• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 #undef CREATE_TRACE_POINTS
57 #include <trace/hooks/debug.h>
58 
59 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
60 EXPORT_PER_CPU_SYMBOL(cpu_number);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit);
64 
65 /*
66  * as from 2.5, kernels no longer have an init_tasks structure
67  * so we need some other way of telling a new secondary core
68  * where to place its SVC stack
69  */
70 struct secondary_data secondary_data;
71 /* Number of CPUs which aren't online, but looping in kernel text. */
72 static int cpus_stuck_in_kernel;
73 
74 enum ipi_msg_type {
75 	IPI_RESCHEDULE,
76 	IPI_CALL_FUNC,
77 	IPI_CPU_STOP,
78 	IPI_CPU_CRASH_STOP,
79 	IPI_TIMER,
80 	IPI_IRQ_WORK,
81 	IPI_WAKEUP,
82 	NR_IPI
83 };
84 
85 static int ipi_irq_base __read_mostly;
86 static int nr_ipi __read_mostly = NR_IPI;
87 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
88 
89 static void ipi_setup(int cpu);
90 
91 #ifdef CONFIG_HOTPLUG_CPU
92 static void ipi_teardown(int cpu);
93 static int op_cpu_kill(unsigned int cpu);
94 #else
op_cpu_kill(unsigned int cpu)95 static inline int op_cpu_kill(unsigned int cpu)
96 {
97 	return -ENOSYS;
98 }
99 #endif
100 
101 
102 /*
103  * Boot a secondary CPU, and assign it the specified idle task.
104  * This also gives us the initial stack to use for this CPU.
105  */
boot_secondary(unsigned int cpu,struct task_struct * idle)106 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
107 {
108 	const struct cpu_operations *ops = get_cpu_ops(cpu);
109 
110 	if (ops->cpu_boot)
111 		return ops->cpu_boot(cpu);
112 
113 	return -EOPNOTSUPP;
114 }
115 
116 static DECLARE_COMPLETION(cpu_running);
117 
__cpu_up(unsigned int cpu,struct task_struct * idle)118 int __cpu_up(unsigned int cpu, struct task_struct *idle)
119 {
120 	int ret;
121 	long status;
122 
123 	/*
124 	 * We need to tell the secondary core where to find its stack and the
125 	 * page tables.
126 	 */
127 	secondary_data.task = idle;
128 	update_cpu_boot_status(CPU_MMU_OFF);
129 
130 	/* Now bring the CPU into our world */
131 	ret = boot_secondary(cpu, idle);
132 	if (ret) {
133 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134 		return ret;
135 	}
136 
137 	/*
138 	 * CPU was successfully started, wait for it to come online or
139 	 * time out.
140 	 */
141 	wait_for_completion_timeout(&cpu_running,
142 				    msecs_to_jiffies(5000));
143 	if (cpu_online(cpu))
144 		return 0;
145 
146 	pr_crit("CPU%u: failed to come online\n", cpu);
147 	secondary_data.task = NULL;
148 	status = READ_ONCE(secondary_data.status);
149 	if (status == CPU_MMU_OFF)
150 		status = READ_ONCE(__early_cpu_boot_status);
151 
152 	switch (status & CPU_BOOT_STATUS_MASK) {
153 	default:
154 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
155 		       cpu, status);
156 		cpus_stuck_in_kernel++;
157 		break;
158 	case CPU_KILL_ME:
159 		if (!op_cpu_kill(cpu)) {
160 			pr_crit("CPU%u: died during early boot\n", cpu);
161 			break;
162 		}
163 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
164 		fallthrough;
165 	case CPU_STUCK_IN_KERNEL:
166 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
167 		if (status & CPU_STUCK_REASON_52_BIT_VA)
168 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
169 		if (status & CPU_STUCK_REASON_NO_GRAN) {
170 			pr_crit("CPU%u: does not support %luK granule\n",
171 				cpu, PAGE_SIZE / SZ_1K);
172 		}
173 		cpus_stuck_in_kernel++;
174 		break;
175 	case CPU_PANIC_KERNEL:
176 		panic("CPU%u detected unsupported configuration\n", cpu);
177 	}
178 
179 	return -EIO;
180 }
181 
init_gic_priority_masking(void)182 static void init_gic_priority_masking(void)
183 {
184 	u32 cpuflags;
185 
186 	if (WARN_ON(!gic_enable_sre()))
187 		return;
188 
189 	cpuflags = read_sysreg(daif);
190 
191 	WARN_ON(!(cpuflags & PSR_I_BIT));
192 	WARN_ON(!(cpuflags & PSR_F_BIT));
193 
194 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
195 }
196 
197 /*
198  * This is the secondary CPU boot entry.  We're using this CPUs
199  * idle thread stack, but a set of temporary page tables.
