1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_hypercalls.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/sigcontext.h>
28
29 #include "trace.h"
30
31 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
32 KVM_GENERIC_VM_STATS(),
33 STATS_DESC_ICOUNTER(VM, protected_hyp_mem),
34 STATS_DESC_ICOUNTER(VM, protected_shared_mem),
35 };
36
37 const struct kvm_stats_header kvm_vm_stats_header = {
38 .name_size = KVM_STATS_NAME_SIZE,
39 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
40 .id_offset = sizeof(struct kvm_stats_header),
41 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
42 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
43 sizeof(kvm_vm_stats_desc),
44 };
45
46 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
47 KVM_GENERIC_VCPU_STATS(),
48 STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
49 STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
50 STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
51 STATS_DESC_COUNTER(VCPU, mmio_exit_user),
52 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
53 STATS_DESC_COUNTER(VCPU, signal_exits),
54 STATS_DESC_COUNTER(VCPU, exits)
55 };
56
57 const struct kvm_stats_header kvm_vcpu_stats_header = {
58 .name_size = KVM_STATS_NAME_SIZE,
59 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
60 .id_offset = sizeof(struct kvm_stats_header),
61 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
62 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
63 sizeof(kvm_vcpu_stats_desc),
64 };
65
core_reg_offset_is_vreg(u64 off)66 static bool core_reg_offset_is_vreg(u64 off)
67 {
68 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
69 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
70 }
71
core_reg_offset_from_id(u64 id)72 static u64 core_reg_offset_from_id(u64 id)
73 {
74 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
75 }
76
core_reg_size_from_offset(const struct kvm_vcpu * vcpu,u64 off)77 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
78 {
79 int size;
80
81 switch (off) {
82 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
83 KVM_REG_ARM_CORE_REG(regs.regs[30]):
84 case KVM_REG_ARM_CORE_REG(regs.sp):
85 case KVM_REG_ARM_CORE_REG(regs.pc):
86 case KVM_REG_ARM_CORE_REG(regs.pstate):
87 case KVM_REG_ARM_CORE_REG(sp_el1):
88 case KVM_REG_ARM_CORE_REG(elr_el1):
89 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
90 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
91 size = sizeof(__u64);
92 break;
93
94 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
95 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
96 size = sizeof(__uint128_t);
97 break;
98
99 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
100 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
101 size = sizeof(__u32);
102 break;
103
104 default:
105 return -EINVAL;
106 }
107
108 if (!IS_ALIGNED(off, size / sizeof(__u32)))
109 return -EINVAL;
110
111 /*
112 * The KVM_REG_ARM64_SVE regs must be used instead of
113 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
114 * SVE-enabled vcpus:
115 */
116 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
117 return -EINVAL;
118
119 return size;
120 }
121
core_reg_addr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)122 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
123 {
124 u64 off = core_reg_offset_from_id(reg->id);
125 int size = core_reg_size_from_offset(vcpu, off);
126
127 if (size < 0)
128 return NULL;
129
130 if (KVM_REG_SIZE(reg->id) != size)
131 return NULL;
132
133 switch (off) {
134 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
135 KVM_REG_ARM_CORE_REG(regs.regs[30]):
136 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
137 off /= 2;
138 return &vcpu->arch.ctxt.regs.regs[off];
139
140 case KVM_REG_ARM_CORE_REG(regs.sp):
141 return &vcpu->arch.ctxt.regs.sp;
142
143 case KVM_REG_ARM_CORE_REG(regs.pc):
144 return &vcpu->arch.ctxt.regs.pc;
145
146 case KVM_REG_ARM_CORE_REG(regs.pstate):
147 return &vcpu->arch.ctxt.regs.pstate;
148
149 case KVM_REG_ARM_CORE_REG(sp_el1):
150 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
151
152 case KVM_REG_ARM_CORE_REG(elr_el1):
153 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
154
155 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
156 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
157
158 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
159 return &vcpu->arch.ctxt.spsr_abt;
160
161 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
162 return &vcpu->arch.ctxt.spsr_und;
163
164 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
165 return &vcpu->arch.ctxt.spsr_irq;
166
167 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
168 return &vcpu->arch.ctxt.spsr_fiq;
169
170 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
171 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
172 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
173 off /= 4;
174 return &vcpu->arch.ctxt.fp_regs.vregs[off];
175
176 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
177 return &vcpu->arch.ctxt.fp_regs.fpsr;
178
179 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
180 return &vcpu->arch.ctxt.fp_regs.fpcr;
181
182 default:
183 return NULL;
184 }
185 }
186
get_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)187 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
188 {
189 /*
190 * Because the kvm_regs structure is a mix of 32, 64 and
191 * 128bit fields, we index it as if it was a 32bit
192 * array. Hence below, nr_regs is the number of entries, and
193 * off the index in the "array".
