• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)	"papr-scm: " fmt
4 
5 #include <linux/of.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/ioport.h>
9 #include <linux/slab.h>
10 #include <linux/ndctl.h>
11 #include <linux/sched.h>
12 #include <linux/libnvdimm.h>
13 #include <linux/platform_device.h>
14 #include <linux/delay.h>
15 #include <linux/seq_buf.h>
16 #include <linux/nd.h>
17 
18 #include <asm/plpar_wrappers.h>
19 #include <asm/papr_pdsm.h>
20 #include <asm/mce.h>
21 #include <asm/unaligned.h>
22 
23 #define BIND_ANY_ADDR (~0ul)
24 
25 #define PAPR_SCM_DIMM_CMD_MASK \
26 	((1ul << ND_CMD_GET_CONFIG_SIZE) | \
27 	 (1ul << ND_CMD_GET_CONFIG_DATA) | \
28 	 (1ul << ND_CMD_SET_CONFIG_DATA) | \
29 	 (1ul << ND_CMD_CALL))
30 
31 /* DIMM health bitmap bitmap indicators */
32 /* SCM device is unable to persist memory contents */
33 #define PAPR_PMEM_UNARMED                   (1ULL << (63 - 0))
34 /* SCM device failed to persist memory contents */
35 #define PAPR_PMEM_SHUTDOWN_DIRTY            (1ULL << (63 - 1))
36 /* SCM device contents are persisted from previous IPL */
37 #define PAPR_PMEM_SHUTDOWN_CLEAN            (1ULL << (63 - 2))
38 /* SCM device contents are not persisted from previous IPL */
39 #define PAPR_PMEM_EMPTY                     (1ULL << (63 - 3))
40 /* SCM device memory life remaining is critically low */
41 #define PAPR_PMEM_HEALTH_CRITICAL           (1ULL << (63 - 4))
42 /* SCM device will be garded off next IPL due to failure */
43 #define PAPR_PMEM_HEALTH_FATAL              (1ULL << (63 - 5))
44 /* SCM contents cannot persist due to current platform health status */
45 #define PAPR_PMEM_HEALTH_UNHEALTHY          (1ULL << (63 - 6))
46 /* SCM device is unable to persist memory contents in certain conditions */
47 #define PAPR_PMEM_HEALTH_NON_CRITICAL       (1ULL << (63 - 7))
48 /* SCM device is encrypted */
49 #define PAPR_PMEM_ENCRYPTED                 (1ULL << (63 - 8))
50 /* SCM device has been scrubbed and locked */
51 #define PAPR_PMEM_SCRUBBED_AND_LOCKED       (1ULL << (63 - 9))
52 
53 /* Bits status indicators for health bitmap indicating unarmed dimm */
54 #define PAPR_PMEM_UNARMED_MASK (PAPR_PMEM_UNARMED |		\
55 				PAPR_PMEM_HEALTH_UNHEALTHY)
56 
57 /* Bits status indicators for health bitmap indicating unflushed dimm */
58 #define PAPR_PMEM_BAD_SHUTDOWN_MASK (PAPR_PMEM_SHUTDOWN_DIRTY)
59 
60 /* Bits status indicators for health bitmap indicating unrestored dimm */
61 #define PAPR_PMEM_BAD_RESTORE_MASK  (PAPR_PMEM_EMPTY)
62 
63 /* Bit status indicators for smart event notification */
64 #define PAPR_PMEM_SMART_EVENT_MASK (PAPR_PMEM_HEALTH_CRITICAL | \
65 				    PAPR_PMEM_HEALTH_FATAL |	\
66 				    PAPR_PMEM_HEALTH_UNHEALTHY)
67 
68 #define PAPR_SCM_PERF_STATS_EYECATCHER __stringify(SCMSTATS)
69 #define PAPR_SCM_PERF_STATS_VERSION 0x1
70 
71 /* Struct holding a single performance metric */
72 struct papr_scm_perf_stat {
73 	u8 stat_id[8];
74 	__be64 stat_val;
75 } __packed;
76 
77 /* Struct exchanged between kernel and PHYP for fetching drc perf stats */
78 struct papr_scm_perf_stats {
79 	u8 eye_catcher[8];
80 	/* Should be PAPR_SCM_PERF_STATS_VERSION */
81 	__be32 stats_version;
82 	/* Number of stats following */
83 	__be32 num_statistics;
84 	/* zero or more performance matrics */
85 	struct papr_scm_perf_stat scm_statistic[];
86 } __packed;
87 
88 /* private struct associated with each region */
89 struct papr_scm_priv {
90 	struct platform_device *pdev;
91 	struct device_node *dn;
92 	uint32_t drc_index;
93 	uint64_t blocks;
94 	uint64_t block_size;
95 	int metadata_size;
96 	bool is_volatile;
97 	bool hcall_flush_required;
98 
99 	uint64_t bound_addr;
100 
101 	struct nvdimm_bus_descriptor bus_desc;
102 	struct nvdimm_bus *bus;
103 	struct nvdimm *nvdimm;
104 	struct resource res;
105 	struct nd_region *region;
106 	struct nd_interleave_set nd_set;
107 	struct list_head region_list;
108 
109 	/* Protect dimm health data from concurrent read/writes */
110 	struct mutex health_mutex;
111 
112 	/* Last time the health information of the dimm was updated */
113 	unsigned long lasthealth_jiffies;
114 
115 	/* Health information for the dimm */
116 	u64 health_bitmap;
117 
118 	/* Holds the last known dirty shutdown counter value */
119 	u64 dirty_shutdown_counter;
120 
121 	/* length of the stat buffer as expected by phyp */
122 	size_t stat_buffer_len;
123 };
124 
papr_scm_pmem_flush(struct nd_region * nd_region,struct bio * bio __maybe_unused)125 static int papr_scm_pmem_flush(struct nd_region *nd_region,
126 			       struct bio *bio __maybe_unused)
127 {
128 	struct papr_scm_priv *p = nd_region_provider_data(nd_region);
129 	unsigned long ret_buf[PLPAR_HCALL_BUFSIZE], token = 0;
130 	long rc;
131 
132 	dev_dbg(&p->pdev->dev, "flush drc 0x%x", p->drc_index);
133 
134 	do {
135 		rc = plpar_hcall(H_SCM_FLUSH, ret_buf, p->drc_index, token);
136 		token = ret_buf[0];
137 
138 		/* Check if we are stalled for some time */
139 		if (H_IS_LONG_BUSY(rc)) {
140 			msleep(get_longbusy_msecs(rc));
141 			rc = H_BUSY;
142 		} else if (rc == H_BUSY) {
143 			cond_resched();
144 		}
145 	} while (rc == H_BUSY);
146 
147 	if (rc) {
148 		dev_err(&p->pdev->dev, "flush error: %ld", rc);
149 		rc = -EIO;
150 	} else {
151 		dev_dbg(&p->pdev->dev, "flush drc 0x%x complete", p->drc_index);
152 	}
153 
154 	return rc;
155 }
156 
157 static LIST_HEAD(papr_nd_regions);
158 static DEFINE_MUTEX(papr_ndr_lock);
159 
drc_pmem_bind(struct papr_scm_priv * p)160 static int drc_pmem_bind(struct papr_scm_priv *p)
161 {
162 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
163 	uint64_t saved = 0;
164 	uint64_t token;
165 	int64_t rc;
166 
167 	/*
168 	 * When the hypervisor cannot map all the requested memory in a single
169 	 * hcall it returns H_BUSY and we call again with the token until
170 	 * we get H_SUCCESS. Aborting the retry loop before getting H_SUCCESS
171 	 * leave the system in an undefined state, so we wait.
