1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memory.h>
21 #include <linux/fs.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/set_memory.h>
26 #include <linux/kfence.h>
27
28 #include <asm/barrier.h>
29 #include <asm/cputype.h>
30 #include <asm/fixmap.h>
31 #include <asm/kasan.h>
32 #include <asm/kernel-pgtable.h>
33 #include <asm/sections.h>
34 #include <asm/setup.h>
35 #include <linux/sizes.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 #include <asm/ptdump.h>
39 #include <asm/tlbflush.h>
40 #include <asm/pgalloc.h>
41 #include <asm/kfence.h>
42
43 #include <trace/hooks/mm.h>
44
45 #define NO_BLOCK_MAPPINGS BIT(0)
46 #define NO_CONT_MAPPINGS BIT(1)
47 #define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
48
49 u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
50 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
51
52 u64 __section(".mmuoff.data.write") vabits_actual;
53 EXPORT_SYMBOL(vabits_actual);
54
55 u64 kimage_voffset __ro_after_init;
56 EXPORT_SYMBOL(kimage_voffset);
57
58 /*
59 * Empty_zero_page is a special page that is used for zero-initialized data
60 * and COW.
61 */
62 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
63 EXPORT_SYMBOL(empty_zero_page);
64
65 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
66 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
67 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
68
69 static DEFINE_SPINLOCK(swapper_pgdir_lock);
70 static DEFINE_MUTEX(fixmap_lock);
71
set_swapper_pgd(pgd_t * pgdp,pgd_t pgd)72 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
73 {
74 pgd_t *fixmap_pgdp;
75
76 spin_lock(&swapper_pgdir_lock);
77 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
78 WRITE_ONCE(*fixmap_pgdp, pgd);
79 /*
80 * We need dsb(ishst) here to ensure the page-table-walker sees
81 * our new entry before set_p?d() returns. The fixmap's
82 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
83 */
84 pgd_clear_fixmap();
85 spin_unlock(&swapper_pgdir_lock);
86 }
87
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)88 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
89 unsigned long size, pgprot_t vma_prot)
90 {
91 if (!pfn_is_map_memory(pfn))
92 return pgprot_noncached(vma_prot);
93 else if (file->f_flags & O_SYNC)
94 return pgprot_writecombine(vma_prot);
95 return vma_prot;
96 }
97 EXPORT_SYMBOL(phys_mem_access_prot);
98
early_pgtable_alloc(int shift)99 static phys_addr_t __init early_pgtable_alloc(int shift)
100 {
101 phys_addr_t phys;
102 void *ptr;
103
104 phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
105 MEMBLOCK_ALLOC_NOLEAKTRACE);
106 if (!phys)
107 panic("Failed to allocate page table page\n");
108
109 /*
110 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
111 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
112 * any level of table.
113 */
114 ptr = pte_set_fixmap(phys);
115
116 memset(ptr, 0, PAGE_SIZE);
117
118 /*
119 * Implicit barriers also ensure the zeroed page is visible to the page
120 * table walker
121 */
122 pte_clear_fixmap();
123
124 return phys;
125 }
126
pgattr_change_is_safe(u64 old,u64 new)127 static bool pgattr_change_is_safe(u64 old, u64 new)
128 {
129 /*
130 * The following mapping attributes may be updated in live
131 * kernel mappings without the need for break-before-make.
132 */
133 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
134
135 /* creating or taking down mappings is always safe */
136 if (old == 0 || new == 0)
137 return true;
138
139 /* live contiguous mappings may not be manipulated at all */
140 if ((old | new) & PTE_CONT)
141 return false;
142
143 /* Transitioning from Non-Global to Global is unsafe */
144 if (old & ~new & PTE_NG)
145 return false;
146
147 /*
148 * Changing the memory type between Normal and Normal-Tagged is safe
149 * since Tagged is considered a permission attribute from the
150 * mismatched attribute aliases perspective.
151 */
152 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
153 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
154 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
155 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
156 mask |= PTE_ATTRINDX_MASK;
157
158 return ((old ^ new) & ~mask) == 0;
159 }
160
init_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot)161 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
162 phys_addr_t phys, pgprot_t prot)
163 {
164 pte_t *ptep;
165
166 ptep = pte_set_fixmap_offset(pmdp, addr);
167 do {
168 pte_t old_pte = READ_ONCE(*ptep);
169
170 set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
171
172 /*
173 * After the PTE entry has been populated once, we
174 * only allow updates to the permission attributes.
175 */
176 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
177 READ_ONCE(pte_val(*ptep))));
178
179 phys += PAGE_SIZE;
180 } while (ptep++, addr += PAGE_SIZE, addr != end);
181
182 pte_clear_fixmap();
183 }
184
alloc_init_cont_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)185 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
186 unsigned long end, phys_addr_t phys,
187 pgprot_t prot,
188 phys_addr_t (*pgtable_alloc)(int),
189 int flags)
190 {
191 unsigned long next;
192 pmd_t pmd = READ_ONCE(*pmdp);
193
194 BUG_ON(pmd_sect(pmd));
195 if (pmd_none(pmd)) {
196 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
197 phys_addr_t pte_phys;
198
199 if (flags & NO_EXEC_MAPPINGS)
200 pmdval |= PMD_TABLE_PXN;
201 BUG_ON(!pgtable_alloc);
202 pte_phys = pgtable_alloc(PAGE_SHIFT);
203 __pmd_populate(pmdp, pte_phys, pmdval);
204 pmd = READ_ONCE(*pmdp);
205 }
206 BUG_ON(pmd_bad(pmd));
207
208 do {
209 pgprot_t __prot = prot;
210
211 next = pte_cont_addr_end(addr, end);
212
213 /* use a contiguous mapping if the range is suitably aligned */
214 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
215 (flags & NO_CONT_MAPPINGS) == 0)
216 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
217
218 init_pte(pmdp, addr, next, phys, __prot);
219
220 phys += next - addr;
221 } while (addr = next, addr != end);
222 }
223
init_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)224 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
225 phys_addr_t phys, pgprot_t prot,
226 phys_addr_t (*pgtable_alloc)(int), int flags)
227 {
228 unsigned long next;
229 pmd_t *pmdp;
230
231 pmdp = pmd_set_fixmap_offset(pudp, addr);
232 do {
233 pmd_t old_pmd = READ_ONCE(*pmdp);
234
235 next = pmd_addr_end(addr, end);
236
237 /* try section mapping first */
238 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
239 (flags & NO_BLOCK_MAPPINGS) == 0) {
240 pmd_set_huge(pmdp, phys, prot);
241
242 /*
243 * After the PMD entry has been populated once, we
244 * only allow updates to the permission attributes.