194 */
195 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
196 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
197 void *addr;
198 u32 off;
199
200 /* Our ID is an index into the kvm_regs struct. */
201 off = core_reg_offset_from_id(reg->id);
202 if (off >= nr_regs ||
203 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
204 return -ENOENT;
205
206 addr = core_reg_addr(vcpu, reg);
207 if (!addr)
208 return -EINVAL;
209
210 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
211 return -EFAULT;
212
213 return 0;
214 }
215
set_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)216 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
217 {
218 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
219 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
220 __uint128_t tmp;
221 void *valp = &tmp, *addr;
222 u64 off;
223 int err = 0;
224
225 /* Our ID is an index into the kvm_regs struct. */
226 off = core_reg_offset_from_id(reg->id);
227 if (off >= nr_regs ||
228 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
229 return -ENOENT;
230
231 addr = core_reg_addr(vcpu, reg);
232 if (!addr)
233 return -EINVAL;
234
235 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
236 return -EINVAL;
237
238 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
239 err = -EFAULT;
240 goto out;
241 }
242
243 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
244 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
245 switch (mode) {
246 case PSR_AA32_MODE_USR:
247 if (!kvm_supports_32bit_el0())
248 return -EINVAL;
249 break;
250 case PSR_AA32_MODE_FIQ:
251 case PSR_AA32_MODE_IRQ:
252 case PSR_AA32_MODE_SVC:
253 case PSR_AA32_MODE_ABT:
254 case PSR_AA32_MODE_UND:
255 if (!vcpu_el1_is_32bit(vcpu))
256 return -EINVAL;
257 break;
258 case PSR_MODE_EL0t:
259 case PSR_MODE_EL1t:
260 case PSR_MODE_EL1h:
261 if (vcpu_el1_is_32bit(vcpu))
262 return -EINVAL;
263 break;
264 default:
265 err = -EINVAL;
266 goto out;
267 }
268 }
269
270 memcpy(addr, valp, KVM_REG_SIZE(reg->id));
271
272 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
273 int i, nr_reg;
274
275 switch (*vcpu_cpsr(vcpu)) {
276 /*
277 * Either we are dealing with user mode, and only the
278 * first 15 registers (+ PC) must be narrowed to 32bit.
279 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
280 */
281 case PSR_AA32_MODE_USR:
282 case PSR_AA32_MODE_SYS:
283 nr_reg = 15;
284 break;
285
286 /*
287 * Otherwise, this is a privileged mode, and *all* the
288 * registers must be narrowed to 32bit.