200  */
secondary_start_kernel(void)201 asmlinkage notrace void secondary_start_kernel(void)
202 {
203 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
204 	struct mm_struct *mm = &init_mm;
205 	const struct cpu_operations *ops;
206 	unsigned int cpu = smp_processor_id();
207 
208 	/*
209 	 * All kernel threads share the same mm context; grab a
210 	 * reference and switch to it.
211 	 */
212 	mmgrab(mm);
213 	current->active_mm = mm;
214 
215 	/*
216 	 * TTBR0 is only used for the identity mapping at this stage. Make it
217 	 * point to zero page to avoid speculatively fetching new entries.
218 	 */
219 	cpu_uninstall_idmap();
220 
221 	if (system_uses_irq_prio_masking())
222 		init_gic_priority_masking();
223 
224 	rcu_cpu_starting(cpu);
225 	trace_hardirqs_off();
226 
227 	/*
228 	 * If the system has established the capabilities, make sure
229 	 * this CPU ticks all of those. If it doesn't, the CPU will
230 	 * fail to come online.
231 	 */
232 	check_local_cpu_capabilities();
233 
234 	ops = get_cpu_ops(cpu);
235 	if (ops->cpu_postboot)
236 		ops->cpu_postboot();
237 
238 	/*
239 	 * Log the CPU info before it is marked online and might get read.
240 	 */
241 	cpuinfo_store_cpu();
242 	store_cpu_topology(cpu);
243 
244 	/*
245 	 * Enable GIC and timers.
246 	 */
247 	notify_cpu_starting(cpu);
248 
249 	ipi_setup(cpu);
250 
251 	numa_add_cpu(cpu);
252 
253 	/*
254 	 * OK, now it's safe to let the boot CPU continue.  Wait for
255 	 * the CPU migration code to notice that the CPU is online
256 	 * before we continue.
257 	 */
258 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
259 					 cpu, (unsigned long)mpidr,
260 					 read_cpuid_id());
261 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
262 	set_cpu_online(cpu, true);
263 	complete(&cpu_running);
264 
265 	local_daif_restore(DAIF_PROCCTX);
266 
267 	/*
268 	 * OK, it's off to the idle thread for us
269 	 */
270 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271 }
272 
273 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)274 static int op_cpu_disable(unsigned int cpu)
275 {
276 	const struct cpu_operations *ops = get_cpu_ops(cpu);
277 
278 	/*
279 	 * If we don't have a cpu_die method, abort before we reach the point
280 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
281 	 */
282 	if (!ops || !ops->cpu_die)
283 		return -EOPNOTSUPP;
284 
285 	/*
286 	 * We may need to abort a hot unplug for some other mechanism-specific
287 	 * reason.
288 	 */
289 	if (ops->cpu_disable)
290 		return ops->cpu_disable(cpu);
291 
292 	return 0;
293 }
294 
295 /*
296  * __cpu_disable runs on the processor to be shutdown.
297  */
__cpu_disable(void)298 int __cpu_disable(void)
299 {
300 	unsigned int cpu = smp_processor_id();
301 	int ret;
302 
303 	ret = op_cpu_disable(cpu);
304 	if (ret)
305 		return ret;
306 
307 	remove_cpu_topology(cpu);
308 	numa_remove_cpu(cpu);
309 
310 	/*
311 	 * Take this CPU offline.  Once we clear this, we can't return,
312 	 * and we must not schedule until we're ready to give up the cpu.
