• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23 
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29 
30 #include <linux/kvm_host.h>
31 
32 #include "interrupt.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36 
37 #ifndef VECTORSPACING
38 #define VECTORSPACING 0x100	/* for EI/VI mode */
39 #endif
40 
41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 	KVM_GENERIC_VM_STATS()
43 };
44 
45 const struct kvm_stats_header kvm_vm_stats_header = {
46 	.name_size = KVM_STATS_NAME_SIZE,
47 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48 	.id_offset = sizeof(struct kvm_stats_header),
49 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 		       sizeof(kvm_vm_stats_desc),
52 };
53 
54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55 	KVM_GENERIC_VCPU_STATS(),
56 	STATS_DESC_COUNTER(VCPU, wait_exits),
57 	STATS_DESC_COUNTER(VCPU, cache_exits),
58 	STATS_DESC_COUNTER(VCPU, signal_exits),
59 	STATS_DESC_COUNTER(VCPU, int_exits),
60 	STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61 	STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62 	STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63 	STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64 	STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65 	STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66 	STATS_DESC_COUNTER(VCPU, syscall_exits),
67 	STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68 	STATS_DESC_COUNTER(VCPU, break_inst_exits),
69 	STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70 	STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71 	STATS_DESC_COUNTER(VCPU, fpe_exits),
72 	STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73 	STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74 	STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75 	STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76 	STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77 	STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78 	STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79 	STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80 	STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81 	STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82 #ifdef CONFIG_CPU_LOONGSON64
83 	STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84 #endif
85 };
86 
87 const struct kvm_stats_header kvm_vcpu_stats_header = {
88 	.name_size = KVM_STATS_NAME_SIZE,
89 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90 	.id_offset = sizeof(struct kvm_stats_header),
91 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93 		       sizeof(kvm_vcpu_stats_desc),
94 };
95 
96 bool kvm_trace_guest_mode_change;
97 
kvm_guest_mode_change_trace_reg(void)98 int kvm_guest_mode_change_trace_reg(void)
99 {
100 	kvm_trace_guest_mode_change = true;
101 	return 0;
102 }
103 
kvm_guest_mode_change_trace_unreg(void)104 void kvm_guest_mode_change_trace_unreg(void)
105 {
106 	kvm_trace_guest_mode_change = false;
107 }
108 
109 /*
110  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111  * Config7, so we are "runnable" if interrupts are pending
112  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114 {
115 	return !!(vcpu->arch.pending_exceptions);
116 }
117 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119 {
120 	return false;
121 }
122 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124 {
125 	return 1;
126 }
127 
kvm_arch_hardware_enable(void)128 int kvm_arch_hardware_enable(void)
129 {
130 	return kvm_mips_callbacks->hardware_enable();
131 }
132 
kvm_arch_hardware_disable(void)133 void kvm_arch_hardware_disable(void)
134 {
135 	kvm_mips_callbacks->hardware_disable();
136 }
137 
kvm_arch_hardware_setup(void * opaque)138 int kvm_arch_hardware_setup(void *opaque)
139 {
140 	return 0;
141 }
142 
kvm_arch_check_processor_compat(void * opaque)143 int kvm_arch_check_processor_compat(void *opaque)
144 {
145 	return 0;
146 }
147 
148 extern void kvm_init_loongson_ipi(struct kvm *kvm);
149 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)150 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
151 {
152 	switch (type) {
153 	case KVM_VM_MIPS_AUTO:
154 		break;
155 	case KVM_VM_MIPS_VZ:
156 		break;
157 	default:
158 		/* Unsupported KVM type */
159 		return -EINVAL;
160 	}
161 
162 	/* Allocate page table to map GPA -> RPA */
163 	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
164 	if (!kvm->arch.gpa_mm.pgd)
165 		return -ENOMEM;
166 
167 #ifdef CONFIG_CPU_LOONGSON64
168 	kvm_init_loongson_ipi(kvm);
169 #endif
170 
171 	return 0;
172 }
173 
kvm_mips_free_gpa_pt(struct kvm * kvm)174 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
175 {
176 	/* It should always be safe to remove after flushing the whole range */
177 	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
178 	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
179 }
180 
kvm_arch_destroy_vm(struct kvm * kvm)181 void kvm_arch_destroy_vm(struct kvm *kvm)
182 {
183 	kvm_destroy_vcpus(kvm);
184 	kvm_mips_free_gpa_pt(kvm);
185 }
186 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188 			unsigned long arg)
189 {
190 	return -ENOIOCTLCMD;
191 }
192 
kvm_arch_flush_shadow_all(struct kvm * kvm)193 void kvm_arch_flush_shadow_all(struct kvm *kvm)
194 {
195 	/* Flush whole GPA */
196 	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
197 	kvm_flush_remote_tlbs(kvm);
198 }
199 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)200 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
201 				   struct kvm_memory_slot *slot)
202 {
203 	/*
204 	 * The slot has been made invalid (ready for moving or deletion), so we
205 	 * need to ensure that it can no longer be accessed by any guest VCPUs.
206 	 */
207 
208 	spin_lock(&kvm->mmu_lock);
209 	/* Flush slot from GPA */
210 	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
211 			      slot->base_gfn + slot->npages - 1);
212 	kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
213 	spin_unlock(&kvm->mmu_lock);
214 }
215 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)216 int kvm_arch_prepare_memory_region(struct kvm *kvm,
217 				   struct kvm_memory_slot *memslot,
218 				   const struct kvm_userspace_memory_region *mem,
219 				   enum kvm_mr_change change)
220 {
221 	return 0;
222 }
223 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)224 void kvm_arch_commit_memory_region(struct kvm *kvm,
225 				   const struct kvm_userspace_memory_region *mem,
226 				   struct kvm_memory_slot *old,
227 				   const struct kvm_memory_slot *new,
228 				   enum kvm_mr_change change)
229 {
230 	int needs_flush;
231 
232 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
233 		  __func__, kvm, mem->slot, mem->guest_phys_addr,
234 		  mem->memory_size, mem->userspace_addr);
235 
236 	/*
237 	 * If dirty page logging is enabled, write protect all pages in the slot
238 	 * ready for dirty logging.
