1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <uapi/linux/sched/types.h>
39
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43
44 #include "smpboot.h"
45
46 /**
47 * struct cpuhp_cpu_state - Per cpu hotplug state storage
48 * @state: The current cpu state
49 * @target: The target state
50 * @fail: Current CPU hotplug callback state
51 * @thread: Pointer to the hotplug thread
52 * @should_run: Thread should execute
53 * @rollback: Perform a rollback
54 * @single: Single callback invocation
55 * @bringup: Single callback bringup or teardown selector
56 * @cpu: CPU number
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @done_up: Signal completion to the issuer of the task for cpu-up
63 * @done_down: Signal completion to the issuer of the task for cpu-down
64 */
65 struct cpuhp_cpu_state {
66 enum cpuhp_state state;
67 enum cpuhp_state target;
68 enum cpuhp_state fail;
69 #ifdef CONFIG_SMP
70 struct task_struct *thread;
71 bool should_run;
72 bool rollback;
73 bool single;
74 bool bringup;
75 struct hlist_node *node;
76 struct hlist_node *last;
77 enum cpuhp_state cb_state;
78 int result;
79 struct completion done_up;
80 struct completion done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85 .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
cpuhp_lock_acquire(bool bringup)99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
cpuhp_lock_release(bool bringup)104 static inline void cpuhp_lock_release(bool bringup)
105 {
106 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
cpuhp_lock_acquire(bool bringup)110 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116 * struct cpuhp_step - Hotplug state machine step
117 * @name: Name of the step
118 * @startup: Startup function of the step
119 * @teardown: Teardown function of the step
120 * @cant_stop: Bringup/teardown can't be stopped at this step
121 * @multi_instance: State has multiple instances which get added afterwards
122 */
123 struct cpuhp_step {
124 const char *name;
125 union {
126 int (*single)(unsigned int cpu);
127 int (*multi)(unsigned int cpu,
128 struct hlist_node *node);
129 } startup;
130 union {
131 int (*single)(unsigned int cpu);
132 int (*multi)(unsigned int cpu,
133 struct hlist_node *node);
134 } teardown;
135 /* private: */
136 struct hlist_head list;
137 /* public: */
138 bool cant_stop;
139 bool multi_instance;
140 };
141
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144
cpuhp_get_step(enum cpuhp_state state)145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147 return cpuhp_hp_states + state;
148 }
149
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152 return bringup ? !step->startup.single : !step->teardown.single;
153 }
154
155 /**
156 * cpuhp_invoke_callback - Invoke the callbacks for a given state
157 * @cpu: The cpu for which the callback should be invoked
158 * @state: The state to do callbacks for
159 * @bringup: True if the bringup callback should be invoked
160 * @node: For multi-instance, do a single entry callback for install/remove
161 * @lastp: For multi-instance rollback, remember how far we got
162 *
163 * Called from cpu hotplug and from the state register machinery.
164 *
165 * Return: %0 on success or a negative errno code
166 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168 bool bringup, struct hlist_node *node,
169 struct hlist_node **lastp)
170 {
171 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172 struct cpuhp_step *step = cpuhp_get_step(state);
173 int (*cbm)(unsigned int cpu, struct hlist_node *node);
174 int (*cb)(unsigned int cpu);
175 int ret, cnt;
176
177 if (st->fail == state) {
178 st->fail = CPUHP_INVALID;
179 return -EAGAIN;
180 }
181
182 if (cpuhp_step_empty(bringup, step)) {
183 WARN_ON_ONCE(1);
184 return 0;
185 }
186
187 if (!step->multi_instance) {
188 WARN_ON_ONCE(lastp && *lastp);
189 cb = bringup ? step->startup.single : step->teardown.single;
190
191 trace_cpuhp_enter(cpu, st->target, state, cb);
192 ret = cb(cpu);
193 trace_cpuhp_exit(cpu, st->state, state, ret);
194 return ret;
195 }
196 cbm = bringup ? step->startup.multi : step->teardown.multi;
197
198 /* Single invocation for instance add/remove */
199 if (node) {
200 WARN_ON_ONCE(lastp && *lastp);
201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 ret = cbm(cpu, node);
203 trace_cpuhp_exit(cpu, st->state, state, ret);
204 return ret;
205 }
206
207 /* State transition. Invoke on all instances */
208 cnt = 0;
209 hlist_for_each(node, &step->list) {
210 if (lastp && node == *lastp)
211 break;
212
213 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214 ret = cbm(cpu, node);
215 trace_cpuhp_exit(cpu, st->state, state, ret);
216 if (ret) {
217 if (!lastp)
218 goto err;
219
220 *lastp = node;
221 return ret;
222 }
223 cnt++;
224 }
225 if (lastp)
226 *lastp = NULL;
227 return 0;
228 err:
229 /* Rollback the instances if one failed */
230 cbm = !bringup ? step->startup.multi : step->teardown.multi;
231 if (!cbm)
232 return ret;
233
234 hlist_for_each(node, &step->list) {
235 if (!cnt--)
236 break;
237
238 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239 ret = cbm(cpu, node);
240 trace_cpuhp_exit(cpu, st->state, state, ret);
241 /*
242 * Rollback must not fail,
243 */
244 WARN_ON_ONCE(ret);
245 }
246 return ret;
247 }
248
249 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252 /*
253 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254 * purposes as that state is handled explicitly in cpu_down.
255 */
256 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261 struct completion *done = bringup ? &st->done_up : &st->done_down;
262 wait_for_completion(done);
263 }
264
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267 struct completion *done = bringup ? &st->done_up : &st->done_down;
268 complete(done);
269 }
270
271 /*
272 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273 */
cpuhp_is_atomic_state(enum cpuhp_state state)274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283
284 /*
285 * The following two APIs (cpu_maps_update_begin/done) must be used when
286 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287 */
cpu_maps_update_begin(void)288 void cpu_maps_update_begin(void)
289 {
290 mutex_lock(&cpu_add_remove_lock);
291 }
292
cpu_maps_update_done(void)293 void cpu_maps_update_done(void)
294 {
295 mutex_unlock(&cpu_add_remove_lock);
296 }
297
298 /*
299 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300 * Should always be manipulated under cpu_add_remove_lock
301 */
302 static int cpu_hotplug_disabled;
303
304 #ifdef CONFIG_HOTPLUG_CPU
305
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307
cpus_read_lock(void)308 void cpus_read_lock(void)
309 {
310 percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313
cpus_read_trylock(void)314 int cpus_read_trylock(void)
315 {
316 return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319
cpus_read_unlock(void)320 void cpus_read_unlock(void)
321 {
322 percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325
cpus_write_lock(void)326 void cpus_write_lock(void)
327 {
328 percpu_down_write(&cpu_hotplug_lock);
329 }
330
cpus_write_unlock(void)331 void cpus_write_unlock(void)
332 {
333 percpu_up_write(&cpu_hotplug_lock);
334 }
335
lockdep_assert_cpus_held(void)336 void lockdep_assert_cpus_held(void)
337 {
338 /*
339 * We can't have hotplug operations before userspace starts running,
340 * and some init codepaths will knowingly not take the hotplug lock.
341 * This is all valid, so mute lockdep until it makes sense to report
342 * unheld locks.
343 */
344 if (system_state < SYSTEM_RUNNING)
345 return;
346
347 percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349
350 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)351 int lockdep_is_cpus_held(void)
352 {
353 return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356
lockdep_acquire_cpus_lock(void)357 static void lockdep_acquire_cpus_lock(void)
358 {
359 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361
lockdep_release_cpus_lock(void)362 static void lockdep_release_cpus_lock(void)
363 {
364 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366
367 /*
368 * Wait for currently running CPU hotplug operations to complete (if any) and
369 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371 * hotplug path before performing hotplug operations. So acquiring that lock
372 * guarantees mutual exclusion from any currently running hotplug operations.
373 */
cpu_hotplug_disable(void)374 void cpu_hotplug_disable(void)
375 {
376 cpu_maps_update_begin();
377 cpu_hotplug_disabled++;
378 cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381
__cpu_hotplug_enable(void)382 static void __cpu_hotplug_enable(void)
383 {
384 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385 return;
386 cpu_hotplug_disabled--;
387 }
388
cpu_hotplug_enable(void)389 void cpu_hotplug_enable(void)
390 {
391 cpu_maps_update_begin();
392 __cpu_hotplug_enable();
393 cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396
397 #else
398
lockdep_acquire_cpus_lock(void)399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402
lockdep_release_cpus_lock(void)403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406
407 #endif /* CONFIG_HOTPLUG_CPU */
408
409 /*
410 * Architectures that need SMT-specific errata handling during SMT hotplug
411 * should override this.
412 */
arch_smt_update(void)413 void __weak arch_smt_update(void) { }
414
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417
cpu_smt_disable(bool force)418 void __init cpu_smt_disable(bool force)
419 {
420 if (!cpu_smt_possible())
421 return;
422
423 if (force) {
424 pr_info("SMT: Force disabled\n");
425 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426 } else {
427 pr_info("SMT: disabled\n");
428 cpu_smt_control = CPU_SMT_DISABLED;
429 }
430 }
431
432 /*
433 * The decision whether SMT is supported can only be done after the full
434 * CPU identification. Called from architecture code.
435 */
cpu_smt_check_topology(void)436 void __init cpu_smt_check_topology(void)
437 {
438 if (!topology_smt_supported())
439 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441
smt_cmdline_disable(char * str)442 static int __init smt_cmdline_disable(char *str)
443 {
444 cpu_smt_disable(str && !strcmp(str, "force"));
445 return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448
cpu_smt_allowed(unsigned int cpu)449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451 if (cpu_smt_control == CPU_SMT_ENABLED)
452 return true;
453
454 if (topology_is_primary_thread(cpu))
455 return true;
456
457 /*
458 * On x86 it's required to boot all logical CPUs at least once so
459 * that the init code can get a chance to set CR4.MCE on each
460 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461 * core will shutdown the machine.
