• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <uapi/linux/sched/types.h>
39 
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43 
44 #include "smpboot.h"
45 
46 /**
47  * struct cpuhp_cpu_state - Per cpu hotplug state storage
48  * @state:	The current cpu state
49  * @target:	The target state
50  * @fail:	Current CPU hotplug callback state
51  * @thread:	Pointer to the hotplug thread
52  * @should_run:	Thread should execute
53  * @rollback:	Perform a rollback
54  * @single:	Single callback invocation
55  * @bringup:	Single callback bringup or teardown selector
56  * @cpu:	CPU number
57  * @node:	Remote CPU node; for multi-instance, do a
58  *		single entry callback for install/remove
59  * @last:	For multi-instance rollback, remember how far we got
60  * @cb_state:	The state for a single callback (install/uninstall)
61  * @result:	Result of the operation
62  * @done_up:	Signal completion to the issuer of the task for cpu-up
63  * @done_down:	Signal completion to the issuer of the task for cpu-down
64  */
65 struct cpuhp_cpu_state {
66 	enum cpuhp_state	state;
67 	enum cpuhp_state	target;
68 	enum cpuhp_state	fail;
69 #ifdef CONFIG_SMP
70 	struct task_struct	*thread;
71 	bool			should_run;
72 	bool			rollback;
73 	bool			single;
74 	bool			bringup;
75 	struct hlist_node	*node;
76 	struct hlist_node	*last;
77 	enum cpuhp_state	cb_state;
78 	int			result;
79 	struct completion	done_up;
80 	struct completion	done_down;
81 #endif
82 };
83 
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85 	.fail = CPUHP_INVALID,
86 };
87 
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91 
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97 
98 
cpuhp_lock_acquire(bool bringup)99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103 
cpuhp_lock_release(bool bringup)104 static inline void cpuhp_lock_release(bool bringup)
105 {
106 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109 
cpuhp_lock_acquire(bool bringup)110 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)111 static inline void cpuhp_lock_release(bool bringup) { }
112 
113 #endif
114 
115 /**
116  * struct cpuhp_step - Hotplug state machine step
117  * @name:	Name of the step
118  * @startup:	Startup function of the step
119  * @teardown:	Teardown function of the step
120  * @cant_stop:	Bringup/teardown can't be stopped at this step
121  * @multi_instance:	State has multiple instances which get added afterwards
122  */
123 struct cpuhp_step {
124 	const char		*name;
125 	union {
126 		int		(*single)(unsigned int cpu);
127 		int		(*multi)(unsigned int cpu,
128 					 struct hlist_node *node);
129 	} startup;
130 	union {
131 		int		(*single)(unsigned int cpu);
132 		int		(*multi)(unsigned int cpu,
133 					 struct hlist_node *node);
134 	} teardown;
135 	/* private: */
136 	struct hlist_head	list;
137 	/* public: */
138 	bool			cant_stop;
139 	bool			multi_instance;
140 };
141 
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144 
cpuhp_get_step(enum cpuhp_state state)145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147 	return cpuhp_hp_states + state;
148 }
149 
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152 	return bringup ? !step->startup.single : !step->teardown.single;
153 }
154 
155 /**
156  * cpuhp_invoke_callback - Invoke the callbacks for a given state
157  * @cpu:	The cpu for which the callback should be invoked
158  * @state:	The state to do callbacks for
159  * @bringup:	True if the bringup callback should be invoked
160  * @node:	For multi-instance, do a single entry callback for install/remove
161  * @lastp:	For multi-instance rollback, remember how far we got
162  *
163  * Called from cpu hotplug and from the state register machinery.
164  *
165  * Return: %0 on success or a negative errno code
166  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168 				 bool bringup, struct hlist_node *node,
169 				 struct hlist_node **lastp)
170 {
171 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172 	struct cpuhp_step *step = cpuhp_get_step(state);
173 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
174 	int (*cb)(unsigned int cpu);
175 	int ret, cnt;
176 
177 	if (st->fail == state) {
178 		st->fail = CPUHP_INVALID;
179 		return -EAGAIN;
180 	}
181 
182 	if (cpuhp_step_empty(bringup, step)) {
183 		WARN_ON_ONCE(1);
184 		return 0;
185 	}
186 
187 	if (!step->multi_instance) {
188 		WARN_ON_ONCE(lastp && *lastp);
189 		cb = bringup ? step->startup.single : step->teardown.single;
190 
191 		trace_cpuhp_enter(cpu, st->target, state, cb);
192 		ret = cb(cpu);
193 		trace_cpuhp_exit(cpu, st->state, state, ret);
194 		return ret;
195 	}
196 	cbm = bringup ? step->startup.multi : step->teardown.multi;
197 
198 	/* Single invocation for instance add/remove */
199 	if (node) {
200 		WARN_ON_ONCE(lastp && *lastp);
201 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 		ret = cbm(cpu, node);
203 		trace_cpuhp_exit(cpu, st->state, state, ret);
204 		return ret;
205 	}
206 
207 	/* State transition. Invoke on all instances */
208 	cnt = 0;
209 	hlist_for_each(node, &step->list) {
210 		if (lastp && node == *lastp)
211 			break;
212 
213 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214 		ret = cbm(cpu, node);
215 		trace_cpuhp_exit(cpu, st->state, state, ret);
216 		if (ret) {
217 			if (!lastp)
218 				goto err;
219 
220 			*lastp = node;
221 			return ret;
222 		}
223 		cnt++;
224 	}
225 	if (lastp)
226 		*lastp = NULL;
227 	return 0;
228 err:
229 	/* Rollback the instances if one failed */
230 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
231 	if (!cbm)
232 		return ret;
233 
234 	hlist_for_each(node, &step->list) {
235 		if (!cnt--)
236 			break;
237 
238 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239 		ret = cbm(cpu, node);
240 		trace_cpuhp_exit(cpu, st->state, state, ret);
241 		/*
242 		 * Rollback must not fail,
243 		 */
244 		WARN_ON_ONCE(ret);
245 	}
246 	return ret;
247 }
248 
249 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252 	/*
253 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254 	 * purposes as that state is handled explicitly in cpu_down.
255 	 */
256 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261 	struct completion *done = bringup ? &st->done_up : &st->done_down;
262 	wait_for_completion(done);
263 }
264 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267 	struct completion *done = bringup ? &st->done_up : &st->done_down;
268 	complete(done);
269 }
270 
271 /*
272  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273  */
cpuhp_is_atomic_state(enum cpuhp_state state)274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278 
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283 
284 /*
285  * The following two APIs (cpu_maps_update_begin/done) must be used when
286  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287  */
cpu_maps_update_begin(void)288 void cpu_maps_update_begin(void)
289 {
290 	mutex_lock(&cpu_add_remove_lock);
291 }
292 
cpu_maps_update_done(void)293 void cpu_maps_update_done(void)
294 {
295 	mutex_unlock(&cpu_add_remove_lock);
296 }
297 
298 /*
299  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300  * Should always be manipulated under cpu_add_remove_lock
301  */
302 static int cpu_hotplug_disabled;
303 
304 #ifdef CONFIG_HOTPLUG_CPU
305 
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307 
cpus_read_lock(void)308 void cpus_read_lock(void)
309 {
310 	percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313 
cpus_read_trylock(void)314 int cpus_read_trylock(void)
315 {
316 	return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319 
cpus_read_unlock(void)320 void cpus_read_unlock(void)
321 {
322 	percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325 
cpus_write_lock(void)326 void cpus_write_lock(void)
327 {
328 	percpu_down_write(&cpu_hotplug_lock);
329 }
330 
cpus_write_unlock(void)331 void cpus_write_unlock(void)
332 {
333 	percpu_up_write(&cpu_hotplug_lock);
334 }
335 
lockdep_assert_cpus_held(void)336 void lockdep_assert_cpus_held(void)
337 {
338 	/*
339 	 * We can't have hotplug operations before userspace starts running,
340 	 * and some init codepaths will knowingly not take the hotplug lock.
341 	 * This is all valid, so mute lockdep until it makes sense to report
342 	 * unheld locks.
343 	 */
344 	if (system_state < SYSTEM_RUNNING)
345 		return;
346 
347 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349 
350 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)351 int lockdep_is_cpus_held(void)
352 {
353 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356 
lockdep_acquire_cpus_lock(void)357 static void lockdep_acquire_cpus_lock(void)
358 {
359 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361 
lockdep_release_cpus_lock(void)362 static void lockdep_release_cpus_lock(void)
363 {
364 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366 
367 /*
368  * Wait for currently running CPU hotplug operations to complete (if any) and
369  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371  * hotplug path before performing hotplug operations. So acquiring that lock
372  * guarantees mutual exclusion from any currently running hotplug operations.
373  */
cpu_hotplug_disable(void)374 void cpu_hotplug_disable(void)
375 {
376 	cpu_maps_update_begin();
377 	cpu_hotplug_disabled++;
378 	cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381 
__cpu_hotplug_enable(void)382 static void __cpu_hotplug_enable(void)
383 {
384 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385 		return;
386 	cpu_hotplug_disabled--;
387 }
388 
cpu_hotplug_enable(void)389 void cpu_hotplug_enable(void)
390 {
391 	cpu_maps_update_begin();
392 	__cpu_hotplug_enable();
393 	cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396 
397 #else
398 
lockdep_acquire_cpus_lock(void)399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402 
lockdep_release_cpus_lock(void)403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406 
407 #endif	/* CONFIG_HOTPLUG_CPU */
408 
409 /*
410  * Architectures that need SMT-specific errata handling during SMT hotplug
411  * should override this.
412  */
arch_smt_update(void)413 void __weak arch_smt_update(void) { }
414 
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417 
cpu_smt_disable(bool force)418 void __init cpu_smt_disable(bool force)
419 {
420 	if (!cpu_smt_possible())
421 		return;
422 
423 	if (force) {
424 		pr_info("SMT: Force disabled\n");
425 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426 	} else {
427 		pr_info("SMT: disabled\n");
428 		cpu_smt_control = CPU_SMT_DISABLED;
429 	}
430 }
431 
432 /*
433  * The decision whether SMT is supported can only be done after the full
434  * CPU identification. Called from architecture code.
