1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Glue code for SHA-256 implementation for SPE instructions (PPC)
4 *
5 * Based on generic implementation. The assembler module takes care
6 * about the SPE registers so it can run from interrupt context.
7 *
8 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
9 */
10
11 #include <crypto/internal/hash.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/types.h>
16 #include <crypto/sha2.h>
17 #include <asm/byteorder.h>
18 #include <asm/switch_to.h>
19 #include <linux/hardirq.h>
20
21 /*
22 * MAX_BYTES defines the number of bytes that are allowed to be processed
23 * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
24 * operations per 64 bytes. e500 cores can issue two arithmetic instructions
25 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
26 * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
27 * Headroom for cache misses included. Even with the low end model clocked
28 * at 667 MHz this equals to a critical time window of less than 27us.
29 *
30 */
31 #define MAX_BYTES 1024
32
33 extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
34
spe_begin(void)35 static void spe_begin(void)
36 {
37 /* We just start SPE operations and will save SPE registers later. */
38 preempt_disable();
39 enable_kernel_spe();
40 }
41
spe_end(void)42 static void spe_end(void)
43 {
44 disable_kernel_spe();
45 /* reenable preemption */
46 preempt_enable();
47 }
48
ppc_sha256_clear_context(struct sha256_state * sctx)49 static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
50 {
51 int count = sizeof(struct sha256_state) >> 2;
52 u32 *ptr = (u32 *)sctx;
53
54 /* make sure we can clear the fast way */
55 BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
56 do { *ptr++ = 0; } while (--count);
57 }
58
ppc_spe_sha256_init(struct shash_desc * desc)59 static int ppc_spe_sha256_init(struct shash_desc *desc)
60 {
61 struct sha256_state *sctx = shash_desc_ctx(desc);
62
63 sctx->state[0] = SHA256_H0;
64 sctx->state[1] = SHA256_H1;
65 sctx->state[2] = SHA256_H2;
66 sctx->state[3] = SHA256_H3;
67 sctx->state[4] = SHA256_H4;
68 sctx->state[5] = SHA256_H5;
69 sctx->state[6] = SHA256_H6;
70 sctx->state[7] = SHA256_H7;
71 sctx->count = 0;
72
73 return 0;
74 }
75
ppc_spe_sha224_init(struct shash_desc * desc)76 static int ppc_spe_sha224_init(struct shash_desc *desc)
77 {
78 struct sha256_state *sctx = shash_desc_ctx(desc);
79
80 sctx->state[0] = SHA224_H0;
81 sctx->state[1] = SHA224_H1;
82 sctx->state[2] = SHA224_H2;
83 sctx->state[3] = SHA224_H3;
84 sctx->state[4] = SHA224_H4;
85 sctx->state[5] = SHA224_H5;
86 sctx->state[6] = SHA224_H6;
87 sctx->state[7] = SHA224_H7;
88 sctx->count = 0;
89
90 return 0;
91 }
92
ppc_spe_sha256_update(struct shash_desc * desc,const u8 * data,unsigned int len)93 static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
94 unsigned int len)
95 {
96 struct sha256_state *sctx = shash_desc_ctx(desc);
97 const unsigned int offset = sctx->count & 0x3f;
98 const unsigned int avail = 64 - offset;
99 unsigned int bytes;
100 const u8 *src = data;
101
102 if (avail > len) {
103 sctx->count += len;
104 memcpy((char *)sctx->buf + offset, src, len);
105 return 0;
106 }
107
108 sctx->count += len;
109
110 if (offset) {
111 memcpy((char *)sctx->buf + offset, src, avail);
112
113 spe_begin();
114 ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
115 spe_end();
116
117 len -= avail;
118 src += avail;
119 }
120
121 while (len > 63) {
122 /* cut input data into smaller blocks */
123 bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
124 bytes = bytes & ~0x3f;
125
126 spe_begin();
127 ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
128 spe_end();
129
130 src += bytes;
131 len -= bytes;
132 }
133
134 memcpy((char *)sctx->buf, src, len);
135 return 0;
136 }
137
