• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common Performance counter support functions for PowerISA v2.07 processors.
4  *
5  * Copyright 2009 Paul Mackerras, IBM Corporation.
6  * Copyright 2013 Michael Ellerman, IBM Corporation.
7  * Copyright 2016 Madhavan Srinivasan, IBM Corporation.
8  */
9 #include "isa207-common.h"
10 
11 PMU_FORMAT_ATTR(event,		"config:0-49");
12 PMU_FORMAT_ATTR(pmcxsel,	"config:0-7");
13 PMU_FORMAT_ATTR(mark,		"config:8");
14 PMU_FORMAT_ATTR(combine,	"config:11");
15 PMU_FORMAT_ATTR(unit,		"config:12-15");
16 PMU_FORMAT_ATTR(pmc,		"config:16-19");
17 PMU_FORMAT_ATTR(cache_sel,	"config:20-23");
18 PMU_FORMAT_ATTR(sample_mode,	"config:24-28");
19 PMU_FORMAT_ATTR(thresh_sel,	"config:29-31");
20 PMU_FORMAT_ATTR(thresh_stop,	"config:32-35");
21 PMU_FORMAT_ATTR(thresh_start,	"config:36-39");
22 PMU_FORMAT_ATTR(thresh_cmp,	"config:40-49");
23 
24 static struct attribute *isa207_pmu_format_attr[] = {
25 	&format_attr_event.attr,
26 	&format_attr_pmcxsel.attr,
27 	&format_attr_mark.attr,
28 	&format_attr_combine.attr,
29 	&format_attr_unit.attr,
30 	&format_attr_pmc.attr,
31 	&format_attr_cache_sel.attr,
32 	&format_attr_sample_mode.attr,
33 	&format_attr_thresh_sel.attr,
34 	&format_attr_thresh_stop.attr,
35 	&format_attr_thresh_start.attr,
36 	&format_attr_thresh_cmp.attr,
37 	NULL,
38 };
39 
40 struct attribute_group isa207_pmu_format_group = {
41 	.name = "format",
42 	.attrs = isa207_pmu_format_attr,
43 };
44 
event_is_fab_match(u64 event)45 static inline bool event_is_fab_match(u64 event)
46 {
47 	/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
48 	event &= 0xff0fe;
49 
50 	/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
51 	return (event == 0x30056 || event == 0x4f052);
52 }
53 
is_event_valid(u64 event)54 static bool is_event_valid(u64 event)
55 {
56 	u64 valid_mask = EVENT_VALID_MASK;
57 
58 	if (cpu_has_feature(CPU_FTR_ARCH_31))
59 		valid_mask = p10_EVENT_VALID_MASK;
60 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
61 		valid_mask = p9_EVENT_VALID_MASK;
62 
63 	return !(event & ~valid_mask);
64 }
65 
is_event_marked(u64 event)66 static inline bool is_event_marked(u64 event)
67 {
68 	if (event & EVENT_IS_MARKED)
69 		return true;
70 
71 	return false;
72 }
73 
sdar_mod_val(u64 event)74 static unsigned long sdar_mod_val(u64 event)
75 {
76 	if (cpu_has_feature(CPU_FTR_ARCH_31))
77 		return p10_SDAR_MODE(event);
78 
79 	return p9_SDAR_MODE(event);
80 }
81 
mmcra_sdar_mode(u64 event,unsigned long * mmcra)82 static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
83 {
84 	/*
85 	 * MMCRA[SDAR_MODE] specifices how the SDAR should be updated in
86 	 * continous sampling mode.
87 	 *
88 	 * Incase of Power8:
89 	 * MMCRA[SDAR_MODE] will be programmed as "0b01" for continous sampling
90 	 * mode and will be un-changed when setting MMCRA[63] (Marked events).
91 	 *
92 	 * Incase of Power9/power10:
93 	 * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
94 	 *               or if group already have any marked events.
