1 /*
2 * Common signal handling code for both 32 and 64 bits
3 *
4 * Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
5 * Extracted from signal_32.c and signal_64.c
6 *
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file README.legal in the main directory of
9 * this archive for more details.
10 */
11
12 #include <linux/tracehook.h>
13 #include <linux/signal.h>
14 #include <linux/uprobes.h>
15 #include <linux/key.h>
16 #include <linux/context_tracking.h>
17 #include <linux/livepatch.h>
18 #include <linux/syscalls.h>
19 #include <asm/hw_breakpoint.h>
20 #include <linux/uaccess.h>
21 #include <asm/switch_to.h>
22 #include <asm/unistd.h>
23 #include <asm/debug.h>
24 #include <asm/tm.h>
25
26 #include "signal.h"
27
28 #ifdef CONFIG_VSX
copy_fpr_to_user(void __user * to,struct task_struct * task)29 unsigned long copy_fpr_to_user(void __user *to,
30 struct task_struct *task)
31 {
32 u64 buf[ELF_NFPREG];
33 int i;
34
35 /* save FPR copy to local buffer then write to the thread_struct */
36 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
37 buf[i] = task->thread.TS_FPR(i);
38 buf[i] = task->thread.fp_state.fpscr;
39 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
40 }
41
copy_fpr_from_user(struct task_struct * task,void __user * from)42 unsigned long copy_fpr_from_user(struct task_struct *task,
43 void __user *from)
44 {
45 u64 buf[ELF_NFPREG];
46 int i;
47
48 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
49 return 1;
50 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
51 task->thread.TS_FPR(i) = buf[i];
52 task->thread.fp_state.fpscr = buf[i];
53
54 return 0;
55 }
56
copy_vsx_to_user(void __user * to,struct task_struct * task)57 unsigned long copy_vsx_to_user(void __user *to,
58 struct task_struct *task)
59 {
60 u64 buf[ELF_NVSRHALFREG];
61 int i;
62
63 /* save FPR copy to local buffer then write to the thread_struct */
64 for (i = 0; i < ELF_NVSRHALFREG; i++)
65 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
66 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
67 }
68
copy_vsx_from_user(struct task_struct * task,void __user * from)69 unsigned long copy_vsx_from_user(struct task_struct *task,
70 void __user *from)
71 {
72 u64 buf[ELF_NVSRHALFREG];
73 int i;
74
75 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
76 return 1;
77 for (i = 0; i < ELF_NVSRHALFREG ; i++)
78 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
79 return 0;
80 }
81
82 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_ckfpr_to_user(void __user * to,struct task_struct * task)83 unsigned long copy_ckfpr_to_user(void __user *to,
84 struct task_struct *task)
85 {
86 u64 buf[ELF_NFPREG];
87 int i;
88
89 /* save FPR copy to local buffer then write to the thread_struct */
90 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
91 buf[i] = task->thread.TS_CKFPR(i);
92 buf[i] = task->thread.ckfp_state.fpscr;
93 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
94 }
95
copy_ckfpr_from_user(struct task_struct * task,void __user * from)96 unsigned long copy_ckfpr_from_user(struct task_struct *task,
97 void __user *from)
98 {
99 u64 buf[ELF_NFPREG];
100 int i;
101
102 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
103 return 1;
104 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
105 task->thread.TS_CKFPR(i) = buf[i];
106 task->thread.ckfp_state.fpscr = buf[i];
107
108 return 0;
109 }
110
copy_ckvsx_to_user(void __user * to,struct task_struct * task)111 unsigned long copy_ckvsx_to_user(void __user *to,
112 struct task_struct *task)
113 {
114 u64 buf[ELF_NVSRHALFREG];
115 int i;
116
117 /* save FPR copy to local buffer then write to the thread_struct */
118 for (i = 0; i < ELF_NVSRHALFREG; i++)
119 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
120 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
121 }
122
copy_ckvsx_from_user(struct task_struct * task,void __user * from)123 unsigned long copy_ckvsx_from_user(struct task_struct *task,
124 void __user *from)
125 {
126 u64 buf[ELF_NVSRHALFREG];
127 int i;
128
129 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
130 return 1;
131 for (i = 0; i < ELF_NVSRHALFREG ; i++)
132 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
133 return 0;
134 }
135 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
136 #endif
137
138 /* Log an error when sending an unhandled signal to a process. Controlled
139 * through debug.exception-trace sysctl.