172 	 */
173 	token = 0;
174 
175 	do {
176 		rc = plpar_hcall(H_SCM_BIND_MEM, ret, p->drc_index, 0,
177 				p->blocks, BIND_ANY_ADDR, token);
178 		token = ret[0];
179 		if (!saved)
180 			saved = ret[1];
181 		cond_resched();
182 	} while (rc == H_BUSY);
183 
184 	if (rc)
185 		return rc;
186 
187 	p->bound_addr = saved;
188 	dev_dbg(&p->pdev->dev, "bound drc 0x%x to 0x%lx\n",
189 		p->drc_index, (unsigned long)saved);
190 	return rc;
191 }
192 
drc_pmem_unbind(struct papr_scm_priv * p)193 static void drc_pmem_unbind(struct papr_scm_priv *p)
194 {
195 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
196 	uint64_t token = 0;
197 	int64_t rc;
198 
199 	dev_dbg(&p->pdev->dev, "unbind drc 0x%x\n", p->drc_index);
200 
201 	/* NB: unbind has the same retry requirements as drc_pmem_bind() */
202 	do {
203 
204 		/* Unbind of all SCM resources associated with drcIndex */
205 		rc = plpar_hcall(H_SCM_UNBIND_ALL, ret, H_UNBIND_SCOPE_DRC,
206 				 p->drc_index, token);
207 		token = ret[0];
208 
209 		/* Check if we are stalled for some time */
210 		if (H_IS_LONG_BUSY(rc)) {
211 			msleep(get_longbusy_msecs(rc));
212 			rc = H_BUSY;
213 		} else if (rc == H_BUSY) {
214 			cond_resched();
215 		}
216 
217 	} while (rc == H_BUSY);
218 
219 	if (rc)
220 		dev_err(&p->pdev->dev, "unbind error: %lld\n", rc);
221 	else
222 		dev_dbg(&p->pdev->dev, "unbind drc 0x%x complete\n",
223 			p->drc_index);
224 
225 	return;
226 }
227 
drc_pmem_query_n_bind(struct papr_scm_priv * p)228 static int drc_pmem_query_n_bind(struct papr_scm_priv *p)
229 {
230 	unsigned long start_addr;
231 	unsigned long end_addr;
232 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
233 	int64_t rc;
234 
235 
236 	rc = plpar_hcall(H_SCM_QUERY_BLOCK_MEM_BINDING, ret,
237 			 p->drc_index, 0);
238 	if (rc)
239 		goto err_out;
240 	start_addr = ret[0];
241 
242 	/* Make sure the full region is bound. */
243 	rc = plpar_hcall(H_SCM_QUERY_BLOCK_MEM_BINDING, ret,
244 			 p->drc_index, p->blocks - 1);
245 	if (rc)
246 		goto err_out;
247 	end_addr = ret[0];
248 
249 	if ((end_addr - start_addr) != ((p->blocks - 1) * p->block_size))
250 		goto err_out;
251 
252 	p->bound_addr = start_addr;
253 	dev_dbg(&p->pdev->dev, "bound drc 0x%x to 0x%lx\n", p->drc_index, start_addr);
254 	return rc;
255 
256 err_out:
257 	dev_info(&p->pdev->dev,
258 		 "Failed to query, trying an unbind followed by bind");
259 	drc_pmem_unbind(p);
260 	return drc_pmem_bind(p);
261 }
262 
263 /*
264  * Query the Dimm performance stats from PHYP and copy them (if returned) to
265  * provided struct papr_scm_perf_stats instance 'stats' that can hold atleast
266  * (num_stats + header) bytes.
267  * - If buff_stats == NULL the return value is the size in bytes of the buffer
268  * needed to hold all supported performance-statistics.
269  * - If buff_stats != NULL and num_stats == 0 then we copy all known
270  * performance-statistics to 'buff_stat' and expect to be large enough to
271  * hold them.
272  * - if buff_stats != NULL and num_stats > 0 then copy the requested
273  * performance-statistics to buff_stats.
274  */
drc_pmem_query_stats(struct papr_scm_priv * p,struct papr_scm_perf_stats * buff_stats,unsigned int num_stats)275 static ssize_t drc_pmem_query_stats(struct papr_scm_priv *p,
276 				    struct papr_scm_perf_stats *buff_stats,
277 				    unsigned int num_stats)
278 {
279 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
280 	size_t size;
281 	s64 rc;
282 
283 	/* Setup the out buffer */
284 	if (buff_stats) {
285 		memcpy(buff_stats->eye_catcher,
286 		       PAPR_SCM_PERF_STATS_EYECATCHER, 8);
287 		buff_stats->stats_version =
288 			cpu_to_be32(PAPR_SCM_PERF_STATS_VERSION);
289 		buff_stats->num_statistics =
290 			cpu_to_be32(num_stats);
291 
292 		/*
293 		 * Calculate the buffer size based on num-stats provided
294 		 * or use the prefetched max buffer length
295 		 */
296 		if (num_stats)
297 			/* Calculate size from the num_stats */
298 			size = sizeof(struct papr_scm_perf_stats) +
299 				num_stats * sizeof(struct papr_scm_perf_stat);
300 		else
301 			size = p->stat_buffer_len;
302 	} else {
303 		/* In case of no out buffer ignore the size */
304 		size = 0;
305 	}
306 
307 	/* Do the HCALL asking PHYP for info */
308 	rc = plpar_hcall(H_SCM_PERFORMANCE_STATS, ret, p->drc_index,
309 			 buff_stats ? virt_to_phys(buff_stats) : 0,
310 			 size);
311 
312 	/* Check if the error was due to an unknown stat-id */
313 	if (rc == H_PARTIAL) {
314 		dev_err(&p->pdev->dev,
315 			"Unknown performance stats, Err:0x%016lX\n", ret[0]);
316 		return -ENOENT;
317 	} else if (rc == H_AUTHORITY) {
318 		dev_info(&p->pdev->dev,
319 			 "Permission denied while accessing performance stats");
320 		return -EPERM;
321 	} else if (rc == H_UNSUPPORTED) {
322 		dev_dbg(&p->pdev->dev, "Performance stats unsupported\n");
323 		return -EOPNOTSUPP;
324 	} else if (rc != H_SUCCESS) {
325 		dev_err(&p->pdev->dev,
326 			"Failed to query performance stats, Err:%lld\n", rc);
327 		return -EIO;
328 
329 	} else if (!size) {
330 		/* Handle case where stat buffer size was requested */
331 		dev_dbg(&p->pdev->dev,
332 			"Performance stats size %ld\n", ret[0]);
333 		return ret[0];
334 	}
335 
336 	/* Successfully fetched the requested stats from phyp */
337 	dev_dbg(&p->pdev->dev,
338 		"Performance stats returned %d stats\n",
339 		be32_to_cpu(buff_stats->num_statistics));
340 	return 0;
341 }
342 
343 /*
344  * Issue hcall to retrieve dimm health info and populate papr_scm_priv with the
345  * health information.