245 */
246 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
247 READ_ONCE(pmd_val(*pmdp))));
248 } else {
249 alloc_init_cont_pte(pmdp, addr, next, phys, prot,
250 pgtable_alloc, flags);
251
252 BUG_ON(pmd_val(old_pmd) != 0 &&
253 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
254 }
255 phys += next - addr;
256 } while (pmdp++, addr = next, addr != end);
257
258 pmd_clear_fixmap();
259 }
260
alloc_init_cont_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)261 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
262 unsigned long end, phys_addr_t phys,
263 pgprot_t prot,
264 phys_addr_t (*pgtable_alloc)(int), int flags)
265 {
266 unsigned long next;
267 pud_t pud = READ_ONCE(*pudp);
268
269 /*
270 * Check for initial section mappings in the pgd/pud.
271 */
272 BUG_ON(pud_sect(pud));
273 if (pud_none(pud)) {
274 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
275 phys_addr_t pmd_phys;
276
277 if (flags & NO_EXEC_MAPPINGS)
278 pudval |= PUD_TABLE_PXN;
279 BUG_ON(!pgtable_alloc);
280 pmd_phys = pgtable_alloc(PMD_SHIFT);
281 __pud_populate(pudp, pmd_phys, pudval);
282 pud = READ_ONCE(*pudp);
283 }
284 BUG_ON(pud_bad(pud));
285
286 do {
287 pgprot_t __prot = prot;
288
289 next = pmd_cont_addr_end(addr, end);
290
291 /* use a contiguous mapping if the range is suitably aligned */
292 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
293 (flags & NO_CONT_MAPPINGS) == 0)
294 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
295
296 init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
297
298 phys += next - addr;
299 } while (addr = next, addr != end);
300 }
301
use_1G_block(unsigned long addr,unsigned long next,unsigned long phys)302 static inline bool use_1G_block(unsigned long addr, unsigned long next,
303 unsigned long phys)
304 {
305 if (PAGE_SHIFT != 12)
306 return false;
307
308 if (((addr | next | phys) & ~PUD_MASK) != 0)
309 return false;
310
311 return true;
312 }
313
alloc_init_pud(pgd_t * pgdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)314 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
315 phys_addr_t phys, pgprot_t prot,
316 phys_addr_t (*pgtable_alloc)(int),
317 int flags)
318 {
319 unsigned long next;
320 pud_t *pudp;
321 p4d_t *p4dp = p4d_offset(pgdp, addr);
322 p4d_t p4d = READ_ONCE(*p4dp);
323
324 if (p4d_none(p4d)) {
325 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
326 phys_addr_t pud_phys;
327
328 if (flags & NO_EXEC_MAPPINGS)
329 p4dval |= P4D_TABLE_PXN;
330 BUG_ON(!pgtable_alloc);
331 pud_phys = pgtable_alloc(PUD_SHIFT);
332 __p4d_populate(p4dp, pud_phys, p4dval);
333 p4d = READ_ONCE(*p4dp);
334 }
335 BUG_ON(p4d_bad(p4d));
336
337 /*
338 * No need for locking during early boot. And it doesn't work as
339 * expected with KASLR enabled.
340 */
341 if (system_state != SYSTEM_BOOTING)
342 mutex_lock(&fixmap_lock);
343 pudp = pud_set_fixmap_offset(p4dp, addr);
344 do {
345 pud_t old_pud = READ_ONCE(*pudp);
346
347 next = pud_addr_end(addr, end);
348
349 /*
350 * For 4K granule only, attempt to put down a 1GB block
351 */
352 if (use_1G_block(addr, next, phys) &&
353 (flags & NO_BLOCK_MAPPINGS) == 0) {
354 pud_set_huge(pudp, phys, prot);
355
356 /*
357 * After the PUD entry has been populated once, we
358 * only allow updates to the permission attributes.
359 */
360 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
361 READ_ONCE(pud_val(*pudp))));
362 } else {
363 alloc_init_cont_pmd(pudp, addr, next, phys, prot,
364 pgtable_alloc, flags);
365
366 BUG_ON(pud_val(old_pud) != 0 &&
367 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
368 }
369 phys += next - addr;
370 } while (pudp++, addr = next, addr != end);
371
372 pud_clear_fixmap();
373 if (system_state != SYSTEM_BOOTING)
374 mutex_unlock(&fixmap_lock);
375 }
376
__create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)377 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
378 unsigned long virt, phys_addr_t size,
379 pgprot_t prot,
380 phys_addr_t (*pgtable_alloc)(int),
381 int flags)
382 {
383 unsigned long addr, end, next;
384 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
385
386 /*
387 * If the virtual and physical address don't have the same offset
388 * within a page, we cannot map the region as the caller expects.
389 */
390 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
391 return;
392
393 phys &= PAGE_MASK;
394 addr = virt & PAGE_MASK;
395 end = PAGE_ALIGN(virt + size);
396
397 do {
398 next = pgd_addr_end(addr, end);
399 alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
400 flags);
401 phys += next - addr;
402 } while (pgdp++, addr = next, addr != end);
403 }
404
__pgd_pgtable_alloc(int shift)405 static phys_addr_t __pgd_pgtable_alloc(int shift)
406 {
407 void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
408 BUG_ON(!ptr);
409
410 /* Ensure the zeroed page is visible to the page table walker */
411 dsb(ishst);
412 return __pa(ptr);
413 }
414
pgd_pgtable_alloc(int shift)415 static phys_addr_t pgd_pgtable_alloc(int shift)
416 {
417 phys_addr_t pa = __pgd_pgtable_alloc(shift);
418
419 /*
420 * Call proper page table ctor in case later we need to
421 * call core mm functions like apply_to_page_range() on
422 * this pre-allocated page table.
423 *
424 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
425 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
426 */
427 if (shift == PAGE_SHIFT)
428 BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
429 else if (shift == PMD_SHIFT)
430 BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
431
432 return pa;
433 }
434
435 /*
436 * This function can only be used to modify existing table entries,
437 * without allocating new levels of table. Note that this permits the
438 * creation of new section or page entries.