239 	 *
240 	 * There is no need to do this in any of the following cases:
241 	 * CREATE:	No dirty mappings will already exist.
242 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
243 	 *		kvm_arch_flush_shadow_memslot()
244 	 */
245 	if (change == KVM_MR_FLAGS_ONLY &&
246 	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
247 	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
248 		spin_lock(&kvm->mmu_lock);
249 		/* Write protect GPA page table entries */
250 		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
251 					new->base_gfn + new->npages - 1);
252 		if (needs_flush)
253 			kvm_arch_flush_remote_tlbs_memslot(kvm, new);
254 		spin_unlock(&kvm->mmu_lock);
255 	}
256 }
257 
dump_handler(const char * symbol,void * start,void * end)258 static inline void dump_handler(const char *symbol, void *start, void *end)
259 {
260 	u32 *p;
261 
262 	pr_debug("LEAF(%s)\n", symbol);
263 
264 	pr_debug("\t.set push\n");
265 	pr_debug("\t.set noreorder\n");
266 
267 	for (p = start; p < (u32 *)end; ++p)
268 		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
269 
270 	pr_debug("\t.set\tpop\n");
271 
272 	pr_debug("\tEND(%s)\n", symbol);
273 }
274 
275 /* low level hrtimer wake routine */
kvm_mips_comparecount_wakeup(struct hrtimer * timer)276 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
277 {
278 	struct kvm_vcpu *vcpu;
279 
280 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
281 
282 	kvm_mips_callbacks->queue_timer_int(vcpu);
283 
284 	vcpu->arch.wait = 0;
285 	rcuwait_wake_up(&vcpu->wait);
286 
287 	return kvm_mips_count_timeout(vcpu);
288 }
289 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)290 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
291 {
292 	return 0;
293 }
294 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)295 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
296 {
297 	int err, size;
298 	void *gebase, *p, *handler, *refill_start, *refill_end;
299 	int i;
300 
301 	kvm_debug("kvm @ %p: create cpu %d at %p\n",
302 		  vcpu->kvm, vcpu->vcpu_id, vcpu);
303 
304 	err = kvm_mips_callbacks->vcpu_init(vcpu);
305 	if (err)
306 		return err;
307 
308 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
309 		     HRTIMER_MODE_REL);
310 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
311 
312 	/*
313 	 * Allocate space for host mode exception handlers that handle
314 	 * guest mode exits
315 	 */
316 	if (cpu_has_veic || cpu_has_vint)
317 		size = 0x200 + VECTORSPACING * 64;
318 	else
319 		size = 0x4000;
320 
321 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
322 
323 	if (!gebase) {
324 		err = -ENOMEM;
325 		goto out_uninit_vcpu;
326 	}
327 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
328 		  ALIGN(size, PAGE_SIZE), gebase);
329 
330 	/*
331 	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
332 	 * limits us to the low 512MB of physical address space. If the memory
333 	 * we allocate is out of range, just give up now.
334 	 */
335 	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
336 		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
337 			gebase);
338 		err = -ENOMEM;
339 		goto out_free_gebase;
340 	}
341 
342 	/* Save new ebase */
343 	vcpu->arch.guest_ebase = gebase;
344 
345 	/* Build guest exception vectors dynamically in unmapped memory */
346 	handler = gebase + 0x2000;
347 
348 	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
349 	refill_start = gebase;
350 	if (IS_ENABLED(CONFIG_64BIT))
351 		refill_start += 0x080;
352 	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
353 
354 	/* General Exception Entry point */
355 	kvm_mips_build_exception(gebase + 0x180, handler);
356 
357 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
358 	for (i = 0; i < 8; i++) {
359 		kvm_debug("L1 Vectored handler @ %p\n",
360 			  gebase + 0x200 + (i * VECTORSPACING));
361 		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
362 					 handler);
363 	}
364 
365 	/* General exit handler */
366 	p = handler;
367 	p = kvm_mips_build_exit(p);
368 
369 	/* Guest entry routine */
370 	vcpu->arch.vcpu_run = p;
371 	p = kvm_mips_build_vcpu_run(p);
372 
373 	/* Dump the generated code */
374 	pr_debug("#include <asm/asm.h>\n");
375 	pr_debug("#include <asm/regdef.h>\n");
376 	pr_debug("\n");
377 	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
378 	dump_handler("kvm_tlb_refill", refill_start, refill_end);
379 	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
380 	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
381 
382 	/* Invalidate the icache for these ranges */
383 	flush_icache_range((unsigned long)gebase,
384 			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
385 
386 	/* Init */
387 	vcpu->arch.last_sched_cpu = -1;
388 	vcpu->arch.last_exec_cpu = -1;
389 
390 	/* Initial guest state */
391 	err = kvm_mips_callbacks->vcpu_setup(vcpu);
392 	if (err)
393 		goto out_free_gebase;
394 
395 	return 0;
396 
397 out_free_gebase:
398 	kfree(gebase);
399 out_uninit_vcpu:
400 	kvm_mips_callbacks->vcpu_uninit(vcpu);
401 	return err;
402 }
403 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)404 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
405 {
406 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
407 
408 	kvm_mips_dump_stats(vcpu);
409 
410 	kvm_mmu_free_memory_caches(vcpu);
411 	kfree(vcpu->arch.guest_ebase);
412 
413 	kvm_mips_callbacks->vcpu_uninit(vcpu);
414 }
415 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)416 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
417 					struct kvm_guest_debug *dbg)
418 {
419 	return -ENOIOCTLCMD;
420 }
421 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)422 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
423 {
424 	int r = -EINTR;
425 
426 	vcpu_load(vcpu);
427 
428 	kvm_sigset_activate(vcpu);
429 
430 	if (vcpu->mmio_needed) {
431 		if (!vcpu->mmio_is_write)
432 			kvm_mips_complete_mmio_load(vcpu);
433 		vcpu->mmio_needed = 0;
434 	}
435 
436 	if (vcpu->run->immediate_exit)
437 		goto out;
438 
439 	lose_fpu(1);
440 
441 	local_irq_disable();
442 	guest_enter_irqoff();
443 	trace_kvm_enter(vcpu);
444 
445 	/*
446 	 * Make sure the read of VCPU requests in vcpu_run() callback is not
447 	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
448 	 * flush request while the requester sees the VCPU as outside of guest
449 	 * mode and not needing an IPI.