346  */
__drc_pmem_query_health(struct papr_scm_priv * p)347 static int __drc_pmem_query_health(struct papr_scm_priv *p)
348 {
349 	unsigned long ret[PLPAR_HCALL_BUFSIZE];
350 	long rc;
351 
352 	/* issue the hcall */
353 	rc = plpar_hcall(H_SCM_HEALTH, ret, p->drc_index);
354 	if (rc != H_SUCCESS) {
355 		dev_err(&p->pdev->dev,
356 			"Failed to query health information, Err:%ld\n", rc);
357 		return -ENXIO;
358 	}
359 
360 	p->lasthealth_jiffies = jiffies;
361 	p->health_bitmap = ret[0] & ret[1];
362 
363 	dev_dbg(&p->pdev->dev,
364 		"Queried dimm health info. Bitmap:0x%016lx Mask:0x%016lx\n",
365 		ret[0], ret[1]);
366 
367 	return 0;
368 }
369 
370 /* Min interval in seconds for assuming stable dimm health */
371 #define MIN_HEALTH_QUERY_INTERVAL 60
372 
373 /* Query cached health info and if needed call drc_pmem_query_health */
drc_pmem_query_health(struct papr_scm_priv * p)374 static int drc_pmem_query_health(struct papr_scm_priv *p)
375 {
376 	unsigned long cache_timeout;
377 	int rc;
378 
379 	/* Protect concurrent modifications to papr_scm_priv */
380 	rc = mutex_lock_interruptible(&p->health_mutex);
381 	if (rc)
382 		return rc;
383 
384 	/* Jiffies offset for which the health data is assumed to be same */
385 	cache_timeout = p->lasthealth_jiffies +
386 		msecs_to_jiffies(MIN_HEALTH_QUERY_INTERVAL * 1000);
387 
388 	/* Fetch new health info is its older than MIN_HEALTH_QUERY_INTERVAL */
389 	if (time_after(jiffies, cache_timeout))
390 		rc = __drc_pmem_query_health(p);
391 	else
392 		/* Assume cached health data is valid */
393 		rc = 0;
394 
395 	mutex_unlock(&p->health_mutex);
396 	return rc;
397 }
398 
papr_scm_meta_get(struct papr_scm_priv * p,struct nd_cmd_get_config_data_hdr * hdr)399 static int papr_scm_meta_get(struct papr_scm_priv *p,
400 			     struct nd_cmd_get_config_data_hdr *hdr)
401 {
402 	unsigned long data[PLPAR_HCALL_BUFSIZE];
403 	unsigned long offset, data_offset;
404 	int len, read;
405 	int64_t ret;
406 
407 	if ((hdr->in_offset + hdr->in_length) > p->metadata_size)
408 		return -EINVAL;
409 
410 	for (len = hdr->in_length; len; len -= read) {
411 
412 		data_offset = hdr->in_length - len;
413 		offset = hdr->in_offset + data_offset;
414 
415 		if (len >= 8)
416 			read = 8;
417 		else if (len >= 4)
418 			read = 4;
419 		else if (len >= 2)
420 			read = 2;
421 		else
422 			read = 1;
423 
424 		ret = plpar_hcall(H_SCM_READ_METADATA, data, p->drc_index,
425 				  offset, read);
426 
427 		if (ret == H_PARAMETER) /* bad DRC index */
428 			return -ENODEV;
429 		if (ret)
430 			return -EINVAL; /* other invalid parameter */
431 
432 		switch (read) {
433 		case 8:
434 			*(uint64_t *)(hdr->out_buf + data_offset) = be64_to_cpu(data[0]);
435 			break;
436 		case 4:
437 			*(uint32_t *)(hdr->out_buf + data_offset) = be32_to_cpu(data[0] & 0xffffffff);
438 			break;
439 
440 		case 2:
441 			*(uint16_t *)(hdr->out_buf + data_offset) = be16_to_cpu(data[0] & 0xffff);
442 			break;
443 
444 		case 1:
445 			*(uint8_t *)(hdr->out_buf + data_offset) = (data[0] & 0xff);
446 			break;
447 		}
448 	}
449 	return 0;
450 }
451 
papr_scm_meta_set(struct papr_scm_priv * p,struct nd_cmd_set_config_hdr * hdr)452 static int papr_scm_meta_set(struct papr_scm_priv *p,
453 			     struct nd_cmd_set_config_hdr *hdr)
454 {
455 	unsigned long offset, data_offset;
456 	int len, wrote;
457 	unsigned long data;
458 	__be64 data_be;
459 	int64_t ret;
460 
461 	if ((hdr->in_offset + hdr->in_length) > p->metadata_size)
462 		return -EINVAL;
463 
464 	for (len = hdr->in_length; len; len -= wrote) {
465 
466 		data_offset = hdr->in_length - len;
467 		offset = hdr->in_offset + data_offset;
468 
469 		if (len >= 8) {
470 			data = *(uint64_t *)(hdr->in_buf + data_offset);
471 			data_be = cpu_to_be64(data);
472 			wrote = 8;
473 		} else if (len >= 4) {
474 			data = *(uint32_t *)(hdr->in_buf + data_offset);
475 			data &= 0xffffffff;
476 			data_be = cpu_to_be32(data);
477 			wrote = 4;
478 		} else if (len >= 2) {
479 			data = *(uint16_t *)(hdr->in_buf + data_offset);
480 			data &= 0xffff;
481 			data_be = cpu_to_be16(data);
482 			wrote = 2;
483 		} else {
484 			data_be = *(uint8_t *)(hdr->in_buf + data_offset);
485 			data_be &= 0xff;
486 			wrote = 1;
487 		}
488 
489 		ret = plpar_hcall_norets(H_SCM_WRITE_METADATA, p->drc_index,
490 					 offset, data_be, wrote);
491 		if (ret == H_PARAMETER) /* bad DRC index */
492 			return -ENODEV;
493 		if (ret)
494 			return -EINVAL; /* other invalid parameter */
495 	}
496 
497 	return 0;
498 }
499 
500 /*
501  * Do a sanity checks on the inputs args to dimm-control function and return
502  * '0' if valid. Validation of PDSM payloads happens later in
503  * papr_scm_service_pdsm.
