1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
9 *
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18
19 #include <asm/inst.h>
20 #include <asm/elf.h>
21 #include <asm/bugs.h>
22 #include <asm/uasm.h>
23
24 #define RS_MASK 0x1f
25 #define RS_SH 21
26 #define RT_MASK 0x1f
27 #define RT_SH 16
28 #define SCIMM_MASK 0xfffff
29 #define SCIMM_SH 6
30
31 /* This macro sets the non-variable bits of an instruction. */
32 #define M(a, b, c, d, e, f) \
33 ((a) << OP_SH \
34 | (b) << RS_SH \
35 | (c) << RT_SH \
36 | (d) << RD_SH \
37 | (e) << RE_SH \
38 | (f) << FUNC_SH)
39
40 /* This macro sets the non-variable bits of an R6 instruction. */
41 #define M6(a, b, c, d, e) \
42 ((a) << OP_SH \
43 | (b) << RS_SH \
44 | (c) << RT_SH \
45 | (d) << SIMM9_SH \
46 | (e) << FUNC_SH)
47
48 #include "uasm.c"
49
50 static const struct insn insn_table[insn_invalid] = {
51 [insn_addiu] = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
52 [insn_addu] = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
53 [insn_and] = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
54 [insn_andi] = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
55 [insn_bbit0] = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
56 [insn_bbit1] = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
57 [insn_beq] = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
58 [insn_beql] = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
59 [insn_bgez] = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
60 [insn_bgezl] = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
61 [insn_bgtz] = {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
62 [insn_blez] = {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
63 [insn_bltz] = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
64 [insn_bltzl] = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
65 [insn_bne] = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
66 [insn_break] = {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
67 #ifndef CONFIG_CPU_MIPSR6
68 [insn_cache] = {M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
69 #else
70 [insn_cache] = {M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9},
71 #endif
72 [insn_cfc1] = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
73 [insn_cfcmsa] = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
74 [insn_ctc1] = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
75 [insn_ctcmsa] = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
76 [insn_daddiu] = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
77 [insn_daddu] = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
78 [insn_ddivu] = {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
79 [insn_ddivu_r6] = {M(spec_op, 0, 0, 0, ddivu_ddivu6_op, ddivu_op),
80 RS | RT | RD},
81 [insn_di] = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
82 [insn_dins] = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
83 [insn_dinsm] = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
84 [insn_dinsu] = {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
85 [insn_divu] = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
86 [insn_divu_r6] = {M(spec_op, 0, 0, 0, divu_divu6_op, divu_op),
87 RS | RT | RD},
88 [insn_dmfc0] = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
89 [insn_dmodu] = {M(spec_op, 0, 0, 0, ddivu_dmodu_op, ddivu_op),
90 RS | RT | RD},
91 [insn_dmtc0] = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
92 [insn_dmultu] = {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
93 [insn_dmulu] = {M(spec_op, 0, 0, 0, dmult_dmul_op, dmultu_op),
94 RS | RT | RD},
95 [insn_drotr] = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
96 [insn_drotr32] = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
97 [insn_dsbh] = {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
98 [insn_dshd] = {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
99 [insn_dsll] = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
100 [insn_dsll32] = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
101 [insn_dsllv] = {M(spec_op, 0, 0, 0, 0, dsllv_op), RS | RT | RD},
102 [insn_dsra] = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
103 [insn_dsra32] = {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
104 [insn_dsrav] = {M(spec_op, 0, 0, 0, 0, dsrav_op), RS | RT | RD},
105 [insn_dsrl] = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
106 [insn_dsrl32] = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
107 [insn_dsrlv] = {M(spec_op, 0, 0, 0, 0, dsrlv_op), RS | RT | RD},
108 [insn_dsubu] = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
109 [insn_eret] = {M(cop0_op, cop_op, 0, 0, 0, eret_op), 0},
110 [insn_ext] = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
111 [insn_ins] = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
112 [insn_j] = {M(j_op, 0, 0, 0, 0, 0), JIMM},
113 [insn_jal] = {M(jal_op, 0, 0, 0, 0, 0), JIMM},
114 [insn_jalr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
115 #ifndef CONFIG_CPU_MIPSR6
116 [insn_jr] = {M(spec_op, 0, 0, 0, 0, jr_op), RS},
117 #else
118 [insn_jr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS},
119 #endif
120 [insn_lb] = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
121 [insn_lbu] = {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
122 [insn_ld] = {M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
123 [insn_lddir] = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
124 [insn_ldpte] = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
125 [insn_ldx] = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
126 [insn_lh] = {M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
127 [insn_lhu] = {M(lhu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
128 #ifndef CONFIG_CPU_MIPSR6
129 [insn_ll] = {M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
130 [insn_lld] = {M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
131 #else
132 [insn_ll] = {M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9},
133 [insn_lld] = {M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9},
134 #endif
135 [insn_lui] = {M(lui_op, 0, 0, 0, 0, 0), RT | SIMM},
136 [insn_lw] = {M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
137 [insn_lwu] = {M(lwu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
138 [insn_lwx] = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
139 [insn_mfc0] = {M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