462 */
463 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)467 bool cpu_smt_possible(void)
468 {
469 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
cpu_smt_allowed(unsigned int cpu)474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476
477 static inline enum cpuhp_state
cpuhp_set_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480 enum cpuhp_state prev_state = st->state;
481 bool bringup = st->state < target;
482
483 st->rollback = false;
484 st->last = NULL;
485
486 st->target = target;
487 st->single = false;
488 st->bringup = bringup;
489 if (cpu_dying(cpu) != !bringup)
490 set_cpu_dying(cpu, !bringup);
491
492 return prev_state;
493 }
494
495 static inline void
cpuhp_reset_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
497 enum cpuhp_state prev_state)
498 {
499 bool bringup = !st->bringup;
500
501 st->target = prev_state;
502
503 /*
504 * Already rolling back. No need invert the bringup value or to change
505 * the current state.
506 */
507 if (st->rollback)
508 return;
509
510 st->rollback = true;
511
512 /*
513 * If we have st->last we need to undo partial multi_instance of this
514 * state first. Otherwise start undo at the previous state.
515 */
516 if (!st->last) {
517 if (st->bringup)
518 st->state--;
519 else
520 st->state++;
521 }
522
523 st->bringup = bringup;
524 if (cpu_dying(cpu) != !bringup)
525 set_cpu_dying(cpu, !bringup);
526 }
527
528 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
530 {
531 if (!st->single && st->state == st->target)
532 return;
533
534 st->result = 0;
535 /*
536 * Make sure the above stores are visible before should_run becomes
537 * true. Paired with the mb() above in cpuhp_thread_fun()
538 */
539 smp_mb();
540 st->should_run = true;
541 wake_up_process(st->thread);
542 wait_for_ap_thread(st, st->bringup);
543 }
544
cpuhp_kick_ap(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
546 enum cpuhp_state target)
547 {
548 enum cpuhp_state prev_state;
549 int ret;
550
551 prev_state = cpuhp_set_state(cpu, st, target);
552 __cpuhp_kick_ap(st);
553 if ((ret = st->result)) {
554 cpuhp_reset_state(cpu, st, prev_state);
555 __cpuhp_kick_ap(st);
556 }
557
558 return ret;
559 }
560
bringup_wait_for_ap(unsigned int cpu)561 static int bringup_wait_for_ap(unsigned int cpu)
562 {
563 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
564
565 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
566 wait_for_ap_thread(st, true);
567 if (WARN_ON_ONCE((!cpu_online(cpu))))
568 return -ECANCELED;
569
570 /* Unpark the hotplug thread of the target cpu */
571 kthread_unpark(st->thread);
572
573 /*
574 * SMT soft disabling on X86 requires to bring the CPU out of the
575 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
576 * CPU marked itself as booted_once in notify_cpu_starting() so the
577 * cpu_smt_allowed() check will now return false if this is not the
578 * primary sibling.
579 */
580 if (!cpu_smt_allowed(cpu))
581 return -ECANCELED;
582
583 if (st->target <= CPUHP_AP_ONLINE_IDLE)
584 return 0;
585
586 return cpuhp_kick_ap(cpu, st, st->target);
587 }
588
bringup_cpu(unsigned int cpu)589 static int bringup_cpu(unsigned int cpu)
590 {
591 struct task_struct *idle = idle_thread_get(cpu);
592 int ret;
593
594 /*
595 * Reset stale stack state from the last time this CPU was online.
596 */
597 scs_task_reset(idle);
598 kasan_unpoison_task_stack(idle);
599
600 /*
601 * Some architectures have to walk the irq descriptors to
602 * setup the vector space for the cpu which comes online.
603 * Prevent irq alloc/free across the bringup.
604 */
605 irq_lock_sparse();
606
607 /* Arch-specific enabling code. */
608 ret = __cpu_up(cpu, idle);
609 irq_unlock_sparse();
610 if (ret)
611 return ret;
612 return bringup_wait_for_ap(cpu);
613 }
614
finish_cpu(unsigned int cpu)615 static int finish_cpu(unsigned int cpu)
616 {
617 struct task_struct *idle = idle_thread_get(cpu);
618 struct mm_struct *mm = idle->active_mm;
619
620 /*
621 * idle_task_exit() will have switched to &init_mm, now
622 * clean up any remaining active_mm state.
623 */
624 if (mm != &init_mm)
625 idle->active_mm = &init_mm;
626 mmdrop(mm);
627 return 0;
628 }
629
630 /*
631 * Hotplug state machine related functions
632 */
633
634 /*
635 * Get the next state to run. Empty ones will be skipped. Returns true if a
636 * state must be run.
637 *
638 * st->state will be modified ahead of time, to match state_to_run, as if it
639 * has already ran.
640 */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)641 static bool cpuhp_next_state(bool bringup,
642 enum cpuhp_state *state_to_run,
643 struct cpuhp_cpu_state *st,
644 enum cpuhp_state target)
645 {
646 do {
647 if (bringup) {
648 if (st->state >= target)
649 return false;
650
651 *state_to_run = ++st->state;
652 } else {
653 if (st->state <= target)
654 return false;
655
656 *state_to_run = st->state--;
657 }
658
659 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
660 break;
661 } while (true);
662
663 return true;
664 }
665
__cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target,bool nofail)666 static int __cpuhp_invoke_callback_range(bool bringup,
667 unsigned int cpu,
668 struct cpuhp_cpu_state *st,
669 enum cpuhp_state target,
670 bool nofail)
671 {
672 enum cpuhp_state state;
673 int ret = 0;
674
675 while (cpuhp_next_state(bringup, &state, st, target)) {
676 int err;
677
678 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
679 if (!err)
680 continue;
681
682 if (nofail) {
683 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
684 cpu, bringup ? "UP" : "DOWN",
685 cpuhp_get_step(st->state)->name,
686 st->state, err);
687 ret = -1;
688 } else {
689 ret = err;
690 break;
691 }
692 }
693
694 return ret;
695 }
696
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)697 static inline int cpuhp_invoke_callback_range(bool bringup,
698 unsigned int cpu,
699 struct cpuhp_cpu_state *st,
700 enum cpuhp_state target)
701 {
702 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
703 }
704
cpuhp_invoke_callback_range_nofail(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)705 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
706 unsigned int cpu,
707 struct cpuhp_cpu_state *st,
708 enum cpuhp_state target)
709 {
710 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
711 }
712
can_rollback_cpu(struct cpuhp_cpu_state * st)713 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
714 {
715 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
716 return true;
717 /*
718 * When CPU hotplug is disabled, then taking the CPU down is not
719 * possible because takedown_cpu() and the architecture and
720 * subsystem specific mechanisms are not available. So the CPU
721 * which would be completely unplugged again needs to stay around
722 * in the current state.
723 */
724 return st->state <= CPUHP_BRINGUP_CPU;
725 }
726
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)727 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
728 enum cpuhp_state target)
729 {
730 enum cpuhp_state prev_state = st->state;
731 int ret = 0;
732
733 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
734 if (ret) {
735 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
736 ret, cpu, cpuhp_get_step(st->state)->name,
737 st->state);
738
739 cpuhp_reset_state(cpu, st, prev_state);
740 if (can_rollback_cpu(st))
741 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
742 prev_state));
743 }
744 return ret;
745 }
746
747 /*
748 * The cpu hotplug threads manage the bringup and teardown of the cpus
749 */
cpuhp_create(unsigned int cpu)750 static void cpuhp_create(unsigned int cpu)
751 {
752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753
754 init_completion(&st->done_up);
755 init_completion(&st->done_down);
756 }
757
cpuhp_should_run(unsigned int cpu)758 static int cpuhp_should_run(unsigned int cpu)
759 {
760 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
761
762 return st->should_run;
763 }
764
765 /*
766 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
767 * callbacks when a state gets [un]installed at runtime.
768 *
769 * Each invocation of this function by the smpboot thread does a single AP
770 * state callback.
771 *
772 * It has 3 modes of operation:
773 * - single: runs st->cb_state
774 * - up: runs ++st->state, while st->state < st->target
775 * - down: runs st->state--, while st->state > st->target
776 *
777 * When complete or on error, should_run is cleared and the completion is fired.
778 */
cpuhp_thread_fun(unsigned int cpu)779 static void cpuhp_thread_fun(unsigned int cpu)
780 {
781 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
782 bool bringup = st->bringup;
783 enum cpuhp_state state;
784
785 if (WARN_ON_ONCE(!st->should_run))
786 return;
787
788 /*
789 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
790 * that if we see ->should_run we also see the rest of the state.
791 */
792 smp_mb();
793
794 /*
795 * The BP holds the hotplug lock, but we're now running on the AP,
796 * ensure that anybody asserting the lock is held, will actually find
797 * it so.
798 */
799 lockdep_acquire_cpus_lock();
800 cpuhp_lock_acquire(bringup);
801
802 if (st->single) {
803 state = st->cb_state;
804 st->should_run = false;
805 } else {
806 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
807 if (!st->should_run)
808 goto end;
809 }
810
811 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
812
813 if (cpuhp_is_atomic_state(state)) {
814 local_irq_disable();
815 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
816 local_irq_enable();
817
818 /*
819 * STARTING/DYING must not fail!
820 */
821 WARN_ON_ONCE(st->result);
822 } else {
823 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
824 }
825
826 if (st->result) {
827 /*
828 * If we fail on a rollback, we're up a creek without no
829 * paddle, no way forward, no way back. We loose, thanks for
830 * playing.
