1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25
26 /* Minimum number of sample-data-block-tables:
27 * At least one table is required for the sampling buffer structure.
28 * A single table contains up to 511 pointers to sample-data-blocks.
29 */
30 #define CPUM_SF_MIN_SDBT 1
31
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33 * A table contains SDB pointers (8 bytes) and one table-link entry
34 * that points to the origin of the next SDBT.
35 */
36 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
37
38 /* Maximum page offset for an SDBT table-link entry:
39 * If this page offset is reached, a table-link entry to the next SDBT
40 * must be added.
41 */
42 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)43 static inline int require_table_link(const void *sdbt)
44 {
45 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
46 }
47
48 /* Minimum and maximum sampling buffer sizes:
49 *
50 * This number represents the maximum size of the sampling buffer taking
51 * the number of sample-data-block-tables into account. Note that these
52 * numbers apply to the basic-sampling function only.
53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54 * the diagnostic-sampling function is active.
55 *
56 * Sampling buffer size Buffer characteristics
57 * ---------------------------------------------------
58 * 64KB == 16 pages (4KB per page)
59 * 1 page for SDB-tables
60 * 15 pages for SDBs
61 *
62 * 32MB == 8192 pages (4KB per page)
63 * 16 pages for SDB-tables
64 * 8176 pages for SDBs
65 */
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
69
70 struct sf_buffer {
71 unsigned long *sdbt; /* Sample-data-block-table origin */
72 /* buffer characteristics (required for buffer increments) */
73 unsigned long num_sdb; /* Number of sample-data-blocks */
74 unsigned long num_sdbt; /* Number of sample-data-block-tables */
75 unsigned long *tail; /* last sample-data-block-table */
76 };
77
78 struct aux_buffer {
79 struct sf_buffer sfb;
80 unsigned long head; /* index of SDB of buffer head */
81 unsigned long alert_mark; /* index of SDB of alert request position */
82 unsigned long empty_mark; /* mark of SDB not marked full */
83 unsigned long *sdb_index; /* SDB address for fast lookup */
84 unsigned long *sdbt_index; /* SDBT address for fast lookup */
85 };
86
87 struct cpu_hw_sf {
88 /* CPU-measurement sampling information block */
89 struct hws_qsi_info_block qsi;
90 /* CPU-measurement sampling control block */
91 struct hws_lsctl_request_block lsctl;
92 struct sf_buffer sfb; /* Sampling buffer */
93 unsigned int flags; /* Status flags */
94 struct perf_event *event; /* Scheduled perf event */
95 struct perf_output_handle handle; /* AUX buffer output handle */
96 };
97 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
98
99 /* Debug feature */
100 static debug_info_t *sfdbg;
101
102 /*
103 * sf_disable() - Switch off sampling facility
104 */
sf_disable(void)105 static int sf_disable(void)
106 {
107 struct hws_lsctl_request_block sreq;
108
109 memset(&sreq, 0, sizeof(sreq));
110 return lsctl(&sreq);
111 }
112
113 /*
114 * sf_buffer_available() - Check for an allocated sampling buffer
115 */
sf_buffer_available(struct cpu_hw_sf * cpuhw)116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
117 {
118 return !!cpuhw->sfb.sdbt;
119 }
120
121 /*
122 * deallocate sampling facility buffer
123 */
free_sampling_buffer(struct sf_buffer * sfb)124 static void free_sampling_buffer(struct sf_buffer *sfb)
125 {
126 unsigned long *sdbt, *curr;
127
128 if (!sfb->sdbt)
129 return;
130
131 sdbt = sfb->sdbt;
132 curr = sdbt;
133
134 /* Free the SDBT after all SDBs are processed... */
135 while (1) {
136 if (!*curr || !sdbt)
137 break;
138
139 /* Process table-link entries */
140 if (is_link_entry(curr)) {
141 curr = get_next_sdbt(curr);
142 if (sdbt)
143 free_page((unsigned long) sdbt);
144
145 /* If the origin is reached, sampling buffer is freed */
146 if (curr == sfb->sdbt)
147 break;
148 else
149 sdbt = curr;
150 } else {
151 /* Process SDB pointer */
152 if (*curr) {
153 free_page(*curr);
154 curr++;
155 }
156 }
157 }
158
159 debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
160 (unsigned long)sfb->sdbt);
161 memset(sfb, 0, sizeof(*sfb));
162 }
163
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
165 {
166 struct hws_trailer_entry *te;
167 unsigned long sdb;
168
169 /* Allocate and initialize sample-data-block */
170 sdb = get_zeroed_page(gfp_flags);
171 if (!sdb)
172 return -ENOMEM;
173 te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
174 te->header.a = 1;
175
176 /* Link SDB into the sample-data-block-table */
177 *sdbt = sdb;
178
179 return 0;
180 }
181
182 /*
183 * realloc_sampling_buffer() - extend sampler memory
184 *
185 * Allocates new sample-data-blocks and adds them to the specified sampling
186 * buffer memory.
187 *
188 * Important: This modifies the sampling buffer and must be called when the
189 * sampling facility is disabled.
190 *
191 * Returns zero on success, non-zero otherwise.
192 */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)193 static int realloc_sampling_buffer(struct sf_buffer *sfb,
194 unsigned long num_sdb, gfp_t gfp_flags)
195 {
196 int i, rc;
197 unsigned long *new, *tail, *tail_prev = NULL;
198
199 if (!sfb->sdbt || !sfb->tail)
200 return -EINVAL;
201
202 if (!is_link_entry(sfb->tail))
203 return -EINVAL;
204
205 /* Append to the existing sampling buffer, overwriting the table-link
206 * register.
207 * The tail variables always points to the "tail" (last and table-link)
208 * entry in an SDB-table.
209 */
210 tail = sfb->tail;
211
212 /* Do a sanity check whether the table-link entry points to
213 * the sampling buffer origin.