289 */
290 default:
291 nr_reg = 31;
292 break;
293 }
294
295 for (i = 0; i < nr_reg; i++)
296 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
297
298 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
299 }
300 out:
301 return err;
302 }
303
304 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
305 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
306 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
307
get_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)308 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
309 {
310 unsigned int max_vq, vq;
311 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
312
313 if (!vcpu_has_sve(vcpu))
314 return -ENOENT;
315
316 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
317 return -EINVAL;
318
319 memset(vqs, 0, sizeof(vqs));
320
321 max_vq = vcpu_sve_max_vq(vcpu);
322 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
323 if (sve_vq_available(vq))
324 vqs[vq_word(vq)] |= vq_mask(vq);
325
326 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
327 return -EFAULT;
328
329 return 0;
330 }
331
set_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)332 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
333 {
334 unsigned int max_vq, vq;
335 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
336
337 if (!vcpu_has_sve(vcpu))
338 return -ENOENT;
339
340 if (kvm_arm_vcpu_sve_finalized(vcpu))
341 return -EPERM; /* too late! */
342
343 if (WARN_ON(vcpu->arch.sve_state))
344 return -EINVAL;
345
346 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
347 return -EFAULT;
348
349 max_vq = 0;
350 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
351 if (vq_present(vqs, vq))
352 max_vq = vq;
353
354 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
355 return -EINVAL;
356
357 /*
358 * Vector lengths supported by the host can't currently be
359 * hidden from the guest individually: instead we can only set a
360 * maximum via ZCR_EL2.LEN. So, make sure the available vector
361 * lengths match the set requested exactly up to the requested
362 * maximum:
363 */
364 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
365 if (vq_present(vqs, vq) != sve_vq_available(vq))
366 return -EINVAL;
367
368 /* Can't run with no vector lengths at all: */
369 if (max_vq < SVE_VQ_MIN)
370 return -EINVAL;
371
372 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
373 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
374
375 return 0;
376 }
377
378 #define SVE_REG_SLICE_SHIFT 0
379 #define SVE_REG_SLICE_BITS 5
380 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
381 #define SVE_REG_ID_BITS 5
382
383 #define SVE_REG_SLICE_MASK \
384 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
385 SVE_REG_SLICE_SHIFT)
386 #define SVE_REG_ID_MASK \
387 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
388
389 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
390
391 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
392 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
393
394 /*
395 * Number of register slices required to cover each whole SVE register.
396 * NOTE: Only the first slice every exists, for now.
397 * If you are tempted to modify this, you must also rework sve_reg_to_region()
398 * to match:
399 */
400 #define vcpu_sve_slices(vcpu) 1
401
402 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
403 struct sve_state_reg_region {
404 unsigned int koffset; /* offset into sve_state in kernel memory */
405 unsigned int klen; /* length in kernel memory */
406 unsigned int upad; /* extra trailing padding in user memory */
407 };
408
409 /*
410 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
411 * register copy
412 */
sve_reg_to_region(struct sve_state_reg_region * region,struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)413 static int sve_reg_to_region(struct sve_state_reg_region *region,
414 struct kvm_vcpu *vcpu,
415 const struct kvm_one_reg *reg)
416 {
417 /* reg ID ranges for Z- registers */
418 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
419 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
420 SVE_NUM_SLICES - 1);
421
422 /* reg ID ranges for P- registers and FFR (which are contiguous) */
423 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
424 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
425
426 unsigned int vq;
427 unsigned int reg_num;
428
429 unsigned int reqoffset, reqlen; /* User-requested offset and length */
430 unsigned int maxlen; /* Maximum permitted length */
431
432 size_t sve_state_size;
433
434 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
435 SVE_NUM_SLICES - 1);
436
437 /* Verify that the P-regs and FFR really do have contiguous IDs: */
438 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
439
440 /* Verify that we match the UAPI header: */
441 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
442
443 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
444
445 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
446 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
447 return -ENOENT;
448
449 vq = vcpu_sve_max_vq(vcpu);
450
