_in_node = ofs_in_node;
1203  	return ret;
1204  }
1205  
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1206  int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1207  {
1208  	bool need_put = dn->inode_page ? false : true;
1209  	int err;
1210  
1211  	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1212  	if (err)
1213  		return err;
1214  
1215  	if (dn->data_blkaddr == NULL_ADDR)
1216  		err = f2fs_reserve_new_block(dn);
1217  	if (err || need_put)
1218  		f2fs_put_dnode(dn);
1219  	return err;
1220  }
1221  
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write,pgoff_t * next_pgofs)1222  struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1223  				     int op_flags, bool for_write,
1224  				     pgoff_t *next_pgofs)
1225  {
1226  	struct address_space *mapping = inode->i_mapping;
1227  	struct dnode_of_data dn;
1228  	struct page *page;
1229  	int err;
1230  
1231  	page = f2fs_grab_cache_page(mapping, index, for_write);
1232  	if (!page)
1233  		return ERR_PTR(-ENOMEM);
1234  
1235  	if (f2fs_lookup_read_extent_cache_block(inode, index,
1236  						&dn.data_blkaddr)) {
1237  		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1238  						DATA_GENERIC_ENHANCE_READ)) {
1239  			err = -EFSCORRUPTED;
1240  			f2fs_handle_error(F2FS_I_SB(inode),
1241  						ERROR_INVALID_BLKADDR);
1242  			goto put_err;
1243  		}
1244  		goto got_it;
1245  	}
1246  
1247  	set_new_dnode(&dn, inode, NULL, NULL, 0);
1248  	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1249  	if (err) {
1250  		if (err == -ENOENT && next_pgofs)
1251  			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1252  		goto put_err;
1253  	}
1254  	f2fs_put_dnode(&dn);
1255  
1256  	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1257  		err = -ENOENT;
1258  		if (next_pgofs)
1259  			*next_pgofs = index + 1;
1260  		goto put_err;
1261  	}
1262  	if (dn.data_blkaddr != NEW_ADDR &&
1263  			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1264  						dn.data_blkaddr,
1265  						DATA_GENERIC_ENHANCE)) {
1266  		err = -EFSCORRUPTED;
1267  		f2fs_handle_error(F2FS_I_SB(inode),
1268  					ERROR_INVALID_BLKADDR);
1269  		goto put_err;
1270  	}
1271  got_it:
1272  	if (PageUptodate(page)) {
1273  		unlock_page(page);
1274  		return page;
1275  	}
1276  
1277  	/*
1278  	 * A new dentry page is allocated but not able to be written, since its
1279  	 * new inode page couldn't be allocated due to -ENOSPC.
1280  	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1281  	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1282  	 * f2fs_init_inode_metadata.
1283  	 */
1284  	if (dn.data_blkaddr == NEW_ADDR) {
1285  		zero_user_segment(page, 0, PAGE_SIZE);
1286  		if (!PageUptodate(page))
1287  			SetPageUptodate(page);
1288  		unlock_page(page);
1289  		return page;
1290  	}
1291  
1292  	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1293  						op_flags, for_write);
1294  	if (err)
1295  		goto put_err;
1296  	return page;
1297  
1298  put_err:
1299  	f2fs_put_page(page, 1);
1300  	return ERR_PTR(err);
1301  }
1302  
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1303  struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1304  					pgoff_t *next_pgofs)
1305  {
1306  	struct address_space *mapping = inode->i_mapping;
1307  	struct page *page;
1308  
1309  	page = find_get_page(mapping, index);
1310  	if (page && PageUptodate(page))
1311  		return page;
1312  	f2fs_put_page(page, 0);
1313  
1314  	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1315  	if (IS_ERR(page))
1316  		return page;
1317  
1318  	if (PageUptodate(page))
1319  		return page;
1320  
1321  	wait_on_page_locked(page);
1322  	if (unlikely(!PageUptodate(page))) {
1323  		f2fs_put_page(page, 0);
1324  		return ERR_PTR(-EIO);
1325  	}
1326  	return page;
1327  }
1328  
1329  /*
1330   * If it tries to access a hole, return an error.
1331   * Because, the callers, functions in dir.c and GC, should be able to know
1332   * whether this page exists or not.
1333   */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1334  struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1335  							bool for_write)
1336  {
1337  	struct address_space *mapping = inode->i_mapping;
1338  	struct page *page;
1339  repeat:
1340  	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1341  	if (IS_ERR(page))
1342  		return page;
1343  
1344  	/* wait for read completion */
1345  	lock_page(page);
1346  	if (unlikely(page->mapping != mapping)) {
1347  		f2fs_put_page(page, 1);
1348  		goto repeat;
1349  	}
1350  	if (unlikely(!PageUptodate(page))) {
1351  		f2fs_put_page(page, 1);
1352  		return ERR_PTR(-EIO);
1353  	}
1354  	return page;
1355  }
1356  
1357  /*
1358   * Caller ensures that this data page is never allocated.
1359   * A new zero-filled data page is allocated in the page cache.
1360   *
1361   * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1362   * f2fs_unlock_op().
1363   * Note that, ipage is set only by make_empty_dir, and if any error occur,
1364   * ipage should be released by this function.
1365   */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1366  struct page *f2fs_get_new_data_page(struct inode *inode,
1367  		struct page *ipage, pgoff_t index, bool new_i_size)
1368  {
1369  	struct address_space *mapping = inode->i_mapping;
1370  	struct page *page;
1371  	struct dnode_of_data dn;
1372  	int err;
1373  
1374  	page = f2fs_grab_cache_page(mapping, index, true);
1375  	if (!page) {
1376  		/*
1377  		 * before exiting, we should make sure ipage will be released
1378  		 * if any error occur.
1379  		 */
1380  		f2fs_put_page(ipage, 1);
1381  		return ERR_PTR(-ENOMEM);
1382  	}
1383  
1384  	set_new_dnode(&dn, inode, ipage, NULL, 0);
1385  	err = f2fs_reserve_block(&dn, index);
1386  	if (err) {
1387  		f2fs_put_page(page, 1);
1388  		return ERR_PTR(err);
1389  	}
1390  	if (!ipage)
1391  		f2fs_put_dnode(&dn);
1392  
1393  	if (PageUptodate(page))
1394  		goto got_it;
1395  
1396  	if (dn.data_blkaddr == NEW_ADDR) {
1397  		zero_user_segment(page, 0, PAGE_SIZE);
1398  		if (!PageUptodate(page))
1399  			SetPageUptodate(page);
1400  	} else {
1401  		f2fs_put_page(page, 1);
1402  
1403  		/* if ipage exists, blkaddr should be NEW_ADDR */
1404  		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1405  		page = f2fs_get_lock_data_page(inode, index, true);
1406  		if (IS_ERR(page))
1407  			return page;
1408  	}
1409  got_it:
1410  	if (new_i_size && i_size_read(inode) <
1411  				((loff_t)(index + 1) << PAGE_SHIFT))
1412  		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1413  	return page;
1414  }
1415  
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1416  static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1417  {
1418  	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1419  	struct f2fs_summary sum;
1420  	struct node_info ni;
1421  	block_t old_blkaddr;
1422  	blkcnt_t count = 1;
1423  	int err;
1424  
1425  	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1426  		return -EPERM;
1427  
1428  	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1429  	if (err)
1430  		return err;
1431  
1432  	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1433  	if (dn->data_blkaddr == NULL_ADDR) {
1434  		err = inc_valid_block_count(sbi, dn->inode, &count);
1435  		if (unlikely(err))
1436  			return err;
1437  	}
1438  
1439  	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1440  	old_blkaddr = dn->data_blkaddr;
1441  	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1442  				&sum, seg_type, NULL);
1443  	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1444  		invalidate_mapping_pages(META_MAPPING(sbi),
1445  					old_blkaddr, old_blkaddr);
1446  		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1447  	}
1448  	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1449  	return 0;
1450  }
1451  
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1452  static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1453  {
1454  	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1455  		f2fs_down_read(&sbi->node_change);
1456  	else
1457  		f2fs_lock_op(sbi);
1458  }
1459  
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1460  static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1461  {
1462  	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1463  		f2fs_up_read(&sbi->node_change);
1464  	else
1465  		f2fs_unlock_op(sbi);
1466  }
1467  
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1468  int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1469  {
1470  	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471  	int err = 0;
1472  
1473  	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1474  	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1475  						&dn->data_blkaddr))
1476  		err = f2fs_reserve_block(dn, index);
1477  	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1478  
1479  	return err;
1480  }
1481  
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1482  static int f2fs_map_no_dnode(struct inode *inode,
1483  		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1484  		pgoff_t pgoff)
1485  {
1486  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487  
1488  	/*
1489  	 * There is one exceptional case that read_node_page() may return
1490  	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1491  	 * -EIO in that case.
1492  	 */
1493  	if (map->m_may_create &&
1494  	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1495  		return -EIO;
1496  
1497  	if (map->m_next_pgofs)
1498  		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1499  	if (map->m_next_extent)
1500  		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1501  	return 0;
1502  }
1503  
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1504  static bool f2fs_map_blocks_cached(struct inode *inode,
1505  		struct f2fs_map_blocks *map, int flag)
1506  {
1507  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1508  	unsigned int maxblocks = map->m_len;
1509  	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1510  	struct extent_info ei = {};
1511  
1512  	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1513  		return false;
1514  
1515  	map->m_pblk = ei.blk + pgoff - ei.fofs;
1516  	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1517  	map->m_flags = F2FS_MAP_MAPPED;
1518  	if (map->m_next_extent)
1519  		*map->m_next_extent = pgoff + map->m_len;
1520  
1521  	/* for hardware encryption, but to avoid potential issue in future */
1522  	if (flag == F2FS_GET_BLOCK_DIO)
1523  		f2fs_wait_on_block_writeback_range(inode,
1524  					map->m_pblk, map->m_len);
1525  
1526  	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1527  		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1528  		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1529  
1530  		map->m_bdev = dev->bdev;
1531  		map->m_pblk -= dev->start_blk;
1532  		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1533  	} else {
1534  		map->m_bdev = inode->i_sb->s_bdev;
1535  	}
1536  	return true;
1537  }
1538  
1539  /*
1540   * f2fs_map_blocks() tries to find or build mapping relationship which
1541   * maps continuous logical blocks to physical blocks, and return such
1542   * info via f2fs_map_blocks structure.