313 	 */
314 	set_cpu_online(cpu, false);
315 	ipi_teardown(cpu);
316 
317 	/*
318 	 * OK - migrate IRQs away from this CPU
319 	 */
320 	irq_migrate_all_off_this_cpu();
321 
322 	return 0;
323 }
324 
op_cpu_kill(unsigned int cpu)325 static int op_cpu_kill(unsigned int cpu)
326 {
327 	const struct cpu_operations *ops = get_cpu_ops(cpu);
328 
329 	/*
330 	 * If we have no means of synchronising with the dying CPU, then assume
331 	 * that it is really dead. We can only wait for an arbitrary length of
332 	 * time and hope that it's dead, so let's skip the wait and just hope.
333 	 */
334 	if (!ops->cpu_kill)
335 		return 0;
336 
337 	return ops->cpu_kill(cpu);
338 }
339 
340 /*
341  * called on the thread which is asking for a CPU to be shutdown -
342  * waits until shutdown has completed, or it is timed out.
343  */
__cpu_die(unsigned int cpu)344 void __cpu_die(unsigned int cpu)
345 {
346 	int err;
347 
348 	if (!cpu_wait_death(cpu, 5)) {
349 		pr_crit("CPU%u: cpu didn't die\n", cpu);
350 		return;
351 	}
352 	pr_debug("CPU%u: shutdown\n", cpu);
353 
354 	/*
355 	 * Now that the dying CPU is beyond the point of no return w.r.t.
356 	 * in-kernel synchronisation, try to get the firwmare to help us to
357 	 * verify that it has really left the kernel before we consider
358 	 * clobbering anything it might still be using.
359 	 */
360 	err = op_cpu_kill(cpu);
361 	if (err)
362 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
363 }
364 
365 /*
366  * Called from the idle thread for the CPU which has been shutdown.
367  *
368  */
cpu_die(void)369 void cpu_die(void)
370 {
371 	unsigned int cpu = smp_processor_id();
372 	const struct cpu_operations *ops = get_cpu_ops(cpu);
373 
374 	idle_task_exit();
375 
376 	local_daif_mask();
377 
378 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
379 	(void)cpu_report_death();
380 
381 	/*
382 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
383 	 * mechanism must perform all required cache maintenance to ensure that
384 	 * no dirty lines are lost in the process of shutting down the CPU.
385 	 */
386 	ops->cpu_die(cpu);
387 
388 	BUG();
389 }
390 #endif
391 
__cpu_try_die(int cpu)392 static void __cpu_try_die(int cpu)
393 {
394 #ifdef CONFIG_HOTPLUG_CPU
395 	const struct cpu_operations *ops = get_cpu_ops(cpu);
396 
397 	if (ops && ops->cpu_die)
398 		ops->cpu_die(cpu);
399 #endif
400 }
401 
402 /*
403  * Kill the calling secondary CPU, early in bringup before it is turned
404  * online.
405  */
cpu_die_early(void)406 void cpu_die_early(void)
407 {
408 	int cpu = smp_processor_id();
409 
410 	pr_crit("CPU%d: will not boot\n", cpu);
411 
412 	/* Mark this CPU absent */
413 	set_cpu_present(cpu, 0);
414 	rcu_report_dead(cpu);
415 
416 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
417 		update_cpu_boot_status(CPU_KILL_ME);
418 		__cpu_try_die(cpu);
419 	}
420 
421 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
422 
423 	cpu_park_loop();
424 }
425 
hyp_mode_check(void)426 static void __init hyp_mode_check(void)
427 {
428 	if (is_hyp_mode_available())
429 		pr_info("CPU: All CPU(s) started at EL2\n");
430 	else if (is_hyp_mode_mismatched())
431 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
432 			   "CPU: CPUs started in inconsistent modes");
433 	else
434 		pr_info("CPU: All CPU(s) started at EL1\n");
435 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
436 		kvm_compute_layout();
437 		kvm_apply_hyp_relocations();
438 	}
439 }
440 
smp_cpus_done(unsigned int max_cpus)441 void __init smp_cpus_done(unsigned int max_cpus)
442 {
443 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
444 	setup_cpu_features();
445 	hyp_mode_check();
446 	apply_alternatives_all();
447 	mark_linear_text_alias_ro();
448 }
449 
smp_prepare_boot_cpu(void)450 void __init smp_prepare_boot_cpu(void)
451 {
452 	/*
453 	 * The runtime per-cpu areas have been allocated by
454 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
455 	 * freed shortly, so we must move over to the runtime per-cpu area.