214 */
215 if (sfb->sdbt != get_next_sdbt(tail)) {
216 debug_sprintf_event(sfdbg, 3, "%s: "
217 "sampling buffer is not linked: origin %#lx"
218 " tail %#lx\n", __func__,
219 (unsigned long)sfb->sdbt,
220 (unsigned long)tail);
221 return -EINVAL;
222 }
223
224 /* Allocate remaining SDBs */
225 rc = 0;
226 for (i = 0; i < num_sdb; i++) {
227 /* Allocate a new SDB-table if it is full. */
228 if (require_table_link(tail)) {
229 new = (unsigned long *) get_zeroed_page(gfp_flags);
230 if (!new) {
231 rc = -ENOMEM;
232 break;
233 }
234 sfb->num_sdbt++;
235 /* Link current page to tail of chain */
236 *tail = (unsigned long)(void *) new + 1;
237 tail_prev = tail;
238 tail = new;
239 }
240
241 /* Allocate a new sample-data-block.
242 * If there is not enough memory, stop the realloc process
243 * and simply use what was allocated. If this is a temporary
244 * issue, a new realloc call (if required) might succeed.
245 */
246 rc = alloc_sample_data_block(tail, gfp_flags);
247 if (rc) {
248 /* Undo last SDBT. An SDBT with no SDB at its first
249 * entry but with an SDBT entry instead can not be
250 * handled by the interrupt handler code.
251 * Avoid this situation.
252 */
253 if (tail_prev) {
254 sfb->num_sdbt--;
255 free_page((unsigned long) new);
256 tail = tail_prev;
257 }
258 break;
259 }
260 sfb->num_sdb++;
261 tail++;
262 tail_prev = new = NULL; /* Allocated at least one SBD */
263 }
264
265 /* Link sampling buffer to its origin */
266 *tail = (unsigned long) sfb->sdbt + 1;
267 sfb->tail = tail;
268
269 debug_sprintf_event(sfdbg, 4, "%s: new buffer"
270 " settings: sdbt %lu sdb %lu\n", __func__,
271 sfb->num_sdbt, sfb->num_sdb);
272 return rc;
273 }
274
275 /*
276 * allocate_sampling_buffer() - allocate sampler memory
277 *
278 * Allocates and initializes a sampling buffer structure using the
279 * specified number of sample-data-blocks (SDB). For each allocation,
280 * a 4K page is used. The number of sample-data-block-tables (SDBT)
281 * are calculated from SDBs.
282 * Also set the ALERT_REQ mask in each SDBs trailer.
283 *
284 * Returns zero on success, non-zero otherwise.
285 */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)286 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
287 {
288 int rc;
289
290 if (sfb->sdbt)
291 return -EINVAL;
292
293 /* Allocate the sample-data-block-table origin */
294 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
295 if (!sfb->sdbt)
296 return -ENOMEM;
297 sfb->num_sdb = 0;
298 sfb->num_sdbt = 1;
299
300 /* Link the table origin to point to itself to prepare for
301 * realloc_sampling_buffer() invocation.
302 */
303 sfb->tail = sfb->sdbt;
304 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
305
306 /* Allocate requested number of sample-data-blocks */
307 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
308 if (rc) {
309 free_sampling_buffer(sfb);
310 debug_sprintf_event(sfdbg, 4, "%s: "
311 "realloc_sampling_buffer failed with rc %i\n",
312 __func__, rc);
313 } else
314 debug_sprintf_event(sfdbg, 4,
315 "%s: tear %#lx dear %#lx\n", __func__,
316 (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
317 return rc;
318 }
319
sfb_set_limits(unsigned long min,unsigned long max)320 static void sfb_set_limits(unsigned long min, unsigned long max)
321 {
322 struct hws_qsi_info_block si;
323
324 CPUM_SF_MIN_SDB = min;
325 CPUM_SF_MAX_SDB = max;
326
327 memset(&si, 0, sizeof(si));
328 if (!qsi(&si))
329 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
330 }
331
sfb_max_limit(struct hw_perf_event * hwc)332 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
333 {
334 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
335 : CPUM_SF_MAX_SDB;
336 }
337
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)338 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
339 struct hw_perf_event *hwc)
340 {
341 if (!sfb->sdbt)
342 return SFB_ALLOC_REG(hwc);
343 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
344 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
345 return 0;
346 }
347
sfb_has_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)348 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
349 struct hw_perf_event *hwc)
350 {
351 return sfb_pending_allocs(sfb, hwc) > 0;
352 }
353
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)354 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
355 {
356 /* Limit the number of SDBs to not exceed the maximum */
357 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
358 if (num)
359 SFB_ALLOC_REG(hwc) += num;
360 }
361
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)362 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
363 {
364 SFB_ALLOC_REG(hwc) = 0;
365 sfb_account_allocs(num, hwc);
366 }
367
deallocate_buffers(struct cpu_hw_sf * cpuhw)368 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
369 {
370 if (cpuhw->sfb.sdbt)
371 free_sampling_buffer(&cpuhw->sfb);
372 }
373
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)374 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
375 {
376 unsigned long n_sdb, freq;
377 size_t sample_size;
378
379 /* Calculate sampling buffers using 4K pages
380 *
381 * 1. The sampling size is 32 bytes for basic sampling. This size
382 * is the same for all machine types. Diagnostic
383 * sampling uses auxlilary data buffer setup which provides the
384 * memory for SDBs using linux common code auxiliary trace
385 * setup.
386 *
387 * 2. Function alloc_sampling_buffer() sets the Alert Request
388 * Control indicator to trigger a measurement-alert to harvest
389 * sample-data-blocks (SDB). This is done per SDB. This
390 * measurement alert interrupt fires quick enough to handle
391 * one SDB, on very high frequency and work loads there might
392 * be 2 to 3 SBDs available for sample processing.
393 * Currently there is no need for setup alert request on every
394 * n-th page. This is counterproductive as one IRQ triggers
395 * a very high number of samples to be processed at one IRQ.
396 *
397 * 3. Use the sampling frequency as input.