451 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
452 SVE_SIG_REGS_OFFSET;
453 reqlen = KVM_SVE_ZREG_SIZE;
454 maxlen = SVE_SIG_ZREG_SIZE(vq);
455 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
456 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
457 return -ENOENT;
458
459 vq = vcpu_sve_max_vq(vcpu);
460
461 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
462 SVE_SIG_REGS_OFFSET;
463 reqlen = KVM_SVE_PREG_SIZE;
464 maxlen = SVE_SIG_PREG_SIZE(vq);
465 } else {
466 return -EINVAL;
467 }
468
469 sve_state_size = vcpu_sve_state_size(vcpu);
470 if (WARN_ON(!sve_state_size))
471 return -EINVAL;
472
473 region->koffset = array_index_nospec(reqoffset, sve_state_size);
474 region->klen = min(maxlen, reqlen);
475 region->upad = reqlen - region->klen;
476
477 return 0;
478 }
479
get_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)480 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
481 {
482 int ret;
483 struct sve_state_reg_region region;
484 char __user *uptr = (char __user *)reg->addr;
485
486 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
487 if (reg->id == KVM_REG_ARM64_SVE_VLS)
488 return get_sve_vls(vcpu, reg);
489
490 /* Try to interpret reg ID as an architectural SVE register... */
491 ret = sve_reg_to_region(®ion, vcpu, reg);
492 if (ret)
493 return ret;
494
495 if (!kvm_arm_vcpu_sve_finalized(vcpu))
496 return -EPERM;
497
498 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
499 region.klen) ||
500 clear_user(uptr + region.klen, region.upad))
501 return -EFAULT;
502
503 return 0;
504 }
505
set_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)506 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
507 {
508 int ret;
509 struct sve_state_reg_region region;
510 const char __user *uptr = (const char __user *)reg->addr;
511
512 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
513 if (reg->id == KVM_REG_ARM64_SVE_VLS)
514 return set_sve_vls(vcpu, reg);
515
516 /* Try to interpret reg ID as an architectural SVE register... */
517 ret = sve_reg_to_region(®ion, vcpu, reg);
518 if (ret)
519 return ret;
520
521 if (!kvm_arm_vcpu_sve_finalized(vcpu))
522 return -EPERM;
523
524 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
525 region.klen))
526 return -EFAULT;
527
528 return 0;
529 }
530
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)531 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
532 {
533 return -EINVAL;
534 }
535
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)536 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
537 {
538 return -EINVAL;
539 }
540
copy_core_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)541 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
542 u64 __user *uindices)
543 {
544 unsigned int i;
545 int n = 0;
546
547 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
548 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
549 int size = core_reg_size_from_offset(vcpu, i);
550
551 if (size < 0)
552 continue;
553
554 switch (size) {
555 case sizeof(__u32):
556 reg |= KVM_REG_SIZE_U32;
557 break;
558
559 case sizeof(__u64):
560 reg |= KVM_REG_SIZE_U64;
561 break;
562
563 case sizeof(__uint128_t):
564 reg |= KVM_REG_SIZE_U128;
565 break;
566
567 default:
568 WARN_ON(1);
569 continue;
570 }
571
572 if (uindices) {
573 if (put_user(reg, uindices))
574 return -EFAULT;
575 uindices++;
576 }
577
578 n++;
579 }
580
581 return n;
582 }
583
num_core_regs(const struct kvm_vcpu * vcpu)584 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
585 {
586 return copy_core_reg_indices(vcpu, NULL);
587 }
588
589 /**
590 * ARM64 versions of the TIMER registers, always available on arm64
591 */
592
593 #define NUM_TIMER_REGS 3
594
is_timer_reg(u64 index)595 static bool is_timer_reg(u64 index)
596 {
597 switch (index) {
598 case KVM_REG_ARM_TIMER_CTL:
599 case KVM_REG_ARM_TIMER_CNT:
600 case KVM_REG_ARM_TIMER_CVAL:
601 return true;
602 }
603 return false;
604 }
605
copy_timer_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)606 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
607 {
608 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
609 return -EFAULT;
610 uindices++;
611 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
612 return -EFAULT;
613 uindices++;
614 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
615 return -EFAULT;
616
617 return 0;
618 }
619
set_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)620 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
621 {
622 void __user *uaddr = (void __user *)(long)reg->addr;
623 u64 val;
624 int ret;
625
626 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
627 if (ret != 0)
628 return -EFAULT;
629
630 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
631 }
632
get_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)633 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
634 {
635 void __user *uaddr = (void __user *)(long)reg->addr;
636 u64 val;
637
638 val = kvm_arm_timer_get_reg(vcpu, reg->id);
639 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
640 }
641
num_sve_regs(const struct kvm_vcpu * vcpu)642 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