95 	 * For rest
96 	 *	MMCRA[SDAR_MODE] will be set from event code.
97 	 *      If sdar_mode from event is zero, default to 0b01. Hardware
98 	 *      requires that we set a non-zero value.
99 	 */
100 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
101 		if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
102 			*mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
103 		else if (sdar_mod_val(event))
104 			*mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
105 		else
106 			*mmcra |= MMCRA_SDAR_MODE_DCACHE;
107 	} else
108 		*mmcra |= MMCRA_SDAR_MODE_TLB;
109 }
110 
p10_thresh_cmp_val(u64 value)111 static int p10_thresh_cmp_val(u64 value)
112 {
113 	int exp = 0;
114 	u64 result = value;
115 
116 	if (!value)
117 		return value;
118 
119 	/*
120 	 * Incase of P10, thresh_cmp value is not part of raw event code
121 	 * and provided via attr.config1 parameter. To program threshold in MMCRA,
122 	 * take a 18 bit number N and shift right 2 places and increment
123 	 * the exponent E by 1 until the upper 10 bits of N are zero.
124 	 * Write E to the threshold exponent and write the lower 8 bits of N
125 	 * to the threshold mantissa.
126 	 * The max threshold that can be written is 261120.
127 	 */
128 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
129 		if (value > 261120)
130 			value = 261120;
131 		while ((64 - __builtin_clzl(value)) > 8) {
132 			exp++;
133 			value >>= 2;
134 		}
135 
136 		/*
137 		 * Note that it is invalid to write a mantissa with the
138 		 * upper 2 bits of mantissa being zero, unless the
139 		 * exponent is also zero.
140 		 */
141 		if (!(value & 0xC0) && exp)
142 			result = -1;
143 		else
144 			result = (exp << 8) | value;
145 	}
146 	return result;
147 }
148 
thresh_cmp_val(u64 value)149 static u64 thresh_cmp_val(u64 value)
150 {
151 	if (cpu_has_feature(CPU_FTR_ARCH_31))
152 		value = p10_thresh_cmp_val(value);
153 
154 	/*
155 	 * Since location of threshold compare bits in MMCRA
156 	 * is different for p8, using different shift value.
157 	 */
158 	if (cpu_has_feature(CPU_FTR_ARCH_300))
159 		return value << p9_MMCRA_THR_CMP_SHIFT;
160 	else
161 		return value << MMCRA_THR_CMP_SHIFT;
162 }
163 
combine_from_event(u64 event)164 static unsigned long combine_from_event(u64 event)
165 {
166 	if (cpu_has_feature(CPU_FTR_ARCH_300))
167 		return p9_EVENT_COMBINE(event);
168 
169 	return EVENT_COMBINE(event);
170 }
171 
combine_shift(unsigned long pmc)172 static unsigned long combine_shift(unsigned long pmc)
173 {
174 	if (cpu_has_feature(CPU_FTR_ARCH_300))
175 		return p9_MMCR1_COMBINE_SHIFT(pmc);
176 
177 	return MMCR1_COMBINE_SHIFT(pmc);
178 }
179 
event_is_threshold(u64 event)180 static inline bool event_is_threshold(u64 event)
181 {
182 	return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
183 }
184 
is_thresh_cmp_valid(u64 event)185 static bool is_thresh_cmp_valid(u64 event)
186 {
187 	unsigned int cmp, exp;
188 
189 	if (cpu_has_feature(CPU_FTR_ARCH_31))
190 		return p10_thresh_cmp_val(event) >= 0;
191 
192 	/*
193 	 * Check the mantissa upper two bits are not zero, unless the
194 	 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
195 	 */
196 
197 	cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
198 	exp = cmp >> 7;
199 
200 	if (exp && (cmp & 0x60) == 0)
201 		return false;
202 
203 	return true;
204 }
205 
dc_ic_rld_quad_l1_sel(u64 event)206 static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
207 {
208 	unsigned int cache;