504  */
is_cmd_valid(struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len)505 static int is_cmd_valid(struct nvdimm *nvdimm, unsigned int cmd, void *buf,
506 			unsigned int buf_len)
507 {
508 	unsigned long cmd_mask = PAPR_SCM_DIMM_CMD_MASK;
509 	struct nd_cmd_pkg *nd_cmd;
510 	struct papr_scm_priv *p;
511 	enum papr_pdsm pdsm;
512 
513 	/* Only dimm-specific calls are supported atm */
514 	if (!nvdimm)
515 		return -EINVAL;
516 
517 	/* get the provider data from struct nvdimm */
518 	p = nvdimm_provider_data(nvdimm);
519 
520 	if (!test_bit(cmd, &cmd_mask)) {
521 		dev_dbg(&p->pdev->dev, "Unsupported cmd=%u\n", cmd);
522 		return -EINVAL;
523 	}
524 
525 	/* For CMD_CALL verify pdsm request */
526 	if (cmd == ND_CMD_CALL) {
527 		/* Verify the envelope and envelop size */
528 		if (!buf ||
529 		    buf_len < (sizeof(struct nd_cmd_pkg) + ND_PDSM_HDR_SIZE)) {
530 			dev_dbg(&p->pdev->dev, "Invalid pkg size=%u\n",
531 				buf_len);
532 			return -EINVAL;
533 		}
534 
535 		/* Verify that the nd_cmd_pkg.nd_family is correct */
536 		nd_cmd = (struct nd_cmd_pkg *)buf;
537 
538 		if (nd_cmd->nd_family != NVDIMM_FAMILY_PAPR) {
539 			dev_dbg(&p->pdev->dev, "Invalid pkg family=0x%llx\n",
540 				nd_cmd->nd_family);
541 			return -EINVAL;
542 		}
543 
544 		pdsm = (enum papr_pdsm)nd_cmd->nd_command;
545 
546 		/* Verify if the pdsm command is valid */
547 		if (pdsm <= PAPR_PDSM_MIN || pdsm >= PAPR_PDSM_MAX) {
548 			dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid PDSM\n",
549 				pdsm);
550 			return -EINVAL;
551 		}
552 
553 		/* Have enough space to hold returned 'nd_pkg_pdsm' header */
554 		if (nd_cmd->nd_size_out < ND_PDSM_HDR_SIZE) {
555 			dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid payload\n",
556 				pdsm);
557 			return -EINVAL;
558 		}
559 	}
560 
561 	/* Let the command be further processed */
562 	return 0;
563 }
564 
papr_pdsm_fuel_gauge(struct papr_scm_priv * p,union nd_pdsm_payload * payload)565 static int papr_pdsm_fuel_gauge(struct papr_scm_priv *p,
566 				union nd_pdsm_payload *payload)
567 {
568 	int rc, size;
569 	u64 statval;
570 	struct papr_scm_perf_stat *stat;
571 	struct papr_scm_perf_stats *stats;
572 
573 	/* Silently fail if fetching performance metrics isn't  supported */
574 	if (!p->stat_buffer_len)
575 		return 0;
576 
577 	/* Allocate request buffer enough to hold single performance stat */
578 	size = sizeof(struct papr_scm_perf_stats) +
579 		sizeof(struct papr_scm_perf_stat);
580 
581 	stats = kzalloc(size, GFP_KERNEL);
582 	if (!stats)
583 		return -ENOMEM;
584 
585 	stat = &stats->scm_statistic[0];
586 	memcpy(&stat->stat_id, "MemLife ", sizeof(stat->stat_id));
587 	stat->stat_val = 0;
588 
589 	/* Fetch the fuel gauge and populate it in payload */
590 	rc = drc_pmem_query_stats(p, stats, 1);
591 	if (rc < 0) {
592 		dev_dbg(&p->pdev->dev, "Err(%d) fetching fuel gauge\n", rc);
593 		goto free_stats;
594 	}
595 
596 	statval = be64_to_cpu(stat->stat_val);
597 	dev_dbg(&p->pdev->dev,
598 		"Fetched fuel-gauge %llu", statval);
599 	payload->health.extension_flags |=
600 		PDSM_DIMM_HEALTH_RUN_GAUGE_VALID;
601 	payload->health.dimm_fuel_gauge = statval;
602 
603 	rc = sizeof(struct nd_papr_pdsm_health);
604 
605 free_stats:
606 	kfree(stats);
607 	return rc;
608 }
609 
610 /* Add the dirty-shutdown-counter value to the pdsm */
papr_pdsm_dsc(struct papr_scm_priv * p,union nd_pdsm_payload * payload)611 static int papr_pdsm_dsc(struct papr_scm_priv *p,
612 			 union nd_pdsm_payload *payload)
613 {
614 	payload->health.extension_flags |= PDSM_DIMM_DSC_VALID;
615 	payload->health.dimm_dsc = p->dirty_shutdown_counter;
616 
617 	return sizeof(struct nd_papr_pdsm_health);
618 }
619 
620 /* Fetch the DIMM health info and populate it in provided package. */
papr_pdsm_health(struct papr_scm_priv * p,union nd_pdsm_payload * payload)621 static int papr_pdsm_health(struct papr_scm_priv *p,
622 			    union nd_pdsm_payload *payload)
623 {
624 	int rc;
625 
626 	/* Ensure dimm health mutex is taken preventing concurrent access */
627 	rc = mutex_lock_interruptible(&p->health_mutex);
628 	if (rc)
629 		goto out;
630 
631 	/* Always fetch upto date dimm health data ignoring cached values */
632 	rc = __drc_pmem_query_health(p);
633 	if (rc) {
634 		mutex_unlock(&p->health_mutex);
635 		goto out;
636 	}
637 
638 	/* update health struct with various flags derived from health bitmap */
639 	payload->health = (struct nd_papr_pdsm_health) {
640 		.extension_flags = 0,
641 		.dimm_unarmed = !!(p->health_bitmap & PAPR_PMEM_UNARMED_MASK),
642 		.dimm_bad_shutdown = !!(p->health_bitmap & PAPR_PMEM_BAD_SHUTDOWN_MASK),
643 		.dimm_bad_restore = !!(p->health_bitmap & PAPR_PMEM_BAD_RESTORE_MASK),
644 		.dimm_scrubbed = !!(p->health_bitmap & PAPR_PMEM_SCRUBBED_AND_LOCKED),
645 		.dimm_locked = !!(p->health_bitmap & PAPR_PMEM_SCRUBBED_AND_LOCKED),
646 		.dimm_encrypted = !!(p->health_bitmap & PAPR_PMEM_ENCRYPTED),
647 		.dimm_health = PAPR_PDSM_DIMM_HEALTHY,
648 	};
649 
650 	/* Update field dimm_health based on health_bitmap flags */
651 	if (p->health_bitmap & PAPR_PMEM_HEALTH_FATAL)
652 		payload->health.dimm_health = PAPR_PDSM_DIMM_FATAL;
653 	else if (p->health_bitmap & PAPR_PMEM_HEALTH_CRITICAL)
654 		payload->health.dimm_health = PAPR_PDSM_DIMM_CRITICAL;
655 	else if (p->health_bitmap & PAPR_PMEM_HEALTH_UNHEALTHY)
656 		payload->health.dimm_health = PAPR_PDSM_DIMM_UNHEALTHY;
657 
658 	/* struct populated hence can release the mutex now */
659 	mutex_unlock(&p->health_mutex);
660 
661 	/* Populate the fuel gauge meter in the payload */
662 	papr_pdsm_fuel_gauge(p, payload);
663 	/* Populate the dirty-shutdown-counter field */
664 	papr_pdsm_dsc(p, payload);
665 
666 	rc = sizeof(struct nd_papr_pdsm_health);
667 
668 out:
669 	return rc;
670 }
671 
672 /*
673  * 'struct pdsm_cmd_desc'
674  * Identifies supported PDSMs' expected length of in/out payloads
675  * and pdsm service function.