831 */
832 WARN_ON_ONCE(st->rollback);
833 st->should_run = false;
834 }
835
836 end:
837 cpuhp_lock_release(bringup);
838 lockdep_release_cpus_lock();
839
840 if (!st->should_run)
841 complete_ap_thread(st, bringup);
842 }
843
844 /* Invoke a single callback on a remote cpu */
845 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)846 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
847 struct hlist_node *node)
848 {
849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850 int ret;
851
852 if (!cpu_online(cpu))
853 return 0;
854
855 cpuhp_lock_acquire(false);
856 cpuhp_lock_release(false);
857
858 cpuhp_lock_acquire(true);
859 cpuhp_lock_release(true);
860
861 /*
862 * If we are up and running, use the hotplug thread. For early calls
863 * we invoke the thread function directly.
864 */
865 if (!st->thread)
866 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
867
868 st->rollback = false;
869 st->last = NULL;
870
871 st->node = node;
872 st->bringup = bringup;
873 st->cb_state = state;
874 st->single = true;
875
876 __cpuhp_kick_ap(st);
877
878 /*
879 * If we failed and did a partial, do a rollback.
880 */
881 if ((ret = st->result) && st->last) {
882 st->rollback = true;
883 st->bringup = !bringup;
884
885 __cpuhp_kick_ap(st);
886 }
887
888 /*
889 * Clean up the leftovers so the next hotplug operation wont use stale
890 * data.
891 */
892 st->node = st->last = NULL;
893 return ret;
894 }
895
cpuhp_kick_ap_work(unsigned int cpu)896 static int cpuhp_kick_ap_work(unsigned int cpu)
897 {
898 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
899 enum cpuhp_state prev_state = st->state;
900 int ret;
901
902 cpuhp_lock_acquire(false);
903 cpuhp_lock_release(false);
904
905 cpuhp_lock_acquire(true);
906 cpuhp_lock_release(true);
907
908 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
909 ret = cpuhp_kick_ap(cpu, st, st->target);
910 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
911
912 return ret;
913 }
914
915 static struct smp_hotplug_thread cpuhp_threads = {
916 .store = &cpuhp_state.thread,
917 .create = &cpuhp_create,
918 .thread_should_run = cpuhp_should_run,
919 .thread_fn = cpuhp_thread_fun,
920 .thread_comm = "cpuhp/%u",
921 .selfparking = true,
922 };
923
cpuhp_threads_init(void)924 void __init cpuhp_threads_init(void)
925 {
926 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
927 kthread_unpark(this_cpu_read(cpuhp_state.thread));
928 }
929
930 /*
931 *
932 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
933 * protected region.
934 *
935 * The operation is still serialized against concurrent CPU hotplug via
936 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
937 * serialized against other hotplug related activity like adding or
938 * removing of state callbacks and state instances, which invoke either the
939 * startup or the teardown callback of the affected state.
940 *
941 * This is required for subsystems which are unfixable vs. CPU hotplug and
942 * evade lock inversion problems by scheduling work which has to be
943 * completed _before_ cpu_up()/_cpu_down() returns.
944 *
945 * Don't even think about adding anything to this for any new code or even
946 * drivers. It's only purpose is to keep existing lock order trainwrecks
947 * working.
948 *
949 * For cpu_down() there might be valid reasons to finish cleanups which are
950 * not required to be done under cpu_hotplug_lock, but that's a different
951 * story and would be not invoked via this.
952 */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)953 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
954 {
955 /*
956 * cpusets delegate hotplug operations to a worker to "solve" the
957 * lock order problems. Wait for the worker, but only if tasks are
958 * _not_ frozen (suspend, hibernate) as that would wait forever.
959 *
960 * The wait is required because otherwise the hotplug operation
961 * returns with inconsistent state, which could even be observed in
962 * user space when a new CPU is brought up. The CPU plug uevent
963 * would be delivered and user space reacting on it would fail to
964 * move tasks to the newly plugged CPU up to the point where the
965 * work has finished because up to that point the newly plugged CPU
966 * is not assignable in cpusets/cgroups. On unplug that's not
967 * necessarily a visible issue, but it is still inconsistent state,
968 * which is the real problem which needs to be "fixed". This can't
969 * prevent the transient state between scheduling the work and
970 * returning from waiting for it.
971 */
972 if (!tasks_frozen)
973 cpuset_wait_for_hotplug();
974 }
975
976 #ifdef CONFIG_HOTPLUG_CPU
977 #ifndef arch_clear_mm_cpumask_cpu
978 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
979 #endif
980
981 /**
982 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
983 * @cpu: a CPU id
984 *
985 * This function walks all processes, finds a valid mm struct for each one and
986 * then clears a corresponding bit in mm's cpumask. While this all sounds
987 * trivial, there are various non-obvious corner cases, which this function
988 * tries to solve in a safe manner.
989 *
990 * Also note that the function uses a somewhat relaxed locking scheme, so it may
991 * be called only for an already offlined CPU.
992 */
clear_tasks_mm_cpumask(int cpu)993 void clear_tasks_mm_cpumask(int cpu)
994 {
995 struct task_struct *p;
996
997 /*
998 * This function is called after the cpu is taken down and marked
999 * offline, so its not like new tasks will ever get this cpu set in
1000 * their mm mask. -- Peter Zijlstra
1001 * Thus, we may use rcu_read_lock() here, instead of grabbing
1002 * full-fledged tasklist_lock.
1003 */
1004 WARN_ON(cpu_online(cpu));
1005 rcu_read_lock();
1006 for_each_process(p) {
1007 struct task_struct *t;
1008
1009 /*
1010 * Main thread might exit, but other threads may still have
1011 * a valid mm. Find one.
1012 */
1013 t = find_lock_task_mm(p);
1014 if (!t)
1015 continue;
1016 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1017 task_unlock(t);
1018 }
1019 rcu_read_unlock();
1020 }
1021
1022 /* Take this CPU down. */
take_cpu_down(void * _param)1023 static int take_cpu_down(void *_param)
1024 {
1025 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1026 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1027 int err, cpu = smp_processor_id();
1028
1029 /* Ensure this CPU doesn't handle any more interrupts. */
1030 err = __cpu_disable();
1031 if (err < 0)
1032 return err;
1033
1034 /*
1035 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1036 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1037 */
1038 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1039
1040 /*
1041 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1042 */
1043 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1044
1045 /* Give up timekeeping duties */
1046 tick_handover_do_timer();
1047 /* Remove CPU from timer broadcasting */
1048 tick_offline_cpu(cpu);
1049 /* Park the stopper thread */
1050 stop_machine_park(cpu);
1051 return 0;
1052 }
1053
takedown_cpu(unsigned int cpu)1054 static int takedown_cpu(unsigned int cpu)
1055 {
1056 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1057 int err;
1058
1059 /* Park the smpboot threads */
1060 kthread_park(st->thread);
1061
1062 /*
1063 * Prevent irq alloc/free while the dying cpu reorganizes the
1064 * interrupt affinities.
1065 */
1066 irq_lock_sparse();
1067
1068 /*
1069 * So now all preempt/rcu users must observe !cpu_active().
1070 */
1071 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1072 if (err) {
1073 /* CPU refused to die */
1074 irq_unlock_sparse();
1075 /* Unpark the hotplug thread so we can rollback there */
1076 kthread_unpark(st->thread);
1077 return err;
1078 }
1079 BUG_ON(cpu_online(cpu));
1080
1081 /*
1082 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1083 * all runnable tasks from the CPU, there's only the idle task left now
1084 * that the migration thread is done doing the stop_machine thing.
1085 *
1086 * Wait for the stop thread to go away.
1087 */
1088 wait_for_ap_thread(st, false);
1089 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1090
1091 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1092 irq_unlock_sparse();
1093
1094 hotplug_cpu__broadcast_tick_pull(cpu);
1095 /* This actually kills the CPU. */
1096 __cpu_die(cpu);
1097
1098 tick_cleanup_dead_cpu(cpu);
1099 rcutree_migrate_callbacks(cpu);
1100 return 0;
1101 }
1102
cpuhp_complete_idle_dead(void * arg)1103 static void cpuhp_complete_idle_dead(void *arg)
1104 {
1105 struct cpuhp_cpu_state *st = arg;
1106
1107 complete_ap_thread(st, false);
1108 }
1109
cpuhp_report_idle_dead(void)1110 void cpuhp_report_idle_dead(void)
1111 {
1112 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1113
1114 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1115 rcu_report_dead(smp_processor_id());
1116 st->state = CPUHP_AP_IDLE_DEAD;
1117 /*
1118 * We cannot call complete after rcu_report_dead() so we delegate it
1119 * to an online cpu.
1120 */
1121 smp_call_function_single(cpumask_first(cpu_online_mask),
1122 cpuhp_complete_idle_dead, st, 0);
1123 }
1124
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1125 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1126 enum cpuhp_state target)
1127 {
1128 enum cpuhp_state prev_state = st->state;
1129 int ret = 0;
1130
1131 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1132 if (ret) {
1133 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1134 ret, cpu, cpuhp_get_step(st->state)->name,
1135 st->state);
1136
1137 cpuhp_reset_state(cpu, st, prev_state);
1138
1139 if (st->state < prev_state)
1140 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1141 prev_state));
1142 }
1143
1144 return ret;
1145 }
1146
1147 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1148 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1149 enum cpuhp_state target)
1150 {
1151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1152 int prev_state, ret = 0;
1153
1154 if (num_online_cpus() == 1)
1155 return -EBUSY;
1156
1157 if (!cpu_present(cpu))
1158 return -EINVAL;
1159
1160 cpus_write_lock();
1161
1162 cpuhp_tasks_frozen = tasks_frozen;
1163
1164 prev_state = cpuhp_set_state(cpu, st, target);
1165 /*
1166 * If the current CPU state is in the range of the AP hotplug thread,
1167 * then we need to kick the thread.
1168 */
1169 if (st->state > CPUHP_TEARDOWN_CPU) {
1170 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1171 ret = cpuhp_kick_ap_work(cpu);
1172 /*
1173 * The AP side has done the error rollback already. Just
1174 * return the error code..