450 	 */
451 	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
452 
453 	r = kvm_mips_callbacks->vcpu_run(vcpu);
454 
455 	trace_kvm_out(vcpu);
456 	guest_exit_irqoff();
457 	local_irq_enable();
458 
459 out:
460 	kvm_sigset_deactivate(vcpu);
461 
462 	vcpu_put(vcpu);
463 	return r;
464 }
465 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_mips_interrupt * irq)466 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
467 			     struct kvm_mips_interrupt *irq)
468 {
469 	int intr = (int)irq->irq;
470 	struct kvm_vcpu *dvcpu = NULL;
471 
472 	if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
473 	    intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
474 	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
475 	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
476 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
477 			  (int)intr);
478 
479 	if (irq->cpu == -1)
480 		dvcpu = vcpu;
481 	else
482 		dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
483 
484 	if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
485 		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
486 
487 	} else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
488 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
489 	} else {
490 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
491 			irq->cpu, irq->irq);
492 		return -EINVAL;
493 	}
494 
495 	dvcpu->arch.wait = 0;
496 
497 	rcuwait_wake_up(&dvcpu->wait);
498 
499 	return 0;
500 }
501 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)502 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
503 				    struct kvm_mp_state *mp_state)
504 {
505 	return -ENOIOCTLCMD;
506 }
507 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)508 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
509 				    struct kvm_mp_state *mp_state)
510 {
511 	return -ENOIOCTLCMD;
512 }
513 
514 static u64 kvm_mips_get_one_regs[] = {
515 	KVM_REG_MIPS_R0,
516 	KVM_REG_MIPS_R1,
517 	KVM_REG_MIPS_R2,
518 	KVM_REG_MIPS_R3,
519 	KVM_REG_MIPS_R4,
520 	KVM_REG_MIPS_R5,
521 	KVM_REG_MIPS_R6,
522 	KVM_REG_MIPS_R7,
523 	KVM_REG_MIPS_R8,
524 	KVM_REG_MIPS_R9,
525 	KVM_REG_MIPS_R10,
526 	KVM_REG_MIPS_R11,
527 	KVM_REG_MIPS_R12,
528 	KVM_REG_MIPS_R13,
529 	KVM_REG_MIPS_R14,
530 	KVM_REG_MIPS_R15,
531 	KVM_REG_MIPS_R16,
532 	KVM_REG_MIPS_R17,
533 	KVM_REG_MIPS_R18,
534 	KVM_REG_MIPS_R19,
535 	KVM_REG_MIPS_R20,
536 	KVM_REG_MIPS_R21,
537 	KVM_REG_MIPS_R22,
538 	KVM_REG_MIPS_R23,
539 	KVM_REG_MIPS_R24,
540 	KVM_REG_MIPS_R25,
541 	KVM_REG_MIPS_R26,
542 	KVM_REG_MIPS_R27,
543 	KVM_REG_MIPS_R28,
544 	KVM_REG_MIPS_R29,
545 	KVM_REG_MIPS_R30,
546 	KVM_REG_MIPS_R31,
547 
548 #ifndef CONFIG_CPU_MIPSR6
549 	KVM_REG_MIPS_HI,
550 	KVM_REG_MIPS_LO,
551 #endif
552 	KVM_REG_MIPS_PC,
553 };
554 
555 static u64 kvm_mips_get_one_regs_fpu[] = {
556 	KVM_REG_MIPS_FCR_IR,
557 	KVM_REG_MIPS_FCR_CSR,
558 };
559 
560 static u64 kvm_mips_get_one_regs_msa[] = {
561 	KVM_REG_MIPS_MSA_IR,
562 	KVM_REG_MIPS_MSA_CSR,
563 };
564 
kvm_mips_num_regs(struct kvm_vcpu * vcpu)565 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
566 {
567 	unsigned long ret;
568 
569 	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
570 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
571 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
572 		/* odd doubles */
573 		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
574 			ret += 16;
575 	}
576 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
577 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
578 	ret += kvm_mips_callbacks->num_regs(vcpu);
579 
580 	return ret;
581 }
582 
kvm_mips_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * indices)583 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
584 {
585 	u64 index;
586 	unsigned int i;
587 
588 	if (copy_to_user(indices, kvm_mips_get_one_regs,
589 			 sizeof(kvm_mips_get_one_regs)))
590 		return -EFAULT;
591 	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
592 
593 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
594 		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
595 				 sizeof(kvm_mips_get_one_regs_fpu)))
596 			return -EFAULT;
597 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
598 
599 		for (i = 0; i < 32; ++i) {
600 			index = KVM_REG_MIPS_FPR_32(i);
601 			if (copy_to_user(indices, &index, sizeof(index)))
602 				return -EFAULT;
603 			++indices;
604 
605 			/* skip odd doubles if no F64 */
606 			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
607 				continue;
608 
609 			index = KVM_REG_MIPS_FPR_64(i);
610 			if (copy_to_user(indices, &index, sizeof(index)))
611 				return -EFAULT;
612 			++indices;
613 		}
614 	}
615 
616 	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
617 		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
618 				 sizeof(kvm_mips_get_one_regs_msa)))
619 			return -EFAULT;
620 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
621 
622 		for (i = 0; i < 32; ++i) {
623 			index = KVM_REG_MIPS_VEC_128(i);
624 			if (copy_to_user(indices, &index, sizeof(index)))
625 				return -EFAULT;
626 			++indices;
627 		}
628 	}
629 
630 	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
631 }
632 
kvm_mips_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)633 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
634 			    const struct kvm_one_reg *reg)
635 {
636 	struct mips_coproc *cop0 = &vcpu->arch.cop0;
637 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
638 	int ret;
639 	s64 v;
640 	s64 vs[2];
641 	unsigned int idx;
642 
643 	switch (reg->id) {
644 	/* General purpose registers */
645 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
646 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
647 		break;
648 #ifndef CONFIG_CPU_MIPSR6
649 	case KVM_REG_MIPS_HI:
650 		v = (long)vcpu->arch.hi;
651 		break;
652 	case KVM_REG_MIPS_LO:
653 		v = (long)vcpu->arch.lo;
654 		break;
655 #endif
656 	case KVM_REG_MIPS_PC:
657 		v = (long)vcpu->arch.pc;
658 		break;
659 
660 	/* Floating point registers */
661 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
662 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