435  */
cpu_smt_check_topology(void)436 void __init cpu_smt_check_topology(void)
437 {
438 	if (!topology_smt_supported())
439 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441 
smt_cmdline_disable(char * str)442 static int __init smt_cmdline_disable(char *str)
443 {
444 	cpu_smt_disable(str && !strcmp(str, "force"));
445 	return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448 
cpu_smt_allowed(unsigned int cpu)449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451 	if (cpu_smt_control == CPU_SMT_ENABLED)
452 		return true;
453 
454 	if (topology_is_primary_thread(cpu))
455 		return true;
456 
457 	/*
458 	 * On x86 it's required to boot all logical CPUs at least once so
459 	 * that the init code can get a chance to set CR4.MCE on each
460 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461 	 * core will shutdown the machine.
462 	 */
463 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465 
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)467 bool cpu_smt_possible(void)
468 {
469 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
cpu_smt_allowed(unsigned int cpu)474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476 
477 static inline enum cpuhp_state
cpuhp_set_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480 	enum cpuhp_state prev_state = st->state;
481 	bool bringup = st->state < target;
482 
483 	st->rollback = false;
484 	st->last = NULL;
485 
486 	st->target = target;
487 	st->single = false;
488 	st->bringup = bringup;
489 	if (cpu_dying(cpu) != !bringup)
490 		set_cpu_dying(cpu, !bringup);
491 
492 	return prev_state;
493 }
494 
495 static inline void
cpuhp_reset_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
497 		  enum cpuhp_state prev_state)
498 {
499 	bool bringup = !st->bringup;
500 
501 	st->target = prev_state;
502 
503 	/*
504 	 * Already rolling back. No need invert the bringup value or to change
505 	 * the current state.
506 	 */
507 	if (st->rollback)
508 		return;
509 
510 	st->rollback = true;
511 
512 	/*
513 	 * If we have st->last we need to undo partial multi_instance of this
514 	 * state first. Otherwise start undo at the previous state.
515 	 */
516 	if (!st->last) {
517 		if (st->bringup)
518 			st->state--;
519 		else
520 			st->state++;
521 	}
522 
523 	st->bringup = bringup;
524 	if (cpu_dying(cpu) != !bringup)
525 		set_cpu_dying(cpu, !bringup);
526 }
527 
528 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
530 {
531 	if (!st->single && st->state == st->target)
532 		return;
533 
534 	st->result = 0;
535 	/*
536 	 * Make sure the above stores are visible before should_run becomes
537 	 * true. Paired with the mb() above in cpuhp_thread_fun()
538 	 */
539 	smp_mb();
540 	st->should_run = true;
541 	wake_up_process(st->thread);
542 	wait_for_ap_thread(st, st->bringup);
543 }
544 
cpuhp_kick_ap(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
546 			 enum cpuhp_state target)
547 {
548 	enum cpuhp_state prev_state;
549 	int ret;
550 
551 	prev_state = cpuhp_set_state(cpu, st, target);
552 	__cpuhp_kick_ap(st);
553 	if ((ret = st->result)) {
554 		cpuhp_reset_state(cpu, st, prev_state);
555 		__cpuhp_kick_ap(st);
556 	}
557 
558 	return ret;
559 }
560 
bringup_wait_for_ap(unsigned int cpu)561 static int bringup_wait_for_ap(unsigned int cpu)
562 {
563 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
564 
565 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
566 	wait_for_ap_thread(st, true);
567 	if (WARN_ON_ONCE((!cpu_online(cpu))))
568 		return -ECANCELED;
569 
570 	/* Unpark the hotplug thread of the target cpu */
571 	kthread_unpark(st->thread);
572 
573 	/*
574 	 * SMT soft disabling on X86 requires to bring the CPU out of the
575 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
576 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
577 	 * cpu_smt_allowed() check will now return false if this is not the
578 	 * primary sibling.
579 	 */
580 	if (!cpu_smt_allowed(cpu))
581 		return -ECANCELED;
582 
583 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
584 		return 0;
585 
586 	return cpuhp_kick_ap(cpu, st, st->target);
587 }
588 
bringup_cpu(unsigned int cpu)589 static int bringup_cpu(unsigned int cpu)
590 {
591 	struct task_struct *idle = idle_thread_get(cpu);
592 	int ret;
593 
594 	/*
595 	 * Reset stale stack state from the last time this CPU was online.
596 	 */
597 	scs_task_reset(idle);
598 	kasan_unpoison_task_stack(idle);
599 
600 	/*
601 	 * Some architectures have to walk the irq descriptors to
602 	 * setup the vector space for the cpu which comes online.
603 	 * Prevent irq alloc/free across the bringup.
604 	 */
605 	irq_lock_sparse();
606 
607 	/* Arch-specific enabling code. */
608 	ret = __cpu_up(cpu, idle);
609 	irq_unlock_sparse();
610 	if (ret)
611 		return ret;
612 	return bringup_wait_for_ap(cpu);
613 }
614 
finish_cpu(unsigned int cpu)615 static int finish_cpu(unsigned int cpu)
616 {
617 	struct task_struct *idle = idle_thread_get(cpu);
618 	struct mm_struct *mm = idle->active_mm;
619 
620 	/*
621 	 * idle_task_exit() will have switched to &init_mm, now
622 	 * clean up any remaining active_mm state.
623 	 */
624 	if (mm != &init_mm)
625 		idle->active_mm = &init_mm;
626 	mmdrop(mm);
627 	return 0;
628 }
629 
630 /*
631  * Hotplug state machine related functions
632  */
633 
634 /*
635  * Get the next state to run. Empty ones will be skipped. Returns true if a
636  * state must be run.
637  *
638  * st->state will be modified ahead of time, to match state_to_run, as if it
639  * has already ran.
640  */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)641 static bool cpuhp_next_state(bool bringup,
642 			     enum cpuhp_state *state_to_run,
643 			     struct cpuhp_cpu_state *st,
644 			     enum cpuhp_state target)
645 {
646 	do {
647 		if (bringup) {
648 			if (st->state >= target)
649 				return false;
650 
651 			*state_to_run = ++st->state;
652 		} else {
653 			if (st->state <= target)
654 				return false;
655 
656 			*state_to_run = st->state--;
657 		}
658 
659 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
660 			break;
661 	} while (true);
662 
663 	return true;
664 }
665 
__cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target,bool nofail)666 static int __cpuhp_invoke_callback_range(bool bringup,
667 					 unsigned int cpu,
668 					 struct cpuhp_cpu_state *st,
669 					 enum cpuhp_state target,
670 					 bool nofail)
671 {
672 	enum cpuhp_state state;
673 	int ret = 0;
674 
675 	while (cpuhp_next_state(bringup, &state, st, target)) {
676 		int err;
677 
678 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
679 		if (!err)
680 			continue;
681 
682 		if (nofail) {
683 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
684 				cpu, bringup ? "UP" : "DOWN",
685 				cpuhp_get_step(st->state)->name,
686 				st->state, err);
687 			ret = -1;
688 		} else {
689 			ret = err;
690 			break;
691 		}
692 	}
693 
694 	return ret;
695 }
696 
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)697 static inline int cpuhp_invoke_callback_range(bool bringup,
698 					      unsigned int cpu,
699 					      struct cpuhp_cpu_state *st,
700 					      enum cpuhp_state target)
701 {
702 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
703 }
704 
cpuhp_invoke_callback_range_nofail(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)705 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
706 						      unsigned int cpu,
707 						      struct cpuhp_cpu_state *st,
708 						      enum cpuhp_state target)
709 {
710 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
711 }
712 
can_rollback_cpu(struct cpuhp_cpu_state * st)713 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
714 {
715 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
716 		return true;
717 	/*
718 	 * When CPU hotplug is disabled, then taking the CPU down is not
719 	 * possible because takedown_cpu() and the architecture and
720 	 * subsystem specific mechanisms are not available. So the CPU
721 	 * which would be completely unplugged again needs to stay around
722 	 * in the current state.
723 	 */
724 	return st->state <= CPUHP_BRINGUP_CPU;
725 }
726 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)727 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
728 			      enum cpuhp_state target)
729 {
730 	enum cpuhp_state prev_state = st->state;
731 	int ret = 0;
732 
733 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
734 	if (ret) {
735 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
736 			 ret, cpu, cpuhp_get_step(st->state)->name,
737 			 st->state);
738 
739 		cpuhp_reset_state(cpu, st, prev_state);
740 		if (can_rollback_cpu(st))
741 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
742 							    prev_state));
743 	}
744 	return ret;
745 }
746 
747 /*
748  * The cpu hotplug threads manage the bringup and teardown of the cpus
749  */
cpuhp_create(unsigned int cpu)750 static void cpuhp_create(unsigned int cpu)
751 {
752 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753 
754 	init_completion(&st->done_up);
755 	init_completion(&st->done_down);
756 }
757 
cpuhp_should_run(unsigned int cpu)758 static int cpuhp_should_run(unsigned int cpu)
759 {
760 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
761 
762 	return st->should_run;
763 }
764 
765 /*
766  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
767  * callbacks when a state gets [un]installed at runtime.
768  *
769  * Each invocation of this function by the smpboot thread does a single AP
770  * state callback.
771  *
772  * It has 3 modes of operation:
773  *  - single: runs st->cb_state
774  *  - up:     runs ++st->state, while st->state < st->target
775  *  - down:   runs st->state--, while st->state > st->target
776  *
777  * When complete or on error, should_run is cleared and the completion is fired.
778  */
cpuhp_thread_fun(unsigned int cpu)779 static void cpuhp_thread_fun(unsigned int cpu)
780 {
781 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
782 	bool bringup = st->bringup;
783 	enum cpuhp_state state;
784 
785 	if (WARN_ON_ONCE(!st->should_run))
786 		return;
787 
788 	/*
789 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
790 	 * that if we see ->should_run we also see the rest of the state.
791 	 */
792 	smp_mb();
793 
794 	/*
795 	 * The BP holds the hotplug lock, but we're now running on the AP,
796 	 * ensure that anybody asserting the lock is held, will actually find
797 	 * it so.
798 	 */
799 	lockdep_acquire_cpus_lock();
800 	cpuhp_lock_acquire(bringup);
801 
802 	if (st->single) {
803 		state = st->cb_state;
804 		st->should_run = false;
805 	} else {
806 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
807 		if (!st->should_run)
808 			goto end;
809 	}
810 
811 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
812 
813 	if (cpuhp_is_atomic_state(state)) {
814 		local_irq_disable();
815 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
816 		local_irq_enable();
817 
818 		/*
819 		 * STARTING/DYING must not fail!