1175 */
1176 if (ret)
1177 goto out;
1178
1179 /*
1180 * We might have stopped still in the range of the AP hotplug
1181 * thread. Nothing to do anymore.
1182 */
1183 if (st->state > CPUHP_TEARDOWN_CPU)
1184 goto out;
1185
1186 st->target = target;
1187 }
1188 /*
1189 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1190 * to do the further cleanups.
1191 */
1192 ret = cpuhp_down_callbacks(cpu, st, target);
1193 if (ret && st->state < prev_state) {
1194 if (st->state == CPUHP_TEARDOWN_CPU) {
1195 cpuhp_reset_state(cpu, st, prev_state);
1196 __cpuhp_kick_ap(st);
1197 } else {
1198 WARN(1, "DEAD callback error for CPU%d", cpu);
1199 }
1200 }
1201
1202 out:
1203 cpus_write_unlock();
1204 /*
1205 * Do post unplug cleanup. This is still protected against
1206 * concurrent CPU hotplug via cpu_add_remove_lock.
1207 */
1208 lockup_detector_cleanup();
1209 arch_smt_update();
1210 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1211 return ret;
1212 }
1213
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1214 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1215 {
1216 if (cpu_hotplug_disabled)
1217 return -EBUSY;
1218 return _cpu_down(cpu, 0, target);
1219 }
1220
cpu_down(unsigned int cpu,enum cpuhp_state target)1221 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1222 {
1223 int err;
1224
1225 cpu_maps_update_begin();
1226 err = cpu_down_maps_locked(cpu, target);
1227 cpu_maps_update_done();
1228 return err;
1229 }
1230
1231 /**
1232 * cpu_device_down - Bring down a cpu device
1233 * @dev: Pointer to the cpu device to offline
1234 *
1235 * This function is meant to be used by device core cpu subsystem only.
1236 *
1237 * Other subsystems should use remove_cpu() instead.
1238 *
1239 * Return: %0 on success or a negative errno code
1240 */
cpu_device_down(struct device * dev)1241 int cpu_device_down(struct device *dev)
1242 {
1243 return cpu_down(dev->id, CPUHP_OFFLINE);
1244 }
1245
remove_cpu(unsigned int cpu)1246 int remove_cpu(unsigned int cpu)
1247 {
1248 int ret;
1249
1250 lock_device_hotplug();
1251 ret = device_offline(get_cpu_device(cpu));
1252 unlock_device_hotplug();
1253
1254 return ret;
1255 }
1256 EXPORT_SYMBOL_GPL(remove_cpu);
1257
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1258 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1259 {
1260 unsigned int cpu;
1261 int error;
1262
1263 cpu_maps_update_begin();
1264
1265 /*
1266 * Make certain the cpu I'm about to reboot on is online.
1267 *
1268 * This is inline to what migrate_to_reboot_cpu() already do.
1269 */
1270 if (!cpu_online(primary_cpu))
1271 primary_cpu = cpumask_first(cpu_online_mask);
1272
1273 for_each_online_cpu(cpu) {
1274 if (cpu == primary_cpu)
1275 continue;
1276
1277 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1278 if (error) {
1279 pr_err("Failed to offline CPU%d - error=%d",
1280 cpu, error);
1281 break;
1282 }
1283 }
1284
1285 /*
1286 * Ensure all but the reboot CPU are offline.
1287 */
1288 BUG_ON(num_online_cpus() > 1);
1289
1290 /*
1291 * Make sure the CPUs won't be enabled by someone else after this
1292 * point. Kexec will reboot to a new kernel shortly resetting
1293 * everything along the way.
1294 */
1295 cpu_hotplug_disabled++;
1296
1297 cpu_maps_update_done();
1298 }
1299
1300 #else
1301 #define takedown_cpu NULL
1302 #endif /*CONFIG_HOTPLUG_CPU*/
1303
1304 /**
1305 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1306 * @cpu: cpu that just started
1307 *
1308 * It must be called by the arch code on the new cpu, before the new cpu
1309 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1310 */
notify_cpu_starting(unsigned int cpu)1311 void notify_cpu_starting(unsigned int cpu)
1312 {
1313 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1314 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1315
1316 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1317 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1318
1319 /*
1320 * STARTING must not fail!
1321 */
1322 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1323 }
1324
1325 /*
1326 * Called from the idle task. Wake up the controlling task which brings the
1327 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1328 * online bringup to the hotplug thread.
1329 */
cpuhp_online_idle(enum cpuhp_state state)1330 void cpuhp_online_idle(enum cpuhp_state state)
1331 {
1332 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1333
1334 /* Happens for the boot cpu */
1335 if (state != CPUHP_AP_ONLINE_IDLE)
1336 return;
1337
1338 /*
1339 * Unpart the stopper thread before we start the idle loop (and start
1340 * scheduling); this ensures the stopper task is always available.
1341 */
1342 stop_machine_unpark(smp_processor_id());
1343
1344 st->state = CPUHP_AP_ONLINE_IDLE;
1345 complete_ap_thread(st, true);
1346 }
1347
switch_to_rt_policy(void)1348 static int switch_to_rt_policy(void)
1349 {
1350 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1351 unsigned int policy = current->policy;
1352
1353 if (policy == SCHED_NORMAL)
1354 /* Switch to SCHED_FIFO from SCHED_NORMAL. */
1355 return sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
1356 else
1357 return 1;
1358 }
1359
switch_to_fair_policy(void)1360 static int switch_to_fair_policy(void)
1361 {
1362 struct sched_param param = { .sched_priority = 0 };
1363
1364 return sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
1365 }
1366
1367 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1368 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1369 {
1370 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1371 struct task_struct *idle;
1372 int ret = 0;
1373
1374 cpus_write_lock();
1375
1376 if (!cpu_present(cpu)) {
1377 ret = -EINVAL;
1378 goto out;
1379 }
1380
1381 /*
1382 * The caller of cpu_up() might have raced with another
1383 * caller. Nothing to do.
1384 */
1385 if (st->state >= target)
1386 goto out;
1387
1388 if (st->state == CPUHP_OFFLINE) {
1389 /* Let it fail before we try to bring the cpu up */
1390 idle = idle_thread_get(cpu);
1391 if (IS_ERR(idle)) {
1392 ret = PTR_ERR(idle);
1393 goto out;
1394 }
1395 }
1396
1397 cpuhp_tasks_frozen = tasks_frozen;
1398
1399 cpuhp_set_state(cpu, st, target);
1400 /*
1401 * If the current CPU state is in the range of the AP hotplug thread,
1402 * then we need to kick the thread once more.
1403 */
1404 if (st->state > CPUHP_BRINGUP_CPU) {
1405 ret = cpuhp_kick_ap_work(cpu);
1406 /*
1407 * The AP side has done the error rollback already. Just
1408 * return the error code..
1409 */
1410 if (ret)
1411 goto out;
1412 }
1413
1414 /*
1415 * Try to reach the target state. We max out on the BP at
1416 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1417 * responsible for bringing it up to the target state.
1418 */
1419 target = min((int)target, CPUHP_BRINGUP_CPU);
1420 ret = cpuhp_up_callbacks(cpu, st, target);
1421 out:
1422 cpus_write_unlock();
1423 arch_smt_update();
1424 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1425 return ret;
1426 }
1427
cpu_up(unsigned int cpu,enum cpuhp_state target)1428 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1429 {
1430 int err = 0;
1431 int switch_err;
1432
1433 if (!cpu_possible(cpu)) {
1434 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1435 cpu);
1436 #if defined(CONFIG_IA64)
1437 pr_err("please check additional_cpus= boot parameter\n");
1438 #endif
1439 return -EINVAL;
1440 }
1441
1442 /*
1443 * CPU hotplug operations consists of many steps and each step
1444 * calls a callback of core kernel subsystem. CPU hotplug-in
1445 * operation may get preempted by other CFS tasks and whole
1446 * operation of cpu hotplug in CPU gets delayed. Switch the
1447 * current task to SCHED_FIFO from SCHED_NORMAL, so that
1448 * hotplug in operation may complete quickly in heavy loaded
1449 * conditions and new CPU will start handle the workload.
1450 */
1451
1452 switch_err = switch_to_rt_policy();
1453
1454 err = try_online_node(cpu_to_node(cpu));
1455 if (err)
1456 goto switch_out;
1457
1458 cpu_maps_update_begin();
1459
1460 if (cpu_hotplug_disabled) {
1461 err = -EBUSY;
1462 goto out;
1463 }
1464 if (!cpu_smt_allowed(cpu)) {
1465 err = -EPERM;
1466 goto out;
1467 }
1468
1469 err = _cpu_up(cpu, 0, target);
1470 out:
1471 cpu_maps_update_done();
1472 switch_out:
1473 if (!switch_err) {
1474 switch_err = switch_to_fair_policy();
1475 if (switch_err)
1476 pr_err("Hotplug policy switch err=%d Task %s pid=%d\n",
1477 switch_err, current->comm, current->pid);
1478 }
1479
1480 return err;
1481 }
1482
1483 /**
1484 * cpu_device_up - Bring up a cpu device
1485 * @dev: Pointer to the cpu device to online
1486 *
1487 * This function is meant to be used by device core cpu subsystem only.
1488 *
1489 * Other subsystems should use add_cpu() instead.
1490 *
1491 * Return: %0 on success or a negative errno code
1492 */
cpu_device_up(struct device * dev)1493 int cpu_device_up(struct device *dev)
1494 {
1495 return cpu_up(dev->id, CPUHP_ONLINE);
1496 }
1497
add_cpu(unsigned int cpu)1498 int add_cpu(unsigned int cpu)
1499 {
1500 int ret;
1501
1502 lock_device_hotplug();
1503 ret = device_online(get_cpu_device(cpu));
1504 unlock_device_hotplug();
1505
1506 return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(add_cpu);
1509
1510 /**
1511 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1512 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1513 *
1514 * On some architectures like arm64, we can hibernate on any CPU, but on
1515 * wake up the CPU we hibernated on might be offline as a side effect of
1516 * using maxcpus= for example.