398 * Compute the number of SDBs and ensure a minimum
399 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
400 * SDBs to handle a higher sampling rate.
401 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
402 * (one SDB) for every 10000 HZ frequency increment.
403 *
404 * 4. Compute the number of sample-data-block-tables (SDBT) and
405 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
406 * to 511 SDBs).
407 */
408 sample_size = sizeof(struct hws_basic_entry);
409 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
410 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
411
412 /* If there is already a sampling buffer allocated, it is very likely
413 * that the sampling facility is enabled too. If the event to be
414 * initialized requires a greater sampling buffer, the allocation must
415 * be postponed. Changing the sampling buffer requires the sampling
416 * facility to be in the disabled state. So, account the number of
417 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
418 * before the event is started.
419 */
420 sfb_init_allocs(n_sdb, hwc);
421 if (sf_buffer_available(cpuhw))
422 return 0;
423
424 debug_sprintf_event(sfdbg, 3,
425 "%s: rate %lu f %lu sdb %lu/%lu"
426 " sample_size %lu cpuhw %p\n", __func__,
427 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
428 sample_size, cpuhw);
429
430 return alloc_sampling_buffer(&cpuhw->sfb,
431 sfb_pending_allocs(&cpuhw->sfb, hwc));
432 }
433
min_percent(unsigned int percent,unsigned long base,unsigned long min)434 static unsigned long min_percent(unsigned int percent, unsigned long base,
435 unsigned long min)
436 {
437 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
438 }
439
compute_sfb_extent(unsigned long ratio,unsigned long base)440 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
441 {
442 /* Use a percentage-based approach to extend the sampling facility
443 * buffer. Accept up to 5% sample data loss.
444 * Vary the extents between 1% to 5% of the current number of
445 * sample-data-blocks.
446 */
447 if (ratio <= 5)
448 return 0;
449 if (ratio <= 25)
450 return min_percent(1, base, 1);
451 if (ratio <= 50)
452 return min_percent(1, base, 1);
453 if (ratio <= 75)
454 return min_percent(2, base, 2);
455 if (ratio <= 100)
456 return min_percent(3, base, 3);
457 if (ratio <= 250)
458 return min_percent(4, base, 4);
459
460 return min_percent(5, base, 8);
461 }
462
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)463 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
464 struct hw_perf_event *hwc)
465 {
466 unsigned long ratio, num;
467
468 if (!OVERFLOW_REG(hwc))
469 return;
470
471 /* The sample_overflow contains the average number of sample data
472 * that has been lost because sample-data-blocks were full.
473 *
474 * Calculate the total number of sample data entries that has been
475 * discarded. Then calculate the ratio of lost samples to total samples
476 * per second in percent.
477 */
478 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
479 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
480
481 /* Compute number of sample-data-blocks */
482 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
483 if (num)
484 sfb_account_allocs(num, hwc);
485
486 debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
487 __func__, OVERFLOW_REG(hwc), ratio, num);
488 OVERFLOW_REG(hwc) = 0;
489 }
490
491 /* extend_sampling_buffer() - Extend sampling buffer
492 * @sfb: Sampling buffer structure (for local CPU)
493 * @hwc: Perf event hardware structure
494 *
495 * Use this function to extend the sampling buffer based on the overflow counter
496 * and postponed allocation extents stored in the specified Perf event hardware.
497 *
498 * Important: This function disables the sampling facility in order to safely
499 * change the sampling buffer structure. Do not call this function
500 * when the PMU is active.
501 */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)502 static void extend_sampling_buffer(struct sf_buffer *sfb,
503 struct hw_perf_event *hwc)
504 {
505 unsigned long num, num_old;
506 int rc;
507
508 num = sfb_pending_allocs(sfb, hwc);
509 if (!num)
510 return;
511 num_old = sfb->num_sdb;
512
513 /* Disable the sampling facility to reset any states and also
514 * clear pending measurement alerts.
515 */
516 sf_disable();
517
518 /* Extend the sampling buffer.
519 * This memory allocation typically happens in an atomic context when
520 * called by perf. Because this is a reallocation, it is fine if the
521 * new SDB-request cannot be satisfied immediately.
522 */
523 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
524 if (rc)
525 debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
526 __func__, rc);
527
528 if (sfb_has_pending_allocs(sfb, hwc))
529 debug_sprintf_event(sfdbg, 5, "%s: "
530 "req %lu alloc %lu remaining %lu\n",
531 __func__, num, sfb->num_sdb - num_old,
532 sfb_pending_allocs(sfb, hwc));
533 }
534
535 /* Number of perf events counting hardware events */
536 static atomic_t num_events;
537 /* Used to avoid races in calling reserve/release_cpumf_hardware */
538 static DEFINE_MUTEX(pmc_reserve_mutex);
539
540 #define PMC_INIT 0
541 #define PMC_RELEASE 1
542 #define PMC_FAILURE 2
setup_pmc_cpu(void * flags)543 static void setup_pmc_cpu(void *flags)
544 {
545 int err;
546 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
547
548 err = 0;
549 switch (*((int *) flags)) {
550 case PMC_INIT:
551 memset(cpusf, 0, sizeof(*cpusf));
552 err = qsi(&cpusf->qsi);
553 if (err)
554 break;
555 cpusf->flags |= PMU_F_RESERVED;