439 */
create_mapping_noalloc(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)440 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
441 phys_addr_t size, pgprot_t prot)
442 {
443 if (virt < PAGE_OFFSET) {
444 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
445 &phys, virt);
446 return;
447 }
448 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
449 NO_CONT_MAPPINGS);
450 }
451
create_pgd_mapping(struct mm_struct * mm,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,bool page_mappings_only)452 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
453 unsigned long virt, phys_addr_t size,
454 pgprot_t prot, bool page_mappings_only)
455 {
456 int flags = 0;
457
458 BUG_ON(mm == &init_mm);
459
460 if (page_mappings_only)
461 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
462
463 __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
464 pgd_pgtable_alloc, flags);
465 }
466
update_mapping_prot(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)467 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
468 phys_addr_t size, pgprot_t prot)
469 {
470 if (virt < PAGE_OFFSET) {
471 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
472 &phys, virt);
473 return;
474 }
475
476 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
477 NO_CONT_MAPPINGS);
478
479 /* flush the TLBs after updating live kernel mappings */
480 flush_tlb_kernel_range(virt, virt + size);
481 }
482
__map_memblock(pgd_t * pgdp,phys_addr_t start,phys_addr_t end,pgprot_t prot,int flags)483 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
484 phys_addr_t end, pgprot_t prot, int flags)
485 {
486 __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
487 prot, early_pgtable_alloc, flags);
488 }
489
mark_linear_text_alias_ro(void)490 void __init mark_linear_text_alias_ro(void)
491 {
492 /*
493 * Remove the write permissions from the linear alias of .text/.rodata
494 */
495 update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
496 (unsigned long)__init_begin - (unsigned long)_stext,
497 PAGE_KERNEL_RO);
498 }
499
500 static bool crash_mem_map __initdata;
501
enable_crash_mem_map(char * arg)502 static int __init enable_crash_mem_map(char *arg)
503 {
504 /*
505 * Proper parameter parsing is done by reserve_crashkernel(). We only
506 * need to know if the linear map has to avoid block mappings so that
507 * the crashkernel reservations can be unmapped later.
508 */
509 crash_mem_map = true;
510
511 return 0;
512 }
513 early_param("crashkernel", enable_crash_mem_map);
514
515 #ifdef CONFIG_KFENCE
516
517 bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
518
519 /* early_param() will be parsed before map_mem() below. */
parse_kfence_early_init(char * arg)520 static int __init parse_kfence_early_init(char *arg)
521 {
522 int val;
523
524 if (get_option(&arg, &val))
525 kfence_early_init = !!val;
526 return 0;
527 }
528 early_param("kfence.sample_interval", parse_kfence_early_init);
529
arm64_kfence_alloc_pool(void)530 static phys_addr_t __init arm64_kfence_alloc_pool(void)
531 {
532 phys_addr_t kfence_pool;
533
534 if (!kfence_early_init)
535 return 0;
536
537 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
538 if (!kfence_pool) {
539 pr_err("failed to allocate kfence pool\n");
540 kfence_early_init = false;
541 return 0;
542 }
543
544 /* Temporarily mark as NOMAP. */
545 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
546
547 return kfence_pool;
548 }
549
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)550 static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
551 {
552 if (!kfence_pool)
553 return;
554
555 /* KFENCE pool needs page-level mapping. */
556 __map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
557 pgprot_tagged(PAGE_KERNEL),
558 NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
559 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
560 __kfence_pool = phys_to_virt(kfence_pool);
561 }
562 #else /* CONFIG_KFENCE */
563
arm64_kfence_alloc_pool(void)564 static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)565 static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
566
567 #endif /* CONFIG_KFENCE */
568
map_mem(pgd_t * pgdp)569 static void __init map_mem(pgd_t *pgdp)
570 {
571 static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
572 phys_addr_t kernel_start = __pa_symbol(_stext);
573 phys_addr_t kernel_end = __pa_symbol(__init_begin);
574 phys_addr_t start, end;
575 phys_addr_t early_kfence_pool;
576 int flags = NO_EXEC_MAPPINGS;
577 u64 i;
578
579 /*
580 * Setting hierarchical PXNTable attributes on table entries covering
581 * the linear region is only possible if it is guaranteed that no table
582 * entries at any level are being shared between the linear region and
583 * the vmalloc region. Check whether this is true for the PGD level, in
584 * which case it is guaranteed to be true for all other levels as well.
585 */
586 BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
587
588 early_kfence_pool = arm64_kfence_alloc_pool();
589
590 if (can_set_direct_map())
591 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
592
593 /*
594 * Take care not to create a writable alias for the
595 * read-only text and rodata sections of the kernel image.
596 * So temporarily mark them as NOMAP to skip mappings in
597 * the following for-loop
598 */
599 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
600
601 #ifdef CONFIG_KEXEC_CORE
602 if (crash_mem_map) {
603 if (IS_ENABLED(CONFIG_ZONE_DMA) ||
604 IS_ENABLED(CONFIG_ZONE_DMA32))
605 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
606 else if (crashk_res.end)
607 memblock_mark_nomap(crashk_res.start,
608 resource_size(&crashk_res));
609 }
610 #endif
611
612 /* map all the memory banks */
613 for_each_mem_range(i, &start, &end) {
614 if (start >= end)
615 break;
616 /*
617 * The linear map must allow allocation tags reading/writing
618 * if MTE is present. Otherwise, it has the same attributes as
619 * PAGE_KERNEL.
620 */
621 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
622 flags);
623 }
624
625 /*
626 * Map the linear alias of the [_stext, __init_begin) interval
627 * as non-executable now, and remove the write permission in
628 * mark_linear_text_alias_ro() below (which will be called after
629 * alternative patching has completed). This makes the contents
630 * of the region accessible to subsystems such as hibernate,
631 * but protects it from inadvertent modification or execution.
632 * Note that contiguous mappings cannot be remapped in this way,
633 * so we should avoid them here.
634 */
635 __map_memblock(pgdp, kernel_start, kernel_end,
636 PAGE_KERNEL, NO_CONT_MAPPINGS);
637 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
638
639 /*
640 * Use page-level mappings here so that we can shrink the region
641 * in page granularity and put back unused memory to buddy system
642 * through /sys/kernel/kexec_crash_size interface.
643 */
644 #ifdef CONFIG_KEXEC_CORE
645 if (crash_mem_map &&
646 !IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32)) {
647 if (crashk_res.end) {
648 __map_memblock(pgdp, crashk_res.start,
649 crashk_res.end + 1,
650 PAGE_KERNEL,
651 NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
652 memblock_clear_nomap(crashk_res.start,
653 resource_size(&crashk_res));
654 }
655 }
656 #endif
657
658 arm64_kfence_map_pool(early_kfence_pool, pgdp);
659 }
660
mark_rodata_ro(void)661 void mark_rodata_ro(void)
662 {
663 unsigned long section_size;
664
665 /*
666 * mark .rodata as read only. Use __init_begin rather than __end_rodata
667 * to cover NOTES and EXCEPTION_TABLE.