676  *
677  * size_in	: Size of input payload if any in the PDSM request.
678  * size_out	: Size of output payload if any in the PDSM request.
679  * service	: Service function for the PDSM request. Return semantics:
680  *		  rc < 0 : Error servicing PDSM and rc indicates the error.
681  *		  rc >=0 : Serviced successfully and 'rc' indicate number of
682  *			bytes written to payload.
683  */
684 struct pdsm_cmd_desc {
685 	u32 size_in;
686 	u32 size_out;
687 	int (*service)(struct papr_scm_priv *dimm,
688 		       union nd_pdsm_payload *payload);
689 };
690 
691 /* Holds all supported PDSMs' command descriptors */
692 static const struct pdsm_cmd_desc __pdsm_cmd_descriptors[] = {
693 	[PAPR_PDSM_MIN] = {
694 		.size_in = 0,
695 		.size_out = 0,
696 		.service = NULL,
697 	},
698 	/* New PDSM command descriptors to be added below */
699 
700 	[PAPR_PDSM_HEALTH] = {
701 		.size_in = 0,
702 		.size_out = sizeof(struct nd_papr_pdsm_health),
703 		.service = papr_pdsm_health,
704 	},
705 	/* Empty */
706 	[PAPR_PDSM_MAX] = {
707 		.size_in = 0,
708 		.size_out = 0,
709 		.service = NULL,
710 	},
711 };
712 
713 /* Given a valid pdsm cmd return its command descriptor else return NULL */
pdsm_cmd_desc(enum papr_pdsm cmd)714 static inline const struct pdsm_cmd_desc *pdsm_cmd_desc(enum papr_pdsm cmd)
715 {
716 	if (cmd >= 0 || cmd < ARRAY_SIZE(__pdsm_cmd_descriptors))
717 		return &__pdsm_cmd_descriptors[cmd];
718 
719 	return NULL;
720 }
721 
722 /*
723  * For a given pdsm request call an appropriate service function.
724  * Returns errors if any while handling the pdsm command package.
725  */
papr_scm_service_pdsm(struct papr_scm_priv * p,struct nd_cmd_pkg * pkg)726 static int papr_scm_service_pdsm(struct papr_scm_priv *p,
727 				 struct nd_cmd_pkg *pkg)
728 {
729 	/* Get the PDSM header and PDSM command */
730 	struct nd_pkg_pdsm *pdsm_pkg = (struct nd_pkg_pdsm *)pkg->nd_payload;
731 	enum papr_pdsm pdsm = (enum papr_pdsm)pkg->nd_command;
732 	const struct pdsm_cmd_desc *pdsc;
733 	int rc;
734 
735 	/* Fetch corresponding pdsm descriptor for validation and servicing */
736 	pdsc = pdsm_cmd_desc(pdsm);
737 
738 	/* Validate pdsm descriptor */
739 	/* Ensure that reserved fields are 0 */
740 	if (pdsm_pkg->reserved[0] || pdsm_pkg->reserved[1]) {
741 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Invalid reserved field\n",
742 			pdsm);
743 		return -EINVAL;
744 	}
745 
746 	/* If pdsm expects some input, then ensure that the size_in matches */
747 	if (pdsc->size_in &&
748 	    pkg->nd_size_in != (pdsc->size_in + ND_PDSM_HDR_SIZE)) {
749 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Mismatched size_in=%d\n",
750 			pdsm, pkg->nd_size_in);
751 		return -EINVAL;
752 	}
753 
754 	/* If pdsm wants to return data, then ensure that  size_out matches */
755 	if (pdsc->size_out &&
756 	    pkg->nd_size_out != (pdsc->size_out + ND_PDSM_HDR_SIZE)) {
757 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Mismatched size_out=%d\n",
758 			pdsm, pkg->nd_size_out);
759 		return -EINVAL;
760 	}
761 
762 	/* Service the pdsm */
763 	if (pdsc->service) {
764 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Servicing..\n", pdsm);
765 
766 		rc = pdsc->service(p, &pdsm_pkg->payload);
767 
768 		if (rc < 0) {
769 			/* error encountered while servicing pdsm */
770 			pdsm_pkg->cmd_status = rc;
771 			pkg->nd_fw_size = ND_PDSM_HDR_SIZE;
772 		} else {
773 			/* pdsm serviced and 'rc' bytes written to payload */
774 			pdsm_pkg->cmd_status = 0;
775 			pkg->nd_fw_size = ND_PDSM_HDR_SIZE + rc;
776 		}
777 	} else {
778 		dev_dbg(&p->pdev->dev, "PDSM[0x%x]: Unsupported PDSM request\n",
779 			pdsm);
780 		pdsm_pkg->cmd_status = -ENOENT;
781 		pkg->nd_fw_size = ND_PDSM_HDR_SIZE;
782 	}
783 
784 	return pdsm_pkg->cmd_status;
785 }
786 
papr_scm_ndctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)787 static int papr_scm_ndctl(struct nvdimm_bus_descriptor *nd_desc,
788 			  struct nvdimm *nvdimm, unsigned int cmd, void *buf,
789 			  unsigned int buf_len, int *cmd_rc)
790 {
791 	struct nd_cmd_get_config_size *get_size_hdr;
792 	struct nd_cmd_pkg *call_pkg = NULL;
793 	struct papr_scm_priv *p;
794 	int rc;
795 
796 	rc = is_cmd_valid(nvdimm, cmd, buf, buf_len);
797 	if (rc) {
798 		pr_debug("Invalid cmd=0x%x. Err=%d\n", cmd, rc);
799 		return rc;
800 	}
801 
802 	/* Use a local variable in case cmd_rc pointer is NULL */
803 	if (!cmd_rc)
804 		cmd_rc = &rc;
805 
806 	p = nvdimm_provider_data(nvdimm);
807 
808 	switch (cmd) {
809 	case ND_CMD_GET_CONFIG_SIZE:
810 		get_size_hdr = buf;
811 
812 		get_size_hdr->status = 0;
813 		get_size_hdr->max_xfer = 8;
814 		get_size_hdr->config_size = p->metadata_size;
815 		*cmd_rc = 0;
816 		break;
817 
818 	case ND_CMD_GET_CONFIG_DATA:
819 		*cmd_rc = papr_scm_meta_get(p, buf);
820 		break;
821 
822 	case ND_CMD_SET_CONFIG_DATA:
823 		*cmd_rc = papr_scm_meta_set(p, buf);
824 		break;
825 
826 	case ND_CMD_CALL:
827 		call_pkg = (struct nd_cmd_pkg *)buf;
828 		*cmd_rc = papr_scm_service_pdsm(p, call_pkg);
829 		break;
830 
831 	default:
832 		dev_dbg(&p->pdev->dev, "Unknown command = %d\n", cmd);
833 		return -EINVAL;
834 	}
835 
836 	dev_dbg(&p->pdev->dev, "returned with cmd_rc = %d\n", *cmd_rc);
837 
838 	return 0;
839 }
840 
perf_stats_show(struct device * dev,struct device_attribute * attr,char * buf)841 static ssize_t perf_stats_show(struct device *dev,
842 			       struct device_attribute *attr, char *buf)
843 {
844 	int index;
845 	ssize_t rc;
846 	struct seq_buf s;
847 	struct papr_scm_perf_stat *stat;
848 	struct papr_scm_perf_stats *stats;
849 	struct nvdimm *dimm = to_nvdimm(dev);
850 	struct papr_scm_priv *p = nvdimm_provider_data(dimm);
851 
852 	if (!p->stat_buffer_len)
853 		return -ENOENT;
854 
855 	/* Allocate the buffer for phyp where stats are written */
856 	stats = kzalloc(p->stat_buffer_len, GFP_KERNEL);
857 	if (!stats)
858 		return -ENOMEM;
859 
860 	/* Ask phyp to return all dimm perf stats */
861 	rc = drc_pmem_query_stats(p, stats, 0);
862 	if (rc)
863 		goto free_stats;
864 	/*
865 	 * Go through the returned output buffer and print stats and
866 	 * values. Since stat_id is essentially a char string of
867 	 * 8 bytes, simply use the string format specifier to print it.