820 		 */
821 		WARN_ON_ONCE(st->result);
822 	} else {
823 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
824 	}
825 
826 	if (st->result) {
827 		/*
828 		 * If we fail on a rollback, we're up a creek without no
829 		 * paddle, no way forward, no way back. We loose, thanks for
830 		 * playing.
831 		 */
832 		WARN_ON_ONCE(st->rollback);
833 		st->should_run = false;
834 	}
835 
836 end:
837 	cpuhp_lock_release(bringup);
838 	lockdep_release_cpus_lock();
839 
840 	if (!st->should_run)
841 		complete_ap_thread(st, bringup);
842 }
843 
844 /* Invoke a single callback on a remote cpu */
845 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)846 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
847 			 struct hlist_node *node)
848 {
849 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850 	int ret;
851 
852 	if (!cpu_online(cpu))
853 		return 0;
854 
855 	cpuhp_lock_acquire(false);
856 	cpuhp_lock_release(false);
857 
858 	cpuhp_lock_acquire(true);
859 	cpuhp_lock_release(true);
860 
861 	/*
862 	 * If we are up and running, use the hotplug thread. For early calls
863 	 * we invoke the thread function directly.
864 	 */
865 	if (!st->thread)
866 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
867 
868 	st->rollback = false;
869 	st->last = NULL;
870 
871 	st->node = node;
872 	st->bringup = bringup;
873 	st->cb_state = state;
874 	st->single = true;
875 
876 	__cpuhp_kick_ap(st);
877 
878 	/*
879 	 * If we failed and did a partial, do a rollback.
880 	 */
881 	if ((ret = st->result) && st->last) {
882 		st->rollback = true;
883 		st->bringup = !bringup;
884 
885 		__cpuhp_kick_ap(st);
886 	}
887 
888 	/*
889 	 * Clean up the leftovers so the next hotplug operation wont use stale
890 	 * data.
891 	 */
892 	st->node = st->last = NULL;
893 	return ret;
894 }
895 
cpuhp_kick_ap_work(unsigned int cpu)896 static int cpuhp_kick_ap_work(unsigned int cpu)
897 {
898 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
899 	enum cpuhp_state prev_state = st->state;
900 	int ret;
901 
902 	cpuhp_lock_acquire(false);
903 	cpuhp_lock_release(false);
904 
905 	cpuhp_lock_acquire(true);
906 	cpuhp_lock_release(true);
907 
908 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
909 	ret = cpuhp_kick_ap(cpu, st, st->target);
910 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
911 
912 	return ret;
913 }
914 
915 static struct smp_hotplug_thread cpuhp_threads = {
916 	.store			= &cpuhp_state.thread,
917 	.create			= &cpuhp_create,
918 	.thread_should_run	= cpuhp_should_run,
919 	.thread_fn		= cpuhp_thread_fun,
920 	.thread_comm		= "cpuhp/%u",
921 	.selfparking		= true,
922 };
923 
cpuhp_threads_init(void)924 void __init cpuhp_threads_init(void)
925 {
926 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
927 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
928 }
929 
930 /*
931  *
932  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
933  * protected region.
934  *
935  * The operation is still serialized against concurrent CPU hotplug via
936  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
937  * serialized against other hotplug related activity like adding or
938  * removing of state callbacks and state instances, which invoke either the
939  * startup or the teardown callback of the affected state.
940  *
941  * This is required for subsystems which are unfixable vs. CPU hotplug and
942  * evade lock inversion problems by scheduling work which has to be
943  * completed _before_ cpu_up()/_cpu_down() returns.
944  *
945  * Don't even think about adding anything to this for any new code or even
946  * drivers. It's only purpose is to keep existing lock order trainwrecks
947  * working.
948  *
949  * For cpu_down() there might be valid reasons to finish cleanups which are
950  * not required to be done under cpu_hotplug_lock, but that's a different
951  * story and would be not invoked via this.
952  */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)953 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
954 {
955 	/*
956 	 * cpusets delegate hotplug operations to a worker to "solve" the
957 	 * lock order problems. Wait for the worker, but only if tasks are
958 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
959 	 *
960 	 * The wait is required because otherwise the hotplug operation
961 	 * returns with inconsistent state, which could even be observed in
962 	 * user space when a new CPU is brought up. The CPU plug uevent
963 	 * would be delivered and user space reacting on it would fail to
964 	 * move tasks to the newly plugged CPU up to the point where the
965 	 * work has finished because up to that point the newly plugged CPU
966 	 * is not assignable in cpusets/cgroups. On unplug that's not
967 	 * necessarily a visible issue, but it is still inconsistent state,
968 	 * which is the real problem which needs to be "fixed". This can't
969 	 * prevent the transient state between scheduling the work and
970 	 * returning from waiting for it.
971 	 */
972 	if (!tasks_frozen)
973 		cpuset_wait_for_hotplug();
974 }
975 
976 #ifdef CONFIG_HOTPLUG_CPU
977 #ifndef arch_clear_mm_cpumask_cpu
978 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
979 #endif
980 
981 /**
982  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
983  * @cpu: a CPU id
984  *
985  * This function walks all processes, finds a valid mm struct for each one and
986  * then clears a corresponding bit in mm's cpumask.  While this all sounds
987  * trivial, there are various non-obvious corner cases, which this function
988  * tries to solve in a safe manner.
989  *
990  * Also note that the function uses a somewhat relaxed locking scheme, so it may
991  * be called only for an already offlined CPU.
992  */
clear_tasks_mm_cpumask(int cpu)993 void clear_tasks_mm_cpumask(int cpu)
994 {
995 	struct task_struct *p;
996 
997 	/*
998 	 * This function is called after the cpu is taken down and marked
999 	 * offline, so its not like new tasks will ever get this cpu set in
1000 	 * their mm mask. -- Peter Zijlstra
1001 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1002 	 * full-fledged tasklist_lock.
1003 	 */
1004 	WARN_ON(cpu_online(cpu));
1005 	rcu_read_lock();
1006 	for_each_process(p) {
1007 		struct task_struct *t;
1008 
1009 		/*
1010 		 * Main thread might exit, but other threads may still have
1011 		 * a valid mm. Find one.
1012 		 */
1013 		t = find_lock_task_mm(p);
1014 		if (!t)
1015 			continue;
1016 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1017 		task_unlock(t);
1018 	}
1019 	rcu_read_unlock();
1020 }
1021 
1022 /* Take this CPU down. */
take_cpu_down(void * _param)1023 static int take_cpu_down(void *_param)
1024 {
1025 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1026 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1027 	int err, cpu = smp_processor_id();
1028 
1029 	/* Ensure this CPU doesn't handle any more interrupts. */
1030 	err = __cpu_disable();
1031 	if (err < 0)
1032 		return err;
1033 
1034 	/*
1035 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1036 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1037 	 */
1038 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1039 
1040 	/*
1041 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1042 	 */
1043 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1044 
1045 	/* Give up timekeeping duties */
1046 	tick_handover_do_timer();
1047 	/* Remove CPU from timer broadcasting */
1048 	tick_offline_cpu(cpu);
1049 	/* Park the stopper thread */
1050 	stop_machine_park(cpu);
1051 	return 0;
1052 }
1053 
takedown_cpu(unsigned int cpu)1054 static int takedown_cpu(unsigned int cpu)
1055 {
1056 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1057 	int err;
1058 
1059 	/* Park the smpboot threads */
1060 	kthread_park(st->thread);
1061 
1062 	/*
1063 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1064 	 * interrupt affinities.
1065 	 */
1066 	irq_lock_sparse();
1067 
1068 	/*
1069 	 * So now all preempt/rcu users must observe !cpu_active().
1070 	 */
1071 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1072 	if (err) {
1073 		/* CPU refused to die */
1074 		irq_unlock_sparse();
1075 		/* Unpark the hotplug thread so we can rollback there */
1076 		kthread_unpark(st->thread);
1077 		return err;
1078 	}
1079 	BUG_ON(cpu_online(cpu));
1080 
1081 	/*
1082 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1083 	 * all runnable tasks from the CPU, there's only the idle task left now
1084 	 * that the migration thread is done doing the stop_machine thing.
1085 	 *
1086 	 * Wait for the stop thread to go away.
1087 	 */
1088 	wait_for_ap_thread(st, false);
1089 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1090 
1091 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1092 	irq_unlock_sparse();
1093 
1094 	hotplug_cpu__broadcast_tick_pull(cpu);
1095 	/* This actually kills the CPU. */
1096 	__cpu_die(cpu);
1097 
1098 	tick_cleanup_dead_cpu(cpu);
1099 	rcutree_migrate_callbacks(cpu);
1100 	return 0;
1101 }
1102 
cpuhp_complete_idle_dead(void * arg)1103 static void cpuhp_complete_idle_dead(void *arg)
1104 {
1105 	struct cpuhp_cpu_state *st = arg;
1106 
1107 	complete_ap_thread(st, false);
1108 }
1109 
cpuhp_report_idle_dead(void)1110 void cpuhp_report_idle_dead(void)
1111 {
1112 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1113 
1114 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1115 	rcu_report_dead(smp_processor_id());
1116 	st->state = CPUHP_AP_IDLE_DEAD;
1117 	/*
1118 	 * We cannot call complete after rcu_report_dead() so we delegate it
1119 	 * to an online cpu.
1120 	 */
1121 	smp_call_function_single(cpumask_first(cpu_online_mask),
1122 				 cpuhp_complete_idle_dead, st, 0);
1123 }
1124 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1125 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1126 				enum cpuhp_state target)
1127 {
1128 	enum cpuhp_state prev_state = st->state;
1129 	int ret = 0;
1130 
1131 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1132 	if (ret) {
1133 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1134 			 ret, cpu, cpuhp_get_step(st->state)->name,
1135 			 st->state);
1136 
1137 		cpuhp_reset_state(cpu, st, prev_state);
1138 
1139 		if (st->state < prev_state)
1140 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1141 							    prev_state));
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1148 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1149 			   enum cpuhp_state target)
1150 {
1151 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1152 	int prev_state, ret = 0;
1153 
1154 	if (num_online_cpus() == 1)
1155 		return -EBUSY;
1156 
1157 	if (!cpu_present(cpu))
1158 		return -EINVAL;
1159 
1160 	cpus_write_lock();
1161 
1162 	cpuhp_tasks_frozen = tasks_frozen;
1163 
1164 	prev_state = cpuhp_set_state(cpu, st, target);
1165 	/*
1166 	 * If the current CPU state is in the range of the AP hotplug thread,
1167 	 * then we need to kick the thread.