1543   */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1544  int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1545  {
1546  	unsigned int maxblocks = map->m_len;
1547  	struct dnode_of_data dn;
1548  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1549  	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1550  	pgoff_t pgofs, end_offset, end;
1551  	int err = 0, ofs = 1;
1552  	unsigned int ofs_in_node, last_ofs_in_node;
1553  	blkcnt_t prealloc;
1554  	block_t blkaddr;
1555  	unsigned int start_pgofs;
1556  	int bidx = 0;
1557  	bool is_hole;
1558  
1559  	if (!maxblocks)
1560  		return 0;
1561  
1562  	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1563  		goto out;
1564  
1565  	map->m_bdev = inode->i_sb->s_bdev;
1566  	map->m_multidev_dio =
1567  		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1568  
1569  	map->m_len = 0;
1570  	map->m_flags = 0;
1571  
1572  	/* it only supports block size == page size */
1573  	pgofs =	(pgoff_t)map->m_lblk;
1574  	end = pgofs + maxblocks;
1575  
1576  next_dnode:
1577  	if (map->m_may_create)
1578  		f2fs_map_lock(sbi, flag);
1579  
1580  	/* When reading holes, we need its node page */
1581  	set_new_dnode(&dn, inode, NULL, NULL, 0);
1582  	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1583  	if (err) {
1584  		if (flag == F2FS_GET_BLOCK_BMAP)
1585  			map->m_pblk = 0;
1586  		if (err == -ENOENT)
1587  			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1588  		goto unlock_out;
1589  	}
1590  
1591  	start_pgofs = pgofs;
1592  	prealloc = 0;
1593  	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1594  	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1595  
1596  next_block:
1597  	blkaddr = f2fs_data_blkaddr(&dn);
1598  	is_hole = !__is_valid_data_blkaddr(blkaddr);
1599  	if (!is_hole &&
1600  	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1601  		err = -EFSCORRUPTED;
1602  		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1603  		goto sync_out;
1604  	}
1605  
1606  	/* use out-place-update for direct IO under LFS mode */
1607  	if (map->m_may_create &&
1608  	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1609  		if (unlikely(f2fs_cp_error(sbi))) {
1610  			err = -EIO;
1611  			goto sync_out;
1612  		}
1613  
1614  		switch (flag) {
1615  		case F2FS_GET_BLOCK_PRE_AIO:
1616  			if (blkaddr == NULL_ADDR) {
1617  				prealloc++;
1618  				last_ofs_in_node = dn.ofs_in_node;
1619  			}
1620  			break;
1621  		case F2FS_GET_BLOCK_PRE_DIO:
1622  		case F2FS_GET_BLOCK_DIO:
1623  			err = __allocate_data_block(&dn, map->m_seg_type);
1624  			if (err)
1625  				goto sync_out;
1626  			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1627  				file_need_truncate(inode);
1628  			set_inode_flag(inode, FI_APPEND_WRITE);
1629  			break;
1630  		default:
1631  			WARN_ON_ONCE(1);
1632  			err = -EIO;
1633  			goto sync_out;
1634  		}
1635  
1636  		blkaddr = dn.data_blkaddr;
1637  		if (is_hole)
1638  			map->m_flags |= F2FS_MAP_NEW;
1639  	} else if (is_hole) {
1640  		if (f2fs_compressed_file(inode) &&
1641  		    f2fs_sanity_check_cluster(&dn) &&
1642  		    (flag != F2FS_GET_BLOCK_FIEMAP ||
1643  		     IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1644  			err = -EFSCORRUPTED;
1645  			f2fs_handle_error(sbi,
1646  					ERROR_CORRUPTED_CLUSTER);
1647  			goto sync_out;
1648  		}
1649  
1650  		switch (flag) {
1651  		case F2FS_GET_BLOCK_PRECACHE:
1652  			goto sync_out;
1653  		case F2FS_GET_BLOCK_BMAP:
1654  			map->m_pblk = 0;
1655  			goto sync_out;
1656  		case F2FS_GET_BLOCK_FIEMAP:
1657  			if (blkaddr == NULL_ADDR) {
1658  				if (map->m_next_pgofs)
1659  					*map->m_next_pgofs = pgofs + 1;
1660  				goto sync_out;
1661  			}
1662  			break;
1663  		default:
1664  			/* for defragment case */
1665  			if (map->m_next_pgofs)
1666  				*map->m_next_pgofs = pgofs + 1;
1667  			goto sync_out;
1668  		}
1669  	}
1670  
1671  	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1672  		goto skip;
1673  
1674  	if (map->m_multidev_dio)
1675  		bidx = f2fs_target_device_index(sbi, blkaddr);
1676  
1677  	if (map->m_len == 0) {
1678  		/* reserved delalloc block should be mapped for fiemap. */
1679  		if (blkaddr == NEW_ADDR)
1680  			map->m_flags |= F2FS_MAP_DELALLOC;
1681  		map->m_flags |= F2FS_MAP_MAPPED;
1682  
1683  		map->m_pblk = blkaddr;
1684  		map->m_len = 1;
1685  
1686  		if (map->m_multidev_dio)
1687  			map->m_bdev = FDEV(bidx).bdev;
1688  	} else if ((map->m_pblk != NEW_ADDR &&
1689  			blkaddr == (map->m_pblk + ofs)) ||
1690  			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1691  			flag == F2FS_GET_BLOCK_PRE_DIO) {
1692  		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1693  			goto sync_out;
1694  		ofs++;
1695  		map->m_len++;
1696  	} else {
1697  		goto sync_out;
1698  	}
1699  
1700  skip:
1701  	dn.ofs_in_node++;
1702  	pgofs++;
1703  
1704  	/* preallocate blocks in batch for one dnode page */
1705  	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1706  			(pgofs == end || dn.ofs_in_node == end_offset)) {
1707  
1708  		dn.ofs_in_node = ofs_in_node;
1709  		err = f2fs_reserve_new_blocks(&dn, prealloc);
1710  		if (err)
1711  			goto sync_out;
1712  
1713  		map->m_len += dn.ofs_in_node - ofs_in_node;
1714  		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1715  			err = -ENOSPC;
1716  			goto sync_out;
1717  		}
1718  		dn.ofs_in_node = end_offset;
1719  	}
1720  
1721  	if (pgofs >= end)
1722  		goto sync_out;
1723  	else if (dn.ofs_in_node < end_offset)
1724  		goto next_block;
1725  
1726  	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1727  		if (map->m_flags & F2FS_MAP_MAPPED) {
1728  			unsigned int ofs = start_pgofs - map->m_lblk;
1729  
1730  			f2fs_update_read_extent_cache_range(&dn,
1731  				start_pgofs, map->m_pblk + ofs,
1732  				map->m_len - ofs);
1733  		}
1734  	}
1735  
1736  	f2fs_put_dnode(&dn);
1737  
1738  	if (map->m_may_create) {
1739  		f2fs_map_unlock(sbi, flag);
1740  		f2fs_balance_fs(sbi, dn.node_changed);
1741  	}
1742  	goto next_dnode;
1743  
1744  sync_out:
1745  
1746  	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1747  		/*
1748  		 * for hardware encryption, but to avoid potential issue
1749  		 * in future
1750  		 */
1751  		f2fs_wait_on_block_writeback_range(inode,
1752  						map->m_pblk, map->m_len);
1753  
1754  		if (map->m_multidev_dio) {
1755  			block_t blk_addr = map->m_pblk;
1756  
1757  			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1758  
1759  			map->m_bdev = FDEV(bidx).bdev;
1760  			map->m_pblk -= FDEV(bidx).start_blk;
1761  
1762  			if (map->m_may_create)
1763  				f2fs_update_device_state(sbi, inode->i_ino,
1764  							blk_addr, map->m_len);
1765  
1766  			f2fs_bug_on(sbi, blk_addr + map->m_len >
1767  						FDEV(bidx).end_blk + 1);
1768  		}
1769  	}
1770  
1771  	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1772  		if (map->m_flags & F2FS_MAP_MAPPED) {
1773  			unsigned int ofs = start_pgofs - map->m_lblk;
1774  
1775  			f2fs_update_read_extent_cache_range(&dn,
1776  				start_pgofs, map->m_pblk + ofs,
1777  				map->m_len - ofs);
1778  		}
1779  		if (map->m_next_extent)
1780  			*map->m_next_extent = pgofs + 1;
1781  	}
1782  	f2fs_put_dnode(&dn);
1783  unlock_out:
1784  	if (map->m_may_create) {
1785  		f2fs_map_unlock(sbi, flag);
1786  		f2fs_balance_fs(sbi, dn.node_changed);
1787  	}
1788  out:
1789  	trace_f2fs_map_blocks(inode, map, flag, err);
1790  	return err;
1791  }
1792  
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1793  bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1794  {
1795  	struct f2fs_map_blocks map;
1796  	block_t last_lblk;
1797  	int err;
1798  
1799  	if (pos + len > i_size_read(inode))
1800  		return false;
1801  
1802  	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1803  	map.m_next_pgofs = NULL;
1804  	map.m_next_extent = NULL;
1805  	map.m_seg_type = NO_CHECK_TYPE;
1806  	map.m_may_create = false;
1807  	last_lblk = F2FS_BLK_ALIGN(pos + len);
1808  
1809  	while (map.m_lblk < last_lblk) {
1810  		map.m_len = last_lblk - map.m_lblk;
1811  		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1812  		if (err || map.m_len == 0)
1813  			return false;
1814  		map.m_lblk += map.m_len;
1815  	}
1816  	return true;
1817  }
1818  
bytes_to_blks(struct inode * inode,u64 bytes)1819  static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1820  {
1821  	return (bytes >> inode->i_blkbits);
1822  }
1823  
blks_to_bytes(struct inode * inode,u64 blks)1824  static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1825  {
1826  	return (blks << inode->i_blkbits);
1827  }
1828  
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1829  static int f2fs_xattr_fiemap(struct inode *inode,
1830  				struct fiemap_extent_info *fieinfo)
1831  {
1832  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1833  	struct page *page;
1834  	struct node_info ni;
1835  	__u64 phys = 0, len;
1836  	__u32 flags;
1837  	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1838  	int err = 0;
1839  
1840  	if (f2fs_has_inline_xattr(inode)) {
1841  		int offset;
1842  
1843  		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1844  						inode->i_ino, false);
1845  		if (!page)
1846  			return -ENOMEM;
1847  
1848  		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1849  		if (err) {
1850  			f2fs_put_page(page, 1);
1851  			return err;
1852  		}
1853  
1854  		phys = blks_to_bytes(inode, ni.blk_addr);
1855  		offset = offsetof(struct f2fs_inode, i_addr) +
1856  					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1857  					get_inline_xattr_addrs(inode));
1858  
1859  		phys += offset;
1860  		len = inline_xattr_size(inode);
1861  
1862  		f2fs_put_page(page, 1);
1863  
1864  		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1865  
1866  		if (!xnid)
1867  			flags |= FIEMAP_EXTENT_LAST;
1868  
1869  		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1870  		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1871  		if (err)
1872  			return err;
1873  	}
1874  
1875  	if (xnid) {
1876  		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1877  		if (!page)
1878  			return -ENOMEM;
1879  
1880  		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1881  		if (err) {
1882  			f2fs_put_page(page, 1);
1883  			return err;
1884  		}
1885  
1886  		phys = blks_to_bytes(inode, ni.blk_addr);
1887  		len = inode->i_sb->s_blocksize;
1888  
1889  		f2fs_put_page(page, 1);
1890  
1891  		flags = FIEMAP_EXTENT_LAST;
1892  	}
1893  
1894  	if (phys) {
1895  		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1896  		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1897  	}
1898  
1899  	return (err < 0 ? err : 0);
1900  }
1901  
max_inode_blocks(struct inode * inode)1902  static loff_t max_inode_blocks(struct inode *inode)
1903  {
1904  	loff_t result = ADDRS_PER_INODE(inode);
1905  	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1906  
1907  	/* two direct node blocks */
1908  	result += (leaf_count * 2);
1909  
1910  	/* two indirect node blocks */
1911  	leaf_count *= NIDS_PER_BLOCK;
1912  	result += (leaf_count * 2);
1913  
1914  	/* one double indirect node block */
1915  	leaf_count *= NIDS_PER_BLOCK;
1916  	result += leaf_count;
1917  
1918  	return result;
1919  }
1920  
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1921  int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1922  		u64 start, u64 len)
1923  {
1924  	struct f2fs_map_blocks map;
1925  	sector_t start_blk, last_blk;
1926  	pgoff_t next_pgofs;
1927  	u64 logical = 0, phys = 0, size = 0;
1928  	u32 flags = 0;
1929  	int ret = 0;
1930  	bool compr_cluster = false, compr_appended;
1931  	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1932  	unsigned int count_in_cluster = 0;
1933  	loff_t maxbytes;
1934  
1935  	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1936  		ret = f2fs_precache_extents(inode);
1937  		if (ret)
1938  			return ret;
1939  	}
1940  
1941  	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1942  	if (ret)
1943  		return ret;
1944  
1945  	inode_lock(inode);
1946  
1947  	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1948  	if (start > maxbytes) {
1949  		ret = -EFBIG;
1950  		goto out;
1951  	}
1952  
1953  	if (len > maxbytes || (maxbytes - len) < start)
1954  		len = maxbytes - start;
1955  