456 	 */
457 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
458 	cpuinfo_store_boot_cpu();
459 
460 	/*
461 	 * We now know enough about the boot CPU to apply the
462 	 * alternatives that cannot wait until interrupt handling
463 	 * and/or scheduling is enabled.
464 	 */
465 	apply_boot_alternatives();
466 
467 	/* Conditionally switch to GIC PMR for interrupt masking */
468 	if (system_uses_irq_prio_masking())
469 		init_gic_priority_masking();
470 
471 	kasan_init_hw_tags();
472 }
473 
of_get_cpu_mpidr(struct device_node * dn)474 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
475 {
476 	const __be32 *cell;
477 	u64 hwid;
478 
479 	/*
480 	 * A cpu node with missing "reg" property is
481 	 * considered invalid to build a cpu_logical_map
482 	 * entry.
483 	 */
484 	cell = of_get_property(dn, "reg", NULL);
485 	if (!cell) {
486 		pr_err("%pOF: missing reg property\n", dn);
487 		return INVALID_HWID;
488 	}
489 
490 	hwid = of_read_number(cell, of_n_addr_cells(dn));
491 	/*
492 	 * Non affinity bits must be set to 0 in the DT
493 	 */
494 	if (hwid & ~MPIDR_HWID_BITMASK) {
495 		pr_err("%pOF: invalid reg property\n", dn);
496 		return INVALID_HWID;
497 	}
498 	return hwid;
499 }
500 
501 /*
502  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
503  * entries and check for duplicates. If any is found just ignore the
504  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
505  * matching valid MPIDR values.
506  */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)507 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
508 {
509 	unsigned int i;
510 
511 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
512 		if (cpu_logical_map(i) == hwid)
513 			return true;
514 	return false;
515 }
516 
517 /*
518  * Initialize cpu operations for a logical cpu and
519  * set it in the possible mask on success
520  */
smp_cpu_setup(int cpu)521 static int __init smp_cpu_setup(int cpu)
522 {
523 	const struct cpu_operations *ops;
524 
525 	if (init_cpu_ops(cpu))
526 		return -ENODEV;
527 
528 	ops = get_cpu_ops(cpu);
529 	if (ops->cpu_init(cpu))
530 		return -ENODEV;
531 
532 	set_cpu_possible(cpu, true);
533 
534 	return 0;
535 }
536 
537 static bool bootcpu_valid __initdata;
538 static unsigned int cpu_count = 1;
539 
540 #ifdef CONFIG_ACPI
541 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
542 
acpi_cpu_get_madt_gicc(int cpu)543 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
544 {
545 	return &cpu_madt_gicc[cpu];
546 }
547 
548 /*
549  * acpi_map_gic_cpu_interface - parse processor MADT entry
550  *
551  * Carry out sanity checks on MADT processor entry and initialize
552  * cpu_logical_map on success
553  */
554 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)555 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
556 {
557 	u64 hwid = processor->arm_mpidr;
558 
559 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
560 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
561 		return;
562 	}
563 
564 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
565 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
566 		return;
567 	}
568 
569 	if (is_mpidr_duplicate(cpu_count, hwid)) {
570 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
571 		return;
572 	}
573 
574 	/* Check if GICC structure of boot CPU is available in the MADT */
575 	if (cpu_logical_map(0) == hwid) {
576 		if (bootcpu_valid) {
577 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
578 			       hwid);
579 			return;
580 		}
581 		bootcpu_valid = true;
582 		cpu_madt_gicc[0] = *processor;
583 		return;
584 	}
585 
586 	if (cpu_count >= NR_CPUS)
587 		return;
588 
589 	/* map the logical cpu id to cpu MPIDR */
590 	set_cpu_logical_map(cpu_count, hwid);
591 
592 	cpu_madt_gicc[cpu_count] = *processor;
593 
594 	/*
595 	 * Set-up the ACPI parking protocol cpu entries
596 	 * while initializing the cpu_logical_map to
597 	 * avoid parsing MADT entries multiple times for
598 	 * nothing (ie a valid cpu_logical_map entry should
599 	 * contain a valid parking protocol data set to
600 	 * initialize the cpu if the parking protocol is
601 	 * the only available enable method).