209 
210 	cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
211 	return cache;
212 }
213 
isa207_find_source(u64 idx,u32 sub_idx)214 static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
215 {
216 	u64 ret = PERF_MEM_NA;
217 
218 	switch(idx) {
219 	case 0:
220 		/* Nothing to do */
221 		break;
222 	case 1:
223 		ret = PH(LVL, L1);
224 		break;
225 	case 2:
226 		ret = PH(LVL, L2);
227 		break;
228 	case 3:
229 		ret = PH(LVL, L3);
230 		break;
231 	case 4:
232 		if (sub_idx <= 1)
233 			ret = PH(LVL, LOC_RAM);
234 		else if (sub_idx > 1 && sub_idx <= 2)
235 			ret = PH(LVL, REM_RAM1);
236 		else
237 			ret = PH(LVL, REM_RAM2);
238 		ret |= P(SNOOP, HIT);
239 		break;
240 	case 5:
241 		ret = PH(LVL, REM_CCE1);
242 		if ((sub_idx == 0) || (sub_idx == 2) || (sub_idx == 4))
243 			ret |= P(SNOOP, HIT);
244 		else if ((sub_idx == 1) || (sub_idx == 3) || (sub_idx == 5))
245 			ret |= P(SNOOP, HITM);
246 		break;
247 	case 6:
248 		ret = PH(LVL, REM_CCE2);
249 		if ((sub_idx == 0) || (sub_idx == 2))
250 			ret |= P(SNOOP, HIT);
251 		else if ((sub_idx == 1) || (sub_idx == 3))
252 			ret |= P(SNOOP, HITM);
253 		break;
254 	case 7:
255 		ret = PM(LVL, L1);
256 		break;
257 	}
258 
259 	return ret;
260 }
261 
isa207_get_mem_data_src(union perf_mem_data_src * dsrc,u32 flags,struct pt_regs * regs)262 void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
263 							struct pt_regs *regs)
264 {
265 	u64 idx;
266 	u32 sub_idx;
267 	u64 sier;
268 	u64 val;
269 
270 	/* Skip if no SIER support */
271 	if (!(flags & PPMU_HAS_SIER)) {
272 		dsrc->val = 0;
273 		return;
274 	}
275 
276 	sier = mfspr(SPRN_SIER);
277 	val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
278 	if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31)))
279 		return;
280 
281 	idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
282 	sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
283 
284 	dsrc->val = isa207_find_source(idx, sub_idx);
285 	if (val == 7) {
286 		u64 mmcra;
287 		u32 op_type;
288 
289 		/*
290 		 * Type 0b111 denotes either larx or stcx instruction. Use the
291 		 * MMCRA sampling bits [57:59] along with the type value
292 		 * to determine the exact instruction type. If the sampling
293 		 * criteria is neither load or store, set the type as default
294 		 * to NA.
295 		 */
296 		mmcra = mfspr(SPRN_MMCRA);
297 
298 		op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
299 		switch (op_type) {
300 		case 5:
301 			dsrc->val |= P(OP, LOAD);
302 			break;
303 		case 7:
304 			dsrc->val |= P(OP, STORE);
305 			break;
306 		default:
307 			dsrc->val |= P(OP, NA);
308 			break;
309 		}
310 	} else {
311 		dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
312 	}
313 }
314 
isa207_get_mem_weight(u64 * weight,u64 type)315 void isa207_get_mem_weight(u64 *weight, u64 type)
316 {
317 	union perf_sample_weight *weight_fields;
318 	u64 weight_lat;
319 	u64 mmcra = mfspr(SPRN_MMCRA);
320 	u64 exp = MMCRA_THR_CTR_EXP(mmcra);
321 	u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
322 	u64 sier = mfspr(SPRN_SIER);
323 	u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
324 
325 	if (cpu_has_feature(CPU_FTR_ARCH_31))
326 		mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
327 
328 	if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
329 		weight_lat = 0;
330 	else
331 		weight_lat = mantissa << (2 * exp);
332 
333 	/*
334 	 * Use 64 bit weight field (full) if sample type is
335 	 * WEIGHT.