1956  	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1957  		ret = f2fs_xattr_fiemap(inode, fieinfo);
1958  		goto out;
1959  	}
1960  
1961  	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1962  		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1963  		if (ret != -EAGAIN)
1964  			goto out;
1965  	}
1966  
1967  	if (bytes_to_blks(inode, len) == 0)
1968  		len = blks_to_bytes(inode, 1);
1969  
1970  	start_blk = bytes_to_blks(inode, start);
1971  	last_blk = bytes_to_blks(inode, start + len - 1);
1972  
1973  next:
1974  	memset(&map, 0, sizeof(map));
1975  	map.m_lblk = start_blk;
1976  	map.m_len = bytes_to_blks(inode, len);
1977  	map.m_next_pgofs = &next_pgofs;
1978  	map.m_seg_type = NO_CHECK_TYPE;
1979  
1980  	if (compr_cluster) {
1981  		map.m_lblk += 1;
1982  		map.m_len = cluster_size - count_in_cluster;
1983  	}
1984  
1985  	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1986  	if (ret)
1987  		goto out;
1988  
1989  	/* HOLE */
1990  	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1991  		start_blk = next_pgofs;
1992  
1993  		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1994  						max_inode_blocks(inode)))
1995  			goto prep_next;
1996  
1997  		flags |= FIEMAP_EXTENT_LAST;
1998  	}
1999  
2000  	compr_appended = false;
2001  	/* In a case of compressed cluster, append this to the last extent */
2002  	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2003  			!(map.m_flags & F2FS_MAP_FLAGS))) {
2004  		compr_appended = true;
2005  		goto skip_fill;
2006  	}
2007  
2008  	if (size) {
2009  		flags |= FIEMAP_EXTENT_MERGED;
2010  		if (IS_ENCRYPTED(inode))
2011  			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2012  
2013  		ret = fiemap_fill_next_extent(fieinfo, logical,
2014  				phys, size, flags);
2015  		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2016  		if (ret)
2017  			goto out;
2018  		size = 0;
2019  	}
2020  
2021  	if (start_blk > last_blk)
2022  		goto out;
2023  
2024  skip_fill:
2025  	if (map.m_pblk == COMPRESS_ADDR) {
2026  		compr_cluster = true;
2027  		count_in_cluster = 1;
2028  	} else if (compr_appended) {
2029  		unsigned int appended_blks = cluster_size -
2030  						count_in_cluster + 1;
2031  		size += blks_to_bytes(inode, appended_blks);
2032  		start_blk += appended_blks;
2033  		compr_cluster = false;
2034  	} else {
2035  		logical = blks_to_bytes(inode, start_blk);
2036  		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2037  			blks_to_bytes(inode, map.m_pblk) : 0;
2038  		size = blks_to_bytes(inode, map.m_len);
2039  		flags = 0;
2040  
2041  		if (compr_cluster) {
2042  			flags = FIEMAP_EXTENT_ENCODED;
2043  			count_in_cluster += map.m_len;
2044  			if (count_in_cluster == cluster_size) {
2045  				compr_cluster = false;
2046  				size += blks_to_bytes(inode, 1);
2047  			}
2048  		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2049  			flags = FIEMAP_EXTENT_UNWRITTEN;
2050  		}
2051  
2052  		start_blk += bytes_to_blks(inode, size);
2053  	}
2054  
2055  prep_next:
2056  	cond_resched();
2057  	if (fatal_signal_pending(current))
2058  		ret = -EINTR;
2059  	else
2060  		goto next;
2061  out:
2062  	if (ret == 1)
2063  		ret = 0;
2064  
2065  	inode_unlock(inode);
2066  	return ret;
2067  }
2068  
f2fs_readpage_limit(struct inode * inode)2069  static inline loff_t f2fs_readpage_limit(struct inode *inode)
2070  {
2071  	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2072  		return inode->i_sb->s_maxbytes;
2073  
2074  	return i_size_read(inode);
2075  }
2076  
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2077  static int f2fs_read_single_page(struct inode *inode, struct page *page,
2078  					unsigned nr_pages,
2079  					struct f2fs_map_blocks *map,
2080  					struct bio **bio_ret,
2081  					sector_t *last_block_in_bio,
2082  					bool is_readahead)
2083  {
2084  	struct bio *bio = *bio_ret;
2085  	const unsigned blocksize = blks_to_bytes(inode, 1);
2086  	sector_t block_in_file;
2087  	sector_t last_block;
2088  	sector_t last_block_in_file;
2089  	sector_t block_nr;
2090  	int ret = 0;
2091  
2092  	block_in_file = (sector_t)page_index(page);
2093  	last_block = block_in_file + nr_pages;
2094  	last_block_in_file = bytes_to_blks(inode,
2095  			f2fs_readpage_limit(inode) + blocksize - 1);
2096  	if (last_block > last_block_in_file)
2097  		last_block = last_block_in_file;
2098  
2099  	/* just zeroing out page which is beyond EOF */
2100  	if (block_in_file >= last_block)
2101  		goto zero_out;
2102  	/*
2103  	 * Map blocks using the previous result first.
2104  	 */
2105  	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2106  			block_in_file > map->m_lblk &&
2107  			block_in_file < (map->m_lblk + map->m_len))
2108  		goto got_it;
2109  
2110  	/*
2111  	 * Then do more f2fs_map_blocks() calls until we are
2112  	 * done with this page.
2113  	 */
2114  	map->m_lblk = block_in_file;
2115  	map->m_len = last_block - block_in_file;
2116  
2117  	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2118  	if (ret)
2119  		goto out;
2120  got_it:
2121  	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2122  		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2123  		SetPageMappedToDisk(page);
2124  
2125  		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2126  					!cleancache_get_page(page))) {
2127  			SetPageUptodate(page);
2128  			goto confused;
2129  		}
2130  
2131  		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2132  						DATA_GENERIC_ENHANCE_READ)) {
2133  			ret = -EFSCORRUPTED;
2134  			f2fs_handle_error(F2FS_I_SB(inode),
2135  						ERROR_INVALID_BLKADDR);
2136  			goto out;
2137  		}
2138  	} else {
2139  zero_out:
2140  		zero_user_segment(page, 0, PAGE_SIZE);
2141  		if (f2fs_need_verity(inode, page->index) &&
2142  		    !fsverity_verify_page(page)) {
2143  			ret = -EIO;
2144  			goto out;
2145  		}
2146  		if (!PageUptodate(page))
2147  			SetPageUptodate(page);
2148  		unlock_page(page);
2149  		goto out;
2150  	}
2151  
2152  	/*
2153  	 * This page will go to BIO.  Do we need to send this
2154  	 * BIO off first?
2155  	 */
2156  	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2157  				       *last_block_in_bio, block_nr) ||
2158  		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2159  submit_and_realloc:
2160  		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2161  		bio = NULL;
2162  	}
2163  	if (bio == NULL) {
2164  		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2165  				is_readahead ? REQ_RAHEAD : 0, page->index,
2166  				false);
2167  		if (IS_ERR(bio)) {
2168  			ret = PTR_ERR(bio);
2169  			bio = NULL;
2170  			goto out;
2171  		}
2172  	}
2173  
2174  	/*
2175  	 * If the page is under writeback, we need to wait for
2176  	 * its completion to see the correct decrypted data.
2177  	 */
2178  	f2fs_wait_on_block_writeback(inode, block_nr);
2179  
2180  	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2181  		goto submit_and_realloc;
2182  
2183  	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2184  	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2185  							F2FS_BLKSIZE);
2186  	*last_block_in_bio = block_nr;
2187  	goto out;
2188  confused:
2189  	if (bio) {
2190  		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2191  		bio = NULL;
2192  	}
2193  	unlock_page(page);
2194  out:
2195  	*bio_ret = bio;
2196  	return ret;
2197  }
2198  
2199  #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2200  int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2201  				unsigned nr_pages, sector_t *last_block_in_bio,
2202  				bool is_readahead, bool for_write)
2203  {
2204  	struct dnode_of_data dn;
2205  	struct inode *inode = cc->inode;
2206  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2207  	struct bio *bio = *bio_ret;
2208  	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2209  	sector_t last_block_in_file;
2210  	const unsigned blocksize = blks_to_bytes(inode, 1);
2211  	struct decompress_io_ctx *dic = NULL;
2212  	struct extent_info ei = {};
2213  	bool from_dnode = true;
2214  	int i;
2215  	int ret = 0;
2216  
2217  	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2218  
2219  	last_block_in_file = bytes_to_blks(inode,
2220  			f2fs_readpage_limit(inode) + blocksize - 1);
2221  
2222  	/* get rid of pages beyond EOF */
2223  	for (i = 0; i < cc->cluster_size; i++) {
2224  		struct page *page = cc->rpages[i];
2225  
2226  		if (!page)
2227  			continue;
2228  		if ((sector_t)page->index >= last_block_in_file) {
2229  			zero_user_segment(page, 0, PAGE_SIZE);
2230  			if (!PageUptodate(page))
2231  				SetPageUptodate(page);
2232  		} else if (!PageUptodate(page)) {
2233  			continue;
2234  		}
2235  		unlock_page(page);
2236  		if (for_write)
2237  			put_page(page);
2238  		cc->rpages[i] = NULL;
2239  		cc->nr_rpages--;
2240  	}
2241  
2242  	/* we are done since all pages are beyond EOF */
2243  	if (f2fs_cluster_is_empty(cc))
2244  		goto out;
2245  
2246  	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2247  		from_dnode = false;
2248  
2249  	if (!from_dnode)
2250  		goto skip_reading_dnode;
2251  
2252  	set_new_dnode(&dn, inode, NULL, NULL, 0);
2253  	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2254  	if (ret)
2255  		goto out;
2256  
2257  	if (unlikely(f2fs_cp_error(sbi))) {
2258  		ret = -EIO;
2259  		goto out_put_dnode;
2260  	}
2261  	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2262  
2263  skip_reading_dnode:
2264  	for (i = 1; i < cc->cluster_size; i++) {
2265  		block_t blkaddr;
2266  
2267  		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2268  					dn.ofs_in_node + i) :
2269  					ei.blk + i - 1;
2270  
2271  		if (!__is_valid_data_blkaddr(blkaddr))
2272  			break;
2273  
2274  		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2275  			ret = -EFAULT;
2276  			goto out_put_dnode;
2277  		}
2278  		cc->nr_cpages++;
2279  
2280  		if (!from_dnode && i >= ei.c_len)
2281  			break;
2282  	}
2283  
2284  	/* nothing to decompress */
2285  	if (cc->nr_cpages == 0) {
2286  		ret = 0;
2287  		goto out_put_dnode;
2288  	}
2289  
2290  	dic = f2fs_alloc_dic(cc);
2291  	if (IS_ERR(dic)) {
2292  		ret = PTR_ERR(dic);
2293  		goto out_put_dnode;
2294  	}
2295  
2296  	for (i = 0; i < cc->nr_cpages; i++) {
2297  		struct page *page = dic->cpages[i];
2298  		block_t blkaddr;
2299  		struct bio_post_read_ctx *ctx;
2300  
2301  		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2302  					dn.ofs_in_node + i + 1) :
2303  					ei.blk + i;
2304  
2305  		f2fs_wait_on_block_writeback(inode, blkaddr);
2306  
2307  		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2308  			if (atomic_dec_and_test(&dic->remaining_pages))
2309  				f2fs_decompress_cluster(dic, true);
2310  			continue;
2311  		}
2312  
2313  		if (bio && (!page_is_mergeable(sbi, bio,
2314  					*last_block_in_bio, blkaddr) ||
2315  		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2316  submit_and_realloc:
2317  			f2fs_submit_read_bio(sbi, bio, DATA);
2318  			bio = NULL;
2319  		}
2320  
2321  		if (!bio) {
2322  			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2323  					is_readahead ? REQ_RAHEAD : 0,
2324  					page->index, for_write);
2325  			if (IS_ERR(bio)) {
2326  				ret = PTR_ERR(bio);
2327  				f2fs_decompress_end_io(dic, ret, true);
2328  				f2fs_put_dnode(&dn);
2329  				*bio_ret = NULL;
2330  				return ret;
2331  			}
2332  		}
2333  
2334  		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2335  			goto submit_and_realloc;
2336  
2337  		ctx = get_post_read_ctx(bio);
2338  		ctx->enabled_steps |= STEP_DECOMPRESS;
2339  		refcount_inc(&dic->refcnt);
2340  
2341  		inc_page_count(sbi, F2FS_RD_DATA);
2342  		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2343  		*last_block_in_bio = blkaddr;
2344  	}
2345  
2346  	if (from_dnode)
2347  		f2fs_put_dnode(&dn);
2348  
2349  	*bio_ret = bio;
2350  	return 0;
2351  
2352  out_put_dnode:
2353  	if (from_dnode)
2354  		f2fs_put_dnode(&dn);
2355  out:
2356  	for (i = 0; i < cc->cluster_size; i++) {
2357  		if (cc->rpages[i]) {
2358  			ClearPageUptodate(cc->rpages[i]);
2359  			unlock_page(cc->rpages[i]);
2360  		}
2361  	}
2362  	*bio_ret = bio;
2363  	return ret;
2364  }
2365  #endif
2366  
2367  /*
2368   * This function was originally taken from fs/mpage.c, and customized for f2fs.
2369   * Major change was from block_size == page_size in f2fs by default.