868 	 */
869 	seq_buf_init(&s, buf, PAGE_SIZE);
870 	for (index = 0, stat = stats->scm_statistic;
871 	     index < be32_to_cpu(stats->num_statistics);
872 	     ++index, ++stat) {
873 		seq_buf_printf(&s, "%.8s = 0x%016llX\n",
874 			       stat->stat_id,
875 			       be64_to_cpu(stat->stat_val));
876 	}
877 
878 free_stats:
879 	kfree(stats);
880 	return rc ? rc : (ssize_t)seq_buf_used(&s);
881 }
882 static DEVICE_ATTR_ADMIN_RO(perf_stats);
883 
flags_show(struct device * dev,struct device_attribute * attr,char * buf)884 static ssize_t flags_show(struct device *dev,
885 			  struct device_attribute *attr, char *buf)
886 {
887 	struct nvdimm *dimm = to_nvdimm(dev);
888 	struct papr_scm_priv *p = nvdimm_provider_data(dimm);
889 	struct seq_buf s;
890 	u64 health;
891 	int rc;
892 
893 	rc = drc_pmem_query_health(p);
894 	if (rc)
895 		return rc;
896 
897 	/* Copy health_bitmap locally, check masks & update out buffer */
898 	health = READ_ONCE(p->health_bitmap);
899 
900 	seq_buf_init(&s, buf, PAGE_SIZE);
901 	if (health & PAPR_PMEM_UNARMED_MASK)
902 		seq_buf_printf(&s, "not_armed ");
903 
904 	if (health & PAPR_PMEM_BAD_SHUTDOWN_MASK)
905 		seq_buf_printf(&s, "flush_fail ");
906 
907 	if (health & PAPR_PMEM_BAD_RESTORE_MASK)
908 		seq_buf_printf(&s, "restore_fail ");
909 
910 	if (health & PAPR_PMEM_ENCRYPTED)
911 		seq_buf_printf(&s, "encrypted ");
912 
913 	if (health & PAPR_PMEM_SMART_EVENT_MASK)
914 		seq_buf_printf(&s, "smart_notify ");
915 
916 	if (health & PAPR_PMEM_SCRUBBED_AND_LOCKED)
917 		seq_buf_printf(&s, "scrubbed locked ");
918 
919 	if (seq_buf_used(&s))
920 		seq_buf_printf(&s, "\n");
921 
922 	return seq_buf_used(&s);
923 }
924 DEVICE_ATTR_RO(flags);
925 
dirty_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)926 static ssize_t dirty_shutdown_show(struct device *dev,
927 			  struct device_attribute *attr, char *buf)
928 {
929 	struct nvdimm *dimm = to_nvdimm(dev);
930 	struct papr_scm_priv *p = nvdimm_provider_data(dimm);
931 
932 	return sysfs_emit(buf, "%llu\n", p->dirty_shutdown_counter);
933 }
934 DEVICE_ATTR_RO(dirty_shutdown);
935 
papr_nd_attribute_visible(struct kobject * kobj,struct attribute * attr,int n)936 static umode_t papr_nd_attribute_visible(struct kobject *kobj,
937 					 struct attribute *attr, int n)
938 {
939 	struct device *dev = kobj_to_dev(kobj);
940 	struct nvdimm *nvdimm = to_nvdimm(dev);
941 	struct papr_scm_priv *p = nvdimm_provider_data(nvdimm);
942 
943 	/* For if perf-stats not available remove perf_stats sysfs */
944 	if (attr == &dev_attr_perf_stats.attr && p->stat_buffer_len == 0)
945 		return 0;
946 
947 	return attr->mode;
948 }
949 
950 /* papr_scm specific dimm attributes */
951 static struct attribute *papr_nd_attributes[] = {
952 	&dev_attr_flags.attr,
953 	&dev_attr_perf_stats.attr,
954 	&dev_attr_dirty_shutdown.attr,
955 	NULL,
956 };
957 
958 static struct attribute_group papr_nd_attribute_group = {
959 	.name = "papr",
960 	.is_visible = papr_nd_attribute_visible,
961 	.attrs = papr_nd_attributes,
962 };
963 
964 static const struct attribute_group *papr_nd_attr_groups[] = {
965 	&papr_nd_attribute_group,
966 	NULL,
967 };
968 
papr_scm_nvdimm_init(struct papr_scm_priv * p)969 static int papr_scm_nvdimm_init(struct papr_scm_priv *p)
970 {
971 	struct device *dev = &p->pdev->dev;
972 	struct nd_mapping_desc mapping;
973 	struct nd_region_desc ndr_desc;
974 	unsigned long dimm_flags;
975 	int target_nid, online_nid;
976 
977 	p->bus_desc.ndctl = papr_scm_ndctl;
978 	p->bus_desc.module = THIS_MODULE;
979 	p->bus_desc.of_node = p->pdev->dev.of_node;
980 	p->bus_desc.provider_name = kstrdup(p->pdev->name, GFP_KERNEL);
981 
982 	/* Set the dimm command family mask to accept PDSMs */
983 	set_bit(NVDIMM_FAMILY_PAPR, &p->bus_desc.dimm_family_mask);
984 
985 	if (!p->bus_desc.provider_name)
986 		return -ENOMEM;
987 
988 	p->bus = nvdimm_bus_register(NULL, &p->bus_desc);
989 	if (!p->bus) {
990 		dev_err(dev, "Error creating nvdimm bus %pOF\n", p->dn);
991 		kfree(p->bus_desc.provider_name);
992 		return -ENXIO;
993 	}
994 
995 	dimm_flags = 0;
996 	set_bit(NDD_LABELING, &dimm_flags);
997 
998 	/*
999 	 * Check if the nvdimm is unarmed. No locking needed as we are still
1000 	 * initializing. Ignore error encountered if any.