336 	 *
337 	 * if sample type is WEIGHT_STRUCT:
338 	 * - store memory latency in the lower 32 bits.
339 	 * - For ISA v3.1, use remaining two 16 bit fields of
340 	 *   perf_sample_weight to store cycle counter values
341 	 *   from sier2.
342 	 */
343 	weight_fields = (union perf_sample_weight *)weight;
344 	if (type & PERF_SAMPLE_WEIGHT)
345 		weight_fields->full = weight_lat;
346 	else {
347 		weight_fields->var1_dw = (u32)weight_lat;
348 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
349 			weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
350 			weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
351 		}
352 	}
353 }
354 
isa207_get_constraint(u64 event,unsigned long * maskp,unsigned long * valp,u64 event_config1)355 int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
356 {
357 	unsigned int unit, pmc, cache, ebb;
358 	unsigned long mask, value;
359 
360 	mask = value = 0;
361 
362 	if (!is_event_valid(event))
363 		return -1;
364 
365 	pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
366 	unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
367 	if (cpu_has_feature(CPU_FTR_ARCH_31))
368 		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
369 			p10_EVENT_CACHE_SEL_MASK;
370 	else
371 		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
372 			EVENT_CACHE_SEL_MASK;
373 	ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
374 
375 	if (pmc) {
376 		u64 base_event;
377 
378 		if (pmc > 6)
379 			return -1;
380 
381 		/* Ignore Linux defined bits when checking event below */
382 		base_event = event & ~EVENT_LINUX_MASK;
383 
384 		if (pmc >= 5 && base_event != 0x500fa &&
385 				base_event != 0x600f4)
386 			return -1;
387 
388 		mask  |= CNST_PMC_MASK(pmc);
389 		value |= CNST_PMC_VAL(pmc);
390 
391 		/*
392 		 * PMC5 and PMC6 are used to count cycles and instructions and
393 		 * they do not support most of the constraint bits. Add a check
394 		 * to exclude PMC5/6 from most of the constraints except for
395 		 * EBB/BHRB.
396 		 */
397 		if (pmc >= 5)
398 			goto ebb_bhrb;
399 	}
400 
401 	if (pmc <= 4) {
402 		/*
403 		 * Add to number of counters in use. Note this includes events with
404 		 * a PMC of 0 - they still need a PMC, it's just assigned later.
405 		 * Don't count events on PMC 5 & 6, there is only one valid event
406 		 * on each of those counters, and they are handled above.
407 		 */
408 		mask  |= CNST_NC_MASK;
409 		value |= CNST_NC_VAL;
410 	}
411 
412 	if (unit >= 6 && unit <= 9) {
413 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
414 			if (unit == 6) {
415 				mask |= CNST_L2L3_GROUP_MASK;
416 				value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
417 			}
418 		} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
419 			mask  |= CNST_CACHE_GROUP_MASK;
420 			value |= CNST_CACHE_GROUP_VAL(event & 0xff);
421 
422 			mask |= CNST_CACHE_PMC4_MASK;
423 			if (pmc == 4)
424 				value |= CNST_CACHE_PMC4_VAL;
425 		} else if (cache & 0x7) {
426 			/*
427 			 * L2/L3 events contain a cache selector field, which is
428 			 * supposed to be programmed into MMCRC. However MMCRC is only
429 			 * HV writable, and there is no API for guest kernels to modify
430 			 * it. The solution is for the hypervisor to initialise the
431 			 * field to zeroes, and for us to only ever allow events that
432 			 * have a cache selector of zero. The bank selector (bit 3) is
433 			 * irrelevant, as long as the rest of the value is 0.