556 err = sf_disable();
557 if (err)
558 pr_err("Switching off the sampling facility failed "
559 "with rc %i\n", err);
560 debug_sprintf_event(sfdbg, 5,
561 "%s: initialized: cpuhw %p\n", __func__,
562 cpusf);
563 break;
564 case PMC_RELEASE:
565 cpusf->flags &= ~PMU_F_RESERVED;
566 err = sf_disable();
567 if (err) {
568 pr_err("Switching off the sampling facility failed "
569 "with rc %i\n", err);
570 } else
571 deallocate_buffers(cpusf);
572 debug_sprintf_event(sfdbg, 5,
573 "%s: released: cpuhw %p\n", __func__,
574 cpusf);
575 break;
576 }
577 if (err)
578 *((int *) flags) |= PMC_FAILURE;
579 }
580
release_pmc_hardware(void)581 static void release_pmc_hardware(void)
582 {
583 int flags = PMC_RELEASE;
584
585 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
586 on_each_cpu(setup_pmc_cpu, &flags, 1);
587 }
588
reserve_pmc_hardware(void)589 static int reserve_pmc_hardware(void)
590 {
591 int flags = PMC_INIT;
592
593 on_each_cpu(setup_pmc_cpu, &flags, 1);
594 if (flags & PMC_FAILURE) {
595 release_pmc_hardware();
596 return -ENODEV;
597 }
598 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
599
600 return 0;
601 }
602
hw_perf_event_destroy(struct perf_event * event)603 static void hw_perf_event_destroy(struct perf_event *event)
604 {
605 /* Release PMC if this is the last perf event */
606 if (!atomic_add_unless(&num_events, -1, 1)) {
607 mutex_lock(&pmc_reserve_mutex);
608 if (atomic_dec_return(&num_events) == 0)
609 release_pmc_hardware();
610 mutex_unlock(&pmc_reserve_mutex);
611 }
612 }
613
hw_init_period(struct hw_perf_event * hwc,u64 period)614 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
615 {
616 hwc->sample_period = period;
617 hwc->last_period = hwc->sample_period;
618 local64_set(&hwc->period_left, hwc->sample_period);
619 }
620
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)621 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
622 unsigned long rate)
623 {
624 return clamp_t(unsigned long, rate,
625 si->min_sampl_rate, si->max_sampl_rate);
626 }
627
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)628 static u32 cpumsf_pid_type(struct perf_event *event,
629 u32 pid, enum pid_type type)
630 {
631 struct task_struct *tsk;
632
633 /* Idle process */
634 if (!pid)
635 goto out;
636
637 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
638 pid = -1;
639 if (tsk) {
640 /*
641 * Only top level events contain the pid namespace in which
642 * they are created.
643 */
644 if (event->parent)
645 event = event->parent;
646 pid = __task_pid_nr_ns(tsk, type, event->ns);
647 /*
648 * See also 1d953111b648
649 * "perf/core: Don't report zero PIDs for exiting tasks".
650 */
651 if (!pid && !pid_alive(tsk))
652 pid = -1;
653 }
654 out:
655 return pid;
656 }
657
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)658 static void cpumsf_output_event_pid(struct perf_event *event,
659 struct perf_sample_data *data,
660 struct pt_regs *regs)
661 {
662 u32 pid;
663 struct perf_event_header header;
664 struct perf_output_handle handle;
665
666 /*
667 * Obtain the PID from the basic-sampling data entry and
668 * correct the data->tid_entry.pid value.
669 */
670 pid = data->tid_entry.pid;
671
672 /* Protect callchain buffers, tasks */
673 rcu_read_lock();
674
675 perf_prepare_sample(&header, data, event, regs);
676 if (perf_output_begin(&handle, data, event, header.size))
677 goto out;
678
679 /* Update the process ID (see also kernel/events/core.c) */
680 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
681 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
682
683 perf_output_sample(&handle, &header, data, event);
684 perf_output_end(&handle);
685 out:
686 rcu_read_unlock();
687 }
688
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)689 static unsigned long getrate(bool freq, unsigned long sample,
690 struct hws_qsi_info_block *si)
691 {
692 unsigned long rate;
693
694 if (freq) {
695 rate = freq_to_sample_rate(si, sample);
696 rate = hw_limit_rate(si, rate);
697 } else {
698 /* The min/max sampling rates specifies the valid range
699 * of sample periods. If the specified sample period is
700 * out of range, limit the period to the range boundary.
701 */
702 rate = hw_limit_rate(si, sample);
703
704 /* The perf core maintains a maximum sample rate that is
705 * configurable through the sysctl interface. Ensure the
706 * sampling rate does not exceed this value. This also helps
707 * to avoid throttling when pushing samples with
708 * perf_event_overflow().
709 */
710 if (sample_rate_to_freq(si, rate) >
711 sysctl_perf_event_sample_rate) {
712 debug_sprintf_event(sfdbg, 1, "%s: "
713 "Sampling rate exceeds maximum "
714 "perf sample rate\n", __func__);
715 rate = 0;
716 }
717 }
718 return rate;
719 }
720
721 /* The sampling information (si) contains information about the
722 * min/max sampling intervals and the CPU speed. So calculate the
723 * correct sampling interval and avoid the whole period adjust
724 * feedback loop.
725 *
726 * Since the CPU Measurement sampling facility can not handle frequency
727 * calculate the sampling interval when frequency is specified using
728 * this formula:
729 * interval := cpu_speed * 1000000 / sample_freq
730 *
731 * Returns errno on bad input and zero on success with parameter interval
732 * set to the correct sampling rate.
733 *
734 * Note: This function turns off freq bit to avoid calling function
735 * perf_adjust_period(). This causes frequency adjustment in the common
736 * code part which causes tremendous variations in the counter values.