602 	 */
603 	acpi_set_mailbox_entry(cpu_count, processor);
604 
605 	cpu_count++;
606 }
607 
608 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)609 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
610 			     const unsigned long end)
611 {
612 	struct acpi_madt_generic_interrupt *processor;
613 
614 	processor = (struct acpi_madt_generic_interrupt *)header;
615 	if (BAD_MADT_GICC_ENTRY(processor, end))
616 		return -EINVAL;
617 
618 	acpi_table_print_madt_entry(&header->common);
619 
620 	acpi_map_gic_cpu_interface(processor);
621 
622 	return 0;
623 }
624 
acpi_parse_and_init_cpus(void)625 static void __init acpi_parse_and_init_cpus(void)
626 {
627 	int i;
628 
629 	/*
630 	 * do a walk of MADT to determine how many CPUs
631 	 * we have including disabled CPUs, and get information
632 	 * we need for SMP init.
633 	 */
634 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
635 				      acpi_parse_gic_cpu_interface, 0);
636 
637 	/*
638 	 * In ACPI, SMP and CPU NUMA information is provided in separate
639 	 * static tables, namely the MADT and the SRAT.
640 	 *
641 	 * Thus, it is simpler to first create the cpu logical map through
642 	 * an MADT walk and then map the logical cpus to their node ids
643 	 * as separate steps.
644 	 */
645 	acpi_map_cpus_to_nodes();
646 
647 	for (i = 0; i < nr_cpu_ids; i++)
648 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
649 }
650 #else
651 #define acpi_parse_and_init_cpus(...)	do { } while (0)
652 #endif
653 
654 /*
655  * Enumerate the possible CPU set from the device tree and build the
656  * cpu logical map array containing MPIDR values related to logical
657  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
658  */
of_parse_and_init_cpus(void)659 static void __init of_parse_and_init_cpus(void)
660 {
661 	struct device_node *dn;
662 
663 	for_each_of_cpu_node(dn) {
664 		u64 hwid = of_get_cpu_mpidr(dn);
665 
666 		if (hwid == INVALID_HWID)
667 			goto next;
668 
669 		if (is_mpidr_duplicate(cpu_count, hwid)) {
670 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
671 				dn);
672 			goto next;
673 		}
674 
675 		/*
676 		 * The numbering scheme requires that the boot CPU
677 		 * must be assigned logical id 0. Record it so that
678 		 * the logical map built from DT is validated and can
679 		 * be used.
680 		 */
681 		if (hwid == cpu_logical_map(0)) {
682 			if (bootcpu_valid) {
683 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
684 					dn);
685 				goto next;
686 			}
687 
688 			bootcpu_valid = true;
689 			early_map_cpu_to_node(0, of_node_to_nid(dn));
690 
691 			/*
692 			 * cpu_logical_map has already been
693 			 * initialized and the boot cpu doesn't need
694 			 * the enable-method so continue without
695 			 * incrementing cpu.
696 			 */
697 			continue;
698 		}
699 
700 		if (cpu_count >= NR_CPUS)
701 			goto next;
702 
703 		pr_debug("cpu logical map 0x%llx\n", hwid);
704 		set_cpu_logical_map(cpu_count, hwid);
705 
706 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
707 next:
708 		cpu_count++;
709 	}
710 }
711 
712 /*
713  * Enumerate the possible CPU set from the device tree or ACPI and build the
714  * cpu logical map array containing MPIDR values related to logical
715  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
716  */
smp_init_cpus(void)717 void __init smp_init_cpus(void)
718 {
719 	int i;
720 
721 	if (acpi_disabled)
722 		of_parse_and_init_cpus();
723 	else
724 		acpi_parse_and_init_cpus();
725 
726 	if (cpu_count > nr_cpu_ids)
727 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
728 			cpu_count, nr_cpu_ids);
729 
730 	if (!bootcpu_valid) {
731 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
732 		return;
733 	}
734 
735 	/*
736 	 * We need to set the cpu_logical_map entries before enabling
737 	 * the cpus so that cpu processor description entries (DT cpu nodes
738 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
739 	 * with entries in cpu_logical_map while initializing the cpus.