663 			return -EINVAL;
664 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
665 		/* Odd singles in top of even double when FR=0 */
666 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
667 			v = get_fpr32(&fpu->fpr[idx], 0);
668 		else
669 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
670 		break;
671 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
672 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
673 			return -EINVAL;
674 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
675 		/* Can't access odd doubles in FR=0 mode */
676 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
677 			return -EINVAL;
678 		v = get_fpr64(&fpu->fpr[idx], 0);
679 		break;
680 	case KVM_REG_MIPS_FCR_IR:
681 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
682 			return -EINVAL;
683 		v = boot_cpu_data.fpu_id;
684 		break;
685 	case KVM_REG_MIPS_FCR_CSR:
686 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
687 			return -EINVAL;
688 		v = fpu->fcr31;
689 		break;
690 
691 	/* MIPS SIMD Architecture (MSA) registers */
692 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
693 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
694 			return -EINVAL;
695 		/* Can't access MSA registers in FR=0 mode */
696 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
697 			return -EINVAL;
698 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
699 #ifdef CONFIG_CPU_LITTLE_ENDIAN
700 		/* least significant byte first */
701 		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
702 		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
703 #else
704 		/* most significant byte first */
705 		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
706 		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
707 #endif
708 		break;
709 	case KVM_REG_MIPS_MSA_IR:
710 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
711 			return -EINVAL;
712 		v = boot_cpu_data.msa_id;
713 		break;
714 	case KVM_REG_MIPS_MSA_CSR:
715 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
716 			return -EINVAL;
717 		v = fpu->msacsr;
718 		break;
719 
720 	/* registers to be handled specially */
721 	default:
722 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
723 		if (ret)
724 			return ret;
725 		break;
726 	}
727 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
728 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
729 
730 		return put_user(v, uaddr64);
731 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
732 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
733 		u32 v32 = (u32)v;
734 
735 		return put_user(v32, uaddr32);
736 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
737 		void __user *uaddr = (void __user *)(long)reg->addr;
738 
739 		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
740 	} else {
741 		return -EINVAL;
742 	}
743 }
744 
kvm_mips_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)745 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
746 			    const struct kvm_one_reg *reg)
747 {
748 	struct mips_coproc *cop0 = &vcpu->arch.cop0;
749 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
750 	s64 v;
751 	s64 vs[2];
752 	unsigned int idx;
753 
754 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
755 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
756 
757 		if (get_user(v, uaddr64) != 0)
758 			return -EFAULT;
759 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
760 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
761 		s32 v32;
762 
763 		if (get_user(v32, uaddr32) != 0)
764 			return -EFAULT;
765 		v = (s64)v32;
766 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
767 		void __user *uaddr = (void __user *)(long)reg->addr;
768 
769 		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
770 	} else {
771 		return -EINVAL;
772 	}
773 
774 	switch (reg->id) {
775 	/* General purpose registers */
776 	case KVM_REG_MIPS_R0:
777 		/* Silently ignore requests to set $0 */
778 		break;
779 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
780 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
781 		break;
782 #ifndef CONFIG_CPU_MIPSR6
783 	case KVM_REG_MIPS_HI:
784 		vcpu->arch.hi = v;
785 		break;
786 	case KVM_REG_MIPS_LO:
787 		vcpu->arch.lo = v;
788 		break;
789 #endif
790 	case KVM_REG_MIPS_PC:
791 		vcpu->arch.pc = v;
792 		break;
793 
794 	/* Floating point registers */
795 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
796 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
797 			return -EINVAL;
798 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
799 		/* Odd singles in top of even double when FR=0 */
800 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
801 			set_fpr32(&fpu->fpr[idx], 0, v);
802 		else
803 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
804 		break;
805 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
806 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
807 			return -EINVAL;
808 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
809 		/* Can't access odd doubles in FR=0 mode */
810 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
811 			return -EINVAL;
812 		set_fpr64(&fpu->fpr[idx], 0, v);
813 		break;
814 	case KVM_REG_MIPS_FCR_IR:
815 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
816 			return -EINVAL;
817 		/* Read-only */
818 		break;
819 	case KVM_REG_MIPS_FCR_CSR:
820 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
821 			return -EINVAL;
822 		fpu->fcr31 = v;
823 		break;
824 
825 	/* MIPS SIMD Architecture (MSA) registers */
826 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
827 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
828 			return -EINVAL;
829 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
830 #ifdef CONFIG_CPU_LITTLE_ENDIAN
831 		/* least significant byte first */
832 		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
833 		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
834 #else
835 		/* most significant byte first */
836 		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
837 		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
838 #endif
839 		break;
840 	case KVM_REG_MIPS_MSA_IR:
841 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
842 			return -EINVAL;
843 		/* Read-only */
844 		break;
845 	case KVM_REG_MIPS_MSA_CSR:
846 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
847 			return -EINVAL;
848 		fpu->msacsr = v;
849 		break;
850 
851 	/* registers to be handled specially */
852 	default:
853 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
854 	}
855 	return 0;
856 }
857 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)858 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
859 				     struct kvm_enable_cap *cap)
860 {
861 	int r = 0;
862 
863 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
864 		return -EINVAL;
865 	if (cap->flags)
866 		return -EINVAL;
867 	if (cap->args[0])
868 		return -EINVAL;
869 
870 	switch (cap->cap) {
871 	case KVM_CAP_MIPS_FPU:
872 		vcpu->arch.fpu_enabled = true;
873 		break;
874 	case KVM_CAP_MIPS_MSA:
875 		vcpu->arch.msa_enabled = true;
876 		break;
877 	default:
878 		r = -EINVAL;
879 		break;
880 	}
881 
882 	return r;
883 }
884 
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)885 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
886 			       unsigned long arg)
887 {
888 	struct kvm_vcpu *vcpu = filp->private_data;
889 	void __user *argp = (void __user *)arg;
890 
891 	if (ioctl == KVM_INTERRUPT) {
892 		struct kvm_mips_interrupt irq;
893 
894 		if (copy_from_user(&irq, argp, sizeof(irq)))
895 			return -EFAULT;
896 		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
897 			  irq.irq);
898 
899 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
900 	}
901 
902 	return -ENOIOCTLCMD;
903 }
904 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)905 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
906 			 unsigned long arg)
907 {
908 	struct kvm_vcpu *vcpu = filp->private_data;
909 	void __user *argp = (void __user *)arg;
910 	long r;
911 
912 	vcpu_load(vcpu);
913 
914 	switch (ioctl) {
915 	case KVM_SET_ONE_REG:
916 	case KVM_GET_ONE_REG: {
917 		struct kvm_one_reg reg;
918 
919 		r = -EFAULT;
920 		if (copy_from_user(&reg, argp, sizeof(reg)))
921 			break;
922 		if (ioctl == KVM_SET_ONE_REG)
923 			r = kvm_mips_set_reg(vcpu, &reg);
924 		else
925 			r = kvm_mips_get_reg(vcpu, &reg);
926 		break;
927 	}
928 	case KVM_GET_REG_LIST: {
929 		struct kvm_reg_list __user *user_list = argp;
930 		struct kvm_reg_list reg_list;
931 		unsigned n;
932 
933 		r = -EFAULT;
934 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
935 			break;
936 		n = reg_list.n;
937 		reg_list.n = kvm_mips_num_regs(vcpu);
938 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
939 			break;
940 		r = -E2BIG;
941 		if (n < reg_list.n)
942 			break;
943 		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
944 		break;
945 	}
946 	case KVM_ENABLE_CAP: {
947 		struct kvm_enable_cap cap;
948 
949 		r = -EFAULT;
950 		if (copy_from_user(&cap, argp, sizeof(cap)))
951 			break;
952 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
953 		break;
954 	}
955 	default:
956 		r = -ENOIOCTLCMD;
957 	}
958 
959 	vcpu_put(vcpu);
960 	return r;
961 }
962 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)963 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
964 {
965 
966 }
967 
kvm_arch_flush_remote_tlb(struct kvm * kvm)968 int kvm_arch_flush_remote_tlb(struct kvm *kvm)
969 {
970 	kvm_mips_callbacks->prepare_flush_shadow(kvm);
971 	return 1;
972 }
973 
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)974 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
975 					const struct kvm_memory_slot *memslot)
976 {
977 	kvm_flush_remote_tlbs(kvm);
978 }
979 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)980 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
981 {
982 	long r;
983 
984 	switch (ioctl) {
985 	default:
986 		r = -ENOIOCTLCMD;
987 	}
988 
989 	return r;
990 }
991 
kvm_arch_init(void * opaque)992 int kvm_arch_init(void *opaque)
993 {
994 	if (kvm_mips_callbacks) {
995 		kvm_err("kvm: module already exists\n");
996 		return -EEXIST;
997 	}
998 
999 	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1000 }
1001 
kvm_arch_exit(void)1002 void kvm_arch_exit(void)
1003 {
1004 	kvm_mips_callbacks = NULL;
1005 }
1006 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1007 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1008 				  struct kvm_sregs *sregs)
1009 {
1010 	return -ENOIOCTLCMD;
1011 }
1012 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1013 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1014 				  struct kvm_sregs *sregs)
1015 {
1016 	return -ENOIOCTLCMD;
1017 }
1018 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)1019 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1020 {
1021 }
1022 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1023 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1024 {
1025 	return -ENOIOCTLCMD;
1026 }
1027 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)1028 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1029 {
1030 	return -ENOIOCTLCMD;
1031 }
1032 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)1033 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1034 {
1035 	return VM_FAULT_SIGBUS;
1036 }
1037 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)1038 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1039 {
1040 	int r;
1041 
1042 	switch (ext) {
1043 	case KVM_CAP_ONE_REG:
1044 	case KVM_CAP_ENABLE_CAP:
1045 	case KVM_CAP_READONLY_MEM:
1046 	case KVM_CAP_SYNC_MMU:
1047 	case KVM_CAP_IMMEDIATE_EXIT:
1048 		r = 1;
1049 		break;
1050 	case KVM_CAP_NR_VCPUS:
1051 		r = num_online_cpus();
1052 		break;
1053 	case KVM_CAP_MAX_VCPUS:
1054 		r = KVM_MAX_VCPUS;
1055 		break;
1056 	case KVM_CAP_MAX_VCPU_ID:
1057 		r = KVM_MAX_VCPU_ID;
1058 		break;
1059 	case KVM_CAP_MIPS_FPU:
1060 		/* We don't handle systems with inconsistent cpu_has_fpu */
1061 		r = !!raw_cpu_has_fpu;
1062 		break;
1063 	case KVM_CAP_MIPS_MSA:
1064 		/*
1065 		 * We don't support MSA vector partitioning yet:
1066 		 * 1) It would require explicit support which can't be tested
1067 		 *    yet due to lack of support in current hardware.