1001 	 */
1002 	__drc_pmem_query_health(p);
1003 
1004 	if (p->health_bitmap & PAPR_PMEM_UNARMED_MASK)
1005 		set_bit(NDD_UNARMED, &dimm_flags);
1006 
1007 	p->nvdimm = nvdimm_create(p->bus, p, papr_nd_attr_groups,
1008 				  dimm_flags, PAPR_SCM_DIMM_CMD_MASK, 0, NULL);
1009 	if (!p->nvdimm) {
1010 		dev_err(dev, "Error creating DIMM object for %pOF\n", p->dn);
1011 		goto err;
1012 	}
1013 
1014 	if (nvdimm_bus_check_dimm_count(p->bus, 1))
1015 		goto err;
1016 
1017 	/* now add the region */
1018 
1019 	memset(&mapping, 0, sizeof(mapping));
1020 	mapping.nvdimm = p->nvdimm;
1021 	mapping.start = 0;
1022 	mapping.size = p->blocks * p->block_size; // XXX: potential overflow?
1023 
1024 	memset(&ndr_desc, 0, sizeof(ndr_desc));
1025 	target_nid = dev_to_node(&p->pdev->dev);
1026 	online_nid = numa_map_to_online_node(target_nid);
1027 	ndr_desc.numa_node = online_nid;
1028 	ndr_desc.target_node = target_nid;
1029 	ndr_desc.res = &p->res;
1030 	ndr_desc.of_node = p->dn;
1031 	ndr_desc.provider_data = p;
1032 	ndr_desc.mapping = &mapping;
1033 	ndr_desc.num_mappings = 1;
1034 	ndr_desc.nd_set = &p->nd_set;
1035 
1036 	if (p->hcall_flush_required) {
1037 		set_bit(ND_REGION_ASYNC, &ndr_desc.flags);
1038 		ndr_desc.flush = papr_scm_pmem_flush;
1039 	}
1040 
1041 	if (p->is_volatile)
1042 		p->region = nvdimm_volatile_region_create(p->bus, &ndr_desc);
1043 	else {
1044 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc.flags);
1045 		p->region = nvdimm_pmem_region_create(p->bus, &ndr_desc);
1046 	}
1047 	if (!p->region) {
1048 		dev_err(dev, "Error registering region %pR from %pOF\n",
1049 				ndr_desc.res, p->dn);
1050 		goto err;
1051 	}
1052 	if (target_nid != online_nid)
1053 		dev_info(dev, "Region registered with target node %d and online node %d",
1054 			 target_nid, online_nid);
1055 
1056 	mutex_lock(&papr_ndr_lock);
1057 	list_add_tail(&p->region_list, &papr_nd_regions);
1058 	mutex_unlock(&papr_ndr_lock);
1059 
1060 	return 0;
1061 
1062 err:	nvdimm_bus_unregister(p->bus);
1063 	kfree(p->bus_desc.provider_name);
1064 	return -ENXIO;
1065 }
1066 
papr_scm_add_badblock(struct nd_region * region,struct nvdimm_bus * bus,u64 phys_addr)1067 static void papr_scm_add_badblock(struct nd_region *region,
1068 				  struct nvdimm_bus *bus, u64 phys_addr)
1069 {
1070 	u64 aligned_addr = ALIGN_DOWN(phys_addr, L1_CACHE_BYTES);
1071 
1072 	if (nvdimm_bus_add_badrange(bus, aligned_addr, L1_CACHE_BYTES)) {
1073 		pr_err("Bad block registration for 0x%llx failed\n", phys_addr);
1074 		return;
1075 	}
1076 
1077 	pr_debug("Add memory range (0x%llx - 0x%llx) as bad range\n",
1078 		 aligned_addr, aligned_addr + L1_CACHE_BYTES);
1079 
1080 	nvdimm_region_notify(region, NVDIMM_REVALIDATE_POISON);
1081 }
1082 
handle_mce_ue(struct notifier_block * nb,unsigned long val,void * data)1083 static int handle_mce_ue(struct notifier_block *nb, unsigned long val,
1084 			 void *data)
1085 {
1086 	struct machine_check_event *evt = data;
1087 	struct papr_scm_priv *p;
1088 	u64 phys_addr;
1089 	bool found = false;
1090 
1091 	if (evt->error_type != MCE_ERROR_TYPE_UE)
1092 		return NOTIFY_DONE;
1093 
1094 	if (list_empty(&papr_nd_regions))
1095 		return NOTIFY_DONE;
1096 
1097 	/*
1098 	 * The physical address obtained here is PAGE_SIZE aligned, so get the
1099 	 * exact address from the effective address
1100 	 */
1101 	phys_addr = evt->u.ue_error.physical_address +
1102 			(evt->u.ue_error.effective_address & ~PAGE_MASK);
1103 
1104 	if (!evt->u.ue_error.physical_address_provided ||
1105 	    !is_zone_device_page(pfn_to_page(phys_addr >> PAGE_SHIFT)))
1106 		return NOTIFY_DONE;
1107 
1108 	/* mce notifier is called from a process context, so mutex is safe */
1109 	mutex_lock(&papr_ndr_lock);
1110 	list_for_each_entry(p, &papr_nd_regions, region_list) {
1111 		if (phys_addr >= p->res.start && phys_addr <= p->res.end) {
1112 			found = true;
1113 			break;
1114 		}
1115 	}
1116 
1117 	if (found)
1118 		papr_scm_add_badblock(p->region, p->bus, phys_addr);
1119 
1120 	mutex_unlock(&papr_ndr_lock);
1121 
1122 	return found ? NOTIFY_OK : NOTIFY_DONE;
1123 }
1124 
1125 static struct notifier_block mce_ue_nb = {
1126 	.notifier_call = handle_mce_ue
1127 };
1128 
papr_scm_probe(struct platform_device * pdev)1129 static int papr_scm_probe(struct platform_device *pdev)
1130 {
1131 	struct device_node *dn = pdev->dev.of_node;
1132 	u32 drc_index, metadata_size;
1133 	u64 blocks, block_size;
1134 	struct papr_scm_priv *p;
1135 	u8 uuid_raw[UUID_SIZE];
1136 	const char *uuid_str;
1137 	ssize_t stat_size;
1138 	uuid_t uuid;
1139 	int rc;
1140 
1141 	/* check we have all the required DT properties */
1142 	if (of_property_read_u32(dn, "ibm,my-drc-index", &drc_index)) {
1143 		dev_err(&pdev->dev, "%pOF: missing drc-index!\n", dn);
1144 		return -ENODEV;
1145 	}
1146 
1147 	if (of_property_read_u64(dn, "ibm,block-size", &block_size)) {
1148 		dev_err(&pdev->dev, "%pOF: missing block-size!\n", dn);
1149 		return -ENODEV;
1150 	}
1151 
1152 	if (of_property_read_u64(dn, "ibm,number-of-blocks", &blocks)) {
1153 		dev_err(&pdev->dev, "%pOF: missing number-of-blocks!\n", dn);
1154 		return -ENODEV;
1155 	}
1156 
1157 	if (of_property_read_string(dn, "ibm,unit-guid", &uuid_str)) {
1158 		dev_err(&pdev->dev, "%pOF: missing unit-guid!\n", dn);
1159 		return -ENODEV;
1160 	}
1161 
1162 	/*
1163 	 * open firmware platform device create won't update the NUMA
1164 	 * distance table. For PAPR SCM devices we use numa_map_to_online_node()
1165 	 * to find the nearest online NUMA node and that requires correct
1166 	 * distance table information.