737 */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)738 static int __hw_perf_event_init_rate(struct perf_event *event,
739 struct hws_qsi_info_block *si)
740 {
741 struct perf_event_attr *attr = &event->attr;
742 struct hw_perf_event *hwc = &event->hw;
743 unsigned long rate;
744
745 if (attr->freq) {
746 if (!attr->sample_freq)
747 return -EINVAL;
748 rate = getrate(attr->freq, attr->sample_freq, si);
749 attr->freq = 0; /* Don't call perf_adjust_period() */
750 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
751 } else {
752 rate = getrate(attr->freq, attr->sample_period, si);
753 if (!rate)
754 return -EINVAL;
755 }
756 attr->sample_period = rate;
757 SAMPL_RATE(hwc) = rate;
758 hw_init_period(hwc, SAMPL_RATE(hwc));
759 debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
760 __func__, event->cpu, event->attr.sample_period,
761 event->attr.freq, SAMPLE_FREQ_MODE(hwc));
762 return 0;
763 }
764
__hw_perf_event_init(struct perf_event * event)765 static int __hw_perf_event_init(struct perf_event *event)
766 {
767 struct cpu_hw_sf *cpuhw;
768 struct hws_qsi_info_block si;
769 struct perf_event_attr *attr = &event->attr;
770 struct hw_perf_event *hwc = &event->hw;
771 int cpu, err;
772
773 /* Reserve CPU-measurement sampling facility */
774 err = 0;
775 if (!atomic_inc_not_zero(&num_events)) {
776 mutex_lock(&pmc_reserve_mutex);
777 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
778 err = -EBUSY;
779 else
780 atomic_inc(&num_events);
781 mutex_unlock(&pmc_reserve_mutex);
782 }
783 event->destroy = hw_perf_event_destroy;
784
785 if (err)
786 goto out;
787
788 /* Access per-CPU sampling information (query sampling info) */
789 /*
790 * The event->cpu value can be -1 to count on every CPU, for example,
791 * when attaching to a task. If this is specified, use the query
792 * sampling info from the current CPU, otherwise use event->cpu to
793 * retrieve the per-CPU information.
794 * Later, cpuhw indicates whether to allocate sampling buffers for a
795 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
796 */
797 memset(&si, 0, sizeof(si));
798 cpuhw = NULL;
799 if (event->cpu == -1)
800 qsi(&si);
801 else {
802 /* Event is pinned to a particular CPU, retrieve the per-CPU
803 * sampling structure for accessing the CPU-specific QSI.
804 */
805 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
806 si = cpuhw->qsi;
807 }
808
809 /* Check sampling facility authorization and, if not authorized,
810 * fall back to other PMUs. It is safe to check any CPU because
811 * the authorization is identical for all configured CPUs.
812 */
813 if (!si.as) {
814 err = -ENOENT;
815 goto out;
816 }
817
818 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
819 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
820 err = -EBUSY;
821 goto out;
822 }
823
824 /* Always enable basic sampling */
825 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
826
827 /* Check if diagnostic sampling is requested. Deny if the required
828 * sampling authorization is missing.
829 */
830 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
831 if (!si.ad) {
832 err = -EPERM;
833 goto out;
834 }
835 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
836 }
837
838 /* Check and set other sampling flags */
839 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
840 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
841
842 err = __hw_perf_event_init_rate(event, &si);
843 if (err)
844 goto out;
845
846 /* Initialize sample data overflow accounting */
847 hwc->extra_reg.reg = REG_OVERFLOW;
848 OVERFLOW_REG(hwc) = 0;
849
850 /* Use AUX buffer. No need to allocate it by ourself */
851 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
852 return 0;
853
854 /* Allocate the per-CPU sampling buffer using the CPU information
855 * from the event. If the event is not pinned to a particular
856 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
857 * buffers for each online CPU.
858 */
859 if (cpuhw)
860 /* Event is pinned to a particular CPU */
861 err = allocate_buffers(cpuhw, hwc);
862 else {
863 /* Event is not pinned, allocate sampling buffer on
864 * each online CPU
865 */
866 for_each_online_cpu(cpu) {
867 cpuhw = &per_cpu(cpu_hw_sf, cpu);
868 err = allocate_buffers(cpuhw, hwc);
869 if (err)
870 break;
871 }
872 }
873
874 /* If PID/TID sampling is active, replace the default overflow
875 * handler to extract and resolve the PIDs from the basic-sampling
876 * data entries.
877 */
878 if (event->attr.sample_type & PERF_SAMPLE_TID)
879 if (is_default_overflow_handler(event))
880 event->overflow_handler = cpumsf_output_event_pid;
881 out:
882 return err;
883 }
884
is_callchain_event(struct perf_event * event)885 static bool is_callchain_event(struct perf_event *event)
886 {
887 u64 sample_type = event->attr.sample_type;
888
889 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
890 PERF_SAMPLE_STACK_USER);
891 }
892
cpumsf_pmu_event_init(struct perf_event * event)893 static int cpumsf_pmu_event_init(struct perf_event *event)
894 {
895 int err;
896
897 /* No support for taken branch sampling */
898 /* No support for callchain, stacks and registers */
899 if (has_branch_stack(event) || is_callchain_event(event))
900 return -EOPNOTSUPP;
901
902 switch (event->attr.type) {
903 case PERF_TYPE_RAW:
904 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
905 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
906 return -ENOENT;
907 break;
908 case PERF_TYPE_HARDWARE:
909 /* Support sampling of CPU cycles in addition to the
910 * counter facility. However, the counter facility
911 * is more precise and, hence, restrict this PMU to
912 * sampling events only.
913 */
914 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
915 return -ENOENT;
916 if (!is_sampling_event(event))
917 return -ENOENT;
918 break;
919 default:
920 return -ENOENT;
921 }
922
923 /* Check online status of the CPU to which the event is pinned */
924 if (event->cpu >= 0 && !cpu_online(event->cpu))
925 return -ENODEV;
926
927 /* Force reset of idle/hv excludes regardless of what the
928 * user requested.
929 */
930 if (event->attr.exclude_hv)
931 event->attr.exclude_hv = 0;
932 if (event->attr.exclude_idle)
933 event->attr.exclude_idle = 0;
934
935 err = __hw_perf_event_init(event);
936 if (unlikely(err))
937 if (event->destroy)
938 event->destroy(event);
939 return err;
940 }
941
cpumsf_pmu_enable(struct pmu * pmu)942 static void cpumsf_pmu_enable(struct pmu *pmu)
943 {
944 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
945 struct hw_perf_event *hwc;
946 int err;
947
948 if (cpuhw->flags & PMU_F_ENABLED)
949 return;
950
951 if (cpuhw->flags & PMU_F_ERR_MASK)
952 return;
953
954 /* Check whether to extent the sampling buffer.