668 */
669 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
670 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
671 section_size, PAGE_KERNEL_RO);
672
673 debug_checkwx();
674 }
675
map_kernel_segment(pgd_t * pgdp,void * va_start,void * va_end,pgprot_t prot,struct vm_struct * vma,int flags,unsigned long vm_flags)676 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
677 pgprot_t prot, struct vm_struct *vma,
678 int flags, unsigned long vm_flags)
679 {
680 phys_addr_t pa_start = __pa_symbol(va_start);
681 unsigned long size = va_end - va_start;
682
683 BUG_ON(!PAGE_ALIGNED(pa_start));
684 BUG_ON(!PAGE_ALIGNED(size));
685
686 __create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
687 early_pgtable_alloc, flags);
688
689 if (!(vm_flags & VM_NO_GUARD))
690 size += PAGE_SIZE;
691
692 vma->addr = va_start;
693 vma->phys_addr = pa_start;
694 vma->size = size;
695 vma->flags = VM_MAP | vm_flags;
696 vma->caller = __builtin_return_address(0);
697
698 vm_area_add_early(vma);
699 }
700
parse_rodata(char * arg)701 static int __init parse_rodata(char *arg)
702 {
703 int ret = strtobool(arg, &rodata_enabled);
704 if (!ret) {
705 rodata_full = false;
706 return 0;
707 }
708
709 /* permit 'full' in addition to boolean options */
710 if (strcmp(arg, "full"))
711 return -EINVAL;
712
713 rodata_enabled = true;
714 rodata_full = true;
715 return 0;
716 }
717 early_param("rodata", parse_rodata);
718
719 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
map_entry_trampoline(void)720 static int __init map_entry_trampoline(void)
721 {
722 int i;
723
724 pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
725 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
726
727 /* The trampoline is always mapped and can therefore be global */
728 pgprot_val(prot) &= ~PTE_NG;
729
730 /* Map only the text into the trampoline page table */
731 memset(tramp_pg_dir, 0, PGD_SIZE);
732 __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
733 entry_tramp_text_size(), prot,
734 __pgd_pgtable_alloc, NO_BLOCK_MAPPINGS);
735
736 /* Map both the text and data into the kernel page table */
737 for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
738 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
739 pa_start + i * PAGE_SIZE, prot);
740
741 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
742 extern char __entry_tramp_data_start[];
743
744 __set_fixmap(FIX_ENTRY_TRAMP_DATA,
745 __pa_symbol(__entry_tramp_data_start),
746 PAGE_KERNEL_RO);
747 }
748
749 return 0;
750 }
751 core_initcall(map_entry_trampoline);
752 #endif
753
754 /*
755 * Open coded check for BTI, only for use to determine configuration
756 * for early mappings for before the cpufeature code has run.
757 */
arm64_early_this_cpu_has_bti(void)758 static bool arm64_early_this_cpu_has_bti(void)
759 {
760 u64 pfr1;
761
762 if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
763 return false;
764
765 pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
766 return cpuid_feature_extract_unsigned_field(pfr1,
767 ID_AA64PFR1_EL1_BT_SHIFT);
768 }
769
770 /*
771 * Create fine-grained mappings for the kernel.
772 */
map_kernel(pgd_t * pgdp)773 static void __init map_kernel(pgd_t *pgdp)
774 {
775 static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
776 vmlinux_initdata, vmlinux_data;
777
778 /*
779 * External debuggers may need to write directly to the text
780 * mapping to install SW breakpoints. Allow this (only) when
781 * explicitly requested with rodata=off.
782 */
783 pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
784
785 /*
786 * If we have a CPU that supports BTI and a kernel built for
787 * BTI then mark the kernel executable text as guarded pages
788 * now so we don't have to rewrite the page tables later.
789 */
790 if (arm64_early_this_cpu_has_bti())
791 text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
792
793 /*
794 * Only rodata will be remapped with different permissions later on,
795 * all other segments are allowed to use contiguous mappings.
796 */
797 map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
798 VM_NO_GUARD);
799 map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
800 &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
801 map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
802 &vmlinux_inittext, 0, VM_NO_GUARD);
803 map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
804 &vmlinux_initdata, 0, VM_NO_GUARD);
805 map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
806
807 if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
808 /*
809 * The fixmap falls in a separate pgd to the kernel, and doesn't
810 * live in the carveout for the swapper_pg_dir. We can simply
811 * re-use the existing dir for the fixmap.
812 */
813 set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
814 READ_ONCE(*pgd_offset_k(FIXADDR_START)));
815 } else if (CONFIG_PGTABLE_LEVELS > 3) {
816 pgd_t *bm_pgdp;
817 p4d_t *bm_p4dp;
818 pud_t *bm_pudp;
819 /*
820 * The fixmap shares its top level pgd entry with the kernel
821 * mapping. This can really only occur when we are running
822 * with 16k/4 levels, so we can simply reuse the pud level
823 * entry instead.
824 */
825 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
826 bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
827 bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
828 bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
829 pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
830 pud_clear_fixmap();
831 } else {
832 BUG();
833 }
834
835 kasan_copy_shadow(pgdp);
836 }
837
paging_init(void)838 void __init paging_init(void)
839 {
840 pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
841
842 map_kernel(pgdp);
843 map_mem(pgdp);
844
845 pgd_clear_fixmap();
846
847 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
848 init_mm.pgd = swapper_pg_dir;
849
850 memblock_free(__pa_symbol(init_pg_dir),
851 __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
852
853 memblock_allow_resize();
854 }
855
856 /*
857 * Check whether a kernel address is valid (derived from arch/x86/).