ppc_spe_sha256_final(struct shash_desc * desc,u8 * out)138 static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
139 {
140 struct sha256_state *sctx = shash_desc_ctx(desc);
141 const unsigned int offset = sctx->count & 0x3f;
142 char *p = (char *)sctx->buf + offset;
143 int padlen;
144 __be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
145 __be32 *dst = (__be32 *)out;
146
147 padlen = 55 - offset;
148 *p++ = 0x80;
149
150 spe_begin();
151
152 if (padlen < 0) {
153 memset(p, 0x00, padlen + sizeof (u64));
154 ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
155 p = (char *)sctx->buf;
156 padlen = 56;
157 }
158
159 memset(p, 0, padlen);
160 *pbits = cpu_to_be64(sctx->count << 3);
161 ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
162
163 spe_end();
164
165 dst[0] = cpu_to_be32(sctx->state[0]);
166 dst[1] = cpu_to_be32(sctx->state[1]);
167 dst[2] = cpu_to_be32(sctx->state[2]);
168 dst[3] = cpu_to_be32(sctx->state[3]);
169 dst[4] = cpu_to_be32(sctx->state[4]);
170 dst[5] = cpu_to_be32(sctx->state[5]);
171 dst[6] = cpu_to_be32(sctx->state[6]);
172 dst[7] = cpu_to_be32(sctx->state[7]);
173
174 ppc_sha256_clear_context(sctx);
175 return 0;
176 }
177
ppc_spe_sha224_final(struct shash_desc * desc,u8 * out)178 static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
179 {
180 __be32 D[SHA256_DIGEST_SIZE >> 2];
181 __be32 *dst = (__be32 *)out;
182
183 ppc_spe_sha256_final(desc, (u8 *)D);
184
185 /* avoid bytewise memcpy */
186 dst[0] = D[0];
187 dst[1] = D[1];
188 dst[2] = D[2];
189 dst[3] = D[3];
190 dst[4] = D[4];
191 dst[5] = D[5];
192 dst[6] = D[6];
193
194 /* clear sensitive data */
195 memzero_explicit(D, SHA256_DIGEST_SIZE);
196 return 0;
197 }
198
ppc_spe_sha256_export(struct shash_desc * desc,void * out)199 static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
200 {
201 struct sha256_state *sctx = shash_desc_ctx(desc);
202
203 memcpy(out, sctx, sizeof(*sctx));
204 return 0;
205 }
206
ppc_spe_sha256_import(struct shash_desc * desc,const void * in)207 static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
208 {
209 struct sha256_state *sctx = shash_desc_ctx(desc);
210
211 memcpy(sctx, in, sizeof(*sctx));
212 return 0;
213 }
214
215 static struct shash_alg algs[2] = { {
216 .digestsize = SHA256_DIGEST_SIZE,
217 .init = ppc_spe_sha256_init,
218 .update = ppc_spe_sha256_update,
219 .final = ppc_spe_sha256_final,
220 .export = ppc_spe_sha256_export,
221 .import = ppc_spe_sha256_import,
222 .descsize = sizeof(struct sha256_state),
223 .statesize = sizeof(struct sha256_state),
224 .base = {
225 .cra_name = "sha256",
226 .cra_driver_name= "sha256-ppc-spe",
227 .cra_priority = 300,
228 .cra_blocksize = SHA256_BLOCK_SIZE,
229 .cra_module = THIS_MODULE,
230 }
231 }, {
232 .digestsize = SHA224_DIGEST_SIZE,
233 .init = ppc_spe_sha224_init,
234 .update = ppc_spe_sha256_update,
235 .final = ppc_spe_sha224_final,
236 .export = ppc_spe_sha256_export,
237 .import = ppc_spe_sha256_import,
238 .descsize = sizeof(struct sha256_state),
239 .statesize = sizeof(struct sha256_state),
240 .base = {
241 .cra_name = "sha224",
242 .cra_driver_name= "sha224-ppc-spe",
243 .cra_priority = 300,
244 .cra_blocksize = SHA224_BLOCK_SIZE,
245 .cra_module = THIS_MODULE,
246 }
247 } };
248
ppc_spe_sha256_mod_init(void)249 static int __init ppc_spe_sha256_mod_init(void)
250 {
251 return crypto_register_shashes(algs, ARRAY_SIZE(algs));
252 }
253
ppc_spe_sha256_mod_fini(void)254 static void __exit ppc_spe_sha256_mod_fini(void)
255 {
256 crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
257 }
258
259 module_init(ppc_spe_sha256_mod_init);
260 module_exit(ppc_spe_sha256_mod_fini);
261
262 MODULE_LICENSE("GPL");
263 MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
264
265 MODULE_ALIAS_CRYPTO("sha224");
266 MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
267 MODULE_ALIAS_CRYPTO("sha256");
268 MODULE_ALIAS_CRYPTO("sha256-ppc-spe");
269