740 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
741 	 */
742 	for (i = 1; i < nr_cpu_ids; i++) {
743 		if (cpu_logical_map(i) != INVALID_HWID) {
744 			if (smp_cpu_setup(i))
745 				set_cpu_logical_map(i, INVALID_HWID);
746 		}
747 	}
748 }
749 
smp_prepare_cpus(unsigned int max_cpus)750 void __init smp_prepare_cpus(unsigned int max_cpus)
751 {
752 	const struct cpu_operations *ops;
753 	int err;
754 	unsigned int cpu;
755 	unsigned int this_cpu;
756 
757 	init_cpu_topology();
758 
759 	this_cpu = smp_processor_id();
760 	store_cpu_topology(this_cpu);
761 	numa_store_cpu_info(this_cpu);
762 	numa_add_cpu(this_cpu);
763 
764 	/*
765 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
766 	 * secondary CPUs present.
767 	 */
768 	if (max_cpus == 0)
769 		return;
770 
771 	/*
772 	 * Initialise the present map (which describes the set of CPUs
773 	 * actually populated at the present time) and release the
774 	 * secondaries from the bootloader.
775 	 */
776 	for_each_possible_cpu(cpu) {
777 
778 		per_cpu(cpu_number, cpu) = cpu;
779 
780 		if (cpu == smp_processor_id())
781 			continue;
782 
783 		ops = get_cpu_ops(cpu);
784 		if (!ops)
785 			continue;
786 
787 		err = ops->cpu_prepare(cpu);
788 		if (err)
789 			continue;
790 
791 		set_cpu_present(cpu, true);
792 		numa_store_cpu_info(cpu);
793 	}
794 }
795 
796 static const char *ipi_types[NR_IPI] __tracepoint_string = {
797 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
798 	[IPI_CALL_FUNC]		= "Function call interrupts",
799 	[IPI_CPU_STOP]		= "CPU stop interrupts",
800 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
801 	[IPI_TIMER]		= "Timer broadcast interrupts",
802 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
803 	[IPI_WAKEUP]		= "CPU wake-up interrupts",
804 };
805 
806 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
807 
808 unsigned long irq_err_count;
809 
arch_show_interrupts(struct seq_file * p,int prec)810 int arch_show_interrupts(struct seq_file *p, int prec)
811 {
812 	unsigned int cpu, i;
813 
814 	for (i = 0; i < NR_IPI; i++) {
815 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
816 			   prec >= 4 ? " " : "");
817 		for_each_online_cpu(cpu)
818 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
819 		seq_printf(p, "      %s\n", ipi_types[i]);
820 	}
821 
822 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
823 	return 0;
824 }
825 
arch_send_call_function_ipi_mask(const struct cpumask * mask)826 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
827 {
828 	smp_cross_call(mask, IPI_CALL_FUNC);
829 }
830 
arch_send_call_function_single_ipi(int cpu)831 void arch_send_call_function_single_ipi(int cpu)
832 {
833 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
834 }
835 
836 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)837 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
838 {
839 	smp_cross_call(mask, IPI_WAKEUP);
840 }
841 #endif
842 
843 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)844 void arch_irq_work_raise(void)
845 {
846 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
847 }
848 #endif
849 
local_cpu_stop(void)850 static void local_cpu_stop(void)
851 {
852 	set_cpu_online(smp_processor_id(), false);
853 
854 	local_daif_mask();
855 	sdei_mask_local_cpu();
856 	cpu_park_loop();
857 }
858 
859 /*
860  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
861  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
862  * CPUs that have already stopped themselves.