1068 		 * 2) It extends the state that would need to be saved/restored
1069 		 *    by e.g. QEMU for migration.
1070 		 *
1071 		 * When vector partitioning hardware becomes available, support
1072 		 * could be added by requiring a flag when enabling
1073 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1074 		 * to save/restore the appropriate extra state.
1075 		 */
1076 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1077 		break;
1078 	default:
1079 		r = kvm_mips_callbacks->check_extension(kvm, ext);
1080 		break;
1081 	}
1082 	return r;
1083 }
1084 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1085 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1086 {
1087 	return kvm_mips_pending_timer(vcpu) ||
1088 		kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI;
1089 }
1090 
kvm_arch_vcpu_dump_regs(struct kvm_vcpu * vcpu)1091 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1092 {
1093 	int i;
1094 	struct mips_coproc *cop0;
1095 
1096 	if (!vcpu)
1097 		return -1;
1098 
1099 	kvm_debug("VCPU Register Dump:\n");
1100 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1101 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1102 
1103 	for (i = 0; i < 32; i += 4) {
1104 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1105 		       vcpu->arch.gprs[i],
1106 		       vcpu->arch.gprs[i + 1],
1107 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1108 	}
1109 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1110 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1111 
1112 	cop0 = &vcpu->arch.cop0;
1113 	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1114 		  kvm_read_c0_guest_status(cop0),
1115 		  kvm_read_c0_guest_cause(cop0));
1116 
1117 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1118 
1119 	return 0;
1120 }
1121 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1122 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1123 {
1124 	int i;
1125 
1126 	vcpu_load(vcpu);
1127 
1128 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1129 		vcpu->arch.gprs[i] = regs->gpr[i];
1130 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1131 	vcpu->arch.hi = regs->hi;
1132 	vcpu->arch.lo = regs->lo;
1133 	vcpu->arch.pc = regs->pc;
1134 
1135 	vcpu_put(vcpu);
1136 	return 0;
1137 }
1138 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)1139 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1140 {
1141 	int i;
1142 
1143 	vcpu_load(vcpu);
1144 
1145 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1146 		regs->gpr[i] = vcpu->arch.gprs[i];
1147 
1148 	regs->hi = vcpu->arch.hi;
1149 	regs->lo = vcpu->arch.lo;
1150 	regs->pc = vcpu->arch.pc;
1151 
1152 	vcpu_put(vcpu);
1153 	return 0;
1154 }
1155 
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)1156 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1157 				  struct kvm_translation *tr)
1158 {
1159 	return 0;
1160 }
1161 
kvm_mips_set_c0_status(void)1162 static void kvm_mips_set_c0_status(void)
1163 {
1164 	u32 status = read_c0_status();
1165 
1166 	if (cpu_has_dsp)
1167 		status |= (ST0_MX);
1168 
1169 	write_c0_status(status);
1170 	ehb();
1171 }
1172 
1173 /*
1174  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1175  */
kvm_mips_handle_exit(struct kvm_vcpu * vcpu)1176 int kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1177 {
1178 	struct kvm_run *run = vcpu->run;
1179 	u32 cause = vcpu->arch.host_cp0_cause;
1180 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1181 	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1182 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1183 	enum emulation_result er = EMULATE_DONE;
1184 	u32 inst;
1185 	int ret = RESUME_GUEST;
1186 
1187 	vcpu->mode = OUTSIDE_GUEST_MODE;
1188 
1189 	/* Set a default exit reason */
1190 	run->exit_reason = KVM_EXIT_UNKNOWN;
1191 	run->ready_for_interrupt_injection = 1;
1192 
1193 	/*
1194 	 * Set the appropriate status bits based on host CPU features,
1195 	 * before we hit the scheduler
1196 	 */
1197 	kvm_mips_set_c0_status();
1198 
1199 	local_irq_enable();
1200 
1201 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1202 			cause, opc, run, vcpu);
1203 	trace_kvm_exit(vcpu, exccode);
1204 
1205 	switch (exccode) {
1206 	case EXCCODE_INT:
1207 		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1208 
1209 		++vcpu->stat.int_exits;
1210 
1211 		if (need_resched())
1212 			cond_resched();
1213 
1214 		ret = RESUME_GUEST;
1215 		break;
1216 
1217 	case EXCCODE_CPU:
1218 		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1219 
1220 		++vcpu->stat.cop_unusable_exits;
1221 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1222 		/* XXXKYMA: Might need to return to user space */
1223 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1224 			ret = RESUME_HOST;
1225 		break;
1226 
1227 	case EXCCODE_MOD:
1228 		++vcpu->stat.tlbmod_exits;
1229 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1230 		break;
1231 
1232 	case EXCCODE_TLBS:
1233 		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1234 			  cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc,
1235 			  badvaddr);
1236 
1237 		++vcpu->stat.tlbmiss_st_exits;
1238 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1239 		break;
1240 
1241 	case EXCCODE_TLBL:
1242 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1243 			  cause, opc, badvaddr);
1244 
1245 		++vcpu->stat.tlbmiss_ld_exits;
1246 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1247 		break;
1248 
1249 	case EXCCODE_ADES:
1250 		++vcpu->stat.addrerr_st_exits;
1251 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1252 		break;
1253 