2370   */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2371  static int f2fs_mpage_readpages(struct inode *inode,
2372  		struct readahead_control *rac, struct page *page)
2373  {
2374  	struct bio *bio = NULL;
2375  	sector_t last_block_in_bio = 0;
2376  	struct f2fs_map_blocks map;
2377  #ifdef CONFIG_F2FS_FS_COMPRESSION
2378  	struct compress_ctx cc = {
2379  		.inode = inode,
2380  		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2381  		.cluster_size = F2FS_I(inode)->i_cluster_size,
2382  		.cluster_idx = NULL_CLUSTER,
2383  		.rpages = NULL,
2384  		.cpages = NULL,
2385  		.nr_rpages = 0,
2386  		.nr_cpages = 0,
2387  	};
2388  	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2389  #endif
2390  	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2391  	unsigned max_nr_pages = nr_pages;
2392  	int ret = 0;
2393  
2394  	map.m_pblk = 0;
2395  	map.m_lblk = 0;
2396  	map.m_len = 0;
2397  	map.m_flags = 0;
2398  	map.m_next_pgofs = NULL;
2399  	map.m_next_extent = NULL;
2400  	map.m_seg_type = NO_CHECK_TYPE;
2401  	map.m_may_create = false;
2402  
2403  	for (; nr_pages; nr_pages--) {
2404  		if (rac) {
2405  			page = readahead_page(rac);
2406  			prefetchw(&page->flags);
2407  		}
2408  
2409  #ifdef CONFIG_F2FS_FS_COMPRESSION
2410  		if (f2fs_compressed_file(inode)) {
2411  			/* there are remained compressed pages, submit them */
2412  			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2413  				ret = f2fs_read_multi_pages(&cc, &bio,
2414  							max_nr_pages,
2415  							&last_block_in_bio,
2416  							rac != NULL, false);
2417  				f2fs_destroy_compress_ctx(&cc, false);
2418  				if (ret)
2419  					goto set_error_page;
2420  			}
2421  			if (cc.cluster_idx == NULL_CLUSTER) {
2422  				if (nc_cluster_idx ==
2423  					page->index >> cc.log_cluster_size) {
2424  					goto read_single_page;
2425  				}
2426  
2427  				ret = f2fs_is_compressed_cluster(inode, page->index);
2428  				if (ret < 0)
2429  					goto set_error_page;
2430  				else if (!ret) {
2431  					nc_cluster_idx =
2432  						page->index >> cc.log_cluster_size;
2433  					goto read_single_page;
2434  				}
2435  
2436  				nc_cluster_idx = NULL_CLUSTER;
2437  			}
2438  			ret = f2fs_init_compress_ctx(&cc);
2439  			if (ret)
2440  				goto set_error_page;
2441  
2442  			f2fs_compress_ctx_add_page(&cc, page);
2443  
2444  			goto next_page;
2445  		}
2446  read_single_page:
2447  #endif
2448  
2449  		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2450  					&bio, &last_block_in_bio, rac);
2451  		if (ret) {
2452  #ifdef CONFIG_F2FS_FS_COMPRESSION
2453  set_error_page:
2454  #endif
2455  			zero_user_segment(page, 0, PAGE_SIZE);
2456  			unlock_page(page);
2457  		}
2458  #ifdef CONFIG_F2FS_FS_COMPRESSION
2459  next_page:
2460  #endif
2461  		if (rac)
2462  			put_page(page);
2463  
2464  #ifdef CONFIG_F2FS_FS_COMPRESSION
2465  		if (f2fs_compressed_file(inode)) {
2466  			/* last page */
2467  			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2468  				ret = f2fs_read_multi_pages(&cc, &bio,
2469  							max_nr_pages,
2470  							&last_block_in_bio,
2471  							rac != NULL, false);
2472  				f2fs_destroy_compress_ctx(&cc, false);
2473  			}
2474  		}
2475  #endif
2476  	}
2477  	if (bio)
2478  		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2479  	return ret;
2480  }
2481  
f2fs_read_data_page(struct file * file,struct page * page)2482  static int f2fs_read_data_page(struct file *file, struct page *page)
2483  {
2484  	struct inode *inode = page_file_mapping(page)->host;
2485  	int ret = -EAGAIN;
2486  
2487  	trace_f2fs_readpage(page, DATA);
2488  
2489  	if (!f2fs_is_compress_backend_ready(inode)) {
2490  		unlock_page(page);
2491  		return -EOPNOTSUPP;
2492  	}
2493  
2494  	/* If the file has inline data, try to read it directly */
2495  	if (f2fs_has_inline_data(inode))
2496  		ret = f2fs_read_inline_data(inode, page);
2497  	if (ret == -EAGAIN)
2498  		ret = f2fs_mpage_readpages(inode, NULL, page);
2499  	return ret;
2500  }
2501  
f2fs_readahead(struct readahead_control * rac)2502  static void f2fs_readahead(struct readahead_control *rac)
2503  {
2504  	struct inode *inode = rac->mapping->host;
2505  
2506  	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2507  
2508  	if (!f2fs_is_compress_backend_ready(inode))
2509  		return;
2510  
2511  	/* If the file has inline data, skip readpages */
2512  	if (f2fs_has_inline_data(inode))
2513  		return;
2514  
2515  	f2fs_mpage_readpages(inode, rac, NULL);
2516  }
2517  
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2518  int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2519  {
2520  	struct inode *inode = fio->page->mapping->host;
2521  	struct page *mpage, *page;
2522  	gfp_t gfp_flags = GFP_NOFS;
2523  
2524  	if (!f2fs_encrypted_file(inode))
2525  		return 0;
2526  
2527  	page = fio->compressed_page ? fio->compressed_page : fio->page;
2528  
2529  	/* wait for GCed page writeback via META_MAPPING */
2530  	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2531  
2532  	if (fscrypt_inode_uses_inline_crypto(inode))
2533  		return 0;
2534  
2535  retry_encrypt:
2536  	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2537  					PAGE_SIZE, 0, gfp_flags);
2538  	if (IS_ERR(fio->encrypted_page)) {
2539  		/* flush pending IOs and wait for a while in the ENOMEM case */
2540  		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2541  			f2fs_flush_merged_writes(fio->sbi);
2542  			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2543  			gfp_flags |= __GFP_NOFAIL;
2544  			goto retry_encrypt;
2545  		}
2546  		return PTR_ERR(fio->encrypted_page);
2547  	}
2548  
2549  	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2550  	if (mpage) {
2551  		if (PageUptodate(mpage))
2552  			memcpy(page_address(mpage),
2553  				page_address(fio->encrypted_page), PAGE_SIZE);
2554  		f2fs_put_page(mpage, 1);
2555  	}
2556  	return 0;
2557  }
2558  
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2559  static inline bool check_inplace_update_policy(struct inode *inode,
2560  				struct f2fs_io_info *fio)
2561  {
2562  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2563  
2564  	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2565  	    is_inode_flag_set(inode, FI_OPU_WRITE))
2566  		return false;
2567  	if (IS_F2FS_IPU_FORCE(sbi))
2568  		return true;
2569  	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2570  		return true;
2571  	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2572  		return true;
2573  	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2574  	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2575  		return true;
2576  
2577  	/*
2578  	 * IPU for rewrite async pages
2579  	 */
2580  	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2581  	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2582  		return true;
2583  
2584  	/* this is only set during fdatasync */
2585  	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2586  		return true;
2587  
2588  	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2589  			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2590  		return true;
2591  
2592  	return false;
2593  }
2594  
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2595  bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2596  {
2597  	/* swap file is migrating in aligned write mode */
2598  	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2599  		return false;
2600  
2601  	if (f2fs_is_pinned_file(inode))
2602  		return true;
2603  
2604  	/* if this is cold file, we should overwrite to avoid fragmentation */
2605  	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2606  		return true;
2607  
2608  	return check_inplace_update_policy(inode, fio);
2609  }
2610  
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2611  bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2612  {
2613  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2614  
2615  	/* The below cases were checked when setting it. */
2616  	if (f2fs_is_pinned_file(inode))
2617  		return false;
2618  	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2619  		return true;
2620  	if (f2fs_lfs_mode(sbi))
2621  		return true;
2622  	if (S_ISDIR(inode->i_mode))
2623  		return true;
2624  	if (IS_NOQUOTA(inode))
2625  		return true;
2626  	if (f2fs_is_atomic_file(inode))
2627  		return true;
2628  
2629  	/* swap file is migrating in aligned write mode */
2630  	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2631  		return true;
2632  
2633  	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2634  		return true;
2635  
2636  	if (fio) {
2637  		if (page_private_gcing(fio->page))
2638  			return true;
2639  		if (page_private_dummy(fio->page))
2640  			return true;
2641  		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2642  			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2643  			return true;
2644  	}
2645  	return false;
2646  }
2647  
need_inplace_update(struct f2fs_io_info * fio)2648  static inline bool need_inplace_update(struct f2fs_io_info *fio)
2649  {
2650  	struct inode *inode = fio->page->mapping->host;
2651  
2652  	if (f2fs_should_update_outplace(inode, fio))
2653  		return false;
2654  
2655  	return f2fs_should_update_inplace(inode, fio);
2656  }
2657  
f2fs_do_write_data_page(struct f2fs_io_info * fio)2658  int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2659  {
2660  	struct page *page = fio->page;
2661  	struct inode *inode = page->mapping->host;
2662  	struct dnode_of_data dn;
2663  	struct node_info ni;
2664  	bool ipu_force = false;
2665  	int err = 0;
2666  
2667  	/* Use COW inode to make dnode_of_data for atomic write */
2668  	if (f2fs_is_atomic_file(inode))
2669  		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2670  	else
2671  		set_new_dnode(&dn, inode, NULL, NULL, 0);
2672  
2673  	if (need_inplace_update(fio) &&
2674  	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2675  						&fio->old_blkaddr)) {
2676  		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2677  						DATA_GENERIC_ENHANCE)) {
2678  			f2fs_handle_error(fio->sbi,
2679  						ERROR_INVALID_BLKADDR);
2680  			return -EFSCORRUPTED;
2681  		}
2682  
2683  		ipu_force = true;
2684  		fio->need_lock = LOCK_DONE;
2685  		goto got_it;
2686  	}
2687  
2688  	/* Deadlock due to between page->lock and f2fs_lock_op */
2689  	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2690  		return -EAGAIN;
2691  
2692  	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2693  	if (err)
2694  		goto out;
2695  
2696  	fio->old_blkaddr = dn.data_blkaddr;
2697  
2698  	/* This page is already truncated */
2699  	if (fio->old_blkaddr == NULL_ADDR) {
2700  		ClearPageUptodate(page);
2701  		clear_page_private_gcing(page);
2702  		goto out_writepage;
2703  	}
2704  got_it:
2705  	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2706  		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2707  						DATA_GENERIC_ENHANCE)) {
2708  		err = -EFSCORRUPTED;
2709  		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2710  		goto out_writepage;
2711  	}
2712  
2713  	/*
2714  	 * If current allocation needs SSR,
2715  	 * it had better in-place writes for updated data.