1167 	 */
1168 	update_numa_distance(dn);
1169 
1170 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1171 	if (!p)
1172 		return -ENOMEM;
1173 
1174 	/* Initialize the dimm mutex */
1175 	mutex_init(&p->health_mutex);
1176 
1177 	/* optional DT properties */
1178 	of_property_read_u32(dn, "ibm,metadata-size", &metadata_size);
1179 
1180 	p->dn = dn;
1181 	p->drc_index = drc_index;
1182 	p->block_size = block_size;
1183 	p->blocks = blocks;
1184 	p->is_volatile = !of_property_read_bool(dn, "ibm,cache-flush-required");
1185 	p->hcall_flush_required = of_property_read_bool(dn, "ibm,hcall-flush-required");
1186 
1187 	if (of_property_read_u64(dn, "ibm,persistence-failed-count",
1188 				 &p->dirty_shutdown_counter))
1189 		p->dirty_shutdown_counter = 0;
1190 
1191 	/* We just need to ensure that set cookies are unique across */
1192 	uuid_parse(uuid_str, &uuid);
1193 
1194 	/*
1195 	 * The cookie1 and cookie2 are not really little endian.
1196 	 * We store a raw buffer representation of the
1197 	 * uuid string so that we can compare this with the label
1198 	 * area cookie irrespective of the endian configuration
1199 	 * with which the kernel is built.
1200 	 *
1201 	 * Historically we stored the cookie in the below format.
1202 	 * for a uuid string 72511b67-0b3b-42fd-8d1d-5be3cae8bcaa
1203 	 *	cookie1 was 0xfd423b0b671b5172
1204 	 *	cookie2 was 0xaabce8cae35b1d8d
1205 	 */
1206 	export_uuid(uuid_raw, &uuid);
1207 	p->nd_set.cookie1 = get_unaligned_le64(&uuid_raw[0]);
1208 	p->nd_set.cookie2 = get_unaligned_le64(&uuid_raw[8]);
1209 
1210 	/* might be zero */
1211 	p->metadata_size = metadata_size;
1212 	p->pdev = pdev;
1213 
1214 	/* request the hypervisor to bind this region to somewhere in memory */
1215 	rc = drc_pmem_bind(p);
1216 
1217 	/* If phyp says drc memory still bound then force unbound and retry */
1218 	if (rc == H_OVERLAP)
1219 		rc = drc_pmem_query_n_bind(p);
1220 
1221 	if (rc != H_SUCCESS) {
1222 		dev_err(&p->pdev->dev, "bind err: %d\n", rc);
1223 		rc = -ENXIO;
1224 		goto err;
1225 	}
1226 
1227 	/* setup the resource for the newly bound range */
1228 	p->res.start = p->bound_addr;
1229 	p->res.end   = p->bound_addr + p->blocks * p->block_size - 1;
1230 	p->res.name  = pdev->name;
1231 	p->res.flags = IORESOURCE_MEM;
1232 
1233 	/* Try retrieving the stat buffer and see if its supported */
1234 	stat_size = drc_pmem_query_stats(p, NULL, 0);
1235 	if (stat_size > 0) {
1236 		p->stat_buffer_len = stat_size;
1237 		dev_dbg(&p->pdev->dev, "Max perf-stat size %lu-bytes\n",
1238 			p->stat_buffer_len);
1239 	}
1240 
1241 	rc = papr_scm_nvdimm_init(p);
1242 	if (rc)
1243 		goto err2;
1244 
1245 	platform_set_drvdata(pdev, p);
1246 
1247 	return 0;
1248 
1249 err2:	drc_pmem_unbind(p);
1250 err:	kfree(p);
1251 	return rc;
1252 }
1253 
papr_scm_remove(struct platform_device * pdev)1254 static int papr_scm_remove(struct platform_device *pdev)
1255 {
1256 	struct papr_scm_priv *p = platform_get_drvdata(pdev);
1257 
1258 	mutex_lock(&papr_ndr_lock);
1259 	list_del(&p->region_list);
1260 	mutex_unlock(&papr_ndr_lock);
1261 
1262 	nvdimm_bus_unregister(p->bus);
1263 	drc_pmem_unbind(p);
1264 	kfree(p->bus_desc.provider_name);
1265 	kfree(p);
1266 
1267 	return 0;
1268 }
1269 
1270 static const struct of_device_id papr_scm_match[] = {
1271 	{ .compatible = "ibm,pmemory" },
1272 	{ .compatible = "ibm,pmemory-v2" },
1273 	{ },
1274 };
1275 
1276 static struct platform_driver papr_scm_driver = {
1277 	.probe = papr_scm_probe,
1278 	.remove = papr_scm_remove,
1279 	.driver = {
1280 		.name = "papr_scm",
1281 		.of_match_table = papr_scm_match,
1282 	},
1283 };
1284 
papr_scm_init(void)1285 static int __init papr_scm_init(void)
1286 {
1287 	int ret;
1288 
1289 	ret = platform_driver_register(&papr_scm_driver);
1290 	if (!ret)
1291 		mce_register_notifier(&mce_ue_nb);
1292 
1293 	return ret;
1294 }
1295 module_init(papr_scm_init);
1296 
papr_scm_exit(void)1297 static void __exit papr_scm_exit(void)
1298 {
1299 	mce_unregister_notifier(&mce_ue_nb);
1300 	platform_driver_unregister(&papr_scm_driver);
1301 }
1302 module_exit(papr_scm_exit);
1303 
1304 MODULE_DEVICE_TABLE(of, papr_scm_match);
1305 MODULE_LICENSE("GPL");
1306 MODULE_AUTHOR("IBM Corporation");
1307