140 */
141
142 int show_unhandled_signals = 1;
143
144 /*
145 * Allocate space for the signal frame
146 */
147 static unsigned long get_tm_stackpointer(struct task_struct *tsk);
148
get_sigframe(struct ksignal * ksig,struct task_struct * tsk,size_t frame_size,int is_32)149 void __user *get_sigframe(struct ksignal *ksig, struct task_struct *tsk,
150 size_t frame_size, int is_32)
151 {
152 unsigned long oldsp, newsp;
153 unsigned long sp = get_tm_stackpointer(tsk);
154
155 /* Default to using normal stack */
156 if (is_32)
157 oldsp = sp & 0x0ffffffffUL;
158 else
159 oldsp = sp;
160 oldsp = sigsp(oldsp, ksig);
161 newsp = (oldsp - frame_size) & ~0xFUL;
162
163 return (void __user *)newsp;
164 }
165
check_syscall_restart(struct pt_regs * regs,struct k_sigaction * ka,int has_handler)166 static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
167 int has_handler)
168 {
169 unsigned long ret = regs->gpr[3];
170 int restart = 1;
171
172 /* syscall ? */
173 if (!trap_is_syscall(regs))
174 return;
175
176 if (trap_norestart(regs))
177 return;
178
179 /* error signalled ? */
180 if (trap_is_scv(regs)) {
181 /* 32-bit compat mode sign extend? */
182 if (!IS_ERR_VALUE(ret))
183 return;
184 ret = -ret;
185 } else if (!(regs->ccr & 0x10000000)) {
186 return;
187 }
188
189 switch (ret) {
190 case ERESTART_RESTARTBLOCK:
191 case ERESTARTNOHAND:
192 /* ERESTARTNOHAND means that the syscall should only be
193 * restarted if there was no handler for the signal, and since
194 * we only get here if there is a handler, we dont restart.
195 */
196 restart = !has_handler;
197 break;
198 case ERESTARTSYS:
199 /* ERESTARTSYS means to restart the syscall if there is no
200 * handler or the handler was registered with SA_RESTART
201 */
202 restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
203 break;
204 case ERESTARTNOINTR:
205 /* ERESTARTNOINTR means that the syscall should be
206 * called again after the signal handler returns.
207 */
208 break;
209 default:
210 return;
211 }
212 if (restart) {
213 if (ret == ERESTART_RESTARTBLOCK)
214 regs->gpr[0] = __NR_restart_syscall;
215 else
216 regs->gpr[3] = regs->orig_gpr3;
217 regs_add_return_ip(regs, -4);
218 regs->result = 0;
219 } else {
220 if (trap_is_scv(regs)) {
221 regs->result = -EINTR;
222 regs->gpr[3] = -EINTR;
223 } else {
224 regs->result = -EINTR;
225 regs->gpr[3] = EINTR;
226 regs->ccr |= 0x10000000;
227 }
228 }
229 }
230
do_signal(struct task_struct * tsk)231 static void do_signal(struct task_struct *tsk)
232 {
233 sigset_t *oldset = sigmask_to_save();
234 struct ksignal ksig = { .sig = 0 };
235 int ret;
236
237 BUG_ON(tsk != current);
238
239 get_signal(&ksig);
240
241 /* Is there any syscall restart business here ? */
242 check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
243
244 if (ksig.sig <= 0) {
245 /* No signal to deliver -- put the saved sigmask back */
246 restore_saved_sigmask();
247 set_trap_norestart(tsk->thread.regs);
248 return; /* no signals delivered */
249 }
250
251 /*
252 * Reenable the DABR before delivering the signal to
253 * user space. The DABR will have been cleared if it
254 * triggered inside the kernel.