2716  	 */
2717  	if (ipu_force ||
2718  		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2719  					need_inplace_update(fio))) {
2720  		err = f2fs_encrypt_one_page(fio);
2721  		if (err)
2722  			goto out_writepage;
2723  
2724  		set_page_writeback(page);
2725  		f2fs_put_dnode(&dn);
2726  		if (fio->need_lock == LOCK_REQ)
2727  			f2fs_unlock_op(fio->sbi);
2728  		err = f2fs_inplace_write_data(fio);
2729  		if (err) {
2730  			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2731  				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2732  			if (PageWriteback(page))
2733  				end_page_writeback(page);
2734  		} else {
2735  			set_inode_flag(inode, FI_UPDATE_WRITE);
2736  		}
2737  		trace_f2fs_do_write_data_page(fio->page, IPU);
2738  		return err;
2739  	}
2740  
2741  	if (fio->need_lock == LOCK_RETRY) {
2742  		if (!f2fs_trylock_op(fio->sbi)) {
2743  			err = -EAGAIN;
2744  			goto out_writepage;
2745  		}
2746  		fio->need_lock = LOCK_REQ;
2747  	}
2748  
2749  	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2750  	if (err)
2751  		goto out_writepage;
2752  
2753  	fio->version = ni.version;
2754  
2755  	err = f2fs_encrypt_one_page(fio);
2756  	if (err)
2757  		goto out_writepage;
2758  
2759  	set_page_writeback(page);
2760  
2761  	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2762  		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2763  
2764  	/* LFS mode write path */
2765  	f2fs_outplace_write_data(&dn, fio);
2766  	trace_f2fs_do_write_data_page(page, OPU);
2767  	set_inode_flag(inode, FI_APPEND_WRITE);
2768  	if (page->index == 0)
2769  		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2770  out_writepage:
2771  	f2fs_put_dnode(&dn);
2772  out:
2773  	if (fio->need_lock == LOCK_REQ)
2774  		f2fs_unlock_op(fio->sbi);
2775  	return err;
2776  }
2777  
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2778  int f2fs_write_single_data_page(struct page *page, int *submitted,
2779  				struct bio **bio,
2780  				sector_t *last_block,
2781  				struct writeback_control *wbc,
2782  				enum iostat_type io_type,
2783  				int compr_blocks,
2784  				bool allow_balance)
2785  {
2786  	struct inode *inode = page->mapping->host;
2787  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2788  	loff_t i_size = i_size_read(inode);
2789  	const pgoff_t end_index = ((unsigned long long)i_size)
2790  							>> PAGE_SHIFT;
2791  	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2792  	unsigned offset = 0;
2793  	bool need_balance_fs = false;
2794  	int err = 0;
2795  	struct f2fs_io_info fio = {
2796  		.sbi = sbi,
2797  		.ino = inode->i_ino,
2798  		.type = DATA,
2799  		.op = REQ_OP_WRITE,
2800  		.op_flags = wbc_to_write_flags(wbc),
2801  		.old_blkaddr = NULL_ADDR,
2802  		.page = page,
2803  		.encrypted_page = NULL,
2804  		.submitted = 0,
2805  		.compr_blocks = compr_blocks,
2806  		.need_lock = LOCK_RETRY,
2807  		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2808  		.io_type = io_type,
2809  		.io_wbc = wbc,
2810  		.bio = bio,
2811  		.last_block = last_block,
2812  	};
2813  
2814  	trace_f2fs_writepage(page, DATA);
2815  
2816  	/* we should bypass data pages to proceed the kworker jobs */
2817  	if (unlikely(f2fs_cp_error(sbi))) {
2818  		mapping_set_error(page->mapping, -EIO);
2819  		/*
2820  		 * don't drop any dirty dentry pages for keeping lastest
2821  		 * directory structure.
2822  		 */
2823  		if (S_ISDIR(inode->i_mode) &&
2824  				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2825  			goto redirty_out;
2826  		goto out;
2827  	}
2828  
2829  	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2830  		goto redirty_out;
2831  
2832  	if (page->index < end_index ||
2833  			f2fs_verity_in_progress(inode) ||
2834  			compr_blocks)
2835  		goto write;
2836  
2837  	/*
2838  	 * If the offset is out-of-range of file size,
2839  	 * this page does not have to be written to disk.
2840  	 */
2841  	offset = i_size & (PAGE_SIZE - 1);
2842  	if ((page->index >= end_index + 1) || !offset)
2843  		goto out;
2844  
2845  	zero_user_segment(page, offset, PAGE_SIZE);
2846  write:
2847  	if (f2fs_is_drop_cache(inode))
2848  		goto out;
2849  
2850  	/* Dentry/quota blocks are controlled by checkpoint */
2851  	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2852  		/*
2853  		 * We need to wait for node_write to avoid block allocation during
2854  		 * checkpoint. This can only happen to quota writes which can cause
2855  		 * the below discard race condition.
2856  		 */
2857  		if (IS_NOQUOTA(inode))
2858  			f2fs_down_read(&sbi->node_write);
2859  
2860  		fio.need_lock = LOCK_DONE;
2861  		err = f2fs_do_write_data_page(&fio);
2862  
2863  		if (IS_NOQUOTA(inode))
2864  			f2fs_up_read(&sbi->node_write);
2865  
2866  		goto done;
2867  	}
2868  
2869  	if (!wbc->for_reclaim)
2870  		need_balance_fs = true;
2871  	else if (has_not_enough_free_secs(sbi, 0, 0))
2872  		goto redirty_out;
2873  	else
2874  		set_inode_flag(inode, FI_HOT_DATA);
2875  
2876  	err = -EAGAIN;
2877  	if (f2fs_has_inline_data(inode)) {
2878  		err = f2fs_write_inline_data(inode, page);
2879  		if (!err)
2880  			goto out;
2881  	}
2882  
2883  	if (err == -EAGAIN) {
2884  		err = f2fs_do_write_data_page(&fio);
2885  		if (err == -EAGAIN) {
2886  			fio.need_lock = LOCK_REQ;
2887  			err = f2fs_do_write_data_page(&fio);
2888  		}
2889  	}
2890  
2891  	if (err) {
2892  		file_set_keep_isize(inode);
2893  	} else {
2894  		spin_lock(&F2FS_I(inode)->i_size_lock);
2895  		if (F2FS_I(inode)->last_disk_size < psize)
2896  			F2FS_I(inode)->last_disk_size = psize;
2897  		spin_unlock(&F2FS_I(inode)->i_size_lock);
2898  	}
2899  
2900  done:
2901  	if (err && err != -ENOENT)
2902  		goto redirty_out;
2903  
2904  out:
2905  	inode_dec_dirty_pages(inode);
2906  	if (err) {
2907  		ClearPageUptodate(page);
2908  		clear_page_private_gcing(page);
2909  	}
2910  
2911  	if (wbc->for_reclaim) {
2912  		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2913  		clear_inode_flag(inode, FI_HOT_DATA);
2914  		f2fs_remove_dirty_inode(inode);
2915  		submitted = NULL;
2916  	}
2917  	unlock_page(page);
2918  	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2919  			!F2FS_I(inode)->wb_task && allow_balance)
2920  		f2fs_balance_fs(sbi, need_balance_fs);
2921  
2922  	if (unlikely(f2fs_cp_error(sbi))) {
2923  		f2fs_submit_merged_write(sbi, DATA);
2924  		if (bio && *bio)
2925  			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2926  		submitted = NULL;
2927  	}
2928  
2929  	if (submitted)
2930  		*submitted = fio.submitted;
2931  
2932  	return 0;
2933  
2934  redirty_out:
2935  	redirty_page_for_writepage(wbc, page);
2936  	/*
2937  	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2938  	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2939  	 * file_write_and_wait_range() will see EIO error, which is critical
2940  	 * to return value of fsync() followed by atomic_write failure to user.
2941  	 */
2942  	if (!err || wbc->for_reclaim)
2943  		return AOP_WRITEPAGE_ACTIVATE;
2944  	unlock_page(page);
2945  	return err;
2946  }
2947  
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2948  static int f2fs_write_data_page(struct page *page,
2949  					struct writeback_control *wbc)
2950  {
2951  #ifdef CONFIG_F2FS_FS_COMPRESSION
2952  	struct inode *inode = page->mapping->host;
2953  
2954  	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2955  		goto out;
2956  
2957  	if (f2fs_compressed_file(inode)) {
2958  		if (f2fs_is_compressed_cluster(inode, page->index)) {
2959  			redirty_page_for_writepage(wbc, page);
2960  			return AOP_WRITEPAGE_ACTIVATE;
2961  		}
2962  	}
2963  out:
2964  #endif
2965  
2966  	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2967  						wbc, FS_DATA_IO, 0, true);
2968  }
2969  
2970  /*
2971   * This function was copied from write_cache_pages from mm/page-writeback.c.
2972   * The major change is making write step of cold data page separately from
2973   * warm/hot data page.
2974   */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2975  static int f2fs_write_cache_pages(struct address_space *mapping,
2976  					struct writeback_control *wbc,
2977  					enum iostat_type io_type)
2978  {
2979  	int ret = 0;
2980  	int done = 0, retry = 0;
2981  	struct page *pages[F2FS_ONSTACK_PAGES];
2982  	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2983  	struct bio *bio = NULL;
2984  	sector_t last_block;
2985  #ifdef CONFIG_F2FS_FS_COMPRESSION
2986  	struct inode *inode = mapping->host;
2987  	struct compress_ctx cc = {
2988  		.inode = inode,
2989  		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2990  		.cluster_size = F2FS_I(inode)->i_cluster_size,
2991  		.cluster_idx = NULL_CLUSTER,
2992  		.rpages = NULL,
2993  		.nr_rpages = 0,
2994  		.cpages = NULL,
2995  		.valid_nr_cpages = 0,
2996  		.rbuf = NULL,
2997  		.cbuf = NULL,
2998  		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2999  		.private = NULL,
3000  	};
3001  #endif
3002  	int nr_pages;
3003  	pgoff_t index;
3004  	pgoff_t end;		/* Inclusive */
3005  	pgoff_t done_index;
3006  	int range_whole = 0;
3007  	xa_mark_t tag;
3008  	int nwritten = 0;
3009  	int submitted = 0;
3010  	int i;
3011  
3012  	if (get_dirty_pages(mapping->host) <=
3013  				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3014  		set_inode_flag(mapping->host, FI_HOT_DATA);
3015  	else
3016  		clear_inode_flag(mapping->host, FI_HOT_DATA);
3017  
3018  	if (wbc->range_cyclic) {
3019  		index = mapping->writeback_index; /* prev offset */
3020  		end = -1;
3021  	} else {
3022  		index = wbc->range_start >> PAGE_SHIFT;
3023  		end = wbc->range_end >> PAGE_SHIFT;
3024  		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3025  			range_whole = 1;
3026  	}
3027  	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3028  		tag = PAGECACHE_TAG_TOWRITE;
3029  	else
3030  		tag = PAGECACHE_TAG_DIRTY;
3031  retry:
3032  	retry = 0;
3033  	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3034  		tag_pages_for_writeback(mapping, index, end);
3035  	done_index = index;
3036  	while (!done && !retry && (index <= end)) {
3037  		nr_pages = find_get_pages_range_tag(mapping, &index, end,
3038  				tag, F2FS_ONSTACK_PAGES, pages);
3039  		if (nr_pages == 0)
3040  			break;
3041  
3042  		for (i = 0; i < nr_pages; i++) {
3043  			struct page *page = pages[i];
3044  			bool need_readd;
3045  readd:
3046  			need_readd = false;
3047  #ifdef CONFIG_F2FS_FS_COMPRESSION
3048  			if (f2fs_compressed_file(inode)) {
3049  				void *fsdata = NULL;
3050  				struct page *pagep;
3051  				int ret2;
3052  
3053  				ret = f2fs_init_compress_ctx(&cc);
3054  				if (ret) {
3055  					done = 1;
3056  					break;
3057  				}
3058  
3059  				if (!f2fs_cluster_can_merge_page(&cc,
3060  								page->index)) {
3061  					ret = f2fs_write_multi_pages(&cc,
3062  						&submitted, wbc, io_type);
3063  					if (!ret)
3064  						need_readd = true;
3065  					goto result;
3066  				}
3067  
3068  				if (unlikely(f2fs_cp_error(sbi)))
3069  					goto lock_page;
3070  
3071  				if (!f2fs_cluster_is_empty(&cc))
3072  					goto lock_page;
3073  
3074  				if (f2fs_all_cluster_page_ready(&cc,
3075  					pages, i, nr_pages, true))
3076  					goto lock_page;
3077  
3078  				ret2 = f2fs_prepare_compress_overwrite(
3079  							inode, &pagep,
3080  							page->index, &fsdata);
3081  				if (ret2 < 0) {
3082  					ret = ret2;
3083  					done = 1;
3084  					break;
3085  				} else if (ret2 &&
3086  					(!f2fs_compress_write_end(inode,
3087  						fsdata, page->index, 1) ||
3088  					 !f2fs_all_cluster_page_ready(&cc,
3089  						pages, i, nr_pages, false))) {
3090  					retry = 1;
3091  					break;
3092  				}
3093  			}
3094  #endif
3095  			/* give a priority to WB_SYNC threads */
3096  			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3097  					wbc->sync_mode == WB_SYNC_NONE) {
3098  				done = 1;
3099  				break;
3100  			}
3101  #ifdef CONFIG_F2FS_FS_COMPRESSION
3102  lock_page:
3103  #endif
3104  			done_index = page->index;
3105  retry_write:
3106  			lock_page(page);
3107  
3108  			if (unlikely(page->mapping != mapping)) {
3109  continue_unlock:
3110  				unlock_page(page);
3111  				continue;
3112  			}
3113  
3114  			if (!PageDirty(page)) {
3115  				/* someone wrote it for us */
3116  				goto continue_unlock;
3117  			}
3118  
3119  			if (PageWriteback(page)) {
3120  				if (wbc->sync_mode == WB_SYNC_NONE)
3121  					goto continue_unlock;
3122  				f2fs_wait_on_page_writeback(page, DATA, true, true);
3123  			}
3124  
3125  			if (!clear_page_dirty_for_io(page))
3126  				goto continue_unlock;
3127  
3128  #ifdef CONFIG_F2FS_FS_COMPRESSION
3129  			if (f2fs_compressed_file(inode)) {
3130  				get_page(page);
3131  				f2fs_compress_ctx_add_page(&cc, page);
3132  				continue;
3133  			}
3134  #endif
3135  			ret = f2fs_write_single_data_page(page, &submitted,
3136  					&bio, &last_block, wbc, io_type,
3137  					0, true);
3138  			if (ret == AOP_WRITEPAGE_ACTIVATE)
3139  				unlock_page(page);
3140  #ifdef CONFIG_F2FS_FS_COMPRESSION
3141  result:
3142  #endif
3143  			nwritten += submitted;
3144  			wbc->nr_to_write -= submitted;
3145  
3146  			if (unlikely(ret)) {
3147  				/*
3148  				 * keep nr_to_write, since vfs uses this to
3149  				 * get # of written pages.