863  */
panic_smp_self_stop(void)864 void panic_smp_self_stop(void)
865 {
866 	local_cpu_stop();
867 }
868 
869 #ifdef CONFIG_KEXEC_CORE
870 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
871 #endif
872 
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)873 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
874 {
875 #ifdef CONFIG_KEXEC_CORE
876 	crash_save_cpu(regs, cpu);
877 
878 	atomic_dec(&waiting_for_crash_ipi);
879 
880 	local_irq_disable();
881 	sdei_mask_local_cpu();
882 
883 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
884 		__cpu_try_die(cpu);
885 
886 	/* just in case */
887 	cpu_park_loop();
888 #endif
889 }
890 
891 /*
892  * Main handler for inter-processor interrupts
893  */
do_handle_IPI(int ipinr)894 static void do_handle_IPI(int ipinr)
895 {
896 	unsigned int cpu = smp_processor_id();
897 
898 	if ((unsigned)ipinr < NR_IPI)
899 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
900 
901 	switch (ipinr) {
902 	case IPI_RESCHEDULE:
903 		scheduler_ipi();
904 		break;
905 
906 	case IPI_CALL_FUNC:
907 		generic_smp_call_function_interrupt();
908 		break;
909 
910 	case IPI_CPU_STOP:
911 		trace_android_vh_ipi_stop(get_irq_regs());
912 		local_cpu_stop();
913 		break;
914 
915 	case IPI_CPU_CRASH_STOP:
916 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
917 			ipi_cpu_crash_stop(cpu, get_irq_regs());
918 
919 			unreachable();
920 		}
921 		break;
922 
923 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
924 	case IPI_TIMER:
925 		tick_receive_broadcast();
926 		break;
927 #endif
928 
929 #ifdef CONFIG_IRQ_WORK
930 	case IPI_IRQ_WORK:
931 		irq_work_run();
932 		break;
933 #endif
934 
935 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
936 	case IPI_WAKEUP:
937 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
938 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
939 			  cpu);
940 		break;
941 #endif
942 
943 	default:
944 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
945 		break;
946 	}
947 
948 	if ((unsigned)ipinr < NR_IPI)
949 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
950 }
951 
ipi_handler(int irq,void * data)952 static irqreturn_t ipi_handler(int irq, void *data)
953 {
954 	do_handle_IPI(irq - ipi_irq_base);
955 	return IRQ_HANDLED;
956 }
957 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)958 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
959 {
960 	trace_ipi_raise(target, ipi_types[ipinr]);
961 	__ipi_send_mask(ipi_desc[ipinr], target);
962 }
963 
ipi_setup(int cpu)964 static void ipi_setup(int cpu)
965 {
966 	int i;
967 
968 	if (WARN_ON_ONCE(!ipi_irq_base))
969 		return;
970 
971 	for (i = 0; i < nr_ipi; i++)
972 		enable_percpu_irq(ipi_irq_base + i, 0);
973 }
974 
975 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)976 static void ipi_teardown(int cpu)
977 {
978 	int i;
979 
980 	if (WARN_ON_ONCE(!ipi_irq_base))
981 		return;
982 
983 	for (i = 0; i < nr_ipi; i++)
984 		disable_percpu_irq(ipi_irq_base + i);
985 }
986 #endif
987 
set_smp_ipi_range(int ipi_base,int n)988 void __init set_smp_ipi_range(int ipi_base, int n)
989 {
990 	int i;
991 
992 	WARN_ON(n < NR_IPI);
993 	nr_ipi = min(n, NR_IPI);
994 
995 	for (i = 0; i < nr_ipi; i++) {
996 		int err;
997 
998 		err = request_percpu_irq(ipi_base + i, ipi_handler,
999 					 "IPI", &cpu_number);
1000 		WARN_ON(err);
1001 
1002 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1003 
1004 		if (i != IPI_RESCHEDULE)
1005 			irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1006 		else
1007 			/* The recheduling IPI is special... */
1008 			irq_set_status_flags(ipi_base + i, IRQ_HIDDEN|IRQ_RAW);
1009 	}
1010 
1011 	ipi_irq_base = ipi_base;
1012 
1013 	/* Setup the boot CPU immediately */
1014 	ipi_setup(smp_processor_id());
1015 }
1016 
smp_send_reschedule(int cpu)1017 void smp_send_reschedule(int cpu)
1018 {
1019 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1020 }
1021 
1022 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1023 void tick_broadcast(const struct cpumask *mask)
1024 {
1025 	smp_cross_call(mask, IPI_TIMER);
1026 }
1027 #endif
1028 
1029 /*
1030  * The number of CPUs online, not counting this CPU (which may not be
1031  * fully online and so not counted in num_online_cpus()).