643 {
644 const unsigned int slices = vcpu_sve_slices(vcpu);
645
646 if (!vcpu_has_sve(vcpu))
647 return 0;
648
649 /* Policed by KVM_GET_REG_LIST: */
650 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
651
652 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
653 + 1; /* KVM_REG_ARM64_SVE_VLS */
654 }
655
copy_sve_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)656 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
657 u64 __user *uindices)
658 {
659 const unsigned int slices = vcpu_sve_slices(vcpu);
660 u64 reg;
661 unsigned int i, n;
662 int num_regs = 0;
663
664 if (!vcpu_has_sve(vcpu))
665 return 0;
666
667 /* Policed by KVM_GET_REG_LIST: */
668 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
669
670 /*
671 * Enumerate this first, so that userspace can save/restore in
672 * the order reported by KVM_GET_REG_LIST:
673 */
674 reg = KVM_REG_ARM64_SVE_VLS;
675 if (put_user(reg, uindices++))
676 return -EFAULT;
677 ++num_regs;
678
679 for (i = 0; i < slices; i++) {
680 for (n = 0; n < SVE_NUM_ZREGS; n++) {
681 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
682 if (put_user(reg, uindices++))
683 return -EFAULT;
684 num_regs++;
685 }
686
687 for (n = 0; n < SVE_NUM_PREGS; n++) {
688 reg = KVM_REG_ARM64_SVE_PREG(n, i);
689 if (put_user(reg, uindices++))
690 return -EFAULT;
691 num_regs++;
692 }
693
694 reg = KVM_REG_ARM64_SVE_FFR(i);
695 if (put_user(reg, uindices++))
696 return -EFAULT;
697 num_regs++;
698 }
699
700 return num_regs;
701 }
702
703 /**
704 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
705 *
706 * This is for all registers.
707 */
kvm_arm_num_regs(struct kvm_vcpu * vcpu)708 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
709 {
710 unsigned long res = 0;
711
712 res += num_core_regs(vcpu);
713 res += num_sve_regs(vcpu);
714 res += kvm_arm_num_sys_reg_descs(vcpu);
715 res += kvm_arm_get_fw_num_regs(vcpu);
716 res += NUM_TIMER_REGS;
717
718 return res;
719 }
720
721 /**
722 * kvm_arm_copy_reg_indices - get indices of all registers.
723 *
724 * We do core registers right here, then we append system regs.
725 */
kvm_arm_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)726 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
727 {
728 int ret;
729
730 ret = copy_core_reg_indices(vcpu, uindices);
731 if (ret < 0)
732 return ret;
733 uindices += ret;
734
735 ret = copy_sve_reg_indices(vcpu, uindices);
736 if (ret < 0)
737 return ret;
738 uindices += ret;
739
740 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
741 if (ret < 0)
742 return ret;
743 uindices += kvm_arm_get_fw_num_regs(vcpu);
744
745 ret = copy_timer_indices(vcpu, uindices);
746 if (ret < 0)
747 return ret;
748 uindices += NUM_TIMER_REGS;
749
750 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
751 }
752
kvm_arm_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)753 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
754 {
755 /* We currently use nothing arch-specific in upper 32 bits */
756 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
757 return -EINVAL;
758
759 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
760 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
761 case KVM_REG_ARM_FW:
762 case KVM_REG_ARM_FW_FEAT_BMAP:
763 return kvm_arm_get_fw_reg(vcpu, reg);
764 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
765 }
766
767 if (is_timer_reg(reg->id))
768 return get_timer_reg(vcpu, reg);
769
770 return kvm_arm_sys_reg_get_reg(vcpu, reg);
771 }
772
kvm_arm_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)773 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
774 {
775 /* We currently use nothing arch-specific in upper 32 bits */
776 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
777 return -EINVAL;
778
779 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
780 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
781 case KVM_REG_ARM_FW:
782 case KVM_REG_ARM_FW_FEAT_BMAP:
783 return kvm_arm_set_fw_reg(vcpu, reg);
784 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
785 }
786
787 if (is_timer_reg(reg->id))
788 return set_timer_reg(vcpu, reg);
789
790 return kvm_arm_sys_reg_set_reg(vcpu, reg);
791 }
792
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)793 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
794 struct kvm_sregs *sregs)
795 {
796 return -EINVAL;
797 }
798
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)799 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
800 struct kvm_sregs *sregs)
801 {
802 return -EINVAL;
803 }
804
__kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)805 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
806 struct kvm_vcpu_events *events)
807 {
808 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
809 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
810
811 if (events->exception.serror_pending && events->exception.serror_has_esr)
812 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
813
814 /*
815 * We never return a pending ext_dabt here because we deliver it to
816 * the virtual CPU directly when setting the event and it's no longer
817 * 'pending' at this point.