955 *
956 * Two conditions trigger an increase of the sampling buffer for a
957 * perf event:
958 * 1. Postponed buffer allocations from the event initialization.
959 * 2. Sampling overflows that contribute to pending allocations.
960 *
961 * Note that the extend_sampling_buffer() function disables the sampling
962 * facility, but it can be fully re-enabled using sampling controls that
963 * have been saved in cpumsf_pmu_disable().
964 */
965 if (cpuhw->event) {
966 hwc = &cpuhw->event->hw;
967 if (!(SAMPL_DIAG_MODE(hwc))) {
968 /*
969 * Account number of overflow-designated
970 * buffer extents
971 */
972 sfb_account_overflows(cpuhw, hwc);
973 extend_sampling_buffer(&cpuhw->sfb, hwc);
974 }
975 /* Rate may be adjusted with ioctl() */
976 cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
977 }
978
979 /* (Re)enable the PMU and sampling facility */
980 cpuhw->flags |= PMU_F_ENABLED;
981 barrier();
982
983 err = lsctl(&cpuhw->lsctl);
984 if (err) {
985 cpuhw->flags &= ~PMU_F_ENABLED;
986 pr_err("Loading sampling controls failed: op %i err %i\n",
987 1, err);
988 return;
989 }
990
991 /* Load current program parameter */
992 lpp(&S390_lowcore.lpp);
993
994 debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
995 "interval %#lx tear %#lx dear %#lx\n", __func__,
996 cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
997 cpuhw->lsctl.cd, cpuhw->lsctl.interval,
998 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
999 }
1000
cpumsf_pmu_disable(struct pmu * pmu)1001 static void cpumsf_pmu_disable(struct pmu *pmu)
1002 {
1003 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1004 struct hws_lsctl_request_block inactive;
1005 struct hws_qsi_info_block si;
1006 int err;
1007
1008 if (!(cpuhw->flags & PMU_F_ENABLED))
1009 return;
1010
1011 if (cpuhw->flags & PMU_F_ERR_MASK)
1012 return;
1013
1014 /* Switch off sampling activation control */
1015 inactive = cpuhw->lsctl;
1016 inactive.cs = 0;
1017 inactive.cd = 0;
1018
1019 err = lsctl(&inactive);
1020 if (err) {
1021 pr_err("Loading sampling controls failed: op %i err %i\n",
1022 2, err);
1023 return;
1024 }
1025
1026 /* Save state of TEAR and DEAR register contents */
1027 err = qsi(&si);
1028 if (!err) {
1029 /* TEAR/DEAR values are valid only if the sampling facility is
1030 * enabled. Note that cpumsf_pmu_disable() might be called even
1031 * for a disabled sampling facility because cpumsf_pmu_enable()
1032 * controls the enable/disable state.
1033 */
1034 if (si.es) {
1035 cpuhw->lsctl.tear = si.tear;
1036 cpuhw->lsctl.dear = si.dear;
1037 }
1038 } else
1039 debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1040 __func__, err);
1041
1042 cpuhw->flags &= ~PMU_F_ENABLED;
1043 }
1044
1045 /* perf_exclude_event() - Filter event
1046 * @event: The perf event
1047 * @regs: pt_regs structure
1048 * @sde_regs: Sample-data-entry (sde) regs structure
1049 *
1050 * Filter perf events according to their exclude specification.
1051 *
1052 * Return non-zero if the event shall be excluded.
1053 */
perf_exclude_event(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)1054 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1055 struct perf_sf_sde_regs *sde_regs)
1056 {
1057 if (event->attr.exclude_user && user_mode(regs))
1058 return 1;
1059 if (event->attr.exclude_kernel && !user_mode(regs))
1060 return 1;
1061 if (event->attr.exclude_guest && sde_regs->in_guest)
1062 return 1;
1063 if (event->attr.exclude_host && !sde_regs->in_guest)
1064 return 1;
1065 return 0;
1066 }
1067
1068 /* perf_push_sample() - Push samples to perf
1069 * @event: The perf event
1070 * @sample: Hardware sample data
1071 *
1072 * Use the hardware sample data to create perf event sample. The sample
1073 * is the pushed to the event subsystem and the function checks for
1074 * possible event overflows. If an event overflow occurs, the PMU is
1075 * stopped.
1076 *
1077 * Return non-zero if an event overflow occurred.
1078 */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1079 static int perf_push_sample(struct perf_event *event,
1080 struct hws_basic_entry *basic)
1081 {
1082 int overflow;
1083 struct pt_regs regs;
1084 struct perf_sf_sde_regs *sde_regs;
1085 struct perf_sample_data data;
1086
1087 /* Setup perf sample */
1088 perf_sample_data_init(&data, 0, event->hw.last_period);
1089
1090 /* Setup pt_regs to look like an CPU-measurement external interrupt
1091 * using the Program Request Alert code. The regs.int_parm_long
1092 * field which is unused contains additional sample-data-entry related
1093 * indicators.
1094 */
1095 memset(®s, 0, sizeof(regs));
1096 regs.int_code = 0x1407;
1097 regs.int_parm = CPU_MF_INT_SF_PRA;
1098 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long;
1099
1100 psw_bits(regs.psw).ia = basic->ia;
1101 psw_bits(regs.psw).dat = basic->T;
1102 psw_bits(regs.psw).wait = basic->W;
1103 psw_bits(regs.psw).pstate = basic->P;
1104 psw_bits(regs.psw).as = basic->AS;
1105
1106 /*
1107 * Use the hardware provided configuration level to decide if the
1108 * sample belongs to a guest or host. If that is not available,
1109 * fall back to the following heuristics:
1110 * A non-zero guest program parameter always indicates a guest
1111 * sample. Some early samples or samples from guests without
1112 * lpp usage would be misaccounted to the host. We use the asn
1113 * value as an addon heuristic to detect most of these guest samples.
1114 * If the value differs from 0xffff (the host value), we assume to
1115 * be a KVM guest.