858 */
kern_addr_valid(unsigned long addr)859 int kern_addr_valid(unsigned long addr)
860 {
861 pgd_t *pgdp;
862 p4d_t *p4dp;
863 pud_t *pudp, pud;
864 pmd_t *pmdp, pmd;
865 pte_t *ptep, pte;
866
867 addr = arch_kasan_reset_tag(addr);
868 if ((((long)addr) >> VA_BITS) != -1UL)
869 return 0;
870
871 pgdp = pgd_offset_k(addr);
872 if (pgd_none(READ_ONCE(*pgdp)))
873 return 0;
874
875 p4dp = p4d_offset(pgdp, addr);
876 if (p4d_none(READ_ONCE(*p4dp)))
877 return 0;
878
879 pudp = pud_offset(p4dp, addr);
880 pud = READ_ONCE(*pudp);
881 if (pud_none(pud))
882 return 0;
883
884 if (pud_sect(pud))
885 return pfn_valid(pud_pfn(pud));
886
887 pmdp = pmd_offset(pudp, addr);
888 pmd = READ_ONCE(*pmdp);
889 if (pmd_none(pmd))
890 return 0;
891
892 if (pmd_sect(pmd))
893 return pfn_valid(pmd_pfn(pmd));
894
895 ptep = pte_offset_kernel(pmdp, addr);
896 pte = READ_ONCE(*ptep);
897 if (pte_none(pte))
898 return 0;
899
900 return pfn_valid(pte_pfn(pte));
901 }
902
903 #ifdef CONFIG_MEMORY_HOTPLUG
free_hotplug_page_range(struct page * page,size_t size,struct vmem_altmap * altmap)904 static void free_hotplug_page_range(struct page *page, size_t size,
905 struct vmem_altmap *altmap)
906 {
907 if (altmap) {
908 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
909 } else {
910 WARN_ON(PageReserved(page));
911 free_pages((unsigned long)page_address(page), get_order(size));
912 }
913 }
914
free_hotplug_pgtable_page(struct page * page)915 static void free_hotplug_pgtable_page(struct page *page)
916 {
917 free_hotplug_page_range(page, PAGE_SIZE, NULL);
918 }
919
pgtable_range_aligned(unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling,unsigned long mask)920 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
921 unsigned long floor, unsigned long ceiling,
922 unsigned long mask)
923 {
924 start &= mask;
925 if (start < floor)
926 return false;
927
928 if (ceiling) {
929 ceiling &= mask;
930 if (!ceiling)
931 return false;
932 }
933
934 if (end - 1 > ceiling - 1)
935 return false;
936 return true;
937 }
938
unmap_hotplug_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)939 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
940 unsigned long end, bool free_mapped,
941 struct vmem_altmap *altmap)
942 {
943 pte_t *ptep, pte;
944
945 do {
946 ptep = pte_offset_kernel(pmdp, addr);
947 pte = READ_ONCE(*ptep);
948 if (pte_none(pte))
949 continue;
950
951 WARN_ON(!pte_present(pte));
952 pte_clear(&init_mm, addr, ptep);
953 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
954 if (free_mapped)
955 free_hotplug_page_range(pte_page(pte),
956 PAGE_SIZE, altmap);
957 } while (addr += PAGE_SIZE, addr < end);
958 }
959
unmap_hotplug_pmd_range(pud_t * pudp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)960 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
961 unsigned long end, bool free_mapped,
962 struct vmem_altmap *altmap)
963 {
964 unsigned long next;
965 pmd_t *pmdp, pmd;
966
967 do {
968 next = pmd_addr_end(addr, end);
969 pmdp = pmd_offset(pudp, addr);
970 pmd = READ_ONCE(*pmdp);
971 if (pmd_none(pmd))
972 continue;
973
974 WARN_ON(!pmd_present(pmd));
975 if (pmd_sect(pmd)) {
976 pmd_clear(pmdp);
977
978 /*
979 * One TLBI should be sufficient here as the PMD_SIZE
980 * range is mapped with a single block entry.
981 */
982 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
983 if (free_mapped)
984 free_hotplug_page_range(pmd_page(pmd),
985 PMD_SIZE, altmap);
986 continue;
987 }
988 WARN_ON(!pmd_table(pmd));
989 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
990 } while (addr = next, addr < end);
991 }
992
unmap_hotplug_pud_range(p4d_t * p4dp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)993 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
994 unsigned long end, bool free_mapped,
995 struct vmem_altmap *altmap)
996 {
997 unsigned long next;
998 pud_t *pudp, pud;
999
1000 do {
1001 next = pud_addr_end(addr, end);
1002 pudp = pud_offset(p4dp, addr);
1003 pud = READ_ONCE(*pudp);
1004 if (pud_none(pud))
1005 continue;
1006
1007 WARN_ON(!pud_present(pud));
1008 if (pud_sect(pud)) {
1009 pud_clear(pudp);
1010
1011 /*
1012 * One TLBI should be sufficient here as the PUD_SIZE
1013 * range is mapped with a single block entry.
1014 */
1015 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1016 if (free_mapped)
1017 free_hotplug_page_range(pud_page(pud),
1018 PUD_SIZE, altmap);
1019 continue;
1020 }
1021 WARN_ON(!pud_table(pud));
1022 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
1023 } while (addr = next, addr < end);
1024 }
1025
unmap_hotplug_p4d_range(pgd_t * pgdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1026 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
1027 unsigned long end, bool free_mapped,
1028 struct vmem_altmap *altmap)
1029 {
1030 unsigned long next;
1031 p4d_t *p4dp, p4d;
1032
1033 do {
1034 next = p4d_addr_end(addr, end);
1035 p4dp = p4d_offset(pgdp, addr);
1036 p4d = READ_ONCE(*p4dp);
1037 if (p4d_none(p4d))
1038 continue;
1039
1040 WARN_ON(!p4d_present(p4d));
1041 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
1042 } while (addr = next, addr < end);
1043 }
1044
unmap_hotplug_range(unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1045 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1046 bool free_mapped, struct vmem_altmap *altmap)
1047 {
1048 unsigned long next;
1049 pgd_t *pgdp, pgd;
1050
1051 /*
1052 * altmap can only be used as vmemmap mapping backing memory.
1053 * In case the backing memory itself is not being freed, then
1054 * altmap is irrelevant. Warn about this inconsistency when
1055 * encountered.
1056 */
1057 WARN_ON(!free_mapped && altmap);
1058
1059 do {
1060 next = pgd_addr_end(addr, end);
1061 pgdp = pgd_offset_k(addr);
1062 pgd = READ_ONCE(*pgdp);
1063 if (pgd_none(pgd))
1064 continue;
1065
1066 WARN_ON(!pgd_present(pgd));
1067 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1068 } while (addr = next, addr < end);
1069 }
1070
free_empty_pte_table(pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1071 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1072 unsigned long end, unsigned long floor,
1073 unsigned long ceiling)
1074 {
1075 pte_t *ptep, pte;
1076 unsigned long i, start = addr;
1077
1078 do {
1079 ptep = pte_offset_kernel(pmdp, addr);
1080 pte = READ_ONCE(*ptep);
1081
1082 /*
1083 * This is just a sanity check here which verifies that
1084 * pte clearing has been done by earlier unmap loops.
1085 */
1086 WARN_ON(!pte_none(pte));
1087 } while (addr += PAGE_SIZE, addr < end);
1088
1089 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1090 return;
1091
1092 /*
1093 * Check whether we can free the pte page if the rest of the
1094 * entries are empty. Overlap with other regions have been
1095 * handled by the floor/ceiling check.
1096 */
1097 ptep = pte_offset_kernel(pmdp, 0UL);
1098 for (i = 0; i < PTRS_PER_PTE; i++) {
1099 if (!pte_none(READ_ONCE(ptep[i])))
1100 return;
1101 }
1102
1103 pmd_clear(pmdp);
1104 __flush_tlb_kernel_pgtable(start);
1105 free_hotplug_pgtable_page(virt_to_page(ptep));
1106 }
1107
free_empty_pmd_table(pud_t * pudp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1108 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1109 unsigned long end, unsigned long floor,
1110 unsigned long ceiling)
1111 {
1112 pmd_t *pmdp, pmd;
1113 unsigned long i, next, start = addr;
1114
1115 do {
1116 next = pmd_addr_end(addr, end);
1117 pmdp = pmd_offset(pudp, addr);
1118 pmd = READ_ONCE(*pmdp);
1119 if (pmd_none(pmd))
1120 continue;
1121
1122 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1123 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1124 } while (addr = next, addr < end);
1125
1126 if (CONFIG_PGTABLE_LEVELS <= 2)
1127 return;
1128
1129 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1130 return;
1131
1132 /*
1133 * Check whether we can free the pmd page if the rest of the
1134 * entries are empty. Overlap with other regions have been
1135 * handled by the floor/ceiling check.