1517 *
1518 * Return: %0 on success or a negative errno code
1519 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1520 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1521 {
1522 int ret;
1523
1524 if (!cpu_online(sleep_cpu)) {
1525 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1526 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1527 if (ret) {
1528 pr_err("Failed to bring hibernate-CPU up!\n");
1529 return ret;
1530 }
1531 }
1532 return 0;
1533 }
1534
bringup_nonboot_cpus(unsigned int setup_max_cpus)1535 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1536 {
1537 unsigned int cpu;
1538
1539 for_each_present_cpu(cpu) {
1540 if (num_online_cpus() >= setup_max_cpus)
1541 break;
1542 if (!cpu_online(cpu))
1543 cpu_up(cpu, CPUHP_ONLINE);
1544 }
1545 }
1546
1547 #ifdef CONFIG_PM_SLEEP_SMP
1548 static cpumask_var_t frozen_cpus;
1549
freeze_secondary_cpus(int primary)1550 int freeze_secondary_cpus(int primary)
1551 {
1552 int cpu, error = 0;
1553
1554 cpu_maps_update_begin();
1555 if (primary == -1) {
1556 primary = cpumask_first(cpu_online_mask);
1557 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1558 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1559 } else {
1560 if (!cpu_online(primary))
1561 primary = cpumask_first(cpu_online_mask);
1562 }
1563
1564 /*
1565 * We take down all of the non-boot CPUs in one shot to avoid races
1566 * with the userspace trying to use the CPU hotplug at the same time
1567 */
1568 cpumask_clear(frozen_cpus);
1569
1570 pr_info("Disabling non-boot CPUs ...\n");
1571 for_each_online_cpu(cpu) {
1572 if (cpu == primary)
1573 continue;
1574
1575 if (pm_wakeup_pending()) {
1576 pr_info("Wakeup pending. Abort CPU freeze\n");
1577 error = -EBUSY;
1578 break;
1579 }
1580
1581 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1582 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1583 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1584 if (!error)
1585 cpumask_set_cpu(cpu, frozen_cpus);
1586 else {
1587 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1588 break;
1589 }
1590 }
1591
1592 if (!error)
1593 BUG_ON(num_online_cpus() > 1);
1594 else
1595 pr_err("Non-boot CPUs are not disabled\n");
1596
1597 /*
1598 * Make sure the CPUs won't be enabled by someone else. We need to do
1599 * this even in case of failure as all freeze_secondary_cpus() users are
1600 * supposed to do thaw_secondary_cpus() on the failure path.
1601 */
1602 cpu_hotplug_disabled++;
1603
1604 cpu_maps_update_done();
1605 return error;
1606 }
1607
arch_thaw_secondary_cpus_begin(void)1608 void __weak arch_thaw_secondary_cpus_begin(void)
1609 {
1610 }
1611
arch_thaw_secondary_cpus_end(void)1612 void __weak arch_thaw_secondary_cpus_end(void)
1613 {
1614 }
1615
thaw_secondary_cpus(void)1616 void thaw_secondary_cpus(void)
1617 {
1618 int cpu, error;
1619
1620 /* Allow everyone to use the CPU hotplug again */
1621 cpu_maps_update_begin();
1622 __cpu_hotplug_enable();
1623 if (cpumask_empty(frozen_cpus))
1624 goto out;
1625
1626 pr_info("Enabling non-boot CPUs ...\n");
1627
1628 arch_thaw_secondary_cpus_begin();
1629
1630 for_each_cpu(cpu, frozen_cpus) {
1631 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1632 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1633 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1634 if (!error) {
1635 pr_info("CPU%d is up\n", cpu);
1636 continue;
1637 }
1638 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1639 }
1640
1641 arch_thaw_secondary_cpus_end();
1642
1643 cpumask_clear(frozen_cpus);
1644 out:
1645 cpu_maps_update_done();
1646 }
1647
alloc_frozen_cpus(void)1648 static int __init alloc_frozen_cpus(void)
1649 {
1650 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1651 return -ENOMEM;
1652 return 0;
1653 }
1654 core_initcall(alloc_frozen_cpus);
1655
1656 /*
1657 * When callbacks for CPU hotplug notifications are being executed, we must
1658 * ensure that the state of the system with respect to the tasks being frozen
1659 * or not, as reported by the notification, remains unchanged *throughout the
1660 * duration* of the execution of the callbacks.
1661 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1662 *
1663 * This synchronization is implemented by mutually excluding regular CPU
1664 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1665 * Hibernate notifications.
1666 */
1667 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1668 cpu_hotplug_pm_callback(struct notifier_block *nb,
1669 unsigned long action, void *ptr)
1670 {
1671 switch (action) {
1672
1673 case PM_SUSPEND_PREPARE:
1674 case PM_HIBERNATION_PREPARE:
1675 cpu_hotplug_disable();
1676 break;
1677
1678 case PM_POST_SUSPEND:
1679 case PM_POST_HIBERNATION:
1680 cpu_hotplug_enable();
1681 break;
1682
1683 default:
1684 return NOTIFY_DONE;
1685 }
1686
1687 return NOTIFY_OK;
1688 }
1689
1690
cpu_hotplug_pm_sync_init(void)1691 static int __init cpu_hotplug_pm_sync_init(void)
1692 {
1693 /*
1694 * cpu_hotplug_pm_callback has higher priority than x86
1695 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1696 * to disable cpu hotplug to avoid cpu hotplug race.
1697 */
1698 pm_notifier(cpu_hotplug_pm_callback, 0);
1699 return 0;
1700 }
1701 core_initcall(cpu_hotplug_pm_sync_init);
1702
1703 #endif /* CONFIG_PM_SLEEP_SMP */
1704
1705 int __boot_cpu_id;
1706
1707 #endif /* CONFIG_SMP */
1708
1709 /* Boot processor state steps */
1710 static struct cpuhp_step cpuhp_hp_states[] = {
1711 [CPUHP_OFFLINE] = {
1712 .name = "offline",
1713 .startup.single = NULL,
1714 .teardown.single = NULL,
1715 },
1716 #ifdef CONFIG_SMP
1717 [CPUHP_CREATE_THREADS]= {
1718 .name = "threads:prepare",
1719 .startup.single = smpboot_create_threads,
1720 .teardown.single = NULL,
1721 .cant_stop = true,
1722 },
1723 [CPUHP_PERF_PREPARE] = {
1724 .name = "perf:prepare",
1725 .startup.single = perf_event_init_cpu,
1726 .teardown.single = perf_event_exit_cpu,
1727 },
1728 [CPUHP_RANDOM_PREPARE] = {
1729 .name = "random:prepare",
1730 .startup.single = random_prepare_cpu,
1731 .teardown.single = NULL,
1732 },
1733 [CPUHP_WORKQUEUE_PREP] = {
1734 .name = "workqueue:prepare",
1735 .startup.single = workqueue_prepare_cpu,
1736 .teardown.single = NULL,
1737 },
1738 [CPUHP_HRTIMERS_PREPARE] = {
1739 .name = "hrtimers:prepare",
1740 .startup.single = hrtimers_prepare_cpu,
1741 .teardown.single = hrtimers_dead_cpu,
1742 },
1743 [CPUHP_SMPCFD_PREPARE] = {
1744 .name = "smpcfd:prepare",
1745 .startup.single = smpcfd_prepare_cpu,
1746 .teardown.single = smpcfd_dead_cpu,
1747 },
1748 [CPUHP_RELAY_PREPARE] = {
1749 .name = "relay:prepare",
1750 .startup.single = relay_prepare_cpu,
1751 .teardown.single = NULL,
1752 },
1753 [CPUHP_SLAB_PREPARE] = {
1754 .name = "slab:prepare",
1755 .startup.single = slab_prepare_cpu,
1756 .teardown.single = slab_dead_cpu,
1757 },
1758 [CPUHP_RCUTREE_PREP] = {
1759 .name = "RCU/tree:prepare",
1760 .startup.single = rcutree_prepare_cpu,
1761 .teardown.single = rcutree_dead_cpu,
1762 },
1763 /*
1764 * On the tear-down path, timers_dead_cpu() must be invoked
1765 * before blk_mq_queue_reinit_notify() from notify_dead(),
1766 * otherwise a RCU stall occurs.
1767 */
1768 [CPUHP_TIMERS_PREPARE] = {
1769 .name = "timers:prepare",
1770 .startup.single = timers_prepare_cpu,
1771 .teardown.single = timers_dead_cpu,
1772 },
1773 /* Kicks the plugged cpu into life */
1774 [CPUHP_BRINGUP_CPU] = {
1775 .name = "cpu:bringup",
1776 .startup.single = bringup_cpu,
1777 .teardown.single = finish_cpu,
1778 .cant_stop = true,
1779 },
1780 /* Final state before CPU kills itself */
1781 [CPUHP_AP_IDLE_DEAD] = {
1782 .name = "idle:dead",
1783 },
1784 /*
1785 * Last state before CPU enters the idle loop to die. Transient state
1786 * for synchronization.
1787 */
1788 [CPUHP_AP_OFFLINE] = {
1789 .name = "ap:offline",
1790 .cant_stop = true,
1791 },
1792 /* First state is scheduler control. Interrupts are disabled */
1793 [CPUHP_AP_SCHED_STARTING] = {
1794 .name = "sched:starting",
1795 .startup.single = sched_cpu_starting,
1796 .teardown.single = sched_cpu_dying,
1797 },
1798 [CPUHP_AP_RCUTREE_DYING] = {
1799 .name = "RCU/tree:dying",
1800 .startup.single = NULL,
1801 .teardown.single = rcutree_dying_cpu,
1802 },
1803 [CPUHP_AP_SMPCFD_DYING] = {
1804 .name = "smpcfd:dying",
1805 .startup.single = NULL,
1806 .teardown.single = smpcfd_dying_cpu,
1807 },
1808 /* Entry state on starting. Interrupts enabled from here on. Transient
1809 * state for synchronsization */
1810 [CPUHP_AP_ONLINE] = {
1811 .name = "ap:online",
1812 },
1813 /*
1814 * Handled on control processor until the plugged processor manages
1815 * this itself.