1116 */
1117 switch (basic->CL) {
1118 case 1: /* logical partition */
1119 sde_regs->in_guest = 0;
1120 break;
1121 case 2: /* virtual machine */
1122 sde_regs->in_guest = 1;
1123 break;
1124 default: /* old machine, use heuristics */
1125 if (basic->gpp || basic->prim_asn != 0xffff)
1126 sde_regs->in_guest = 1;
1127 break;
1128 }
1129
1130 /*
1131 * Store the PID value from the sample-data-entry to be
1132 * processed and resolved by cpumsf_output_event_pid().
1133 */
1134 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1135
1136 overflow = 0;
1137 if (perf_exclude_event(event, ®s, sde_regs))
1138 goto out;
1139 if (perf_event_overflow(event, &data, ®s)) {
1140 overflow = 1;
1141 event->pmu->stop(event, 0);
1142 }
1143 perf_event_update_userpage(event);
1144 out:
1145 return overflow;
1146 }
1147
perf_event_count_update(struct perf_event * event,u64 count)1148 static void perf_event_count_update(struct perf_event *event, u64 count)
1149 {
1150 local64_add(count, &event->count);
1151 }
1152
1153 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1154 * @event: The perf event
1155 * @sdbt: Sample-data-block table
1156 * @overflow: Event overflow counter
1157 *
1158 * Walks through a sample-data-block and collects sampling data entries that are
1159 * then pushed to the perf event subsystem. Depending on the sampling function,
1160 * there can be either basic-sampling or combined-sampling data entries. A
1161 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1162 * data entry. The sampling function is determined by the flags in the perf
1163 * event hardware structure. The function always works with a combined-sampling
1164 * data entry but ignores the the diagnostic portion if it is not available.
1165 *
1166 * Note that the implementation focuses on basic-sampling data entries and, if
1167 * such an entry is not valid, the entire combined-sampling data entry is
1168 * ignored.
1169 *
1170 * The overflow variables counts the number of samples that has been discarded
1171 * due to a perf event overflow.
1172 */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1173 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1174 unsigned long long *overflow)
1175 {
1176 struct hws_trailer_entry *te;
1177 struct hws_basic_entry *sample;
1178
1179 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1180 sample = (struct hws_basic_entry *) *sdbt;
1181 while ((unsigned long *) sample < (unsigned long *) te) {
1182 /* Check for an empty sample */
1183 if (!sample->def)
1184 break;
1185
1186 /* Update perf event period */
1187 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1188
1189 /* Check whether sample is valid */
1190 if (sample->def == 0x0001) {
1191 /* If an event overflow occurred, the PMU is stopped to
1192 * throttle event delivery. Remaining sample data is
1193 * discarded.
1194 */
1195 if (!*overflow) {
1196 /* Check whether sample is consistent */
1197 if (sample->I == 0 && sample->W == 0) {
1198 /* Deliver sample data to perf */
1199 *overflow = perf_push_sample(event,
1200 sample);
1201 }
1202 } else
1203 /* Count discarded samples */
1204 *overflow += 1;
1205 } else {
1206 debug_sprintf_event(sfdbg, 4,
1207 "%s: Found unknown"
1208 " sampling data entry: te->f %i"
1209 " basic.def %#4x (%p)\n", __func__,
1210 te->header.f, sample->def, sample);
1211 /* Sample slot is not yet written or other record.
1212 *
1213 * This condition can occur if the buffer was reused
1214 * from a combined basic- and diagnostic-sampling.
1215 * If only basic-sampling is then active, entries are
1216 * written into the larger diagnostic entries.
1217 * This is typically the case for sample-data-blocks
1218 * that are not full. Stop processing if the first
1219 * invalid format was detected.
1220 */
1221 if (!te->header.f)
1222 break;
1223 }
1224
1225 /* Reset sample slot and advance to next sample */
1226 sample->def = 0;
1227 sample++;
1228 }
1229 }
1230
__cdsg(__uint128_t * ptr,__uint128_t old,__uint128_t new)1231 static inline __uint128_t __cdsg(__uint128_t *ptr, __uint128_t old, __uint128_t new)
1232 {
1233 asm volatile(
1234 " cdsg %[old],%[new],%[ptr]\n"
1235 : [old] "+d" (old), [ptr] "+QS" (*ptr)
1236 : [new] "d" (new)
1237 : "memory", "cc");
1238 return old;
1239 }
1240
1241 /* hw_perf_event_update() - Process sampling buffer
1242 * @event: The perf event
1243 * @flush_all: Flag to also flush partially filled sample-data-blocks
1244 *
1245 * Processes the sampling buffer and create perf event samples.
1246 * The sampling buffer position are retrieved and saved in the TEAR_REG
1247 * register of the specified perf event.
1248 *
1249 * Only full sample-data-blocks are processed. Specify the flash_all flag
1250 * to also walk through partially filled sample-data-blocks. It is ignored
1251 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
1252 * enforces the processing of full sample-data-blocks only (trailer entries
1253 * with the block-full-indicator bit set).
1254 */
hw_perf_event_update(struct perf_event * event,int flush_all)1255 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1256 {
1257 unsigned long long event_overflow, sampl_overflow, num_sdb;
1258 union hws_trailer_header old, prev, new;
1259 struct hw_perf_event *hwc = &event->hw;
1260 struct hws_trailer_entry *te;
1261 unsigned long *sdbt;
1262 int done;
1263
1264 /*
1265 * AUX buffer is used when in diagnostic sampling mode.
1266 * No perf events/samples are created.
1267 */
1268 if (SAMPL_DIAG_MODE(&event->hw))
1269 return;
1270
1271 if (flush_all && SDB_FULL_BLOCKS(hwc))
1272 flush_all = 0;
1273
1274 sdbt = (unsigned long *) TEAR_REG(hwc);
1275 done = event_overflow = sampl_overflow = num_sdb = 0;
1276 while (!done) {
1277 /* Get the trailer entry of the sample-data-block */
1278 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1279
1280 /* Leave loop if no more work to do (block full indicator) */
1281 if (!te->header.f) {
1282 done = 1;
1283 if (!flush_all)
1284 break;
1285 }
1286
1287 /* Check the sample overflow count */
1288 if (te->header.overflow)
1289 /* Account sample overflows and, if a particular limit
1290 * is reached, extend the sampling buffer.