1136 */
1137 pmdp = pmd_offset(pudp, 0UL);
1138 for (i = 0; i < PTRS_PER_PMD; i++) {
1139 if (!pmd_none(READ_ONCE(pmdp[i])))
1140 return;
1141 }
1142
1143 pud_clear(pudp);
1144 __flush_tlb_kernel_pgtable(start);
1145 free_hotplug_pgtable_page(virt_to_page(pmdp));
1146 }
1147
free_empty_pud_table(p4d_t * p4dp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1148 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1149 unsigned long end, unsigned long floor,
1150 unsigned long ceiling)
1151 {
1152 pud_t *pudp, pud;
1153 unsigned long i, next, start = addr;
1154
1155 do {
1156 next = pud_addr_end(addr, end);
1157 pudp = pud_offset(p4dp, addr);
1158 pud = READ_ONCE(*pudp);
1159 if (pud_none(pud))
1160 continue;
1161
1162 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1163 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1164 } while (addr = next, addr < end);
1165
1166 if (CONFIG_PGTABLE_LEVELS <= 3)
1167 return;
1168
1169 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1170 return;
1171
1172 /*
1173 * Check whether we can free the pud page if the rest of the
1174 * entries are empty. Overlap with other regions have been
1175 * handled by the floor/ceiling check.
1176 */
1177 pudp = pud_offset(p4dp, 0UL);
1178 for (i = 0; i < PTRS_PER_PUD; i++) {
1179 if (!pud_none(READ_ONCE(pudp[i])))
1180 return;
1181 }
1182
1183 p4d_clear(p4dp);
1184 __flush_tlb_kernel_pgtable(start);
1185 free_hotplug_pgtable_page(virt_to_page(pudp));
1186 }
1187
free_empty_p4d_table(pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1188 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1189 unsigned long end, unsigned long floor,
1190 unsigned long ceiling)
1191 {
1192 unsigned long next;
1193 p4d_t *p4dp, p4d;
1194
1195 do {
1196 next = p4d_addr_end(addr, end);
1197 p4dp = p4d_offset(pgdp, addr);
1198 p4d = READ_ONCE(*p4dp);
1199 if (p4d_none(p4d))
1200 continue;
1201
1202 WARN_ON(!p4d_present(p4d));
1203 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1204 } while (addr = next, addr < end);
1205 }
1206
free_empty_tables(unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1207 static void free_empty_tables(unsigned long addr, unsigned long end,
1208 unsigned long floor, unsigned long ceiling)
1209 {
1210 unsigned long next;
1211 pgd_t *pgdp, pgd;
1212
1213 do {
1214 next = pgd_addr_end(addr, end);
1215 pgdp = pgd_offset_k(addr);
1216 pgd = READ_ONCE(*pgdp);
1217 if (pgd_none(pgd))
1218 continue;
1219
1220 WARN_ON(!pgd_present(pgd));
1221 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1222 } while (addr = next, addr < end);
1223 }
1224 #endif
1225
1226 #if !ARM64_KERNEL_USES_PMD_MAPS
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1227 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1228 struct vmem_altmap *altmap)
1229 {
1230 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1231 return vmemmap_populate_basepages(start, end, node, altmap);
1232 }
1233 #else /* !ARM64_KERNEL_USES_PMD_MAPS */
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1234 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1235 struct vmem_altmap *altmap)
1236 {
1237 unsigned long addr = start;
1238 unsigned long next;
1239 pgd_t *pgdp;
1240 p4d_t *p4dp;
1241 pud_t *pudp;
1242 pmd_t *pmdp;
1243
1244 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1245 do {
1246 next = pmd_addr_end(addr, end);
1247
1248 pgdp = vmemmap_pgd_populate(addr, node);
1249 if (!pgdp)
1250 return -ENOMEM;
1251
1252 p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1253 if (!p4dp)
1254 return -ENOMEM;
1255
1256 pudp = vmemmap_pud_populate(p4dp, addr, node);
1257 if (!pudp)
1258 return -ENOMEM;
1259
1260 pmdp = pmd_offset(pudp, addr);
1261 if (pmd_none(READ_ONCE(*pmdp))) {
1262 void *p = NULL;
1263
1264 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1265 if (!p) {
1266 if (vmemmap_populate_basepages(addr, next, node, altmap))
1267 return -ENOMEM;
1268 continue;
1269 }
1270
1271 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1272 } else
1273 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1274 } while (addr = next, addr != end);
1275
1276 return 0;
1277 }
1278 #endif /* !ARM64_KERNEL_USES_PMD_MAPS */
1279
1280 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1281 void vmemmap_free(unsigned long start, unsigned long end,
1282 struct vmem_altmap *altmap)
1283 {
1284 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1285
1286 unmap_hotplug_range(start, end, true, altmap);
1287 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1288 }
1289 #endif /* CONFIG_MEMORY_HOTPLUG */
1290
fixmap_pud(unsigned long addr)1291 static inline pud_t *fixmap_pud(unsigned long addr)
1292 {
1293 pgd_t *pgdp = pgd_offset_k(addr);
1294 p4d_t *p4dp = p4d_offset(pgdp, addr);
1295 p4d_t p4d = READ_ONCE(*p4dp);
1296
1297 BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1298
1299 return pud_offset_kimg(p4dp, addr);
1300 }
1301
fixmap_pmd(unsigned long addr)1302 static inline pmd_t *fixmap_pmd(unsigned long addr)
1303 {
1304 pud_t *pudp = fixmap_pud(addr);
1305 pud_t pud = READ_ONCE(*pudp);
1306
1307 BUG_ON(pud_none(pud) || pud_bad(pud));
1308
1309 return pmd_offset_kimg(pudp, addr);
1310 }
1311
fixmap_pte(unsigned long addr)1312 static inline pte_t *fixmap_pte(unsigned long addr)
1313 {
1314 return &bm_pte[pte_index(addr)];
1315 }
1316
1317 /*
1318 * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1319 * directly on kernel symbols (bm_p*d). This function is called too early to use
1320 * lm_alias so __p*d_populate functions must be used to populate with the
1321 * physical address from __pa_symbol.