818 */
819
820 return 0;
821 }
822
__kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)823 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
824 struct kvm_vcpu_events *events)
825 {
826 bool serror_pending = events->exception.serror_pending;
827 bool has_esr = events->exception.serror_has_esr;
828 bool ext_dabt_pending = events->exception.ext_dabt_pending;
829
830 if (serror_pending && has_esr) {
831 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
832 return -EINVAL;
833
834 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
835 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
836 else
837 return -EINVAL;
838 } else if (serror_pending) {
839 kvm_inject_vabt(vcpu);
840 }
841
842 if (ext_dabt_pending)
843 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
844
845 return 0;
846 }
847
kvm_target_cpu(void)848 u32 __attribute_const__ kvm_target_cpu(void)
849 {
850 unsigned long implementor = read_cpuid_implementor();
851 unsigned long part_number = read_cpuid_part_number();
852
853 switch (implementor) {
854 case ARM_CPU_IMP_ARM:
855 switch (part_number) {
856 case ARM_CPU_PART_AEM_V8:
857 return KVM_ARM_TARGET_AEM_V8;
858 case ARM_CPU_PART_FOUNDATION:
859 return KVM_ARM_TARGET_FOUNDATION_V8;
860 case ARM_CPU_PART_CORTEX_A53:
861 return KVM_ARM_TARGET_CORTEX_A53;
862 case ARM_CPU_PART_CORTEX_A57:
863 return KVM_ARM_TARGET_CORTEX_A57;
864 }
865 break;
866 case ARM_CPU_IMP_APM:
867 switch (part_number) {
868 case APM_CPU_PART_POTENZA:
869 return KVM_ARM_TARGET_XGENE_POTENZA;
870 }
871 break;
872 }
873
874 /* Return a default generic target */
875 return KVM_ARM_TARGET_GENERIC_V8;
876 }
877
kvm_vcpu_preferred_target(struct kvm_vcpu_init * init)878 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
879 {
880 u32 target = kvm_target_cpu();
881
882 memset(init, 0, sizeof(*init));
883
884 /*
885 * For now, we don't return any features.
886 * In future, we might use features to return target
887 * specific features available for the preferred
888 * target type.
889 */
890 init->target = (__u32)target;
891 }
892
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)893 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
894 {
895 return -EINVAL;
896 }
897
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)898 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
899 {
900 return -EINVAL;
901 }
902
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)903 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
904 struct kvm_translation *tr)
905 {
906 return -EINVAL;
907 }
908
909 /**
910 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
911 * @kvm: pointer to the KVM struct
912 * @kvm_guest_debug: the ioctl data buffer
913 *
914 * This sets up and enables the VM for guest debugging. Userspace
915 * passes in a control flag to enable different debug types and
916 * potentially other architecture specific information in the rest of
917 * the structure.
918 */
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)919 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
920 struct kvm_guest_debug *dbg)
921 {
922 int ret = 0;
923
924 trace_kvm_set_guest_debug(vcpu, dbg->control);
925
926 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
927 ret = -EINVAL;
928 goto out;
929 }
930
931 if (dbg->control & KVM_GUESTDBG_ENABLE) {
932 vcpu->guest_debug = dbg->control;
933
934 /* Hardware assisted Break and Watch points */
935 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
936 vcpu->arch.external_debug_state = dbg->arch;
937 }
938
939 } else {
940 /* If not enabled clear all flags */
941 vcpu->guest_debug = 0;
942 vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
943 }
944
945 out:
946 return ret;
947 }
948
kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)949 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
950 struct kvm_device_attr *attr)
951 {
952 int ret;
953
954 switch (attr->group) {