1168 	 */
1169 	if (st->state > CPUHP_TEARDOWN_CPU) {
1170 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1171 		ret = cpuhp_kick_ap_work(cpu);
1172 		/*
1173 		 * The AP side has done the error rollback already. Just
1174 		 * return the error code..
1175 		 */
1176 		if (ret)
1177 			goto out;
1178 
1179 		/*
1180 		 * We might have stopped still in the range of the AP hotplug
1181 		 * thread. Nothing to do anymore.
1182 		 */
1183 		if (st->state > CPUHP_TEARDOWN_CPU)
1184 			goto out;
1185 
1186 		st->target = target;
1187 	}
1188 	/*
1189 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1190 	 * to do the further cleanups.
1191 	 */
1192 	ret = cpuhp_down_callbacks(cpu, st, target);
1193 	if (ret && st->state < prev_state) {
1194 		if (st->state == CPUHP_TEARDOWN_CPU) {
1195 			cpuhp_reset_state(cpu, st, prev_state);
1196 			__cpuhp_kick_ap(st);
1197 		} else {
1198 			WARN(1, "DEAD callback error for CPU%d", cpu);
1199 		}
1200 	}
1201 
1202 out:
1203 	cpus_write_unlock();
1204 	/*
1205 	 * Do post unplug cleanup. This is still protected against
1206 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1207 	 */
1208 	lockup_detector_cleanup();
1209 	arch_smt_update();
1210 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1211 	return ret;
1212 }
1213 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1214 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1215 {
1216 	if (cpu_hotplug_disabled)
1217 		return -EBUSY;
1218 	return _cpu_down(cpu, 0, target);
1219 }
1220 
cpu_down(unsigned int cpu,enum cpuhp_state target)1221 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1222 {
1223 	int err;
1224 
1225 	cpu_maps_update_begin();
1226 	err = cpu_down_maps_locked(cpu, target);
1227 	cpu_maps_update_done();
1228 	return err;
1229 }
1230 
1231 /**
1232  * cpu_device_down - Bring down a cpu device
1233  * @dev: Pointer to the cpu device to offline
1234  *
1235  * This function is meant to be used by device core cpu subsystem only.
1236  *
1237  * Other subsystems should use remove_cpu() instead.
1238  *
1239  * Return: %0 on success or a negative errno code
1240  */
cpu_device_down(struct device * dev)1241 int cpu_device_down(struct device *dev)
1242 {
1243 	return cpu_down(dev->id, CPUHP_OFFLINE);
1244 }
1245 
remove_cpu(unsigned int cpu)1246 int remove_cpu(unsigned int cpu)
1247 {
1248 	int ret;
1249 
1250 	lock_device_hotplug();
1251 	ret = device_offline(get_cpu_device(cpu));
1252 	unlock_device_hotplug();
1253 
1254 	return ret;
1255 }
1256 EXPORT_SYMBOL_GPL(remove_cpu);
1257 
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1258 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1259 {
1260 	unsigned int cpu;
1261 	int error;
1262 
1263 	cpu_maps_update_begin();
1264 
1265 	/*
1266 	 * Make certain the cpu I'm about to reboot on is online.
1267 	 *
1268 	 * This is inline to what migrate_to_reboot_cpu() already do.
1269 	 */
1270 	if (!cpu_online(primary_cpu))
1271 		primary_cpu = cpumask_first(cpu_online_mask);
1272 
1273 	for_each_online_cpu(cpu) {
1274 		if (cpu == primary_cpu)
1275 			continue;
1276 
1277 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1278 		if (error) {
1279 			pr_err("Failed to offline CPU%d - error=%d",
1280 				cpu, error);
1281 			break;
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * Ensure all but the reboot CPU are offline.
1287 	 */
1288 	BUG_ON(num_online_cpus() > 1);
1289 
1290 	/*
1291 	 * Make sure the CPUs won't be enabled by someone else after this
1292 	 * point. Kexec will reboot to a new kernel shortly resetting
1293 	 * everything along the way.
1294 	 */
1295 	cpu_hotplug_disabled++;
1296 
1297 	cpu_maps_update_done();
1298 }
1299 
1300 #else
1301 #define takedown_cpu		NULL
1302 #endif /*CONFIG_HOTPLUG_CPU*/
1303 
1304 /**
1305  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1306  * @cpu: cpu that just started
1307  *
1308  * It must be called by the arch code on the new cpu, before the new cpu
1309  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1310  */
notify_cpu_starting(unsigned int cpu)1311 void notify_cpu_starting(unsigned int cpu)
1312 {
1313 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1314 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1315 
1316 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1317 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1318 
1319 	/*
1320 	 * STARTING must not fail!
1321 	 */
1322 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1323 }
1324 
1325 /*
1326  * Called from the idle task. Wake up the controlling task which brings the
1327  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1328  * online bringup to the hotplug thread.
1329  */
cpuhp_online_idle(enum cpuhp_state state)1330 void cpuhp_online_idle(enum cpuhp_state state)
1331 {
1332 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1333 
1334 	/* Happens for the boot cpu */
1335 	if (state != CPUHP_AP_ONLINE_IDLE)
1336 		return;
1337 
1338 	/*
1339 	 * Unpart the stopper thread before we start the idle loop (and start
1340 	 * scheduling); this ensures the stopper task is always available.
1341 	 */
1342 	stop_machine_unpark(smp_processor_id());
1343 
1344 	st->state = CPUHP_AP_ONLINE_IDLE;
1345 	complete_ap_thread(st, true);
1346 }
1347 
switch_to_rt_policy(void)1348 static int switch_to_rt_policy(void)
1349 {
1350 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1351 	unsigned int policy = current->policy;
1352 
1353 	if (policy == SCHED_NORMAL)
1354 		/* Switch to SCHED_FIFO from SCHED_NORMAL. */
1355 		return sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
1356 	else
1357 		return 1;
1358 }
1359 
switch_to_fair_policy(void)1360 static int switch_to_fair_policy(void)
1361 {
1362 	struct sched_param param = { .sched_priority = 0 };
1363 
1364 	return sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
1365 }
1366 
1367 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1368 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1369 {
1370 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1371 	struct task_struct *idle;
1372 	int ret = 0;
1373 
1374 	cpus_write_lock();
1375 
1376 	if (!cpu_present(cpu)) {
1377 		ret = -EINVAL;
1378 		goto out;
1379 	}
1380 
1381 	/*
1382 	 * The caller of cpu_up() might have raced with another
1383 	 * caller. Nothing to do.
1384 	 */
1385 	if (st->state >= target)
1386 		goto out;
1387 
1388 	if (st->state == CPUHP_OFFLINE) {
1389 		/* Let it fail before we try to bring the cpu up */
1390 		idle = idle_thread_get(cpu);
1391 		if (IS_ERR(idle)) {
1392 			ret = PTR_ERR(idle);
1393 			goto out;
1394 		}
1395 	}
1396 
1397 	cpuhp_tasks_frozen = tasks_frozen;
1398 
1399 	cpuhp_set_state(cpu, st, target);
1400 	/*
1401 	 * If the current CPU state is in the range of the AP hotplug thread,
1402 	 * then we need to kick the thread once more.
1403 	 */
1404 	if (st->state > CPUHP_BRINGUP_CPU) {
1405 		ret = cpuhp_kick_ap_work(cpu);
1406 		/*
1407 		 * The AP side has done the error rollback already. Just
1408 		 * return the error code..
1409 		 */
1410 		if (ret)
1411 			goto out;
1412 	}
1413 
1414 	/*
1415 	 * Try to reach the target state. We max out on the BP at
1416 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1417 	 * responsible for bringing it up to the target state.
1418 	 */
1419 	target = min((int)target, CPUHP_BRINGUP_CPU);
1420 	ret = cpuhp_up_callbacks(cpu, st, target);
1421 out:
1422 	cpus_write_unlock();
1423 	arch_smt_update();
1424 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1425 	return ret;
1426 }
1427 
cpu_up(unsigned int cpu,enum cpuhp_state target)1428 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1429 {
1430 	int err = 0;
1431 	int switch_err;
1432 
1433 	if (!cpu_possible(cpu)) {
1434 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1435 		       cpu);
1436 #if defined(CONFIG_IA64)
1437 		pr_err("please check additional_cpus= boot parameter\n");
1438 #endif
1439 		return -EINVAL;
1440 	}
1441 
1442 	/*
1443 	 * CPU hotplug operations consists of many steps and each step
1444 	 * calls a callback of core kernel subsystem. CPU hotplug-in
1445 	 * operation may get preempted by other CFS tasks and whole
1446 	 * operation of cpu hotplug in CPU gets delayed. Switch the
1447 	 * current task to SCHED_FIFO from SCHED_NORMAL, so that
1448 	 * hotplug in operation may complete quickly in heavy loaded
1449 	 * conditions and new CPU will start handle the workload.
1450 	 */
1451 
1452 	switch_err = switch_to_rt_policy();
1453 
1454 	err = try_online_node(cpu_to_node(cpu));
1455 	if (err)
1456 		goto switch_out;
1457 
1458 	cpu_maps_update_begin();
1459 
1460 	if (cpu_hotplug_disabled) {
1461 		err = -EBUSY;
1462 		goto out;
1463 	}
1464 	if (!cpu_smt_allowed(cpu)) {
1465 		err = -EPERM;
1466 		goto out;
1467 	}
1468 
1469 	err = _cpu_up(cpu, 0, target);
1470 out:
1471 	cpu_maps_update_done();
1472 switch_out:
1473 	if (!switch_err) {
1474 		switch_err = switch_to_fair_policy();
1475 		if (switch_err)
1476 			pr_err("Hotplug policy switch err=%d Task %s pid=%d\n",
1477 				switch_err, current->comm, current->pid);
1478 	}
1479 
1480 	return err;
1481 }
1482 
1483 /**
1484  * cpu_device_up - Bring up a cpu device
1485  * @dev: Pointer to the cpu device to online
1486  *
1487  * This function is meant to be used by device core cpu subsystem only.
1488  *
1489  * Other subsystems should use add_cpu() instead.