434 			 */
435 			return -1;
436 		}
437 
438 	} else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
439 		mask  |= CNST_L1_QUAL_MASK;
440 		value |= CNST_L1_QUAL_VAL(cache);
441 	}
442 
443 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
444 		mask |= CNST_RADIX_SCOPE_GROUP_MASK;
445 		value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
446 	}
447 
448 	if (is_event_marked(event)) {
449 		mask  |= CNST_SAMPLE_MASK;
450 		value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
451 	}
452 
453 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
454 		if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
455 			mask  |= CNST_THRESH_CTL_SEL_MASK;
456 			value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
457 			mask  |= p10_CNST_THRESH_CMP_MASK;
458 			value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
459 		} else if (event_is_threshold(event))
460 			return -1;
461 	} else if (cpu_has_feature(CPU_FTR_ARCH_300))  {
462 		if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
463 			mask  |= CNST_THRESH_MASK;
464 			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
465 		} else if (event_is_threshold(event))
466 			return -1;
467 	} else {
468 		/*
469 		 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
470 		 * the threshold control bits are used for the match value.
471 		 */
472 		if (event_is_fab_match(event)) {
473 			mask  |= CNST_FAB_MATCH_MASK;
474 			value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
475 		} else {
476 			if (!is_thresh_cmp_valid(event))
477 				return -1;
478 
479 			mask  |= CNST_THRESH_MASK;
480 			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
481 		}
482 	}
483 
484 ebb_bhrb:
485 	if (!pmc && ebb)
486 		/* EBB events must specify the PMC */
487 		return -1;
488 
489 	if (event & EVENT_WANTS_BHRB) {
490 		if (!ebb)
491 			/* Only EBB events can request BHRB */
492 			return -1;
493 
494 		mask  |= CNST_IFM_MASK;
495 		value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
496 	}
497 
498 	/*
499 	 * All events must agree on EBB, either all request it or none.
500 	 * EBB events are pinned & exclusive, so this should never actually
501 	 * hit, but we leave it as a fallback in case.
502 	 */
503 	mask  |= CNST_EBB_MASK;
504 	value |= CNST_EBB_VAL(ebb);
505 
506 	*maskp = mask;
507 	*valp = value;
508 
509 	return 0;
510 }
511 
isa207_compute_mmcr(u64 event[],int n_ev,unsigned int hwc[],struct mmcr_regs * mmcr,struct perf_event * pevents[],u32 flags)512 int isa207_compute_mmcr(u64 event[], int n_ev,
513 			       unsigned int hwc[], struct mmcr_regs *mmcr,
514 			       struct perf_event *pevents[], u32 flags)
515 {
516 	unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
517 	unsigned long mmcr3;
518 	unsigned int pmc, pmc_inuse;
519 	int i;
520 
521 	pmc_inuse = 0;
522 
523 	/* First pass to count resource use */
524 	for (i = 0; i < n_ev; ++i) {
525 		pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
526 		if (pmc)
527 			pmc_inuse |= 1 << pmc;
528 	}
529 
530 	mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
531 
532 	/*
533 	 * Disable bhrb unless explicitly requested
534 	 * by setting MMCRA (BHRBRD) bit.