140 [insn_mfhc0] = {M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
141 [insn_mfhi] = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
142 [insn_mflo] = {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
143 [insn_modu] = {M(spec_op, 0, 0, 0, divu_modu_op, divu_op),
144 RS | RT | RD},
145 [insn_movn] = {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
146 [insn_movz] = {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
147 [insn_mtc0] = {M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
148 [insn_mthc0] = {M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
149 [insn_mthi] = {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
150 [insn_mtlo] = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
151 [insn_mulu] = {M(spec_op, 0, 0, 0, multu_mulu_op, multu_op),
152 RS | RT | RD},
153 #ifndef CONFIG_CPU_MIPSR6
154 [insn_mul] = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
155 #else
156 [insn_mul] = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
157 #endif
158 [insn_multu] = {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
159 [insn_nor] = {M(spec_op, 0, 0, 0, 0, nor_op), RS | RT | RD},
160 [insn_or] = {M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD},
161 [insn_ori] = {M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
162 #ifndef CONFIG_CPU_MIPSR6
163 [insn_pref] = {M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
164 #else
165 [insn_pref] = {M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9},
166 #endif
167 [insn_rfe] = {M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0},
168 [insn_rotr] = {M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE},
169 [insn_sb] = {M(sb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
170 #ifndef CONFIG_CPU_MIPSR6
171 [insn_sc] = {M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
172 [insn_scd] = {M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
173 #else
174 [insn_sc] = {M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9},
175 [insn_scd] = {M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9},
176 #endif
177 [insn_sd] = {M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
178 [insn_seleqz] = {M(spec_op, 0, 0, 0, 0, seleqz_op), RS | RT | RD},
179 [insn_selnez] = {M(spec_op, 0, 0, 0, 0, selnez_op), RS | RT | RD},
180 [insn_sh] = {M(sh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
181 [insn_sll] = {M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE},
182 [insn_sllv] = {M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD},
183 [insn_slt] = {M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD},
184 [insn_slti] = {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
185 [insn_sltiu] = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
186 [insn_sltu] = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
187 [insn_sra] = {M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE},
188 [insn_srav] = {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD},
189 [insn_srl] = {M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE},
190 [insn_srlv] = {M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD},
191 [insn_subu] = {M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD},
192 [insn_sw] = {M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
193 [insn_sync] = {M(spec_op, 0, 0, 0, 0, sync_op), RE},
194 [insn_syscall] = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
195 [insn_tlbp] = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0},
196 [insn_tlbr] = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0},
197 [insn_tlbwi] = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0},
198 [insn_tlbwr] = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0},
199 [insn_wait] = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
200 [insn_wsbh] = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
201 [insn_xor] = {M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD},
202 [insn_xori] = {M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
203 [insn_yield] = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
204 };
205
206 #undef M
207
build_bimm(s32 arg)208 static inline u32 build_bimm(s32 arg)
209 {
210 WARN(arg > 0x1ffff || arg < -0x20000,
211 KERN_WARNING "Micro-assembler field overflow\n");
212
213 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
214
215 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
216 }
217
build_jimm(u32 arg)218 static inline u32 build_jimm(u32 arg)
219 {
220 WARN(arg & ~(JIMM_MASK << 2),
221 KERN_WARNING "Micro-assembler field overflow\n");
222
223 return (arg >> 2) & JIMM_MASK;
224 }
225
226 /*
227 * The order of opcode arguments is implicitly left to right,
228 * starting with RS and ending with FUNC or IMM.
229 */
build_insn(u32 ** buf,enum opcode opc,...)230 static void build_insn(u32 **buf, enum opcode opc, ...)
231 {
232 const struct insn *ip;
233 va_list ap;
234 u32 op;
235
236 if (opc < 0 || opc >= insn_invalid ||
237 (opc == insn_daddiu && r4k_daddiu_bug()) ||
238 (insn_table[opc].match == 0 && insn_table[opc].fields == 0))
239 panic("Unsupported Micro-assembler instruction %d", opc);
240
241 ip = &insn_table[opc];
242
243 op = ip->match;
244 va_start(ap, opc);
245 if (ip->fields & RS)
246 op |= build_rs(va_arg(ap, u32));
247 if (ip->fields & RT)
248 op |= build_rt(va_arg(ap, u32));
249 if (ip->fields & RD)
250 op |= build_rd(va_arg(ap, u32));
251 if (ip->fields & RE)
252 op |= build_re(va_arg(ap, u32));
253 if (ip->fields & SIMM)
254 op |= build_simm(va_arg(ap, s32));
255 if (ip->fields & UIMM)
256 op |= build_uimm(va_arg(ap, u32));
257 if (ip->fields & BIMM)
258 op |= build_bimm(va_arg(ap, s32));
259 if (ip->fields & JIMM)
260 op |= build_jimm(va_arg(ap, u32));
261 if (ip->fields & FUNC)
262 op |= build_func(va_arg(ap, u32));
263 if (ip->fields & SET)
264 op |= build_set(va_arg(ap, u32));
265 if (ip->fields & SCIMM)
266 op |= build_scimm(va_arg(ap, u32));
267 if (ip->fields & SIMM9)
268 op |= build_scimm9(va_arg(ap, u32));
269 va_end(ap);
270
271 **buf = op;
272 (*buf)++;
273 }
274
275 static inline void
__resolve_relocs(struct uasm_reloc * rel,struct uasm_label * lab)276 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
277 {
278 long laddr = (long)lab->addr;
279 long raddr = (long)rel->addr;
280
281 switch (rel->type) {
282 case R_MIPS_PC16:
283 *rel->addr |= build_bimm(laddr - (raddr + 4));
284 break;
285
286 default:
287 panic("Unsupported Micro-assembler relocation %d",
288 rel->type);
289 }
290 }
291