1490  *
1491  * Return: %0 on success or a negative errno code
1492  */
cpu_device_up(struct device * dev)1493 int cpu_device_up(struct device *dev)
1494 {
1495 	return cpu_up(dev->id, CPUHP_ONLINE);
1496 }
1497 
add_cpu(unsigned int cpu)1498 int add_cpu(unsigned int cpu)
1499 {
1500 	int ret;
1501 
1502 	lock_device_hotplug();
1503 	ret = device_online(get_cpu_device(cpu));
1504 	unlock_device_hotplug();
1505 
1506 	return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(add_cpu);
1509 
1510 /**
1511  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1512  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1513  *
1514  * On some architectures like arm64, we can hibernate on any CPU, but on
1515  * wake up the CPU we hibernated on might be offline as a side effect of
1516  * using maxcpus= for example.
1517  *
1518  * Return: %0 on success or a negative errno code
1519  */
bringup_hibernate_cpu(unsigned int sleep_cpu)1520 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1521 {
1522 	int ret;
1523 
1524 	if (!cpu_online(sleep_cpu)) {
1525 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1526 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1527 		if (ret) {
1528 			pr_err("Failed to bring hibernate-CPU up!\n");
1529 			return ret;
1530 		}
1531 	}
1532 	return 0;
1533 }
1534 
bringup_nonboot_cpus(unsigned int setup_max_cpus)1535 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1536 {
1537 	unsigned int cpu;
1538 
1539 	for_each_present_cpu(cpu) {
1540 		if (num_online_cpus() >= setup_max_cpus)
1541 			break;
1542 		if (!cpu_online(cpu))
1543 			cpu_up(cpu, CPUHP_ONLINE);
1544 	}
1545 }
1546 
1547 #ifdef CONFIG_PM_SLEEP_SMP
1548 static cpumask_var_t frozen_cpus;
1549 
freeze_secondary_cpus(int primary)1550 int freeze_secondary_cpus(int primary)
1551 {
1552 	int cpu, error = 0;
1553 
1554 	cpu_maps_update_begin();
1555 	if (primary == -1) {
1556 		primary = cpumask_first(cpu_online_mask);
1557 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1558 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1559 	} else {
1560 		if (!cpu_online(primary))
1561 			primary = cpumask_first(cpu_online_mask);
1562 	}
1563 
1564 	/*
1565 	 * We take down all of the non-boot CPUs in one shot to avoid races
1566 	 * with the userspace trying to use the CPU hotplug at the same time
1567 	 */
1568 	cpumask_clear(frozen_cpus);
1569 
1570 	pr_info("Disabling non-boot CPUs ...\n");
1571 	for_each_online_cpu(cpu) {
1572 		if (cpu == primary)
1573 			continue;
1574 
1575 		if (pm_wakeup_pending()) {
1576 			pr_info("Wakeup pending. Abort CPU freeze\n");
1577 			error = -EBUSY;
1578 			break;
1579 		}
1580 
1581 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1582 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1583 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1584 		if (!error)
1585 			cpumask_set_cpu(cpu, frozen_cpus);
1586 		else {
1587 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1588 			break;
1589 		}
1590 	}
1591 
1592 	if (!error)
1593 		BUG_ON(num_online_cpus() > 1);
1594 	else
1595 		pr_err("Non-boot CPUs are not disabled\n");
1596 
1597 	/*
1598 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1599 	 * this even in case of failure as all freeze_secondary_cpus() users are
1600 	 * supposed to do thaw_secondary_cpus() on the failure path.
1601 	 */
1602 	cpu_hotplug_disabled++;
1603 
1604 	cpu_maps_update_done();
1605 	return error;
1606 }
1607 
arch_thaw_secondary_cpus_begin(void)1608 void __weak arch_thaw_secondary_cpus_begin(void)
1609 {
1610 }
1611 
arch_thaw_secondary_cpus_end(void)1612 void __weak arch_thaw_secondary_cpus_end(void)
1613 {
1614 }
1615 
thaw_secondary_cpus(void)1616 void thaw_secondary_cpus(void)
1617 {
1618 	int cpu, error;
1619 
1620 	/* Allow everyone to use the CPU hotplug again */
1621 	cpu_maps_update_begin();
1622 	__cpu_hotplug_enable();
1623 	if (cpumask_empty(frozen_cpus))
1624 		goto out;
1625 
1626 	pr_info("Enabling non-boot CPUs ...\n");
1627 
1628 	arch_thaw_secondary_cpus_begin();
1629 
1630 	for_each_cpu(cpu, frozen_cpus) {
1631 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1632 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1633 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1634 		if (!error) {
1635 			pr_info("CPU%d is up\n", cpu);
1636 			continue;
1637 		}
1638 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1639 	}
1640 
1641 	arch_thaw_secondary_cpus_end();
1642 
1643 	cpumask_clear(frozen_cpus);
1644 out:
1645 	cpu_maps_update_done();
1646 }
1647 
alloc_frozen_cpus(void)1648 static int __init alloc_frozen_cpus(void)
1649 {
1650 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1651 		return -ENOMEM;
1652 	return 0;
1653 }
1654 core_initcall(alloc_frozen_cpus);
1655 
1656 /*
1657  * When callbacks for CPU hotplug notifications are being executed, we must
1658  * ensure that the state of the system with respect to the tasks being frozen
1659  * or not, as reported by the notification, remains unchanged *throughout the
1660  * duration* of the execution of the callbacks.
1661  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1662  *
1663  * This synchronization is implemented by mutually excluding regular CPU
1664  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1665  * Hibernate notifications.
1666  */
1667 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1668 cpu_hotplug_pm_callback(struct notifier_block *nb,
1669 			unsigned long action, void *ptr)
1670 {
1671 	switch (action) {
1672 
1673 	case PM_SUSPEND_PREPARE:
1674 	case PM_HIBERNATION_PREPARE:
1675 		cpu_hotplug_disable();
1676 		break;
1677 
1678 	case PM_POST_SUSPEND:
1679 	case PM_POST_HIBERNATION:
1680 		cpu_hotplug_enable();
1681 		break;
1682 
1683 	default:
1684 		return NOTIFY_DONE;
1685 	}
1686 
1687 	return NOTIFY_OK;
1688 }
1689 
1690 
cpu_hotplug_pm_sync_init(void)1691 static int __init cpu_hotplug_pm_sync_init(void)
1692 {
1693 	/*
1694 	 * cpu_hotplug_pm_callback has higher priority than x86
1695 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1696 	 * to disable cpu hotplug to avoid cpu hotplug race.
1697 	 */
1698 	pm_notifier(cpu_hotplug_pm_callback, 0);
1699 	return 0;
1700 }
1701 core_initcall(cpu_hotplug_pm_sync_init);
1702 
1703 #endif /* CONFIG_PM_SLEEP_SMP */
1704 
1705 int __boot_cpu_id;
1706 
1707 #endif /* CONFIG_SMP */
1708 
1709 /* Boot processor state steps */
1710 static struct cpuhp_step cpuhp_hp_states[] = {
1711 	[CPUHP_OFFLINE] = {
1712 		.name			= "offline",
1713 		.startup.single		= NULL,
1714 		.teardown.single	= NULL,
1715 	},
1716 #ifdef CONFIG_SMP
1717 	[CPUHP_CREATE_THREADS]= {
1718 		.name			= "threads:prepare",
1719 		.startup.single		= smpboot_create_threads,
1720 		.teardown.single	= NULL,
1721 		.cant_stop		= true,
1722 	},
1723 	[CPUHP_PERF_PREPARE] = {
1724 		.name			= "perf:prepare",
1725 		.startup.single		= perf_event_init_cpu,
1726 		.teardown.single	= perf_event_exit_cpu,
1727 	},
1728 	[CPUHP_RANDOM_PREPARE] = {
1729 		.name			= "random:prepare",
1730 		.startup.single		= random_prepare_cpu,
1731 		.teardown.single	= NULL,
1732 	},
1733 	[CPUHP_WORKQUEUE_PREP] = {
1734 		.name			= "workqueue:prepare",
1735 		.startup.single		= workqueue_prepare_cpu,
1736 		.teardown.single	= NULL,
1737 	},
1738 	[CPUHP_HRTIMERS_PREPARE] = {
1739 		.name			= "hrtimers:prepare",
1740 		.startup.single		= hrtimers_prepare_cpu,
1741 		.teardown.single	= hrtimers_dead_cpu,
1742 	},
1743 	[CPUHP_SMPCFD_PREPARE] = {
1744 		.name			= "smpcfd:prepare",
1745 		.startup.single		= smpcfd_prepare_cpu,
1746 		.teardown.single	= smpcfd_dead_cpu,
1747 	},
1748 	[CPUHP_RELAY_PREPARE] = {
1749 		.name			= "relay:prepare",
1750 		.startup.single		= relay_prepare_cpu,
1751 		.teardown.single	= NULL,
1752 	},
1753 	[CPUHP_SLAB_PREPARE] = {
1754 		.name			= "slab:prepare",
1755 		.startup.single		= slab_prepare_cpu,
1756 		.teardown.single	= slab_dead_cpu,
1757 	},
1758 	[CPUHP_RCUTREE_PREP] = {
1759 		.name			= "RCU/tree:prepare",
1760 		.startup.single		= rcutree_prepare_cpu,
1761 		.teardown.single	= rcutree_dead_cpu,
1762 	},
1763 	/*
1764 	 * On the tear-down path, timers_dead_cpu() must be invoked
1765 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1766 	 * otherwise a RCU stall occurs.
1767 	 */
1768 	[CPUHP_TIMERS_PREPARE] = {
1769 		.name			= "timers:prepare",
1770 		.startup.single		= timers_prepare_cpu,
1771 		.teardown.single	= timers_dead_cpu,
1772 	},
1773 	/* Kicks the plugged cpu into life */
1774 	[CPUHP_BRINGUP_CPU] = {
1775 		.name			= "cpu:bringup",
1776 		.startup.single		= bringup_cpu,
1777 		.teardown.single	= finish_cpu,
1778 		.cant_stop		= true,
1779 	},
1780 	/* Final state before CPU kills itself */
1781 	[CPUHP_AP_IDLE_DEAD] = {
1782 		.name			= "idle:dead",
1783 	},
1784 	/*
1785 	 * Last state before CPU enters the idle loop to die. Transient state
1786 	 * for synchronization.