1322 */
early_fixmap_init(void)1323 void __init early_fixmap_init(void)
1324 {
1325 pgd_t *pgdp;
1326 p4d_t *p4dp, p4d;
1327 pud_t *pudp;
1328 pmd_t *pmdp;
1329 unsigned long addr = FIXADDR_START;
1330
1331 pgdp = pgd_offset_k(addr);
1332 p4dp = p4d_offset(pgdp, addr);
1333 p4d = READ_ONCE(*p4dp);
1334 if (CONFIG_PGTABLE_LEVELS > 3 &&
1335 !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1336 /*
1337 * We only end up here if the kernel mapping and the fixmap
1338 * share the top level pgd entry, which should only happen on
1339 * 16k/4 levels configurations.
1340 */
1341 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1342 pudp = pud_offset_kimg(p4dp, addr);
1343 } else {
1344 if (p4d_none(p4d))
1345 __p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
1346 pudp = fixmap_pud(addr);
1347 }
1348 if (pud_none(READ_ONCE(*pudp)))
1349 __pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
1350 pmdp = fixmap_pmd(addr);
1351 __pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1352
1353 /*
1354 * The boot-ioremap range spans multiple pmds, for which
1355 * we are not prepared:
1356 */
1357 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1358 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1359
1360 if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1361 || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1362 WARN_ON(1);
1363 pr_warn("pmdp %p != %p, %p\n",
1364 pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1365 fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1366 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1367 fix_to_virt(FIX_BTMAP_BEGIN));
1368 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
1369 fix_to_virt(FIX_BTMAP_END));
1370
1371 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
1372 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
1373 }
1374 }
1375
1376 /*
1377 * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1378 * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1379 */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)1380 void __set_fixmap(enum fixed_addresses idx,
1381 phys_addr_t phys, pgprot_t flags)
1382 {
1383 unsigned long addr = __fix_to_virt(idx);
1384 pte_t *ptep;
1385
1386 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1387
1388 ptep = fixmap_pte(addr);
1389
1390 if (pgprot_val(flags)) {
1391 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1392 } else {
1393 pte_clear(&init_mm, addr, ptep);
1394 flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1395 }
1396 }
1397
__get_fixmap_pte(enum fixed_addresses idx)1398 pte_t *__get_fixmap_pte(enum fixed_addresses idx)
1399 {
1400 unsigned long addr = __fix_to_virt(idx);
1401 pte_t *ptep;
1402
1403 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1404
1405 ptep = fixmap_pte(addr);
1406
1407 if (!pte_valid(*ptep))
1408 return NULL;
1409
1410 return ptep;
1411 }
1412
fixmap_remap_fdt(phys_addr_t dt_phys,int * size,pgprot_t prot)1413 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1414 {
1415 const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1416 int offset;
1417 void *dt_virt;
1418
1419 /*
1420 * Check whether the physical FDT address is set and meets the minimum
1421 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1422 * at least 8 bytes so that we can always access the magic and size
1423 * fields of the FDT header after mapping the first chunk, double check
1424 * here if that is indeed the case.
1425 */
1426 BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1427 if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1428 return NULL;
1429
1430 /*
1431 * Make sure that the FDT region can be mapped without the need to
1432 * allocate additional translation table pages, so that it is safe
1433 * to call create_mapping_noalloc() this early.
1434 *
1435 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1436 * be in the same PMD as the rest of the fixmap.
1437 * On 4k pages, we'll use section mappings for the FDT so we only
1438 * have to be in the same PUD.
1439 */
1440 BUILD_BUG_ON(dt_virt_base % SZ_2M);
1441
1442 BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1443 __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1444
1445 offset = dt_phys % SWAPPER_BLOCK_SIZE;
1446 dt_virt = (void *)dt_virt_base + offset;
1447
1448 /* map the first chunk so we can read the size from the header */
1449 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1450 dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1451
1452 if (fdt_magic(dt_virt) != FDT_MAGIC)
1453 return NULL;
1454
1455 *size = fdt_totalsize(dt_virt);
1456 if (*size > MAX_FDT_SIZE)
1457 return NULL;
1458
1459 if (offset + *size > SWAPPER_BLOCK_SIZE)
1460 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1461 round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1462
1463 return dt_virt;
1464 }
1465
pud_set_huge(pud_t * pudp,phys_addr_t phys,pgprot_t prot)1466 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1467 {
1468 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1469
1470 /* Only allow permission changes for now */
1471 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1472 pud_val(new_pud)))
1473 return 0;
1474
1475 VM_BUG_ON(phys & ~PUD_MASK);
1476 set_pud(pudp, new_pud);
1477 return 1;
1478 }
1479
pmd_set_huge(pmd_t * pmdp,phys_addr_t phys,pgprot_t prot)1480 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1481 {
1482 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1483
1484 /* Only allow permission changes for now */
1485 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1486 pmd_val(new_pmd)))
1487 return 0;
1488
1489 VM_BUG_ON(phys & ~PMD_MASK);
1490 set_pmd(pmdp, new_pmd);
1491 return 1;
1492 }
1493
pud_clear_huge(pud_t * pudp)1494 int pud_clear_huge(pud_t *pudp)
1495 {
1496 if (!pud_sect(READ_ONCE(*pudp)))
1497 return 0;
1498 pud_clear(pudp);
1499 return 1;
1500 }
1501
pmd_clear_huge(pmd_t * pmdp)1502 int pmd_clear_huge(pmd_t *pmdp)
1503 {
1504 if (!pmd_sect(READ_ONCE(*pmdp)))
1505 return 0;
1506 pmd_clear(pmdp);
1507 return 1;
1508 }
1509
pmd_free_pte_page(pmd_t * pmdp,unsigned long addr)1510 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1511 {
1512 pte_t *table;
1513 pmd_t pmd;
1514
1515 pmd = READ_ONCE(*pmdp);
1516
1517 if (!pmd_table(pmd)) {
1518 VM_WARN_ON(1);
1519 return 1;
1520 }
1521
1522 table = pte_offset_kernel(pmdp, addr);
1523 pmd_clear(pmdp);
1524 __flush_tlb_kernel_pgtable(addr);
1525 pte_free_kernel(NULL, table);
1526 return 1;
1527 }
1528
pud_free_pmd_page(pud_t * pudp,unsigned long addr)1529 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1530 {
1531 pmd_t *table;
1532 pmd_t *pmdp;
1533 pud_t pud;
1534 unsigned long next, end;
1535
1536 pud = READ_ONCE(*pudp);
1537
1538 if (!pud_table(pud)) {
1539 VM_WARN_ON(1);
1540 return 1;
1541 }
1542
1543 table = pmd_offset(pudp, addr);
1544 pmdp = table;
1545 next = addr;
1546 end = addr + PUD_SIZE;
1547 do {
1548 pmd_free_pte_page(pmdp, next);
1549 } while (pmdp++, next += PMD_SIZE, next != end);
1550
1551 pud_clear(pudp);
1552 __flush_tlb_kernel_pgtable(addr);
1553 pmd_free(NULL, table);
1554 return 1;
1555 }
1556
should_flush_tlb_when_young(void)1557 bool should_flush_tlb_when_young(void)
1558 {
1559 bool skip = false;
1560
1561 trace_android_vh_ptep_clear_flush_young(&skip);
1562 return !skip;
1563 }
1564
1565 #ifdef CONFIG_MEMORY_HOTPLUG
__remove_pgd_mapping(pgd_t * pgdir,unsigned long start,u64 size)1566 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1567 {
1568 unsigned long end = start + size;
1569
1570 WARN_ON(pgdir != init_mm.pgd);
1571 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1572
1573 unmap_hotplug_range(start, end, false, NULL);
1574 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1575 }
1576
arch_get_mappable_range(void)1577 struct range arch_get_mappable_range(void)
1578 {
1579 struct range mhp_range;
1580 u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1581 u64 end_linear_pa = __pa(PAGE_END - 1);
1582
1583 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1584 /*
1585 * Check for a wrap, it is possible because of randomized linear
1586 * mapping the start physical address is actually bigger than
1587 * the end physical address. In this case set start to zero
1588 * because [0, end_linear_pa] range must still be able to cover
1589 * all addressable physical addresses.