1816 */
1817 [CPUHP_TEARDOWN_CPU] = {
1818 .name = "cpu:teardown",
1819 .startup.single = NULL,
1820 .teardown.single = takedown_cpu,
1821 .cant_stop = true,
1822 },
1823
1824 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1825 .name = "sched:waitempty",
1826 .startup.single = NULL,
1827 .teardown.single = sched_cpu_wait_empty,
1828 },
1829
1830 /* Handle smpboot threads park/unpark */
1831 [CPUHP_AP_SMPBOOT_THREADS] = {
1832 .name = "smpboot/threads:online",
1833 .startup.single = smpboot_unpark_threads,
1834 .teardown.single = smpboot_park_threads,
1835 },
1836 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1837 .name = "irq/affinity:online",
1838 .startup.single = irq_affinity_online_cpu,
1839 .teardown.single = NULL,
1840 },
1841 [CPUHP_AP_PERF_ONLINE] = {
1842 .name = "perf:online",
1843 .startup.single = perf_event_init_cpu,
1844 .teardown.single = perf_event_exit_cpu,
1845 },
1846 [CPUHP_AP_WATCHDOG_ONLINE] = {
1847 .name = "lockup_detector:online",
1848 .startup.single = lockup_detector_online_cpu,
1849 .teardown.single = lockup_detector_offline_cpu,
1850 },
1851 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1852 .name = "workqueue:online",
1853 .startup.single = workqueue_online_cpu,
1854 .teardown.single = workqueue_offline_cpu,
1855 },
1856 [CPUHP_AP_RANDOM_ONLINE] = {
1857 .name = "random:online",
1858 .startup.single = random_online_cpu,
1859 .teardown.single = NULL,
1860 },
1861 [CPUHP_AP_RCUTREE_ONLINE] = {
1862 .name = "RCU/tree:online",
1863 .startup.single = rcutree_online_cpu,
1864 .teardown.single = rcutree_offline_cpu,
1865 },
1866 #endif
1867 /*
1868 * The dynamically registered state space is here
1869 */
1870
1871 #ifdef CONFIG_SMP
1872 /* Last state is scheduler control setting the cpu active */
1873 [CPUHP_AP_ACTIVE] = {
1874 .name = "sched:active",
1875 .startup.single = sched_cpu_activate,
1876 .teardown.single = sched_cpu_deactivate,
1877 },
1878 #endif
1879
1880 /* CPU is fully up and running. */
1881 [CPUHP_ONLINE] = {
1882 .name = "online",
1883 .startup.single = NULL,
1884 .teardown.single = NULL,
1885 },
1886 };
1887
1888 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1889 static int cpuhp_cb_check(enum cpuhp_state state)
1890 {
1891 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1892 return -EINVAL;
1893 return 0;
1894 }
1895
1896 /*
1897 * Returns a free for dynamic slot assignment of the Online state. The states
1898 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1899 * by having no name assigned.
1900 */
cpuhp_reserve_state(enum cpuhp_state state)1901 static int cpuhp_reserve_state(enum cpuhp_state state)
1902 {
1903 enum cpuhp_state i, end;
1904 struct cpuhp_step *step;
1905
1906 switch (state) {
1907 case CPUHP_AP_ONLINE_DYN:
1908 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1909 end = CPUHP_AP_ONLINE_DYN_END;
1910 break;
1911 case CPUHP_BP_PREPARE_DYN:
1912 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1913 end = CPUHP_BP_PREPARE_DYN_END;
1914 break;
1915 default:
1916 return -EINVAL;
1917 }
1918
1919 for (i = state; i <= end; i++, step++) {
1920 if (!step->name)
1921 return i;
1922 }
1923 WARN(1, "No more dynamic states available for CPU hotplug\n");
1924 return -ENOSPC;
1925 }
1926
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1927 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1928 int (*startup)(unsigned int cpu),
1929 int (*teardown)(unsigned int cpu),
1930 bool multi_instance)
1931 {
1932 /* (Un)Install the callbacks for further cpu hotplug operations */
1933 struct cpuhp_step *sp;
1934 int ret = 0;
1935
1936 /*
1937 * If name is NULL, then the state gets removed.
1938 *
1939 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1940 * the first allocation from these dynamic ranges, so the removal
1941 * would trigger a new allocation and clear the wrong (already
1942 * empty) state, leaving the callbacks of the to be cleared state
1943 * dangling, which causes wreckage on the next hotplug operation.
1944 */
1945 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1946 state == CPUHP_BP_PREPARE_DYN)) {
1947 ret = cpuhp_reserve_state(state);
1948 if (ret < 0)
1949 return ret;
1950 state = ret;
1951 }
1952 sp = cpuhp_get_step(state);
1953 if (name && sp->name)
1954 return -EBUSY;
1955
1956 sp->startup.single = startup;
1957 sp->teardown.single = teardown;
1958 sp->name = name;
1959 sp->multi_instance = multi_instance;
1960 INIT_HLIST_HEAD(&sp->list);
1961 return ret;
1962 }
1963
cpuhp_get_teardown_cb(enum cpuhp_state state)1964 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1965 {
1966 return cpuhp_get_step(state)->teardown.single;
1967 }
1968
1969 /*
1970 * Call the startup/teardown function for a step either on the AP or
1971 * on the current CPU.
1972 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1973 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1974 struct hlist_node *node)
1975 {
1976 struct cpuhp_step *sp = cpuhp_get_step(state);
1977 int ret;
1978
1979 /*
1980 * If there's nothing to do, we done.
1981 * Relies on the union for multi_instance.
1982 */
1983 if (cpuhp_step_empty(bringup, sp))
1984 return 0;
1985 /*
1986 * The non AP bound callbacks can fail on bringup. On teardown
1987 * e.g. module removal we crash for now.
1988 */
1989 #ifdef CONFIG_SMP
1990 if (cpuhp_is_ap_state(state))
1991 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1992 else
1993 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1994 #else
1995 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1996 #endif
1997 BUG_ON(ret && !bringup);
1998 return ret;
1999 }
2000
2001 /*
2002 * Called from __cpuhp_setup_state on a recoverable failure.
2003 *
2004 * Note: The teardown callbacks for rollback are not allowed to fail!
2005 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2006 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2007 struct hlist_node *node)
2008 {
2009 int cpu;
2010
2011 /* Roll back the already executed steps on the other cpus */
2012 for_each_present_cpu(cpu) {
2013 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2014 int cpustate = st->state;
2015
2016 if (cpu >= failedcpu)
2017 break;
2018
2019 /* Did we invoke the startup call on that cpu ? */
2020 if (cpustate >= state)
2021 cpuhp_issue_call(cpu, state, false, node);
2022 }
2023 }
2024
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2025 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2026 struct hlist_node *node,
2027 bool invoke)
2028 {
2029 struct cpuhp_step *sp;
2030 int cpu;
2031 int ret;
2032
2033 lockdep_assert_cpus_held();
2034
2035 sp = cpuhp_get_step(state);
2036 if (sp->multi_instance == false)
2037 return -EINVAL;
2038
2039 mutex_lock(&cpuhp_state_mutex);
2040
2041 if (!invoke || !sp->startup.multi)
2042 goto add_node;
2043
2044 /*
2045 * Try to call the startup callback for each present cpu
2046 * depending on the hotplug state of the cpu.
2047 */
2048 for_each_present_cpu(cpu) {
2049 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2050 int cpustate = st->state;
2051
2052 if (cpustate < state)
2053 continue;
2054
2055 ret = cpuhp_issue_call(cpu, state, true, node);
2056 if (ret) {
2057 if (sp->teardown.multi)
2058 cpuhp_rollback_install(cpu, state, node);
2059 goto unlock;
2060 }
2061 }
2062 add_node:
2063 ret = 0;
2064 hlist_add_head(node, &sp->list);
2065 unlock:
2066 mutex_unlock(&cpuhp_state_mutex);
2067 return ret;
2068 }
2069
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2070 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2071 bool invoke)
2072 {
2073 int ret;
2074
2075 cpus_read_lock();
2076 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2077 cpus_read_unlock();
2078 return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2081
2082 /**
2083 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2084 * @state: The state to setup
2085 * @name: Name of the step
2086 * @invoke: If true, the startup function is invoked for cpus where
2087 * cpu state >= @state
2088 * @startup: startup callback function
2089 * @teardown: teardown callback function
2090 * @multi_instance: State is set up for multiple instances which get
2091 * added afterwards.
2092 *
2093 * The caller needs to hold cpus read locked while calling this function.
2094 * Return:
2095 * On success:
2096 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2097 * 0 for all other states
2098 * On failure: proper (negative) error code
2099 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2100 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2101 const char *name, bool invoke,
2102 int (*startup)(unsigned int cpu),
2103 int (*teardown)(unsigned int cpu),
2104 bool multi_instance)
2105 {
2106 int cpu, ret = 0;
2107 bool dynstate;
2108
2109 lockdep_assert_cpus_held();
2110
2111 if (cpuhp_cb_check(state) || !name)
2112 return -EINVAL;
2113
2114 mutex_lock(&cpuhp_state_mutex);
2115
2116 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2117 multi_instance);
2118
2119 dynstate = state == CPUHP_AP_ONLINE_DYN;
2120 if (ret > 0 && dynstate) {
2121 state = ret;
2122 ret = 0;
2123 }
2124
2125 if (ret || !invoke || !startup)
2126 goto out;
2127
2128 /*
2129 * Try to call the startup callback for each present cpu
2130 * depending on the hotplug state of the cpu.