1787 	 */
1788 	[CPUHP_AP_OFFLINE] = {
1789 		.name			= "ap:offline",
1790 		.cant_stop		= true,
1791 	},
1792 	/* First state is scheduler control. Interrupts are disabled */
1793 	[CPUHP_AP_SCHED_STARTING] = {
1794 		.name			= "sched:starting",
1795 		.startup.single		= sched_cpu_starting,
1796 		.teardown.single	= sched_cpu_dying,
1797 	},
1798 	[CPUHP_AP_RCUTREE_DYING] = {
1799 		.name			= "RCU/tree:dying",
1800 		.startup.single		= NULL,
1801 		.teardown.single	= rcutree_dying_cpu,
1802 	},
1803 	[CPUHP_AP_SMPCFD_DYING] = {
1804 		.name			= "smpcfd:dying",
1805 		.startup.single		= NULL,
1806 		.teardown.single	= smpcfd_dying_cpu,
1807 	},
1808 	/* Entry state on starting. Interrupts enabled from here on. Transient
1809 	 * state for synchronsization */
1810 	[CPUHP_AP_ONLINE] = {
1811 		.name			= "ap:online",
1812 	},
1813 	/*
1814 	 * Handled on control processor until the plugged processor manages
1815 	 * this itself.
1816 	 */
1817 	[CPUHP_TEARDOWN_CPU] = {
1818 		.name			= "cpu:teardown",
1819 		.startup.single		= NULL,
1820 		.teardown.single	= takedown_cpu,
1821 		.cant_stop		= true,
1822 	},
1823 
1824 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1825 		.name			= "sched:waitempty",
1826 		.startup.single		= NULL,
1827 		.teardown.single	= sched_cpu_wait_empty,
1828 	},
1829 
1830 	/* Handle smpboot threads park/unpark */
1831 	[CPUHP_AP_SMPBOOT_THREADS] = {
1832 		.name			= "smpboot/threads:online",
1833 		.startup.single		= smpboot_unpark_threads,
1834 		.teardown.single	= smpboot_park_threads,
1835 	},
1836 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1837 		.name			= "irq/affinity:online",
1838 		.startup.single		= irq_affinity_online_cpu,
1839 		.teardown.single	= NULL,
1840 	},
1841 	[CPUHP_AP_PERF_ONLINE] = {
1842 		.name			= "perf:online",
1843 		.startup.single		= perf_event_init_cpu,
1844 		.teardown.single	= perf_event_exit_cpu,
1845 	},
1846 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1847 		.name			= "lockup_detector:online",
1848 		.startup.single		= lockup_detector_online_cpu,
1849 		.teardown.single	= lockup_detector_offline_cpu,
1850 	},
1851 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1852 		.name			= "workqueue:online",
1853 		.startup.single		= workqueue_online_cpu,
1854 		.teardown.single	= workqueue_offline_cpu,
1855 	},
1856 	[CPUHP_AP_RANDOM_ONLINE] = {
1857 		.name			= "random:online",
1858 		.startup.single		= random_online_cpu,
1859 		.teardown.single	= NULL,
1860 	},
1861 	[CPUHP_AP_RCUTREE_ONLINE] = {
1862 		.name			= "RCU/tree:online",
1863 		.startup.single		= rcutree_online_cpu,
1864 		.teardown.single	= rcutree_offline_cpu,
1865 	},
1866 #endif
1867 	/*
1868 	 * The dynamically registered state space is here
1869 	 */
1870 
1871 #ifdef CONFIG_SMP
1872 	/* Last state is scheduler control setting the cpu active */
1873 	[CPUHP_AP_ACTIVE] = {
1874 		.name			= "sched:active",
1875 		.startup.single		= sched_cpu_activate,
1876 		.teardown.single	= sched_cpu_deactivate,
1877 	},
1878 #endif
1879 
1880 	/* CPU is fully up and running. */
1881 	[CPUHP_ONLINE] = {
1882 		.name			= "online",
1883 		.startup.single		= NULL,
1884 		.teardown.single	= NULL,
1885 	},
1886 };
1887 
1888 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1889 static int cpuhp_cb_check(enum cpuhp_state state)
1890 {
1891 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1892 		return -EINVAL;
1893 	return 0;
1894 }
1895 
1896 /*
1897  * Returns a free for dynamic slot assignment of the Online state. The states
1898  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1899  * by having no name assigned.
1900  */
cpuhp_reserve_state(enum cpuhp_state state)1901 static int cpuhp_reserve_state(enum cpuhp_state state)
1902 {
1903 	enum cpuhp_state i, end;
1904 	struct cpuhp_step *step;
1905 
1906 	switch (state) {
1907 	case CPUHP_AP_ONLINE_DYN:
1908 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1909 		end = CPUHP_AP_ONLINE_DYN_END;
1910 		break;
1911 	case CPUHP_BP_PREPARE_DYN:
1912 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1913 		end = CPUHP_BP_PREPARE_DYN_END;
1914 		break;
1915 	default:
1916 		return -EINVAL;
1917 	}
1918 
1919 	for (i = state; i <= end; i++, step++) {
1920 		if (!step->name)
1921 			return i;
1922 	}
1923 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1924 	return -ENOSPC;
1925 }
1926 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1927 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1928 				 int (*startup)(unsigned int cpu),
1929 				 int (*teardown)(unsigned int cpu),
1930 				 bool multi_instance)
1931 {
1932 	/* (Un)Install the callbacks for further cpu hotplug operations */
1933 	struct cpuhp_step *sp;
1934 	int ret = 0;
1935 
1936 	/*
1937 	 * If name is NULL, then the state gets removed.
1938 	 *
1939 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1940 	 * the first allocation from these dynamic ranges, so the removal
1941 	 * would trigger a new allocation and clear the wrong (already
1942 	 * empty) state, leaving the callbacks of the to be cleared state
1943 	 * dangling, which causes wreckage on the next hotplug operation.
1944 	 */
1945 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1946 		     state == CPUHP_BP_PREPARE_DYN)) {
1947 		ret = cpuhp_reserve_state(state);
1948 		if (ret < 0)
1949 			return ret;
1950 		state = ret;
1951 	}
1952 	sp = cpuhp_get_step(state);
1953 	if (name && sp->name)
1954 		return -EBUSY;
1955 
1956 	sp->startup.single = startup;
1957 	sp->teardown.single = teardown;
1958 	sp->name = name;
1959 	sp->multi_instance = multi_instance;
1960 	INIT_HLIST_HEAD(&sp->list);
1961 	return ret;
1962 }
1963 
cpuhp_get_teardown_cb(enum cpuhp_state state)1964 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1965 {
1966 	return cpuhp_get_step(state)->teardown.single;
1967 }
1968 
1969 /*
1970  * Call the startup/teardown function for a step either on the AP or
1971  * on the current CPU.
1972  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1973 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1974 			    struct hlist_node *node)
1975 {
1976 	struct cpuhp_step *sp = cpuhp_get_step(state);
1977 	int ret;
1978 
1979 	/*
1980 	 * If there's nothing to do, we done.
1981 	 * Relies on the union for multi_instance.
1982 	 */
1983 	if (cpuhp_step_empty(bringup, sp))
1984 		return 0;
1985 	/*
1986 	 * The non AP bound callbacks can fail on bringup. On teardown
1987 	 * e.g. module removal we crash for now.
1988 	 */
1989 #ifdef CONFIG_SMP
1990 	if (cpuhp_is_ap_state(state))
1991 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1992 	else
1993 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1994 #else
1995 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1996 #endif
1997 	BUG_ON(ret && !bringup);
1998 	return ret;
1999 }
2000 
2001 /*
2002  * Called from __cpuhp_setup_state on a recoverable failure.
2003  *
2004  * Note: The teardown callbacks for rollback are not allowed to fail!
2005  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2006 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2007 				   struct hlist_node *node)
2008 {
2009 	int cpu;
2010 
2011 	/* Roll back the already executed steps on the other cpus */
2012 	for_each_present_cpu(cpu) {
2013 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2014 		int cpustate = st->state;
2015 
2016 		if (cpu >= failedcpu)
2017 			break;
2018 
2019 		/* Did we invoke the startup call on that cpu ? */
2020 		if (cpustate >= state)
2021 			cpuhp_issue_call(cpu, state, false, node);
2022 	}
2023 }
2024 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2025 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2026 					  struct hlist_node *node,
2027 					  bool invoke)
2028 {
2029 	struct cpuhp_step *sp;
2030 	int cpu;
2031 	int ret;
2032 
2033 	lockdep_assert_cpus_held();
2034 
2035 	sp = cpuhp_get_step(state);
2036 	if (sp->multi_instance == false)
2037 		return -EINVAL;
2038 
2039 	mutex_lock(&cpuhp_state_mutex);
2040 
2041 	if (!invoke || !sp->startup.multi)
2042 		goto add_node;
2043 
2044 	/*
2045 	 * Try to call the startup callback for each present cpu
2046 	 * depending on the hotplug state of the cpu.
2047 	 */
2048 	for_each_present_cpu(cpu) {
2049 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2050 		int cpustate = st->state;
2051 
2052 		if (cpustate < state)
2053 			continue;
2054 
2055 		ret = cpuhp_issue_call(cpu, state, true, node);
2056 		if (ret) {
2057 			if (sp->teardown.multi)
2058 				cpuhp_rollback_install(cpu, state, node);
2059 			goto unlock;
2060 		}
2061 	}
2062 add_node:
2063 	ret = 0;
2064 	hlist_add_head(node, &sp->list);
2065 unlock:
2066 	mutex_unlock(&cpuhp_state_mutex);
2067 	return ret;
2068 }
2069 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2070 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2071 			       bool invoke)
2072 {
2073 	int ret;
2074 
2075 	cpus_read_lock();
2076 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2077 	cpus_read_unlock();
2078 	return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2081 
2082 /**
2083  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2084  * @state:		The state to setup
2085  * @name:		Name of the step
2086  * @invoke:		If true, the startup function is invoked for cpus where
2087  *			cpu state >= @state
2088  * @startup:		startup callback function
2089  * @teardown:		teardown callback function
2090  * @multi_instance:	State is set up for multiple instances which get
2091  *			added afterwards.
2092  *
2093  * The caller needs to hold cpus read locked while calling this function.
2094  * Return:
2095  *   On success:
2096  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2097  *      0 for all other states
2098  *   On failure: proper (negative) error code
2099  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2100 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2101 				   const char *name, bool invoke,
2102 				   int (*startup)(unsigned int cpu),
2103 				   int (*teardown)(unsigned int cpu),
2104 				   bool multi_instance)
2105 {
2106 	int cpu, ret = 0;
2107 	bool dynstate;
2108 
2109 	lockdep_assert_cpus_held();
2110 
2111 	if (cpuhp_cb_check(state) || !name)
2112 		return -EINVAL;
2113 
2114 	mutex_lock(&cpuhp_state_mutex);
2115 
2116 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2117 				    multi_instance);
2118 
2119 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2120 	if (ret > 0 && dynstate) {
2121 		state = ret;
2122 		ret = 0;
2123 	}
2124 
2125 	if (ret || !invoke || !startup)
2126 		goto out;
2127 
2128 	/*
2129 	 * Try to call the startup callback for each present cpu
2130 	 * depending on the hotplug state of the cpu.