535 	 */
536 	if (cpu_has_feature(CPU_FTR_ARCH_31))
537 		mmcra |= MMCRA_BHRB_DISABLE;
538 
539 	/* Second pass: assign PMCs, set all MMCR1 fields */
540 	for (i = 0; i < n_ev; ++i) {
541 		pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
542 		unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
543 		combine = combine_from_event(event[i]);
544 		psel    =  event[i] & EVENT_PSEL_MASK;
545 
546 		if (!pmc) {
547 			for (pmc = 1; pmc <= 4; ++pmc) {
548 				if (!(pmc_inuse & (1 << pmc)))
549 					break;
550 			}
551 
552 			pmc_inuse |= 1 << pmc;
553 		}
554 
555 		if (pmc <= 4) {
556 			mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
557 			mmcr1 |= combine << combine_shift(pmc);
558 			mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
559 		}
560 
561 		/* In continuous sampling mode, update SDAR on TLB miss */
562 		mmcra_sdar_mode(event[i], &mmcra);
563 
564 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
565 			cache = dc_ic_rld_quad_l1_sel(event[i]);
566 			mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
567 		} else {
568 			if (event[i] & EVENT_IS_L1) {
569 				cache = dc_ic_rld_quad_l1_sel(event[i]);
570 				mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
571 			}
572 		}
573 
574 		/* Set RADIX_SCOPE_QUAL bit */
575 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
576 			val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
577 				p10_EVENT_RADIX_SCOPE_QUAL_MASK;
578 			mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
579 		}
580 
581 		if (is_event_marked(event[i])) {
582 			mmcra |= MMCRA_SAMPLE_ENABLE;
583 
584 			val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
585 			if (val) {
586 				mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
587 				mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
588 			}
589 		}
590 
591 		/*
592 		 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
593 		 * the threshold bits are used for the match value.
594 		 */
595 		if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
596 			mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
597 				  EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
598 		} else {
599 			val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
600 			mmcra |= val << MMCRA_THR_CTL_SHIFT;
601 			val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
602 			mmcra |= val << MMCRA_THR_SEL_SHIFT;
603 			if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
604 				val = (event[i] >> EVENT_THR_CMP_SHIFT) &
605 					EVENT_THR_CMP_MASK;
606 				mmcra |= thresh_cmp_val(val);
607 			} else if (flags & PPMU_HAS_ATTR_CONFIG1) {
608 				val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
609 					p10_EVENT_THR_CMP_MASK;
610 				mmcra |= thresh_cmp_val(val);
611 			}
612 		}
613 
614 		if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
615 			val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
616 				p10_EVENT_L2L3_SEL_MASK;
617 			mmcr2 |= val << p10_L2L3_SEL_SHIFT;
618 		}
619 
620 		if (event[i] & EVENT_WANTS_BHRB) {
621 			val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
622 			mmcra |= val << MMCRA_IFM_SHIFT;
623 		}
624 
625 		/* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
626 		if (cpu_has_feature(CPU_FTR_ARCH_31) &&
627 				(has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
628 			mmcra &= ~MMCRA_BHRB_DISABLE;
629 
630 		if (pevents[i]->attr.exclude_user)
631 			mmcr2 |= MMCR2_FCP(pmc);
632 
633 		if (pevents[i]->attr.exclude_hv)
634 			mmcr2 |= MMCR2_FCH(pmc);
635 
636 		if (pevents[i]->attr.exclude_kernel) {
637 			if (cpu_has_feature(CPU_FTR_HVMODE))
638 				mmcr2 |= MMCR2_FCH(pmc);
639 			else
640 				mmcr2 |= MMCR2_FCS(pmc);
641 		}
642 
643 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
644 			if (pmc <= 4) {
645 				val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
646 					p10_EVENT_MMCR3_MASK;
647 				mmcr3 |= val << MMCR3_SHIFT(pmc);
648 			}
649 		}
650 
651 		hwc[i] = pmc - 1;
652 	}
653 
654 	/* Return MMCRx values */
655 	mmcr->mmcr0 = 0;
656 
657 	/* pmc_inuse is 1-based */
658 	if (pmc_inuse & 2)
659 		mmcr->mmcr0 = MMCR0_PMC1CE;
660 
661 	if (pmc_inuse & 0x7c)
662 		mmcr->mmcr0 |= MMCR0_PMCjCE;
663 
664 	/* If we're not using PMC 5 or 6, freeze them */
665 	if (!(pmc_inuse & 0x60))
666 		mmcr->mmcr0 |= MMCR0_FC56;
667 
668 	/*
669 	 * Set mmcr0 (PMCCEXT) for p10 which
670 	 * will restrict access to group B registers
671 	 * when MMCR0 PMCC=0b00.