2131 */
2132 for_each_present_cpu(cpu) {
2133 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2134 int cpustate = st->state;
2135
2136 if (cpustate < state)
2137 continue;
2138
2139 ret = cpuhp_issue_call(cpu, state, true, NULL);
2140 if (ret) {
2141 if (teardown)
2142 cpuhp_rollback_install(cpu, state, NULL);
2143 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2144 goto out;
2145 }
2146 }
2147 out:
2148 mutex_unlock(&cpuhp_state_mutex);
2149 /*
2150 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2151 * dynamically allocated state in case of success.
2152 */
2153 if (!ret && dynstate)
2154 return state;
2155 return ret;
2156 }
2157 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2158
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2159 int __cpuhp_setup_state(enum cpuhp_state state,
2160 const char *name, bool invoke,
2161 int (*startup)(unsigned int cpu),
2162 int (*teardown)(unsigned int cpu),
2163 bool multi_instance)
2164 {
2165 int ret;
2166
2167 cpus_read_lock();
2168 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2169 teardown, multi_instance);
2170 cpus_read_unlock();
2171 return ret;
2172 }
2173 EXPORT_SYMBOL(__cpuhp_setup_state);
2174
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2175 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2176 struct hlist_node *node, bool invoke)
2177 {
2178 struct cpuhp_step *sp = cpuhp_get_step(state);
2179 int cpu;
2180
2181 BUG_ON(cpuhp_cb_check(state));
2182
2183 if (!sp->multi_instance)
2184 return -EINVAL;
2185
2186 cpus_read_lock();
2187 mutex_lock(&cpuhp_state_mutex);
2188
2189 if (!invoke || !cpuhp_get_teardown_cb(state))
2190 goto remove;
2191 /*
2192 * Call the teardown callback for each present cpu depending
2193 * on the hotplug state of the cpu. This function is not
2194 * allowed to fail currently!
2195 */
2196 for_each_present_cpu(cpu) {
2197 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2198 int cpustate = st->state;
2199
2200 if (cpustate >= state)
2201 cpuhp_issue_call(cpu, state, false, node);
2202 }
2203
2204 remove:
2205 hlist_del(node);
2206 mutex_unlock(&cpuhp_state_mutex);
2207 cpus_read_unlock();
2208
2209 return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2212
2213 /**
2214 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2215 * @state: The state to remove
2216 * @invoke: If true, the teardown function is invoked for cpus where
2217 * cpu state >= @state
2218 *
2219 * The caller needs to hold cpus read locked while calling this function.
2220 * The teardown callback is currently not allowed to fail. Think
2221 * about module removal!
2222 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2223 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2224 {
2225 struct cpuhp_step *sp = cpuhp_get_step(state);
2226 int cpu;
2227
2228 BUG_ON(cpuhp_cb_check(state));
2229
2230 lockdep_assert_cpus_held();
2231
2232 mutex_lock(&cpuhp_state_mutex);
2233 if (sp->multi_instance) {
2234 WARN(!hlist_empty(&sp->list),
2235 "Error: Removing state %d which has instances left.\n",
2236 state);
2237 goto remove;
2238 }
2239
2240 if (!invoke || !cpuhp_get_teardown_cb(state))
2241 goto remove;
2242
2243 /*
2244 * Call the teardown callback for each present cpu depending
2245 * on the hotplug state of the cpu. This function is not
2246 * allowed to fail currently!
2247 */
2248 for_each_present_cpu(cpu) {
2249 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2250 int cpustate = st->state;
2251
2252 if (cpustate >= state)
2253 cpuhp_issue_call(cpu, state, false, NULL);
2254 }
2255 remove:
2256 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2257 mutex_unlock(&cpuhp_state_mutex);
2258 }
2259 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2260
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2261 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2262 {
2263 cpus_read_lock();
2264 __cpuhp_remove_state_cpuslocked(state, invoke);
2265 cpus_read_unlock();
2266 }
2267 EXPORT_SYMBOL(__cpuhp_remove_state);
2268
2269 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2270 static void cpuhp_offline_cpu_device(unsigned int cpu)
2271 {
2272 struct device *dev = get_cpu_device(cpu);
2273
2274 dev->offline = true;
2275 /* Tell user space about the state change */
2276 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2277 }
2278
cpuhp_online_cpu_device(unsigned int cpu)2279 static void cpuhp_online_cpu_device(unsigned int cpu)
2280 {
2281 struct device *dev = get_cpu_device(cpu);
2282
2283 dev->offline = false;
2284 /* Tell user space about the state change */
2285 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2286 }
2287
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2288 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2289 {
2290 int cpu, ret = 0;
2291
2292 cpu_maps_update_begin();
2293 for_each_online_cpu(cpu) {
2294 if (topology_is_primary_thread(cpu))
2295 continue;
2296 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2297 if (ret)
2298 break;
2299 /*
2300 * As this needs to hold the cpu maps lock it's impossible
2301 * to call device_offline() because that ends up calling
2302 * cpu_down() which takes cpu maps lock. cpu maps lock
2303 * needs to be held as this might race against in kernel
2304 * abusers of the hotplug machinery (thermal management).
2305 *
2306 * So nothing would update device:offline state. That would
2307 * leave the sysfs entry stale and prevent onlining after
2308 * smt control has been changed to 'off' again. This is
2309 * called under the sysfs hotplug lock, so it is properly
2310 * serialized against the regular offline usage.
2311 */
2312 cpuhp_offline_cpu_device(cpu);
2313 }
2314 if (!ret)
2315 cpu_smt_control = ctrlval;
2316 cpu_maps_update_done();
2317 return ret;
2318 }
2319
cpuhp_smt_enable(void)2320 int cpuhp_smt_enable(void)
2321 {
2322 int cpu, ret = 0;
2323
2324 cpu_maps_update_begin();
2325 cpu_smt_control = CPU_SMT_ENABLED;
2326 for_each_present_cpu(cpu) {
2327 /* Skip online CPUs and CPUs on offline nodes */
2328 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2329 continue;
2330 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2331 if (ret)
2332 break;
2333 /* See comment in cpuhp_smt_disable() */
2334 cpuhp_online_cpu_device(cpu);
2335 }
2336 cpu_maps_update_done();
2337 return ret;
2338 }
2339 #endif
2340
2341 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2342 static ssize_t state_show(struct device *dev,
2343 struct device_attribute *attr, char *buf)
2344 {
2345 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2346
2347 return sprintf(buf, "%d\n", st->state);
2348 }
2349 static DEVICE_ATTR_RO(state);
2350
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2351 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2352 const char *buf, size_t count)
2353 {
2354 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2355 struct cpuhp_step *sp;
2356 int target, ret;
2357
2358 ret = kstrtoint(buf, 10, &target);
2359 if (ret)
2360 return ret;
2361
2362 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2363 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2364 return -EINVAL;
2365 #else
2366 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2367 return -EINVAL;
2368 #endif
2369
2370 ret = lock_device_hotplug_sysfs();
2371 if (ret)
2372 return ret;
2373
2374 mutex_lock(&cpuhp_state_mutex);
2375 sp = cpuhp_get_step(target);
2376 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2377 mutex_unlock(&cpuhp_state_mutex);
2378 if (ret)
2379 goto out;
2380
2381 if (st->state < target)
2382 ret = cpu_up(dev->id, target);
2383 else if (st->state > target)
2384 ret = cpu_down(dev->id, target);
2385 else if (WARN_ON(st->target != target))
2386 st->target = target;
2387 out:
2388 unlock_device_hotplug();
2389 return ret ? ret : count;
2390 }
2391
target_show(struct device * dev,struct device_attribute * attr,char * buf)2392 static ssize_t target_show(struct device *dev,
2393 struct device_attribute *attr, char *buf)
2394 {
2395 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2396
2397 return sprintf(buf, "%d\n", st->target);
2398 }
2399 static DEVICE_ATTR_RW(target);
2400
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2401 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2402 const char *buf, size_t count)
2403 {
2404 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2405 struct cpuhp_step *sp;
2406 int fail, ret;
2407
2408 ret = kstrtoint(buf, 10, &fail);
2409 if (ret)
2410 return ret;
2411
2412 if (fail == CPUHP_INVALID) {
2413 st->fail = fail;
2414 return count;
2415 }
2416
2417 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2418 return -EINVAL;
2419
2420 /*
2421 * Cannot fail STARTING/DYING callbacks.
2422 */
2423 if (cpuhp_is_atomic_state(fail))
2424 return -EINVAL;
2425
2426 /*
2427 * DEAD callbacks cannot fail...
2428 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2429 * triggering STARTING callbacks, a failure in this state would
2430 * hinder rollback.
2431 */
2432 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2433 return -EINVAL;
2434
2435 /*
2436 * Cannot fail anything that doesn't have callbacks.