2131 	 */
2132 	for_each_present_cpu(cpu) {
2133 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2134 		int cpustate = st->state;
2135 
2136 		if (cpustate < state)
2137 			continue;
2138 
2139 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2140 		if (ret) {
2141 			if (teardown)
2142 				cpuhp_rollback_install(cpu, state, NULL);
2143 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2144 			goto out;
2145 		}
2146 	}
2147 out:
2148 	mutex_unlock(&cpuhp_state_mutex);
2149 	/*
2150 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2151 	 * dynamically allocated state in case of success.
2152 	 */
2153 	if (!ret && dynstate)
2154 		return state;
2155 	return ret;
2156 }
2157 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2158 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2159 int __cpuhp_setup_state(enum cpuhp_state state,
2160 			const char *name, bool invoke,
2161 			int (*startup)(unsigned int cpu),
2162 			int (*teardown)(unsigned int cpu),
2163 			bool multi_instance)
2164 {
2165 	int ret;
2166 
2167 	cpus_read_lock();
2168 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2169 					     teardown, multi_instance);
2170 	cpus_read_unlock();
2171 	return ret;
2172 }
2173 EXPORT_SYMBOL(__cpuhp_setup_state);
2174 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2175 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2176 				  struct hlist_node *node, bool invoke)
2177 {
2178 	struct cpuhp_step *sp = cpuhp_get_step(state);
2179 	int cpu;
2180 
2181 	BUG_ON(cpuhp_cb_check(state));
2182 
2183 	if (!sp->multi_instance)
2184 		return -EINVAL;
2185 
2186 	cpus_read_lock();
2187 	mutex_lock(&cpuhp_state_mutex);
2188 
2189 	if (!invoke || !cpuhp_get_teardown_cb(state))
2190 		goto remove;
2191 	/*
2192 	 * Call the teardown callback for each present cpu depending
2193 	 * on the hotplug state of the cpu. This function is not
2194 	 * allowed to fail currently!
2195 	 */
2196 	for_each_present_cpu(cpu) {
2197 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2198 		int cpustate = st->state;
2199 
2200 		if (cpustate >= state)
2201 			cpuhp_issue_call(cpu, state, false, node);
2202 	}
2203 
2204 remove:
2205 	hlist_del(node);
2206 	mutex_unlock(&cpuhp_state_mutex);
2207 	cpus_read_unlock();
2208 
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2212 
2213 /**
2214  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2215  * @state:	The state to remove
2216  * @invoke:	If true, the teardown function is invoked for cpus where
2217  *		cpu state >= @state
2218  *
2219  * The caller needs to hold cpus read locked while calling this function.
2220  * The teardown callback is currently not allowed to fail. Think
2221  * about module removal!
2222  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2223 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2224 {
2225 	struct cpuhp_step *sp = cpuhp_get_step(state);
2226 	int cpu;
2227 
2228 	BUG_ON(cpuhp_cb_check(state));
2229 
2230 	lockdep_assert_cpus_held();
2231 
2232 	mutex_lock(&cpuhp_state_mutex);
2233 	if (sp->multi_instance) {
2234 		WARN(!hlist_empty(&sp->list),
2235 		     "Error: Removing state %d which has instances left.\n",
2236 		     state);
2237 		goto remove;
2238 	}
2239 
2240 	if (!invoke || !cpuhp_get_teardown_cb(state))
2241 		goto remove;
2242 
2243 	/*
2244 	 * Call the teardown callback for each present cpu depending
2245 	 * on the hotplug state of the cpu. This function is not
2246 	 * allowed to fail currently!
2247 	 */
2248 	for_each_present_cpu(cpu) {
2249 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2250 		int cpustate = st->state;
2251 
2252 		if (cpustate >= state)
2253 			cpuhp_issue_call(cpu, state, false, NULL);
2254 	}
2255 remove:
2256 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2257 	mutex_unlock(&cpuhp_state_mutex);
2258 }
2259 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2260 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2261 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2262 {
2263 	cpus_read_lock();
2264 	__cpuhp_remove_state_cpuslocked(state, invoke);
2265 	cpus_read_unlock();
2266 }
2267 EXPORT_SYMBOL(__cpuhp_remove_state);
2268 
2269 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2270 static void cpuhp_offline_cpu_device(unsigned int cpu)
2271 {
2272 	struct device *dev = get_cpu_device(cpu);
2273 
2274 	dev->offline = true;
2275 	/* Tell user space about the state change */
2276 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2277 }
2278 
cpuhp_online_cpu_device(unsigned int cpu)2279 static void cpuhp_online_cpu_device(unsigned int cpu)
2280 {
2281 	struct device *dev = get_cpu_device(cpu);
2282 
2283 	dev->offline = false;
2284 	/* Tell user space about the state change */
2285 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2286 }
2287 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2288 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2289 {
2290 	int cpu, ret = 0;
2291 
2292 	cpu_maps_update_begin();
2293 	for_each_online_cpu(cpu) {
2294 		if (topology_is_primary_thread(cpu))
2295 			continue;
2296 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2297 		if (ret)
2298 			break;
2299 		/*
2300 		 * As this needs to hold the cpu maps lock it's impossible
2301 		 * to call device_offline() because that ends up calling
2302 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2303 		 * needs to be held as this might race against in kernel
2304 		 * abusers of the hotplug machinery (thermal management).
2305 		 *
2306 		 * So nothing would update device:offline state. That would
2307 		 * leave the sysfs entry stale and prevent onlining after
2308 		 * smt control has been changed to 'off' again. This is
2309 		 * called under the sysfs hotplug lock, so it is properly
2310 		 * serialized against the regular offline usage.
2311 		 */
2312 		cpuhp_offline_cpu_device(cpu);
2313 	}
2314 	if (!ret)
2315 		cpu_smt_control = ctrlval;
2316 	cpu_maps_update_done();
2317 	return ret;
2318 }
2319 
cpuhp_smt_enable(void)2320 int cpuhp_smt_enable(void)
2321 {
2322 	int cpu, ret = 0;
2323 
2324 	cpu_maps_update_begin();
2325 	cpu_smt_control = CPU_SMT_ENABLED;
2326 	for_each_present_cpu(cpu) {
2327 		/* Skip online CPUs and CPUs on offline nodes */
2328 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2329 			continue;
2330 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2331 		if (ret)
2332 			break;
2333 		/* See comment in cpuhp_smt_disable() */
2334 		cpuhp_online_cpu_device(cpu);
2335 	}
2336 	cpu_maps_update_done();
2337 	return ret;
2338 }
2339 #endif
2340 
2341 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2342 static ssize_t state_show(struct device *dev,
2343 			  struct device_attribute *attr, char *buf)
2344 {
2345 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2346 
2347 	return sprintf(buf, "%d\n", st->state);
2348 }
2349 static DEVICE_ATTR_RO(state);
2350 
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2351 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2352 			    const char *buf, size_t count)
2353 {
2354 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2355 	struct cpuhp_step *sp;
2356 	int target, ret;
2357 
2358 	ret = kstrtoint(buf, 10, &target);
2359 	if (ret)
2360 		return ret;
2361 
2362 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2363 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2364 		return -EINVAL;
2365 #else
2366 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2367 		return -EINVAL;
2368 #endif
2369 
2370 	ret = lock_device_hotplug_sysfs();
2371 	if (ret)
2372 		return ret;
2373 
2374 	mutex_lock(&cpuhp_state_mutex);
2375 	sp = cpuhp_get_step(target);
2376 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2377 	mutex_unlock(&cpuhp_state_mutex);
2378 	if (ret)
2379 		goto out;
2380 
2381 	if (st->state < target)
2382 		ret = cpu_up(dev->id, target);
2383 	else if (st->state > target)
2384 		ret = cpu_down(dev->id, target);
2385 	else if (WARN_ON(st->target != target))
2386 		st->target = target;
2387 out:
2388 	unlock_device_hotplug();
2389 	return ret ? ret : count;
2390 }
2391 
target_show(struct device * dev,struct device_attribute * attr,char * buf)2392 static ssize_t target_show(struct device *dev,
2393 			   struct device_attribute *attr, char *buf)
2394 {
2395 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2396 
2397 	return sprintf(buf, "%d\n", st->target);
2398 }
2399 static DEVICE_ATTR_RW(target);
2400 
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2401 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2402 			  const char *buf, size_t count)
2403 {
2404 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2405 	struct cpuhp_step *sp;
2406 	int fail, ret;
2407 
2408 	ret = kstrtoint(buf, 10, &fail);
2409 	if (ret)
2410 		return ret;
2411 
2412 	if (fail == CPUHP_INVALID) {
2413 		st->fail = fail;
2414 		return count;
2415 	}
2416 
2417 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2418 		return -EINVAL;
2419 
2420 	/*
2421 	 * Cannot fail STARTING/DYING callbacks.
2422 	 */
2423 	if (cpuhp_is_atomic_state(fail))
2424 		return -EINVAL;
2425 
2426 	/*
2427 	 * DEAD callbacks cannot fail...
2428 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2429 	 * triggering STARTING callbacks, a failure in this state would
2430 	 * hinder rollback.
2431 	 */
2432 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2433 		return -EINVAL;
2434 
2435 	/*
2436 	 * Cannot fail anything that doesn't have callbacks.