955 case KVM_ARM_VCPU_PMU_V3_CTRL:
956 mutex_lock(&vcpu->kvm->arch.config_lock);
957 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
958 mutex_unlock(&vcpu->kvm->arch.config_lock);
959 break;
960 case KVM_ARM_VCPU_TIMER_CTRL:
961 ret = kvm_arm_timer_set_attr(vcpu, attr);
962 break;
963 case KVM_ARM_VCPU_PVTIME_CTRL:
964 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
965 break;
966 default:
967 ret = -ENXIO;
968 break;
969 }
970
971 return ret;
972 }
973
kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)974 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
975 struct kvm_device_attr *attr)
976 {
977 int ret;
978
979 switch (attr->group) {
980 case KVM_ARM_VCPU_PMU_V3_CTRL:
981 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
982 break;
983 case KVM_ARM_VCPU_TIMER_CTRL:
984 ret = kvm_arm_timer_get_attr(vcpu, attr);
985 break;
986 case KVM_ARM_VCPU_PVTIME_CTRL:
987 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
988 break;
989 default:
990 ret = -ENXIO;
991 break;
992 }
993
994 return ret;
995 }
996
kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)997 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
998 struct kvm_device_attr *attr)
999 {
1000 int ret;
1001
1002 switch (attr->group) {
1003 case KVM_ARM_VCPU_PMU_V3_CTRL:
1004 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1005 break;
1006 case KVM_ARM_VCPU_TIMER_CTRL:
1007 ret = kvm_arm_timer_has_attr(vcpu, attr);
1008 break;
1009 case KVM_ARM_VCPU_PVTIME_CTRL:
1010 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1011 break;
1012 default:
1013 ret = -ENXIO;
1014 break;
1015 }
1016
1017 return ret;
1018 }
1019
kvm_vm_ioctl_mte_copy_tags(struct kvm * kvm,struct kvm_arm_copy_mte_tags * copy_tags)1020 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1021 struct kvm_arm_copy_mte_tags *copy_tags)
1022 {
1023 gpa_t guest_ipa = copy_tags->guest_ipa;
1024 size_t length = copy_tags->length;
1025 void __user *tags = copy_tags->addr;
1026 gpa_t gfn;
1027 bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1028 int ret = 0;
1029
1030 if (!kvm_has_mte(kvm))
1031 return -EINVAL;
1032
1033 if (copy_tags->reserved[0] || copy_tags->reserved[1])
1034 return -EINVAL;
1035
1036 if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1037 return -EINVAL;
1038
1039 if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1040 return -EINVAL;
1041
1042 gfn = gpa_to_gfn(guest_ipa);
1043
1044 mutex_lock(&kvm->slots_lock);
1045
1046 while (length > 0) {
1047 kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1048 void *maddr;
1049 unsigned long num_tags;
1050 struct page *page;
1051
1052 if (is_error_noslot_pfn(pfn)) {
1053 ret = -EFAULT;
1054 goto out;
1055 }
1056
1057 page = pfn_to_online_page(pfn);
1058 if (!page) {
1059 /* Reject ZONE_DEVICE memory */
1060 ret = -EFAULT;
1061 goto out;
1062 }
1063 maddr = page_address(page);
1064
1065 if (!write) {
1066 if (page_mte_tagged(page))
1067 num_tags = mte_copy_tags_to_user(tags, maddr,
1068 MTE_GRANULES_PER_PAGE);
1069 else
1070 /* No tags in memory, so write zeros */
1071 num_tags = MTE_GRANULES_PER_PAGE -
1072 clear_user(tags, MTE_GRANULES_PER_PAGE);
1073 kvm_release_pfn_clean(pfn);
1074 } else {
1075 num_tags = mte_copy_tags_from_user(maddr, tags,
1076 MTE_GRANULES_PER_PAGE);
1077
1078 /*
1079 * Set the flag after checking the write
1080 * completed fully
1081 */
1082 if (num_tags == MTE_GRANULES_PER_PAGE)
1083 set_page_mte_tagged(page);
1084
1085 kvm_release_pfn_dirty(pfn);
1086 }
1087
1088 if (num_tags != MTE_GRANULES_PER_PAGE) {
1089 ret = -EFAULT;
1090 goto out;
1091 }
1092
1093 gfn++;
1094 tags += num_tags;
1095 length -= PAGE_SIZE;
1096 }
1097
1098 out:
1099 mutex_unlock(&kvm->slots_lock);
1100 /* If some data has been copied report the number of bytes copied */
1101 if (length != copy_tags->length)
1102 return copy_tags->length - length;
1103 return ret;
1104 }
1105