255 */
256 if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
257 int i;
258
259 for (i = 0; i < nr_wp_slots(); i++) {
260 if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
261 __set_breakpoint(i, &tsk->thread.hw_brk[i]);
262 }
263 }
264
265 /* Re-enable the breakpoints for the signal stack */
266 thread_change_pc(tsk, tsk->thread.regs);
267
268 rseq_signal_deliver(&ksig, tsk->thread.regs);
269
270 if (is_32bit_task()) {
271 if (ksig.ka.sa.sa_flags & SA_SIGINFO)
272 ret = handle_rt_signal32(&ksig, oldset, tsk);
273 else
274 ret = handle_signal32(&ksig, oldset, tsk);
275 } else {
276 ret = handle_rt_signal64(&ksig, oldset, tsk);
277 }
278
279 set_trap_norestart(tsk->thread.regs);
280 signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
281 }
282
do_notify_resume(struct pt_regs * regs,unsigned long thread_info_flags)283 void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
284 {
285 if (thread_info_flags & _TIF_UPROBE)
286 uprobe_notify_resume(regs);
287
288 if (thread_info_flags & _TIF_PATCH_PENDING)
289 klp_update_patch_state(current);
290
291 if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
292 BUG_ON(regs != current->thread.regs);
293 do_signal(current);
294 }
295
296 if (thread_info_flags & _TIF_NOTIFY_RESUME)
297 tracehook_notify_resume(regs);
298 }
299
get_tm_stackpointer(struct task_struct * tsk)300 static unsigned long get_tm_stackpointer(struct task_struct *tsk)
301 {
302 /* When in an active transaction that takes a signal, we need to be
303 * careful with the stack. It's possible that the stack has moved back
304 * up after the tbegin. The obvious case here is when the tbegin is
305 * called inside a function that returns before a tend. In this case,
306 * the stack is part of the checkpointed transactional memory state.
307 * If we write over this non transactionally or in suspend, we are in
308 * trouble because if we get a tm abort, the program counter and stack
309 * pointer will be back at the tbegin but our in memory stack won't be
310 * valid anymore.
311 *
312 * To avoid this, when taking a signal in an active transaction, we
313 * need to use the stack pointer from the checkpointed state, rather
314 * than the speculated state. This ensures that the signal context
315 * (written tm suspended) will be written below the stack required for
316 * the rollback. The transaction is aborted because of the treclaim,
317 * so any memory written between the tbegin and the signal will be
318 * rolled back anyway.
319 *
320 * For signals taken in non-TM or suspended mode, we use the
321 * normal/non-checkpointed stack pointer.
322 */
323 struct pt_regs *regs = tsk->thread.regs;
324 unsigned long ret = regs->gpr[1];
325
326 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
327 BUG_ON(tsk != current);
328
329 if (MSR_TM_ACTIVE(regs->msr)) {
330 preempt_disable();
331 tm_reclaim_current(TM_CAUSE_SIGNAL);
332 if (MSR_TM_TRANSACTIONAL(regs->msr))
333 ret = tsk->thread.ckpt_regs.gpr[1];
334
335 /*
336 * If we treclaim, we must clear the current thread's TM bits
337 * before re-enabling preemption. Otherwise we might be
338 * preempted and have the live MSR[TS] changed behind our back
339 * (tm_recheckpoint_new_task() would recheckpoint). Besides, we
340 * enter the signal handler in non-transactional state.
341 */
342 regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
343 preempt_enable();
344 }
345 #endif
346 return ret;
347 }
348
349 static const char fm32[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %08lx lr %08lx\n";
350 static const char fm64[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %016lx lr %016lx\n";
351
signal_fault(struct task_struct * tsk,struct pt_regs * regs,const char * where,void __user * ptr)352 void signal_fault(struct task_struct *tsk, struct pt_regs *regs,
353 const char *where, void __user *ptr)
354 {
355 if (show_unhandled_signals)
356 printk_ratelimited(regs->msr & MSR_64BIT ? fm64 : fm32, tsk->comm,
357 task_pid_nr(tsk), where, ptr, regs->nip, regs->link);
358 }
359