672 	 */
673 	if (cpu_has_feature(CPU_FTR_ARCH_31))
674 		mmcr->mmcr0 |= MMCR0_PMCCEXT;
675 
676 	mmcr->mmcr1 = mmcr1;
677 	mmcr->mmcra = mmcra;
678 	mmcr->mmcr2 = mmcr2;
679 	mmcr->mmcr3 = mmcr3;
680 
681 	return 0;
682 }
683 
isa207_disable_pmc(unsigned int pmc,struct mmcr_regs * mmcr)684 void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
685 {
686 	if (pmc <= 3)
687 		mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
688 }
689 
find_alternative(u64 event,const unsigned int ev_alt[][MAX_ALT],int size)690 static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
691 {
692 	int i, j;
693 
694 	for (i = 0; i < size; ++i) {
695 		if (event < ev_alt[i][0])
696 			break;
697 
698 		for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
699 			if (event == ev_alt[i][j])
700 				return i;
701 	}
702 
703 	return -1;
704 }
705 
isa207_get_alternatives(u64 event,u64 alt[],int size,unsigned int flags,const unsigned int ev_alt[][MAX_ALT])706 int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
707 					const unsigned int ev_alt[][MAX_ALT])
708 {
709 	int i, j, num_alt = 0;
710 	u64 alt_event;
711 
712 	alt[num_alt++] = event;
713 	i = find_alternative(event, ev_alt, size);
714 	if (i >= 0) {
715 		/* Filter out the original event, it's already in alt[0] */
716 		for (j = 0; j < MAX_ALT; ++j) {
717 			alt_event = ev_alt[i][j];
718 			if (alt_event && alt_event != event)
719 				alt[num_alt++] = alt_event;
720 		}
721 	}
722 
723 	if (flags & PPMU_ONLY_COUNT_RUN) {
724 		/*
725 		 * We're only counting in RUN state, so PM_CYC is equivalent to
726 		 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
727 		 */
728 		j = num_alt;
729 		for (i = 0; i < num_alt; ++i) {
730 			switch (alt[i]) {
731 			case 0x1e:			/* PMC_CYC */
732 				alt[j++] = 0x600f4;	/* PM_RUN_CYC */
733 				break;
734 			case 0x600f4:
735 				alt[j++] = 0x1e;
736 				break;
737 			case 0x2:			/* PM_INST_CMPL */
738 				alt[j++] = 0x500fa;	/* PM_RUN_INST_CMPL */
739 				break;
740 			case 0x500fa:
741 				alt[j++] = 0x2;
742 				break;
743 			}
744 		}
745 		num_alt = j;
746 	}
747 
748 	return num_alt;
749 }
750 
isa3XX_check_attr_config(struct perf_event * ev)751 int isa3XX_check_attr_config(struct perf_event *ev)
752 {
753 	u64 val, sample_mode;
754 	u64 event = ev->attr.config;
755 
756 	val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
757 	sample_mode = val & 0x3;
758 
759 	/*
760 	 * MMCRA[61:62] is Random Sampling Mode (SM).
761 	 * value of 0b11 is reserved.
762 	 */
763 	if (sample_mode == 0x3)
764 		return -EINVAL;
765 
766 	/*
767 	 * Check for all reserved value
768 	 * Source: Performance Monitoring Unit User Guide
769 	 */
770 	switch (val) {
771 	case 0x5:
772 	case 0x9:
773 	case 0xD:
774 	case 0x19:
775 	case 0x1D:
776 	case 0x1A:
777 	case 0x1E:
778 		return -EINVAL;
779 	}
780 
781 	/*
782 	 * MMCRA[48:51]/[52:55]) Threshold Start/Stop
783 	 * Events Selection.
784 	 * 0b11110000/0b00001111 is reserved.
785 	 */
786 	val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
787 	if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
788 		return -EINVAL;
789 
790 	return 0;
791 }
792