1254 	case EXCCODE_ADEL:
1255 		++vcpu->stat.addrerr_ld_exits;
1256 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1257 		break;
1258 
1259 	case EXCCODE_SYS:
1260 		++vcpu->stat.syscall_exits;
1261 		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1262 		break;
1263 
1264 	case EXCCODE_RI:
1265 		++vcpu->stat.resvd_inst_exits;
1266 		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1267 		break;
1268 
1269 	case EXCCODE_BP:
1270 		++vcpu->stat.break_inst_exits;
1271 		ret = kvm_mips_callbacks->handle_break(vcpu);
1272 		break;
1273 
1274 	case EXCCODE_TR:
1275 		++vcpu->stat.trap_inst_exits;
1276 		ret = kvm_mips_callbacks->handle_trap(vcpu);
1277 		break;
1278 
1279 	case EXCCODE_MSAFPE:
1280 		++vcpu->stat.msa_fpe_exits;
1281 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1282 		break;
1283 
1284 	case EXCCODE_FPE:
1285 		++vcpu->stat.fpe_exits;
1286 		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1287 		break;
1288 
1289 	case EXCCODE_MSADIS:
1290 		++vcpu->stat.msa_disabled_exits;
1291 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1292 		break;
1293 
1294 	case EXCCODE_GE:
1295 		/* defer exit accounting to handler */
1296 		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1297 		break;
1298 
1299 	default:
1300 		if (cause & CAUSEF_BD)
1301 			opc += 1;
1302 		inst = 0;
1303 		kvm_get_badinstr(opc, vcpu, &inst);
1304 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1305 			exccode, opc, inst, badvaddr,
1306 			kvm_read_c0_guest_status(&vcpu->arch.cop0));
1307 		kvm_arch_vcpu_dump_regs(vcpu);
1308 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1309 		ret = RESUME_HOST;
1310 		break;
1311 
1312 	}
1313 
1314 	local_irq_disable();
1315 
1316 	if (ret == RESUME_GUEST)
1317 		kvm_vz_acquire_htimer(vcpu);
1318 
1319 	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1320 		kvm_mips_deliver_interrupts(vcpu, cause);
1321 
1322 	if (!(ret & RESUME_HOST)) {
1323 		/* Only check for signals if not already exiting to userspace */
1324 		if (signal_pending(current)) {
1325 			run->exit_reason = KVM_EXIT_INTR;
1326 			ret = (-EINTR << 2) | RESUME_HOST;
1327 			++vcpu->stat.signal_exits;
1328 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1329 		}
1330 	}
1331 
1332 	if (ret == RESUME_GUEST) {
1333 		trace_kvm_reenter(vcpu);
1334 
1335 		/*
1336 		 * Make sure the read of VCPU requests in vcpu_reenter()
1337 		 * callback is not reordered ahead of the write to vcpu->mode,
1338 		 * or we could miss a TLB flush request while the requester sees
1339 		 * the VCPU as outside of guest mode and not needing an IPI.
1340 		 */
1341 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1342 
1343 		kvm_mips_callbacks->vcpu_reenter(vcpu);
1344 
1345 		/*
1346 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1347 		 * is live), restore FCR31 / MSACSR.
1348 		 *
1349 		 * This should be before returning to the guest exception
1350 		 * vector, as it may well cause an [MSA] FP exception if there
1351 		 * are pending exception bits unmasked. (see
1352 		 * kvm_mips_csr_die_notifier() for how that is handled).
1353 		 */
1354 		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1355 		    read_c0_status() & ST0_CU1)
1356 			__kvm_restore_fcsr(&vcpu->arch);
1357 
1358 		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1359 		    read_c0_config5() & MIPS_CONF5_MSAEN)
1360 			__kvm_restore_msacsr(&vcpu->arch);
1361 	}
1362 	return ret;
1363 }
1364 
1365 /* Enable FPU for guest and restore context */
kvm_own_fpu(struct kvm_vcpu * vcpu)1366 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1367 {
1368 	struct mips_coproc *cop0 = &vcpu->arch.cop0;
1369 	unsigned int sr, cfg5;
1370 
1371 	preempt_disable();
1372 
1373 	sr = kvm_read_c0_guest_status(cop0);
1374 
1375 	/*
1376 	 * If MSA state is already live, it is undefined how it interacts with
1377 	 * FR=0 FPU state, and we don't want to hit reserved instruction
1378 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1379 	 * play it safe and save it first.
1380 	 */
1381 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1382 	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1383 		kvm_lose_fpu(vcpu);
1384 
1385 	/*
1386 	 * Enable FPU for guest
1387 	 * We set FR and FRE according to guest context
1388 	 */
1389 	change_c0_status(ST0_CU1 | ST0_FR, sr);
1390 	if (cpu_has_fre) {
1391 		cfg5 = kvm_read_c0_guest_config5(cop0);
1392 		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1393 	}
1394 	enable_fpu_hazard();
1395 
1396 	/* If guest FPU state not active, restore it now */
1397 	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1398 		__kvm_restore_fpu(&vcpu->arch);
1399 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1400 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1401 	} else {
1402 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1403 	}
1404 
1405 	preempt_enable();
1406 }
1407 
1408 #ifdef CONFIG_CPU_HAS_MSA
1409 /* Enable MSA for guest and restore context */
kvm_own_msa(struct kvm_vcpu * vcpu)1410 void kvm_own_msa(struct kvm_vcpu *vcpu)
1411 {
1412 	struct mips_coproc *cop0 = &vcpu->arch.cop0;
1413 	unsigned int sr, cfg5;
1414 
1415 	preempt_disable();
1416 
1417 	/*
1418 	 * Enable FPU if enabled in guest, since we're restoring FPU context
1419 	 * anyway. We set FR and FRE according to guest context.
1420 	 */
1421 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1422 		sr = kvm_read_c0_guest_status(cop0);
1423 
1424 		/*
1425 		 * If FR=0 FPU state is already live, it is undefined how it
1426 		 * interacts with MSA state, so play it safe and save it first.