3150  				 */
3151  				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3152  					ret = 0;
3153  					goto next;
3154  				} else if (ret == -EAGAIN) {
3155  					ret = 0;
3156  					if (wbc->sync_mode == WB_SYNC_ALL) {
3157  						f2fs_io_schedule_timeout(
3158  							DEFAULT_IO_TIMEOUT);
3159  						goto retry_write;
3160  					}
3161  					goto next;
3162  				}
3163  				done_index = page->index + 1;
3164  				done = 1;
3165  				break;
3166  			}
3167  
3168  			if (wbc->nr_to_write <= 0 &&
3169  					wbc->sync_mode == WB_SYNC_NONE) {
3170  				done = 1;
3171  				break;
3172  			}
3173  next:
3174  			if (need_readd)
3175  				goto readd;
3176  		}
3177  		release_pages(pages, nr_pages);
3178  		cond_resched();
3179  	}
3180  #ifdef CONFIG_F2FS_FS_COMPRESSION
3181  	/* flush remained pages in compress cluster */
3182  	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3183  		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3184  		nwritten += submitted;
3185  		wbc->nr_to_write -= submitted;
3186  		if (ret) {
3187  			done = 1;
3188  			retry = 0;
3189  		}
3190  	}
3191  	if (f2fs_compressed_file(inode))
3192  		f2fs_destroy_compress_ctx(&cc, false);
3193  #endif
3194  	if (retry) {
3195  		index = 0;
3196  		end = -1;
3197  		goto retry;
3198  	}
3199  	if (wbc->range_cyclic && !done)
3200  		done_index = 0;
3201  	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3202  		mapping->writeback_index = done_index;
3203  
3204  	if (nwritten)
3205  		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3206  								NULL, 0, DATA);
3207  	/* submit cached bio of IPU write */
3208  	if (bio)
3209  		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3210  
3211  	return ret;
3212  }
3213  
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3214  static inline bool __should_serialize_io(struct inode *inode,
3215  					struct writeback_control *wbc)
3216  {
3217  	/* to avoid deadlock in path of data flush */
3218  	if (F2FS_I(inode)->wb_task)
3219  		return false;
3220  
3221  	if (!S_ISREG(inode->i_mode))
3222  		return false;
3223  	if (IS_NOQUOTA(inode))
3224  		return false;
3225  
3226  	if (f2fs_need_compress_data(inode))
3227  		return true;
3228  	if (wbc->sync_mode != WB_SYNC_ALL)
3229  		return true;
3230  	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3231  		return true;
3232  	return false;
3233  }
3234  
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3235  static int __f2fs_write_data_pages(struct address_space *mapping,
3236  						struct writeback_control *wbc,
3237  						enum iostat_type io_type)
3238  {
3239  	struct inode *inode = mapping->host;
3240  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3241  	struct blk_plug plug;
3242  	int ret;
3243  	bool locked = false;
3244  
3245  	/* deal with chardevs and other special file */
3246  	if (!mapping->a_ops->writepage)
3247  		return 0;
3248  
3249  	/* skip writing if there is no dirty page in this inode */
3250  	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3251  		return 0;
3252  
3253  	/* during POR, we don't need to trigger writepage at all. */
3254  	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3255  		goto skip_write;
3256  
3257  	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3258  			wbc->sync_mode == WB_SYNC_NONE &&
3259  			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3260  			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3261  		goto skip_write;
3262  
3263  	/* skip writing in file defragment preparing stage */
3264  	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3265  		goto skip_write;
3266  
3267  	trace_f2fs_writepages(mapping->host, wbc, DATA);
3268  
3269  	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3270  	if (wbc->sync_mode == WB_SYNC_ALL)
3271  		atomic_inc(&sbi->wb_sync_req[DATA]);
3272  	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3273  		/* to avoid potential deadlock */
3274  		if (current->plug)
3275  			blk_finish_plug(current->plug);
3276  		goto skip_write;
3277  	}
3278  
3279  	if (__should_serialize_io(inode, wbc)) {
3280  		mutex_lock(&sbi->writepages);
3281  		locked = true;
3282  	}
3283  
3284  	blk_start_plug(&plug);
3285  	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3286  	blk_finish_plug(&plug);
3287  
3288  	if (locked)
3289  		mutex_unlock(&sbi->writepages);
3290  
3291  	if (wbc->sync_mode == WB_SYNC_ALL)
3292  		atomic_dec(&sbi->wb_sync_req[DATA]);
3293  	/*
3294  	 * if some pages were truncated, we cannot guarantee its mapping->host
3295  	 * to detect pending bios.
3296  	 */
3297  
3298  	f2fs_remove_dirty_inode(inode);
3299  	return ret;
3300  
3301  skip_write:
3302  	wbc->pages_skipped += get_dirty_pages(inode);
3303  	trace_f2fs_writepages(mapping->host, wbc, DATA);
3304  	return 0;
3305  }
3306  
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3307  static int f2fs_write_data_pages(struct address_space *mapping,
3308  			    struct writeback_control *wbc)
3309  {
3310  	struct inode *inode = mapping->host;
3311  
3312  	return __f2fs_write_data_pages(mapping, wbc,
3313  			F2FS_I(inode)->cp_task == current ?
3314  			FS_CP_DATA_IO : FS_DATA_IO);
3315  }
3316  
f2fs_write_failed(struct inode * inode,loff_t to)3317  void f2fs_write_failed(struct inode *inode, loff_t to)
3318  {
3319  	loff_t i_size = i_size_read(inode);
3320  
3321  	if (IS_NOQUOTA(inode))
3322  		return;
3323  
3324  	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3325  	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3326  		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3327  		filemap_invalidate_lock(inode->i_mapping);
3328  
3329  		truncate_pagecache(inode, i_size);
3330  		f2fs_truncate_blocks(inode, i_size, true);
3331  
3332  		filemap_invalidate_unlock(inode->i_mapping);
3333  		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3334  	}
3335  }
3336  
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3337  static int prepare_write_begin(struct f2fs_sb_info *sbi,
3338  			struct page *page, loff_t pos, unsigned len,
3339  			block_t *blk_addr, bool *node_changed)
3340  {
3341  	struct inode *inode = page->mapping->host;
3342  	pgoff_t index = page->index;
3343  	struct dnode_of_data dn;
3344  	struct page *ipage;
3345  	bool locked = false;
3346  	int flag = F2FS_GET_BLOCK_PRE_AIO;
3347  	int err = 0;
3348  
3349  	/*
3350  	 * If a whole page is being written and we already preallocated all the
3351  	 * blocks, then there is no need to get a block address now.
3352  	 */
3353  	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3354  		return 0;
3355  
3356  	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3357  	if (f2fs_has_inline_data(inode)) {
3358  		if (pos + len > MAX_INLINE_DATA(inode))
3359  			flag = F2FS_GET_BLOCK_DEFAULT;
3360  		f2fs_map_lock(sbi, flag);
3361  		locked = true;
3362  	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3363  		f2fs_map_lock(sbi, flag);
3364  		locked = true;
3365  	}
3366  
3367  restart:
3368  	/* check inline_data */
3369  	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3370  	if (IS_ERR(ipage)) {
3371  		err = PTR_ERR(ipage);
3372  		goto unlock_out;
3373  	}
3374  
3375  	set_new_dnode(&dn, inode, ipage, ipage, 0);
3376  
3377  	if (f2fs_has_inline_data(inode)) {
3378  		if (pos + len <= MAX_INLINE_DATA(inode)) {
3379  			f2fs_do_read_inline_data(page, ipage);
3380  			set_inode_flag(inode, FI_DATA_EXIST);
3381  			if (inode->i_nlink)
3382  				set_page_private_inline(ipage);
3383  			goto out;
3384  		}
3385  		err = f2fs_convert_inline_page(&dn, page);
3386  		if (err || dn.data_blkaddr != NULL_ADDR)
3387  			goto out;
3388  	}
3389  
3390  	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3391  						 &dn.data_blkaddr)) {
3392  		if (locked) {
3393  			err = f2fs_reserve_block(&dn, index);
3394  			goto out;
3395  		}
3396  
3397  		/* hole case */
3398  		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3399  		if (!err && dn.data_blkaddr != NULL_ADDR)
3400  			goto out;
3401  		f2fs_put_dnode(&dn);
3402  		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3403  		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3404  		locked = true;
3405  		goto restart;
3406  	}
3407  out:
3408  	if (!err) {
3409  		/* convert_inline_page can make node_changed */
3410  		*blk_addr = dn.data_blkaddr;
3411  		*node_changed = dn.node_changed;
3412  	}
3413  	f2fs_put_dnode(&dn);
3414  unlock_out:
3415  	if (locked)
3416  		f2fs_map_unlock(sbi, flag);
3417  	return err;
3418  }
3419  
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3420  static int __find_data_block(struct inode *inode, pgoff_t index,
3421  				block_t *blk_addr)
3422  {
3423  	struct dnode_of_data dn;
3424  	struct page *ipage;
3425  	int err = 0;
3426  
3427  	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3428  	if (IS_ERR(ipage))
3429  		return PTR_ERR(ipage);
3430  
3431  	set_new_dnode(&dn, inode, ipage, ipage, 0);
3432  
3433  	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3434  						 &dn.data_blkaddr)) {
3435  		/* hole case */
3436  		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3437  		if (err) {
3438  			dn.data_blkaddr = NULL_ADDR;
3439  			err = 0;
3440  		}
3441  	}
3442  	*blk_addr = dn.data_blkaddr;
3443  	f2fs_put_dnode(&dn);
3444  	return err;
3445  }
3446  
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3447  static int __reserve_data_block(struct inode *inode, pgoff_t index,
3448  				block_t *blk_addr, bool *node_changed)
3449  {
3450  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3451  	struct dnode_of_data dn;
3452  	struct page *ipage;
3453  	int err = 0;
3454  
3455  	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3456  
3457  	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3458  	if (IS_ERR(ipage)) {
3459  		err = PTR_ERR(ipage);
3460  		goto unlock_out;
3461  	}
3462  	set_new_dnode(&dn, inode, ipage, ipage, 0);
3463  
3464  	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3465  						&dn.data_blkaddr))
3466  		err = f2fs_reserve_block(&dn, index);
3467  
3468  	*blk_addr = dn.data_blkaddr;
3469  	*node_changed = dn.node_changed;
3470  	f2fs_put_dnode(&dn);
3471  
3472  unlock_out:
3473  	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3474  	return err;
3475  }
3476  
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3477  static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3478  			struct page *page, loff_t pos, unsigned int len,
3479  			block_t *blk_addr, bool *node_changed, bool *use_cow)
3480  {
3481  	struct inode *inode = page->mapping->host;
3482  	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3483  	pgoff_t index = page->index;
3484  	int err = 0;
3485  	block_t ori_blk_addr = NULL_ADDR;
3486  
3487  	/* If pos is beyond the end of file, reserve a new block in COW inode */
3488  	if ((pos & PAGE_MASK) >= i_size_read(inode))
3489  		goto reserve_block;
3490  
3491  	/* Look for the block in COW inode first */
3492  	err = __find_data_block(cow_inode, index, blk_addr);
3493  	if (err) {
3494  		return err;
3495  	} else if (*blk_addr != NULL_ADDR) {
3496  		*use_cow = true;
3497  		return 0;
3498  	}
3499  
3500  	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3501  		goto reserve_block;
3502  
3503  	/* Look for the block in the original inode */
3504  	err = __find_data_block(inode, index, &ori_blk_addr);
3505  	if (err)
3506  		return err;
3507  
3508  reserve_block:
3509  	/* Finally, we should reserve a new block in COW inode for the update */
3510  	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3511  	if (err)
3512  		return err;
3513  	inc_atomic_write_cnt(inode);
3514  
3515  	if (ori_blk_addr != NULL_ADDR)
3516  		*blk_addr = ori_blk_addr;
3517  	return 0;
3518  }
3519  
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3520  static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3521  		loff_t pos, unsigned len, unsigned flags,
3522  		struct page **pagep, void **fsdata)
3523  {
3524  	struct inode *inode = mapping->host;
3525  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3526  	struct page *page = NULL;
3527  	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3528  	bool need_balance = false;
3529  	bool use_cow = false;
3530  	block_t blkaddr = NULL_ADDR;
3531  	int err = 0;
3532  
3533  	trace_f2fs_write_begin(inode, pos, len, flags);
3534  
3535  	if (!f2fs_is_checkpoint_ready(sbi)) {
3536  		err = -ENOSPC;
3537  		goto fail;
3538  	}
3539  
3540  	/*
3541  	 * We should check this at this moment to avoid deadlock on inode page
3542  	 * and #0 page. The locking rule for inline_data conversion should be:
3543  	 * lock_page(page #0) -> lock_page(inode_page)
3544  	 */
3545  	if (index != 0) {
3546  		err = f2fs_convert_inline_inode(inode);
3547  		if (err)
3548  			goto fail;
3549  	}
3550  
3551  #ifdef CONFIG_F2FS_FS_COMPRESSION
3552  	if (f2fs_compressed_file(inode)) {
3553  		int ret;
3554  
3555  		*fsdata = NULL;
3556  
3557  		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3558  			goto repeat;
3559  
3560  		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3561  							index, fsdata);
3562  		if (ret < 0) {
3563  			err = ret;
3564  			goto fail;
3565  		} else if (ret) {
3566  			return 0;
3567  		}
3568  	}
3569  #endif
3570  
3571  repeat:
3572  	/*
3573  	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3574  	 * wait_for_stable_page. Will wait that below with our IO control.