1032  */
num_other_online_cpus(void)1033 static inline unsigned int num_other_online_cpus(void)
1034 {
1035 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1036 
1037 	return num_online_cpus() - this_cpu_online;
1038 }
1039 
smp_send_stop(void)1040 void smp_send_stop(void)
1041 {
1042 	unsigned long timeout;
1043 
1044 	if (num_other_online_cpus()) {
1045 		cpumask_t mask;
1046 
1047 		cpumask_copy(&mask, cpu_online_mask);
1048 		cpumask_clear_cpu(smp_processor_id(), &mask);
1049 
1050 		if (system_state <= SYSTEM_RUNNING)
1051 			pr_crit("SMP: stopping secondary CPUs\n");
1052 		smp_cross_call(&mask, IPI_CPU_STOP);
1053 	}
1054 
1055 	/* Wait up to one second for other CPUs to stop */
1056 	timeout = USEC_PER_SEC;
1057 	while (num_other_online_cpus() && timeout--)
1058 		udelay(1);
1059 
1060 	if (num_other_online_cpus())
1061 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1062 			cpumask_pr_args(cpu_online_mask));
1063 
1064 	sdei_mask_local_cpu();
1065 }
1066 
1067 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1068 void crash_smp_send_stop(void)
1069 {
1070 	static int cpus_stopped;
1071 	cpumask_t mask;
1072 	unsigned long timeout;
1073 
1074 	/*
1075 	 * This function can be called twice in panic path, but obviously
1076 	 * we execute this only once.
1077 	 */
1078 	if (cpus_stopped)
1079 		return;
1080 
1081 	cpus_stopped = 1;
1082 
1083 	/*
1084 	 * If this cpu is the only one alive at this point in time, online or
1085 	 * not, there are no stop messages to be sent around, so just back out.
1086 	 */
1087 	if (num_other_online_cpus() == 0)
1088 		goto skip_ipi;
1089 
1090 	cpumask_copy(&mask, cpu_online_mask);
1091 	cpumask_clear_cpu(smp_processor_id(), &mask);
1092 
1093 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1094 
1095 	pr_crit("SMP: stopping secondary CPUs\n");
1096 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1097 
1098 	/* Wait up to one second for other CPUs to stop */
1099 	timeout = USEC_PER_SEC;
1100 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1101 		udelay(1);
1102 
1103 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1104 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1105 			cpumask_pr_args(&mask));
1106 
1107 skip_ipi:
1108 	sdei_mask_local_cpu();
1109 	sdei_handler_abort();
1110 }
1111 
smp_crash_stop_failed(void)1112 bool smp_crash_stop_failed(void)
1113 {
1114 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1115 }
1116 #endif
1117 
1118 /*
1119  * not supported here
1120  */
setup_profiling_timer(unsigned int multiplier)1121 int setup_profiling_timer(unsigned int multiplier)
1122 {
1123 	return -EINVAL;
1124 }
1125 
have_cpu_die(void)1126 static bool have_cpu_die(void)
1127 {
1128 #ifdef CONFIG_HOTPLUG_CPU
1129 	int any_cpu = raw_smp_processor_id();
1130 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1131 
1132 	if (ops && ops->cpu_die)
1133 		return true;
1134 #endif
1135 	return false;
1136 }
1137 
cpus_are_stuck_in_kernel(void)1138 bool cpus_are_stuck_in_kernel(void)
1139 {
1140 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1141 
1142 	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1143 		is_protected_kvm_enabled();
1144 }
1145 
nr_ipi_get(void)1146 int nr_ipi_get(void)
1147 {
1148 	return nr_ipi;
1149 }
1150 EXPORT_SYMBOL_GPL(nr_ipi_get);
1151 
ipi_desc_get(void)1152 struct irq_desc **ipi_desc_get(void)
1153 {
1154 	return ipi_desc;
1155 }
1156 EXPORT_SYMBOL_GPL(ipi_desc_get);
1157