1590 */
1591 if (start_linear_pa > end_linear_pa)
1592 start_linear_pa = 0;
1593 }
1594
1595 WARN_ON(start_linear_pa > end_linear_pa);
1596
1597 /*
1598 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1599 * accommodating both its ends but excluding PAGE_END. Max physical
1600 * range which can be mapped inside this linear mapping range, must
1601 * also be derived from its end points.
1602 */
1603 mhp_range.start = start_linear_pa;
1604 mhp_range.end = end_linear_pa;
1605
1606 return mhp_range;
1607 }
1608
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1609 int arch_add_memory(int nid, u64 start, u64 size,
1610 struct mhp_params *params)
1611 {
1612 int ret, flags = NO_EXEC_MAPPINGS;
1613
1614 VM_BUG_ON(!mhp_range_allowed(start, size, true));
1615
1616 if (can_set_direct_map())
1617 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1618
1619 __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1620 size, params->pgprot, __pgd_pgtable_alloc,
1621 flags);
1622
1623 memblock_clear_nomap(start, size);
1624
1625 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1626 params);
1627 if (ret)
1628 __remove_pgd_mapping(swapper_pg_dir,
1629 __phys_to_virt(start), size);
1630 else {
1631 max_pfn = PFN_UP(start + size);
1632 max_low_pfn = max_pfn;
1633 }
1634
1635 return ret;
1636 }
1637
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1638 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1639 {
1640 unsigned long start_pfn = start >> PAGE_SHIFT;
1641 unsigned long nr_pages = size >> PAGE_SHIFT;
1642
1643 __remove_pages(start_pfn, nr_pages, altmap);
1644 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1645 }
1646
1647 /*
1648 * This memory hotplug notifier helps prevent boot memory from being
1649 * inadvertently removed as it blocks pfn range offlining process in
1650 * __offline_pages(). Hence this prevents both offlining as well as
1651 * removal process for boot memory which is initially always online.
1652 * In future if and when boot memory could be removed, this notifier
1653 * should be dropped and free_hotplug_page_range() should handle any
1654 * reserved pages allocated during boot.
1655 */
prevent_bootmem_remove_notifier(struct notifier_block * nb,unsigned long action,void * data)1656 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1657 unsigned long action, void *data)
1658 {
1659 struct mem_section *ms;
1660 struct memory_notify *arg = data;
1661 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1662 unsigned long pfn = arg->start_pfn;
1663
1664 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1665 return NOTIFY_OK;
1666
1667 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1668 unsigned long start = PFN_PHYS(pfn);
1669 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1670
1671 ms = __pfn_to_section(pfn);
1672 if (!early_section(ms))
1673 continue;
1674
1675 if (action == MEM_GOING_OFFLINE) {
1676 /*
1677 * Boot memory removal is not supported. Prevent
1678 * it via blocking any attempted offline request
1679 * for the boot memory and just report it.
1680 */
1681 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1682 return NOTIFY_BAD;
1683 } else if (action == MEM_OFFLINE) {
1684 /*
1685 * This should have never happened. Boot memory
1686 * offlining should have been prevented by this
1687 * very notifier. Probably some memory removal
1688 * procedure might have changed which would then
1689 * require further debug.
1690 */
1691 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1692
1693 /*
1694 * Core memory hotplug does not process a return
1695 * code from the notifier for MEM_OFFLINE events.
1696 * The error condition has been reported. Return
1697 * from here as if ignored.
1698 */
1699 return NOTIFY_DONE;
1700 }
1701 }
1702 return NOTIFY_OK;
1703 }
1704
1705 static struct notifier_block prevent_bootmem_remove_nb = {
1706 .notifier_call = prevent_bootmem_remove_notifier,
1707 };
1708
1709 /*
1710 * This ensures that boot memory sections on the platform are online
1711 * from early boot. Memory sections could not be prevented from being
1712 * offlined, unless for some reason they are not online to begin with.
1713 * This helps validate the basic assumption on which the above memory
1714 * event notifier works to prevent boot memory section offlining and
1715 * its possible removal.
1716 */
validate_bootmem_online(void)1717 static void validate_bootmem_online(void)
1718 {
1719 phys_addr_t start, end, addr;
1720 struct mem_section *ms;
1721 u64 i;
1722
1723 /*
1724 * Scanning across all memblock might be expensive
1725 * on some big memory systems. Hence enable this
1726 * validation only with DEBUG_VM.
1727 */
1728 if (!IS_ENABLED(CONFIG_DEBUG_VM))
1729 return;
1730
1731 for_each_mem_range(i, &start, &end) {
1732 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1733 ms = __pfn_to_section(PHYS_PFN(addr));
1734
1735 /*
1736 * All memory ranges in the system at this point
1737 * should have been marked as early sections.
1738 */
1739 WARN_ON(!early_section(ms));
1740
1741 /*
1742 * Memory notifier mechanism here to prevent boot
1743 * memory offlining depends on the fact that each
1744 * early section memory on the system is initially
1745 * online. Otherwise a given memory section which
1746 * is already offline will be overlooked and can
1747 * be removed completely. Call out such sections.
1748 */
1749 if (!online_section(ms))
1750 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1751 addr, addr + (1UL << PA_SECTION_SHIFT));
1752 }
1753 }
1754 }
1755
prevent_bootmem_remove_init(void)1756 static int __init prevent_bootmem_remove_init(void)
1757 {
1758 int ret = 0;
1759
1760 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1761 return ret;
1762
1763 validate_bootmem_online();
1764 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1765 if (ret)
1766 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1767
1768 return ret;
1769 }
1770 early_initcall(prevent_bootmem_remove_init);
1771 #endif
1772