2437 */
2438 mutex_lock(&cpuhp_state_mutex);
2439 sp = cpuhp_get_step(fail);
2440 if (!sp->startup.single && !sp->teardown.single)
2441 ret = -EINVAL;
2442 mutex_unlock(&cpuhp_state_mutex);
2443 if (ret)
2444 return ret;
2445
2446 st->fail = fail;
2447
2448 return count;
2449 }
2450
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2451 static ssize_t fail_show(struct device *dev,
2452 struct device_attribute *attr, char *buf)
2453 {
2454 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2455
2456 return sprintf(buf, "%d\n", st->fail);
2457 }
2458
2459 static DEVICE_ATTR_RW(fail);
2460
2461 static struct attribute *cpuhp_cpu_attrs[] = {
2462 &dev_attr_state.attr,
2463 &dev_attr_target.attr,
2464 &dev_attr_fail.attr,
2465 NULL
2466 };
2467
2468 static const struct attribute_group cpuhp_cpu_attr_group = {
2469 .attrs = cpuhp_cpu_attrs,
2470 .name = "hotplug",
2471 NULL
2472 };
2473
states_show(struct device * dev,struct device_attribute * attr,char * buf)2474 static ssize_t states_show(struct device *dev,
2475 struct device_attribute *attr, char *buf)
2476 {
2477 ssize_t cur, res = 0;
2478 int i;
2479
2480 mutex_lock(&cpuhp_state_mutex);
2481 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2482 struct cpuhp_step *sp = cpuhp_get_step(i);
2483
2484 if (sp->name) {
2485 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2486 buf += cur;
2487 res += cur;
2488 }
2489 }
2490 mutex_unlock(&cpuhp_state_mutex);
2491 return res;
2492 }
2493 static DEVICE_ATTR_RO(states);
2494
2495 static struct attribute *cpuhp_cpu_root_attrs[] = {
2496 &dev_attr_states.attr,
2497 NULL
2498 };
2499
2500 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2501 .attrs = cpuhp_cpu_root_attrs,
2502 .name = "hotplug",
2503 NULL
2504 };
2505
2506 #ifdef CONFIG_HOTPLUG_SMT
2507
2508 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2509 __store_smt_control(struct device *dev, struct device_attribute *attr,
2510 const char *buf, size_t count)
2511 {
2512 int ctrlval, ret;
2513
2514 if (sysfs_streq(buf, "on"))
2515 ctrlval = CPU_SMT_ENABLED;
2516 else if (sysfs_streq(buf, "off"))
2517 ctrlval = CPU_SMT_DISABLED;
2518 else if (sysfs_streq(buf, "forceoff"))
2519 ctrlval = CPU_SMT_FORCE_DISABLED;
2520 else
2521 return -EINVAL;
2522
2523 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2524 return -EPERM;
2525
2526 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2527 return -ENODEV;
2528
2529 ret = lock_device_hotplug_sysfs();
2530 if (ret)
2531 return ret;
2532
2533 if (ctrlval != cpu_smt_control) {
2534 switch (ctrlval) {
2535 case CPU_SMT_ENABLED:
2536 ret = cpuhp_smt_enable();
2537 break;
2538 case CPU_SMT_DISABLED:
2539 case CPU_SMT_FORCE_DISABLED:
2540 ret = cpuhp_smt_disable(ctrlval);
2541 break;
2542 }
2543 }
2544
2545 unlock_device_hotplug();
2546 return ret ? ret : count;
2547 }
2548
2549 #else /* !CONFIG_HOTPLUG_SMT */
2550 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2551 __store_smt_control(struct device *dev, struct device_attribute *attr,
2552 const char *buf, size_t count)
2553 {
2554 return -ENODEV;
2555 }
2556 #endif /* CONFIG_HOTPLUG_SMT */
2557
2558 static const char *smt_states[] = {
2559 [CPU_SMT_ENABLED] = "on",
2560 [CPU_SMT_DISABLED] = "off",
2561 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2562 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2563 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2564 };
2565
control_show(struct device * dev,struct device_attribute * attr,char * buf)2566 static ssize_t control_show(struct device *dev,
2567 struct device_attribute *attr, char *buf)
2568 {
2569 const char *state = smt_states[cpu_smt_control];
2570
2571 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2572 }
2573
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2574 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2575 const char *buf, size_t count)
2576 {
2577 return __store_smt_control(dev, attr, buf, count);
2578 }
2579 static DEVICE_ATTR_RW(control);
2580
active_show(struct device * dev,struct device_attribute * attr,char * buf)2581 static ssize_t active_show(struct device *dev,
2582 struct device_attribute *attr, char *buf)
2583 {
2584 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2585 }
2586 static DEVICE_ATTR_RO(active);
2587
2588 static struct attribute *cpuhp_smt_attrs[] = {
2589 &dev_attr_control.attr,
2590 &dev_attr_active.attr,
2591 NULL
2592 };
2593
2594 static const struct attribute_group cpuhp_smt_attr_group = {
2595 .attrs = cpuhp_smt_attrs,
2596 .name = "smt",
2597 NULL
2598 };
2599
cpu_smt_sysfs_init(void)2600 static int __init cpu_smt_sysfs_init(void)
2601 {
2602 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2603 &cpuhp_smt_attr_group);
2604 }
2605
cpuhp_sysfs_init(void)2606 static int __init cpuhp_sysfs_init(void)
2607 {
2608 int cpu, ret;
2609
2610 ret = cpu_smt_sysfs_init();
2611 if (ret)
2612 return ret;
2613
2614 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2615 &cpuhp_cpu_root_attr_group);
2616 if (ret)
2617 return ret;
2618
2619 for_each_possible_cpu(cpu) {
2620 struct device *dev = get_cpu_device(cpu);
2621
2622 if (!dev)
2623 continue;
2624 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2625 if (ret)
2626 return ret;
2627 }
2628 return 0;
2629 }
2630 device_initcall(cpuhp_sysfs_init);
2631 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2632
2633 /*
2634 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2635 * represents all NR_CPUS bits binary values of 1<<nr.
2636 *
2637 * It is used by cpumask_of() to get a constant address to a CPU
2638 * mask value that has a single bit set only.
2639 */
2640
2641 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2642 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2643 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2644 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2645 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2646
2647 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2648
2649 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2650 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2651 #if BITS_PER_LONG > 32
2652 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2653 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2654 #endif
2655 };
2656 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2657
2658 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2659 EXPORT_SYMBOL(cpu_all_bits);
2660
2661 #ifdef CONFIG_INIT_ALL_POSSIBLE
2662 struct cpumask __cpu_possible_mask __read_mostly
2663 = {CPU_BITS_ALL};
2664 #else
2665 struct cpumask __cpu_possible_mask __read_mostly;
2666 #endif
2667 EXPORT_SYMBOL(__cpu_possible_mask);
2668
2669 struct cpumask __cpu_online_mask __read_mostly;
2670 EXPORT_SYMBOL(__cpu_online_mask);
2671
2672 struct cpumask __cpu_present_mask __read_mostly;
2673 EXPORT_SYMBOL(__cpu_present_mask);
2674
2675 struct cpumask __cpu_active_mask __read_mostly;
2676 EXPORT_SYMBOL(__cpu_active_mask);
2677
2678 struct cpumask __cpu_dying_mask __read_mostly;
2679 EXPORT_SYMBOL(__cpu_dying_mask);
2680
2681 atomic_t __num_online_cpus __read_mostly;
2682 EXPORT_SYMBOL(__num_online_cpus);
2683
init_cpu_present(const struct cpumask * src)2684 void init_cpu_present(const struct cpumask *src)
2685 {
2686 cpumask_copy(&__cpu_present_mask, src);
2687 }
2688
init_cpu_possible(const struct cpumask * src)2689 void init_cpu_possible(const struct cpumask *src)
2690 {
2691 cpumask_copy(&__cpu_possible_mask, src);
2692 }
2693
init_cpu_online(const struct cpumask * src)2694 void init_cpu_online(const struct cpumask *src)
2695 {
2696 cpumask_copy(&__cpu_online_mask, src);
2697 }
2698
set_cpu_online(unsigned int cpu,bool online)2699 void set_cpu_online(unsigned int cpu, bool online)
2700 {
2701 /*
2702 * atomic_inc/dec() is required to handle the horrid abuse of this
2703 * function by the reboot and kexec code which invoke it from
2704 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2705 * regular CPU hotplug is properly serialized.
2706 *
2707 * Note, that the fact that __num_online_cpus is of type atomic_t
2708 * does not protect readers which are not serialized against
2709 * concurrent hotplug operations.
2710 */
2711 if (online) {
2712 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2713 atomic_inc(&__num_online_cpus);
2714 } else {
2715 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2716 atomic_dec(&__num_online_cpus);
2717 }
2718 }
2719
2720 /*
2721 * Activate the first processor.
2722 */
boot_cpu_init(void)2723 void __init boot_cpu_init(void)
2724 {
2725 int cpu = smp_processor_id();
2726
2727 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2728 set_cpu_online(cpu, true);
2729 set_cpu_active(cpu, true);
2730 set_cpu_present(cpu, true);
2731 set_cpu_possible(cpu, true);
2732
2733 #ifdef CONFIG_SMP
2734 __boot_cpu_id = cpu;
2735 #endif
2736 }
2737
2738 /*
2739 * Must be called _AFTER_ setting up the per_cpu areas
2740 */
boot_cpu_hotplug_init(void)2741 void __init boot_cpu_hotplug_init(void)
2742 {
2743 #ifdef CONFIG_SMP
2744 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2745 #endif
2746 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2747 }
2748
2749 /*
2750 * These are used for a global "mitigations=" cmdline option for toggling
2751 * optional CPU mitigations.
2752 */
2753 enum cpu_mitigations {
2754 CPU_MITIGATIONS_OFF,
2755 CPU_MITIGATIONS_AUTO,
2756 CPU_MITIGATIONS_AUTO_NOSMT,
2757 };
2758
2759 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2760 CPU_MITIGATIONS_AUTO;
2761
mitigations_parse_cmdline(char * arg)2762 static int __init mitigations_parse_cmdline(char *arg)
2763 {
2764 if (!strcmp(arg, "off"))
2765 cpu_mitigations = CPU_MITIGATIONS_OFF;
2766 else if (!strcmp(arg, "auto"))
2767 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2768 else if (!strcmp(arg, "auto,nosmt"))
2769 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2770 else
2771 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2772 arg);
2773
2774 return 0;
2775 }
2776 early_param("mitigations", mitigations_parse_cmdline);
2777
2778 /* mitigations=off */
cpu_mitigations_off(void)2779 bool cpu_mitigations_off(void)
2780 {
2781 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2782 }
2783 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2784
2785 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2786 bool cpu_mitigations_auto_nosmt(void)
2787 {
2788 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2789 }
2790 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2791