3575  	 */
3576  	page = f2fs_pagecache_get_page(mapping, index,
3577  				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3578  	if (!page) {
3579  		err = -ENOMEM;
3580  		goto fail;
3581  	}
3582  
3583  	/* TODO: cluster can be compressed due to race with .writepage */
3584  
3585  	*pagep = page;
3586  
3587  	if (f2fs_is_atomic_file(inode))
3588  		err = prepare_atomic_write_begin(sbi, page, pos, len,
3589  					&blkaddr, &need_balance, &use_cow);
3590  	else
3591  		err = prepare_write_begin(sbi, page, pos, len,
3592  					&blkaddr, &need_balance);
3593  	if (err)
3594  		goto fail;
3595  
3596  	if (need_balance && !IS_NOQUOTA(inode) &&
3597  			has_not_enough_free_secs(sbi, 0, 0)) {
3598  		unlock_page(page);
3599  		f2fs_balance_fs(sbi, true);
3600  		lock_page(page);
3601  		if (page->mapping != mapping) {
3602  			/* The page got truncated from under us */
3603  			f2fs_put_page(page, 1);
3604  			goto repeat;
3605  		}
3606  	}
3607  
3608  	f2fs_wait_on_page_writeback(page, DATA, false, true);
3609  
3610  	if (len == PAGE_SIZE || PageUptodate(page))
3611  		return 0;
3612  
3613  	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3614  	    !f2fs_verity_in_progress(inode)) {
3615  		zero_user_segment(page, len, PAGE_SIZE);
3616  		return 0;
3617  	}
3618  
3619  	if (blkaddr == NEW_ADDR) {
3620  		zero_user_segment(page, 0, PAGE_SIZE);
3621  		SetPageUptodate(page);
3622  	} else {
3623  		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3624  				DATA_GENERIC_ENHANCE_READ)) {
3625  			err = -EFSCORRUPTED;
3626  			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3627  			goto fail;
3628  		}
3629  		err = f2fs_submit_page_read(use_cow ?
3630  				F2FS_I(inode)->cow_inode : inode, page,
3631  				blkaddr, 0, true);
3632  		if (err)
3633  			goto fail;
3634  
3635  		lock_page(page);
3636  		if (unlikely(page->mapping != mapping)) {
3637  			f2fs_put_page(page, 1);
3638  			goto repeat;
3639  		}
3640  		if (unlikely(!PageUptodate(page))) {
3641  			err = -EIO;
3642  			goto fail;
3643  		}
3644  	}
3645  	return 0;
3646  
3647  fail:
3648  	f2fs_put_page(page, 1);
3649  	f2fs_write_failed(inode, pos + len);
3650  	return err;
3651  }
3652  
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3653  static int f2fs_write_end(struct file *file,
3654  			struct address_space *mapping,
3655  			loff_t pos, unsigned len, unsigned copied,
3656  			struct page *page, void *fsdata)
3657  {
3658  	struct inode *inode = page->mapping->host;
3659  
3660  	trace_f2fs_write_end(inode, pos, len, copied);
3661  
3662  	/*
3663  	 * This should be come from len == PAGE_SIZE, and we expect copied
3664  	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3665  	 * let generic_perform_write() try to copy data again through copied=0.
3666  	 */
3667  	if (!PageUptodate(page)) {
3668  		if (unlikely(copied != len))
3669  			copied = 0;
3670  		else
3671  			SetPageUptodate(page);
3672  	}
3673  
3674  #ifdef CONFIG_F2FS_FS_COMPRESSION
3675  	/* overwrite compressed file */
3676  	if (f2fs_compressed_file(inode) && fsdata) {
3677  		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3678  		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3679  
3680  		if (pos + copied > i_size_read(inode) &&
3681  				!f2fs_verity_in_progress(inode))
3682  			f2fs_i_size_write(inode, pos + copied);
3683  		return copied;
3684  	}
3685  #endif
3686  
3687  	if (!copied)
3688  		goto unlock_out;
3689  
3690  	set_page_dirty(page);
3691  
3692  	if (pos + copied > i_size_read(inode) &&
3693  	    !f2fs_verity_in_progress(inode)) {
3694  		f2fs_i_size_write(inode, pos + copied);
3695  		if (f2fs_is_atomic_file(inode))
3696  			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3697  					pos + copied);
3698  	}
3699  unlock_out:
3700  	f2fs_put_page(page, 1);
3701  	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3702  	return copied;
3703  }
3704  
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3705  void f2fs_invalidate_page(struct page *page, unsigned int offset,
3706  							unsigned int length)
3707  {
3708  	struct inode *inode = page->mapping->host;
3709  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3710  
3711  	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3712  		(offset % PAGE_SIZE || length != PAGE_SIZE))
3713  		return;
3714  
3715  	if (PageDirty(page)) {
3716  		if (inode->i_ino == F2FS_META_INO(sbi)) {
3717  			dec_page_count(sbi, F2FS_DIRTY_META);
3718  		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3719  			dec_page_count(sbi, F2FS_DIRTY_NODES);
3720  		} else {
3721  			inode_dec_dirty_pages(inode);
3722  			f2fs_remove_dirty_inode(inode);
3723  		}
3724  	}
3725  	clear_page_private_all(page);
3726  }
3727  
f2fs_release_page(struct page * page,gfp_t wait)3728  int f2fs_release_page(struct page *page, gfp_t wait)
3729  {
3730  	/* If this is dirty page, keep PagePrivate */
3731  	if (PageDirty(page))
3732  		return 0;
3733  
3734  	clear_page_private_all(page);
3735  	return 1;
3736  }
3737  
f2fs_set_data_page_dirty(struct page * page)3738  static int f2fs_set_data_page_dirty(struct page *page)
3739  {
3740  	struct inode *inode = page_file_mapping(page)->host;
3741  
3742  	trace_f2fs_set_page_dirty(page, DATA);
3743  
3744  	if (!PageUptodate(page))
3745  		SetPageUptodate(page);
3746  	if (PageSwapCache(page))
3747  		return __set_page_dirty_nobuffers(page);
3748  
3749  	if (__set_page_dirty_nobuffers(page)) {
3750  		f2fs_update_dirty_page(inode, page);
3751  		return 1;
3752  	}
3753  	return 0;
3754  }
3755  
3756  
f2fs_bmap_compress(struct inode * inode,sector_t block)3757  static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3758  {
3759  #ifdef CONFIG_F2FS_FS_COMPRESSION
3760  	struct dnode_of_data dn;
3761  	sector_t start_idx, blknr = 0;
3762  	int ret;
3763  
3764  	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3765  
3766  	set_new_dnode(&dn, inode, NULL, NULL, 0);
3767  	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3768  	if (ret)
3769  		return 0;
3770  
3771  	if (dn.data_blkaddr != COMPRESS_ADDR) {
3772  		dn.ofs_in_node += block - start_idx;
3773  		blknr = f2fs_data_blkaddr(&dn);
3774  		if (!__is_valid_data_blkaddr(blknr))
3775  			blknr = 0;
3776  	}
3777  
3778  	f2fs_put_dnode(&dn);
3779  	return blknr;
3780  #else
3781  	return 0;
3782  #endif
3783  }
3784  
3785  
f2fs_bmap(struct address_space * mapping,sector_t block)3786  static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3787  {
3788  	struct inode *inode = mapping->host;
3789  	sector_t blknr = 0;
3790  
3791  	if (f2fs_has_inline_data(inode))
3792  		goto out;
3793  
3794  	/* make sure allocating whole blocks */
3795  	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3796  		filemap_write_and_wait(mapping);
3797  
3798  	/* Block number less than F2FS MAX BLOCKS */
3799  	if (unlikely(block >= max_file_blocks(inode)))
3800  		goto out;
3801  
3802  	if (f2fs_compressed_file(inode)) {
3803  		blknr = f2fs_bmap_compress(inode, block);
3804  	} else {
3805  		struct f2fs_map_blocks map;
3806  
3807  		memset(&map, 0, sizeof(map));
3808  		map.m_lblk = block;
3809  		map.m_len = 1;
3810  		map.m_next_pgofs = NULL;
3811  		map.m_seg_type = NO_CHECK_TYPE;
3812  
3813  		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3814  			blknr = map.m_pblk;
3815  	}
3816  out:
3817  	trace_f2fs_bmap(inode, block, blknr);
3818  	return blknr;
3819  }
3820  
3821  #ifdef CONFIG_MIGRATION
3822  #include <linux/migrate.h>
3823  
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3824  int f2fs_migrate_page(struct address_space *mapping,
3825  		struct page *newpage, struct page *page, enum migrate_mode mode)
3826  {
3827  	int rc, extra_count = 0;
3828  
3829  	BUG_ON(PageWriteback(page));
3830  
3831  	rc = migrate_page_move_mapping(mapping, newpage,
3832  				page, extra_count);
3833  	if (rc != MIGRATEPAGE_SUCCESS)
3834  		return rc;
3835  
3836  	/* guarantee to start from no stale private field */
3837  	set_page_private(newpage, 0);
3838  	if (PagePrivate(page)) {
3839  		set_page_private(newpage, page_private(page));
3840  		SetPagePrivate(newpage);
3841  		get_page(newpage);
3842  
3843  		set_page_private(page, 0);
3844  		ClearPagePrivate(page);
3845  		put_page(page);
3846  	}
3847  
3848  	if (mode != MIGRATE_SYNC_NO_COPY)
3849  		migrate_page_copy(newpage, page);
3850  	else
3851  		migrate_page_states(newpage, page);
3852  
3853  	return MIGRATEPAGE_SUCCESS;
3854  }
3855  #endif
3856  
3857  #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3858  static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3859  							unsigned int blkcnt)
3860  {
3861  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3862  	unsigned int blkofs;
3863  	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3864  	unsigned int secidx = start_blk / blk_per_sec;
3865  	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3866  	int ret = 0;
3867  
3868  	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3869  	filemap_invalidate_lock(inode->i_mapping);
3870  
3871  	set_inode_flag(inode, FI_ALIGNED_WRITE);
3872  	set_inode_flag(inode, FI_OPU_WRITE);
3873  
3874  	for (; secidx < end_sec; secidx++) {
3875  		f2fs_down_write(&sbi->pin_sem);
3876  
3877  		f2fs_lock_op(sbi);
3878  		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3879  		f2fs_unlock_op(sbi);
3880  
3881  		set_inode_flag(inode, FI_SKIP_WRITES);
3882  
3883  		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3884  			struct page *page;
3885  			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3886  
3887  			page = f2fs_get_lock_data_page(inode, blkidx, true);
3888  			if (IS_ERR(page)) {
3889  				f2fs_up_write(&sbi->pin_sem);
3890  				ret = PTR_ERR(page);
3891  				goto done;
3892  			}
3893  
3894  			set_page_dirty(page);
3895  			f2fs_put_page(page, 1);
3896  		}
3897  
3898  		clear_inode_flag(inode, FI_SKIP_WRITES);
3899  
3900  		ret = filemap_fdatawrite(inode->i_mapping);
3901  
3902  		f2fs_up_write(&sbi->pin_sem);
3903  
3904  		if (ret)
3905  			break;
3906  	}
3907  
3908  done:
3909  	clear_inode_flag(inode, FI_SKIP_WRITES);
3910  	clear_inode_flag(inode, FI_OPU_WRITE);
3911  	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3912  
3913  	filemap_invalidate_unlock(inode->i_mapping);
3914  	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3915  
3916  	return ret;
3917  }
3918  
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3919  static int check_swap_activate(struct swap_info_struct *sis,
3920  				struct file *swap_file, sector_t *span)
3921  {
3922  	struct address_space *mapping = swap_file->f_mapping;
3923  	struct inode *inode = mapping->host;
3924  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3925  	sector_t cur_lblock;
3926  	sector_t last_lblock;
3927  	sector_t pblock;
3928  	sector_t lowest_pblock = -1;
3929  	sector_t highest_pblock = 0;
3930  	int nr_extents = 0;
3931  	unsigned long nr_pblocks;
3932  	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3933  	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3934  	unsigned int not_aligned = 0;
3935  	int ret = 0;
3936  
3937  	/*
3938  	 * Map all the blocks into the extent list.  This code doesn't try
3939  	 * to be very smart.