1427 		 */
1428 		if (!(sr & ST0_FR) &&
1429 		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1430 				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1431 			kvm_lose_fpu(vcpu);
1432 
1433 		change_c0_status(ST0_CU1 | ST0_FR, sr);
1434 		if (sr & ST0_CU1 && cpu_has_fre) {
1435 			cfg5 = kvm_read_c0_guest_config5(cop0);
1436 			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1437 		}
1438 	}
1439 
1440 	/* Enable MSA for guest */
1441 	set_c0_config5(MIPS_CONF5_MSAEN);
1442 	enable_fpu_hazard();
1443 
1444 	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1445 	case KVM_MIPS_AUX_FPU:
1446 		/*
1447 		 * Guest FPU state already loaded, only restore upper MSA state
1448 		 */
1449 		__kvm_restore_msa_upper(&vcpu->arch);
1450 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1451 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1452 		break;
1453 	case 0:
1454 		/* Neither FPU or MSA already active, restore full MSA state */
1455 		__kvm_restore_msa(&vcpu->arch);
1456 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1457 		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1458 			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1459 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1460 			      KVM_TRACE_AUX_FPU_MSA);
1461 		break;
1462 	default:
1463 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1464 		break;
1465 	}
1466 
1467 	preempt_enable();
1468 }
1469 #endif
1470 
1471 /* Drop FPU & MSA without saving it */
kvm_drop_fpu(struct kvm_vcpu * vcpu)1472 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1473 {
1474 	preempt_disable();
1475 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1476 		disable_msa();
1477 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1478 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1479 	}
1480 	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1481 		clear_c0_status(ST0_CU1 | ST0_FR);
1482 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1483 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1484 	}
1485 	preempt_enable();
1486 }
1487 
1488 /* Save and disable FPU & MSA */
kvm_lose_fpu(struct kvm_vcpu * vcpu)1489 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1490 {
1491 	/*
1492 	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1493 	 * is disabled in guest context (software), but the register state in
1494 	 * the hardware may still be in use.
1495 	 * This is why we explicitly re-enable the hardware before saving.
1496 	 */
1497 
1498 	preempt_disable();
1499 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1500 		__kvm_save_msa(&vcpu->arch);
1501 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1502 
1503 		/* Disable MSA & FPU */
1504 		disable_msa();
1505 		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1506 			clear_c0_status(ST0_CU1 | ST0_FR);
1507 			disable_fpu_hazard();
1508 		}
1509 		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1510 	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1511 		__kvm_save_fpu(&vcpu->arch);
1512 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1513 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1514 
1515 		/* Disable FPU */
1516 		clear_c0_status(ST0_CU1 | ST0_FR);
1517 		disable_fpu_hazard();
1518 	}
1519 	preempt_enable();
1520 }
1521 
1522 /*
1523  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1524  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1525  * exception if cause bits are set in the value being written.
1526  */
kvm_mips_csr_die_notify(struct notifier_block * self,unsigned long cmd,void * ptr)1527 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1528 				   unsigned long cmd, void *ptr)
1529 {
1530 	struct die_args *args = (struct die_args *)ptr;
1531 	struct pt_regs *regs = args->regs;
1532 	unsigned long pc;
1533 
1534 	/* Only interested in FPE and MSAFPE */
1535 	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1536 		return NOTIFY_DONE;
1537 
1538 	/* Return immediately if guest context isn't active */
1539 	if (!(current->flags & PF_VCPU))
1540 		return NOTIFY_DONE;
1541 
1542 	/* Should never get here from user mode */
1543 	BUG_ON(user_mode(regs));
1544 
1545 	pc = instruction_pointer(regs);
1546 	switch (cmd) {
1547 	case DIE_FP:
1548 		/* match 2nd instruction in __kvm_restore_fcsr */
1549 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1550 			return NOTIFY_DONE;
1551 		break;
1552 	case DIE_MSAFP:
1553 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1554 		if (!cpu_has_msa ||
1555 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1556 		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1557 			return NOTIFY_DONE;
1558 		break;
1559 	}
1560 
1561 	/* Move PC forward a little and continue executing */
1562 	instruction_pointer(regs) += 4;
1563 
1564 	return NOTIFY_STOP;
1565 }
1566 
1567 static struct notifier_block kvm_mips_csr_die_notifier = {
1568 	.notifier_call = kvm_mips_csr_die_notify,
1569 };
1570 
1571 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1572 	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1573 	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1574 	[MIPS_EXC_INT_IPI_1] = C_IRQ1,
1575 	[MIPS_EXC_INT_IPI_2] = C_IRQ2,
1576 };
1577 
1578 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1579 	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1580 	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1581 	[MIPS_EXC_INT_IO_2]  = C_IRQ1,
1582 	[MIPS_EXC_INT_IPI_1] = C_IRQ4,
1583 };
1584 
1585 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1586 
kvm_irq_to_priority(u32 irq)1587 u32 kvm_irq_to_priority(u32 irq)
1588 {
1589 	int i;
1590 
1591 	for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1592 		if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1593 			return i;
1594 	}
1595 
1596 	return MIPS_EXC_MAX;
1597 }
1598 
kvm_mips_init(void)1599 static int __init kvm_mips_init(void)
1600 {
1601 	int ret;
1602 
1603 	if (cpu_has_mmid) {
1604 		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1605 		return -EOPNOTSUPP;
1606 	}
1607 
1608 	ret = kvm_mips_entry_setup();
1609 	if (ret)
1610 		return ret;
1611 
1612 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1613 
1614 	if (ret)
1615 		return ret;
1616 
1617 	if (boot_cpu_type() == CPU_LOONGSON64)
1618 		kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1619 
1620 	register_die_notifier(&kvm_mips_csr_die_notifier);
1621 
1622 	return 0;
1623 }
1624 
kvm_mips_exit(void)1625 static void __exit kvm_mips_exit(void)
1626 {
1627 	kvm_exit();
1628 
1629 	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1630 }
1631 
1632 module_init(kvm_mips_init);
1633 module_exit(kvm_mips_exit);
1634 
1635 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1636