2437 	 */
2438 	mutex_lock(&cpuhp_state_mutex);
2439 	sp = cpuhp_get_step(fail);
2440 	if (!sp->startup.single && !sp->teardown.single)
2441 		ret = -EINVAL;
2442 	mutex_unlock(&cpuhp_state_mutex);
2443 	if (ret)
2444 		return ret;
2445 
2446 	st->fail = fail;
2447 
2448 	return count;
2449 }
2450 
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2451 static ssize_t fail_show(struct device *dev,
2452 			 struct device_attribute *attr, char *buf)
2453 {
2454 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2455 
2456 	return sprintf(buf, "%d\n", st->fail);
2457 }
2458 
2459 static DEVICE_ATTR_RW(fail);
2460 
2461 static struct attribute *cpuhp_cpu_attrs[] = {
2462 	&dev_attr_state.attr,
2463 	&dev_attr_target.attr,
2464 	&dev_attr_fail.attr,
2465 	NULL
2466 };
2467 
2468 static const struct attribute_group cpuhp_cpu_attr_group = {
2469 	.attrs = cpuhp_cpu_attrs,
2470 	.name = "hotplug",
2471 	NULL
2472 };
2473 
states_show(struct device * dev,struct device_attribute * attr,char * buf)2474 static ssize_t states_show(struct device *dev,
2475 				 struct device_attribute *attr, char *buf)
2476 {
2477 	ssize_t cur, res = 0;
2478 	int i;
2479 
2480 	mutex_lock(&cpuhp_state_mutex);
2481 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2482 		struct cpuhp_step *sp = cpuhp_get_step(i);
2483 
2484 		if (sp->name) {
2485 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2486 			buf += cur;
2487 			res += cur;
2488 		}
2489 	}
2490 	mutex_unlock(&cpuhp_state_mutex);
2491 	return res;
2492 }
2493 static DEVICE_ATTR_RO(states);
2494 
2495 static struct attribute *cpuhp_cpu_root_attrs[] = {
2496 	&dev_attr_states.attr,
2497 	NULL
2498 };
2499 
2500 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2501 	.attrs = cpuhp_cpu_root_attrs,
2502 	.name = "hotplug",
2503 	NULL
2504 };
2505 
2506 #ifdef CONFIG_HOTPLUG_SMT
2507 
2508 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2509 __store_smt_control(struct device *dev, struct device_attribute *attr,
2510 		    const char *buf, size_t count)
2511 {
2512 	int ctrlval, ret;
2513 
2514 	if (sysfs_streq(buf, "on"))
2515 		ctrlval = CPU_SMT_ENABLED;
2516 	else if (sysfs_streq(buf, "off"))
2517 		ctrlval = CPU_SMT_DISABLED;
2518 	else if (sysfs_streq(buf, "forceoff"))
2519 		ctrlval = CPU_SMT_FORCE_DISABLED;
2520 	else
2521 		return -EINVAL;
2522 
2523 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2524 		return -EPERM;
2525 
2526 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2527 		return -ENODEV;
2528 
2529 	ret = lock_device_hotplug_sysfs();
2530 	if (ret)
2531 		return ret;
2532 
2533 	if (ctrlval != cpu_smt_control) {
2534 		switch (ctrlval) {
2535 		case CPU_SMT_ENABLED:
2536 			ret = cpuhp_smt_enable();
2537 			break;
2538 		case CPU_SMT_DISABLED:
2539 		case CPU_SMT_FORCE_DISABLED:
2540 			ret = cpuhp_smt_disable(ctrlval);
2541 			break;
2542 		}
2543 	}
2544 
2545 	unlock_device_hotplug();
2546 	return ret ? ret : count;
2547 }
2548 
2549 #else /* !CONFIG_HOTPLUG_SMT */
2550 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2551 __store_smt_control(struct device *dev, struct device_attribute *attr,
2552 		    const char *buf, size_t count)
2553 {
2554 	return -ENODEV;
2555 }
2556 #endif /* CONFIG_HOTPLUG_SMT */
2557 
2558 static const char *smt_states[] = {
2559 	[CPU_SMT_ENABLED]		= "on",
2560 	[CPU_SMT_DISABLED]		= "off",
2561 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2562 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2563 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2564 };
2565 
control_show(struct device * dev,struct device_attribute * attr,char * buf)2566 static ssize_t control_show(struct device *dev,
2567 			    struct device_attribute *attr, char *buf)
2568 {
2569 	const char *state = smt_states[cpu_smt_control];
2570 
2571 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2572 }
2573 
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2574 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2575 			     const char *buf, size_t count)
2576 {
2577 	return __store_smt_control(dev, attr, buf, count);
2578 }
2579 static DEVICE_ATTR_RW(control);
2580 
active_show(struct device * dev,struct device_attribute * attr,char * buf)2581 static ssize_t active_show(struct device *dev,
2582 			   struct device_attribute *attr, char *buf)
2583 {
2584 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2585 }
2586 static DEVICE_ATTR_RO(active);
2587 
2588 static struct attribute *cpuhp_smt_attrs[] = {
2589 	&dev_attr_control.attr,
2590 	&dev_attr_active.attr,
2591 	NULL
2592 };
2593 
2594 static const struct attribute_group cpuhp_smt_attr_group = {
2595 	.attrs = cpuhp_smt_attrs,
2596 	.name = "smt",
2597 	NULL
2598 };
2599 
cpu_smt_sysfs_init(void)2600 static int __init cpu_smt_sysfs_init(void)
2601 {
2602 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2603 				  &cpuhp_smt_attr_group);
2604 }
2605 
cpuhp_sysfs_init(void)2606 static int __init cpuhp_sysfs_init(void)
2607 {
2608 	int cpu, ret;
2609 
2610 	ret = cpu_smt_sysfs_init();
2611 	if (ret)
2612 		return ret;
2613 
2614 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2615 				 &cpuhp_cpu_root_attr_group);
2616 	if (ret)
2617 		return ret;
2618 
2619 	for_each_possible_cpu(cpu) {
2620 		struct device *dev = get_cpu_device(cpu);
2621 
2622 		if (!dev)
2623 			continue;
2624 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2625 		if (ret)
2626 			return ret;
2627 	}
2628 	return 0;
2629 }
2630 device_initcall(cpuhp_sysfs_init);
2631 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2632 
2633 /*
2634  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2635  * represents all NR_CPUS bits binary values of 1<<nr.
2636  *
2637  * It is used by cpumask_of() to get a constant address to a CPU
2638  * mask value that has a single bit set only.
2639  */
2640 
2641 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2642 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2643 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2644 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2645 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2646 
2647 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2648 
2649 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2650 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2651 #if BITS_PER_LONG > 32
2652 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2653 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2654 #endif
2655 };
2656 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2657 
2658 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2659 EXPORT_SYMBOL(cpu_all_bits);
2660 
2661 #ifdef CONFIG_INIT_ALL_POSSIBLE
2662 struct cpumask __cpu_possible_mask __read_mostly
2663 	= {CPU_BITS_ALL};
2664 #else
2665 struct cpumask __cpu_possible_mask __read_mostly;
2666 #endif
2667 EXPORT_SYMBOL(__cpu_possible_mask);
2668 
2669 struct cpumask __cpu_online_mask __read_mostly;
2670 EXPORT_SYMBOL(__cpu_online_mask);
2671 
2672 struct cpumask __cpu_present_mask __read_mostly;
2673 EXPORT_SYMBOL(__cpu_present_mask);
2674 
2675 struct cpumask __cpu_active_mask __read_mostly;
2676 EXPORT_SYMBOL(__cpu_active_mask);
2677 
2678 struct cpumask __cpu_dying_mask __read_mostly;
2679 EXPORT_SYMBOL(__cpu_dying_mask);
2680 
2681 atomic_t __num_online_cpus __read_mostly;
2682 EXPORT_SYMBOL(__num_online_cpus);
2683 
init_cpu_present(const struct cpumask * src)2684 void init_cpu_present(const struct cpumask *src)
2685 {
2686 	cpumask_copy(&__cpu_present_mask, src);
2687 }
2688 
init_cpu_possible(const struct cpumask * src)2689 void init_cpu_possible(const struct cpumask *src)
2690 {
2691 	cpumask_copy(&__cpu_possible_mask, src);
2692 }
2693 
init_cpu_online(const struct cpumask * src)2694 void init_cpu_online(const struct cpumask *src)
2695 {
2696 	cpumask_copy(&__cpu_online_mask, src);
2697 }
2698 
set_cpu_online(unsigned int cpu,bool online)2699 void set_cpu_online(unsigned int cpu, bool online)
2700 {
2701 	/*
2702 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2703 	 * function by the reboot and kexec code which invoke it from
2704 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2705 	 * regular CPU hotplug is properly serialized.
2706 	 *
2707 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2708 	 * does not protect readers which are not serialized against
2709 	 * concurrent hotplug operations.
2710 	 */
2711 	if (online) {
2712 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2713 			atomic_inc(&__num_online_cpus);
2714 	} else {
2715 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2716 			atomic_dec(&__num_online_cpus);
2717 	}
2718 }
2719 
2720 /*
2721  * Activate the first processor.
2722  */
boot_cpu_init(void)2723 void __init boot_cpu_init(void)
2724 {
2725 	int cpu = smp_processor_id();
2726 
2727 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2728 	set_cpu_online(cpu, true);
2729 	set_cpu_active(cpu, true);
2730 	set_cpu_present(cpu, true);
2731 	set_cpu_possible(cpu, true);
2732 
2733 #ifdef CONFIG_SMP
2734 	__boot_cpu_id = cpu;
2735 #endif
2736 }
2737 
2738 /*
2739  * Must be called _AFTER_ setting up the per_cpu areas
2740  */
boot_cpu_hotplug_init(void)2741 void __init boot_cpu_hotplug_init(void)
2742 {
2743 #ifdef CONFIG_SMP
2744 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2745 #endif
2746 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2747 }
2748 
2749 /*
2750  * These are used for a global "mitigations=" cmdline option for toggling
2751  * optional CPU mitigations.
2752  */
2753 enum cpu_mitigations {
2754 	CPU_MITIGATIONS_OFF,
2755 	CPU_MITIGATIONS_AUTO,
2756 	CPU_MITIGATIONS_AUTO_NOSMT,
2757 };
2758 
2759 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2760 	CPU_MITIGATIONS_AUTO;
2761 
mitigations_parse_cmdline(char * arg)2762 static int __init mitigations_parse_cmdline(char *arg)
2763 {
2764 	if (!strcmp(arg, "off"))
2765 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2766 	else if (!strcmp(arg, "auto"))
2767 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2768 	else if (!strcmp(arg, "auto,nosmt"))
2769 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2770 	else
2771 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2772 			arg);
2773 
2774 	return 0;
2775 }
2776 early_param("mitigations", mitigations_parse_cmdline);
2777 
2778 /* mitigations=off */
cpu_mitigations_off(void)2779 bool cpu_mitigations_off(void)
2780 {
2781 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2782 }
2783 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2784 
2785 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2786 bool cpu_mitigations_auto_nosmt(void)
2787 {
2788 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2789 }
2790 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2791