3940  	 */
3941  	cur_lblock = 0;
3942  	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3943  
3944  	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3945  		struct f2fs_map_blocks map;
3946  retry:
3947  		cond_resched();
3948  
3949  		memset(&map, 0, sizeof(map));
3950  		map.m_lblk = cur_lblock;
3951  		map.m_len = last_lblock - cur_lblock;
3952  		map.m_next_pgofs = NULL;
3953  		map.m_next_extent = NULL;
3954  		map.m_seg_type = NO_CHECK_TYPE;
3955  		map.m_may_create = false;
3956  
3957  		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3958  		if (ret)
3959  			goto out;
3960  
3961  		/* hole */
3962  		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3963  			f2fs_err(sbi, "Swapfile has holes");
3964  			ret = -EINVAL;
3965  			goto out;
3966  		}
3967  
3968  		pblock = map.m_pblk;
3969  		nr_pblocks = map.m_len;
3970  
3971  		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3972  				nr_pblocks & sec_blks_mask) {
3973  			not_aligned++;
3974  
3975  			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3976  			if (cur_lblock + nr_pblocks > sis->max)
3977  				nr_pblocks -= blks_per_sec;
3978  
3979  			if (!nr_pblocks) {
3980  				/* this extent is last one */
3981  				nr_pblocks = map.m_len;
3982  				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3983  				goto next;
3984  			}
3985  
3986  			ret = f2fs_migrate_blocks(inode, cur_lblock,
3987  							nr_pblocks);
3988  			if (ret)
3989  				goto out;
3990  			goto retry;
3991  		}
3992  next:
3993  		if (cur_lblock + nr_pblocks >= sis->max)
3994  			nr_pblocks = sis->max - cur_lblock;
3995  
3996  		if (cur_lblock) {	/* exclude the header page */
3997  			if (pblock < lowest_pblock)
3998  				lowest_pblock = pblock;
3999  			if (pblock + nr_pblocks - 1 > highest_pblock)
4000  				highest_pblock = pblock + nr_pblocks - 1;
4001  		}
4002  
4003  		/*
4004  		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4005  		 */
4006  		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4007  		if (ret < 0)
4008  			goto out;
4009  		nr_extents += ret;
4010  		cur_lblock += nr_pblocks;
4011  	}
4012  	ret = nr_extents;
4013  	*span = 1 + highest_pblock - lowest_pblock;
4014  	if (cur_lblock == 0)
4015  		cur_lblock = 1;	/* force Empty message */
4016  	sis->max = cur_lblock;
4017  	sis->pages = cur_lblock - 1;
4018  	sis->highest_bit = cur_lblock - 1;
4019  out:
4020  	if (not_aligned)
4021  		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4022  			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4023  	return ret;
4024  }
4025  
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4026  static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4027  				sector_t *span)
4028  {
4029  	struct inode *inode = file_inode(file);
4030  	int ret;
4031  
4032  	if (!S_ISREG(inode->i_mode))
4033  		return -EINVAL;
4034  
4035  	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4036  		return -EROFS;
4037  
4038  	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4039  		f2fs_err(F2FS_I_SB(inode),
4040  			"Swapfile not supported in LFS mode");
4041  		return -EINVAL;
4042  	}
4043  
4044  	ret = f2fs_convert_inline_inode(inode);
4045  	if (ret)
4046  		return ret;
4047  
4048  	if (!f2fs_disable_compressed_file(inode))
4049  		return -EINVAL;
4050  
4051  	f2fs_precache_extents(inode);
4052  
4053  	ret = check_swap_activate(sis, file, span);
4054  	if (ret < 0)
4055  		return ret;
4056  
4057  	stat_inc_swapfile_inode(inode);
4058  	set_inode_flag(inode, FI_PIN_FILE);
4059  	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4060  	return ret;
4061  }
4062  
f2fs_swap_deactivate(struct file * file)4063  static void f2fs_swap_deactivate(struct file *file)
4064  {
4065  	struct inode *inode = file_inode(file);
4066  
4067  	stat_dec_swapfile_inode(inode);
4068  	clear_inode_flag(inode, FI_PIN_FILE);
4069  }
4070  #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4071  static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4072  				sector_t *span)
4073  {
4074  	return -EOPNOTSUPP;
4075  }
4076  
f2fs_swap_deactivate(struct file * file)4077  static void f2fs_swap_deactivate(struct file *file)
4078  {
4079  }
4080  #endif
4081  
4082  const struct address_space_operations f2fs_dblock_aops = {
4083  	.readpage	= f2fs_read_data_page,
4084  	.readahead	= f2fs_readahead,
4085  	.writepage	= f2fs_write_data_page,
4086  	.writepages	= f2fs_write_data_pages,
4087  	.write_begin	= f2fs_write_begin,
4088  	.write_end	= f2fs_write_end,
4089  	.set_page_dirty	= f2fs_set_data_page_dirty,
4090  	.invalidatepage	= f2fs_invalidate_page,
4091  	.releasepage	= f2fs_release_page,
4092  	.direct_IO	= noop_direct_IO,
4093  	.bmap		= f2fs_bmap,
4094  	.swap_activate  = f2fs_swap_activate,
4095  	.swap_deactivate = f2fs_swap_deactivate,
4096  #ifdef CONFIG_MIGRATION
4097  	.migratepage    = f2fs_migrate_page,
4098  #endif
4099  };
4100  
f2fs_clear_page_cache_dirty_tag(struct page * page)4101  void f2fs_clear_page_cache_dirty_tag(struct page *page)
4102  {
4103  	struct address_space *mapping = page_mapping(page);
4104  	unsigned long flags;
4105  
4106  	xa_lock_irqsave(&mapping->i_pages, flags);
4107  	__xa_clear_mark(&mapping->i_pages, page_index(page),
4108  						PAGECACHE_TAG_DIRTY);
4109  	xa_unlock_irqrestore(&mapping->i_pages, flags);
4110  }
4111  
f2fs_init_post_read_processing(void)4112  int __init f2fs_init_post_read_processing(void)
4113  {
4114  	bio_post_read_ctx_cache =
4115  		kmem_cache_create("f2fs_bio_post_read_ctx",
4116  				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4117  	if (!bio_post_read_ctx_cache)
4118  		goto fail;
4119  	bio_post_read_ctx_pool =
4120  		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4121  					 bio_post_read_ctx_cache);
4122  	if (!bio_post_read_ctx_pool)
4123  		goto fail_free_cache;
4124  	return 0;
4125  
4126  fail_free_cache:
4127  	kmem_cache_destroy(bio_post_read_ctx_cache);
4128  fail:
4129  	return -ENOMEM;
4130  }
4131  
f2fs_destroy_post_read_processing(void)4132  void f2fs_destroy_post_read_processing(void)
4133  {
4134  	mempool_destroy(bio_post_read_ctx_pool);
4135  	kmem_cache_destroy(bio_post_read_ctx_cache);
4136  }
4137  
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4138  int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4139  {
4140  	if (!f2fs_sb_has_encrypt(sbi) &&
4141  		!f2fs_sb_has_verity(sbi) &&
4142  		!f2fs_sb_has_compression(sbi))
4143  		return 0;
4144  
4145  	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4146  						 WQ_UNBOUND | WQ_HIGHPRI,
4147  						 num_online_cpus());
4148  	return sbi->post_read_wq ? 0 : -ENOMEM;
4149  }
4150  
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4151  void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4152  {
4153  	if (sbi->post_read_wq)
4154  		destroy_workqueue(sbi->post_read_wq);
4155  }
4156  
f2fs_init_bio_entry_cache(void)4157  int __init f2fs_init_bio_entry_cache(void)
4158  {
4159  	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4160  			sizeof(struct bio_entry));
4161  	return bio_entry_slab ? 0 : -ENOMEM;
4162  }
4163  
f2fs_destroy_bio_entry_cache(void)4164  void f2fs_destroy_bio_entry_cache(void)
4165  {
4166  	kmem_cache_destroy(bio_entry_slab);
4167  }
4168  
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4169  static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4170  			    unsigned int flags, struct iomap *iomap,
4171  			    struct iomap *srcmap)
4172  {
4173  	struct f2fs_map_blocks map = {};
4174  	pgoff_t next_pgofs = 0;
4175  	int err;
4176  
4177  	map.m_lblk = bytes_to_blks(inode, offset);
4178  	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4179  	map.m_next_pgofs = &next_pgofs;
4180  	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4181  	if (flags & IOMAP_WRITE)
4182  		map.m_may_create = true;
4183  
4184  	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4185  	if (err)
4186  		return err;
4187  
4188  	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4189  
4190  	/*
4191  	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4192  	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4193  	 * limiting the length of the mapping returned.
4194  	 */
4195  	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4196  
4197  	/*
4198  	 * We should never see delalloc or compressed extents here based on
4199  	 * prior flushing and checks.
4200  	 */
4201  	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4202  		return -EINVAL;
4203  	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4204  		return -EINVAL;
4205  
4206  	if (map.m_pblk != NULL_ADDR) {
4207  		iomap->length = blks_to_bytes(inode, map.m_len);
4208  		iomap->type = IOMAP_MAPPED;
4209  		iomap->flags |= IOMAP_F_MERGED;
4210  		iomap->bdev = map.m_bdev;
4211  		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4212  	} else {
4213  		if (flags & IOMAP_WRITE)
4214  			return -ENOTBLK;
4215  		iomap->length = blks_to_bytes(inode, next_pgofs) -
4216  				iomap->offset;
4217  		iomap->type = IOMAP_HOLE;
4218  		iomap->addr = IOMAP_NULL_ADDR;
4219  	}
4220  
4221  	if (map.m_flags & F2FS_MAP_NEW)
4222  		iomap->flags |= IOMAP_F_NEW;
4223  	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4224  	    offset + length > i_size_read(inode))
4225  		iomap->flags |= IOMAP_F_DIRTY;
4226  
4227  	return 0;
4228  }
4229  
4230  const struct iomap_ops f2fs_iomap_ops = {
4231  	.iomap_begin	= f2fs_iomap_begin,
4232  };
4233