1291 * For details, see sfb_account_overflows().
1292 */
1293 sampl_overflow += te->header.overflow;
1294
1295 /* Timestamps are valid for full sample-data-blocks only */
1296 debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
1297 "overflow %llu timestamp %#llx\n",
1298 __func__, (unsigned long)sdbt, te->header.overflow,
1299 (te->header.f) ? trailer_timestamp(te) : 0ULL);
1300
1301 /* Collect all samples from a single sample-data-block and
1302 * flag if an (perf) event overflow happened. If so, the PMU
1303 * is stopped and remaining samples will be discarded.
1304 */
1305 hw_collect_samples(event, sdbt, &event_overflow);
1306 num_sdb++;
1307
1308 /* Reset trailer (using compare-double-and-swap) */
1309 /* READ_ONCE() 16 byte header */
1310 prev.val = __cdsg(&te->header.val, 0, 0);
1311 do {
1312 old.val = prev.val;
1313 new.val = prev.val;
1314 new.f = 0;
1315 new.a = 1;
1316 new.overflow = 0;
1317 prev.val = __cdsg(&te->header.val, old.val, new.val);
1318 } while (prev.val != old.val);
1319
1320 /* Advance to next sample-data-block */
1321 sdbt++;
1322 if (is_link_entry(sdbt))
1323 sdbt = get_next_sdbt(sdbt);
1324
1325 /* Update event hardware registers */
1326 TEAR_REG(hwc) = (unsigned long) sdbt;
1327
1328 /* Stop processing sample-data if all samples of the current
1329 * sample-data-block were flushed even if it was not full.
1330 */
1331 if (flush_all && done)
1332 break;
1333 }
1334
1335 /* Account sample overflows in the event hardware structure */
1336 if (sampl_overflow)
1337 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1338 sampl_overflow, 1 + num_sdb);
1339
1340 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1341 * the interrupt rate to an upper limit. Roughly 1000 samples per
1342 * task tick.
1343 * Hitting this limit results in a large number
1344 * of throttled REF_REPORT_THROTTLE entries and the samples
1345 * are dropped.
1346 * Slightly increase the interval to avoid hitting this limit.
1347 */
1348 if (event_overflow) {
1349 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1350 debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1351 __func__,
1352 DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1353 }
1354
1355 if (sampl_overflow || event_overflow)
1356 debug_sprintf_event(sfdbg, 4, "%s: "
1357 "overflows: sample %llu event %llu"
1358 " total %llu num_sdb %llu\n",
1359 __func__, sampl_overflow, event_overflow,
1360 OVERFLOW_REG(hwc), num_sdb);
1361 }
1362
1363 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1364 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1365 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1366 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1367
1368 /*
1369 * Get trailer entry by index of SDB.
1370 */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1371 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1372 unsigned long index)
1373 {
1374 unsigned long sdb;
1375
1376 index = AUX_SDB_INDEX(aux, index);
1377 sdb = aux->sdb_index[index];
1378 return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1379 }
1380
1381 /*
1382 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1383 * disabled. Collect the full SDBs in AUX buffer which have not reached
1384 * the point of alert indicator. And ignore the SDBs which are not
1385 * full.
1386 *
1387 * 1. Scan SDBs to see how much data is there and consume them.
1388 * 2. Remove alert indicator in the buffer.
1389 */
aux_output_end(struct perf_output_handle * handle)1390 static void aux_output_end(struct perf_output_handle *handle)
1391 {
1392 unsigned long i, range_scan, idx;
1393 struct aux_buffer *aux;
1394 struct hws_trailer_entry *te;
1395
1396 aux = perf_get_aux(handle);
1397 if (!aux)
1398 return;
1399
1400 range_scan = AUX_SDB_NUM_ALERT(aux);
1401 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1402 te = aux_sdb_trailer(aux, idx);
1403 if (!te->header.f)
1404 break;
1405 }
1406 /* i is num of SDBs which are full */
1407 perf_aux_output_end(handle, i << PAGE_SHIFT);
1408
1409 /* Remove alert indicators in the buffer */
1410 te = aux_sdb_trailer(aux, aux->alert_mark);
1411 te->header.a = 0;
1412
1413 debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1414 __func__, i, range_scan, aux->head);
1415 }
1416
1417 /*
1418 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1419 * is first added to the CPU or rescheduled again to the CPU. It is called
1420 * with pmu disabled.
1421 *
1422 * 1. Reset the trailer of SDBs to get ready for new data.
1423 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1424 * head(tear/dear).
1425 */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1426 static int aux_output_begin(struct perf_output_handle *handle,
1427 struct aux_buffer *aux,
1428 struct cpu_hw_sf *cpuhw)
1429 {
1430 unsigned long range;
1431 unsigned long i, range_scan, idx;
1432 unsigned long head, base, offset;
1433 struct hws_trailer_entry *te;
1434
1435 if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1436 return -EINVAL;
1437
1438 aux->head = handle->head >> PAGE_SHIFT;
1439 range = (handle->size + 1) >> PAGE_SHIFT;
1440 if (range <= 1)
1441 return -ENOMEM;
1442
1443 /*
1444 * SDBs between aux->head and aux->empty_mark are already ready
1445 * for new data. range_scan is num of SDBs not within them.
1446 */
1447 debug_sprintf_event(sfdbg, 6,
1448 "%s: range %ld head %ld alert %ld empty %ld\n",
1449 __func__, range, aux->head, aux->alert_mark,
1450 aux->empty_mark);
1451 if (range > AUX_SDB_NUM_EMPTY(aux)) {
1452 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1453 idx = aux->empty_mark + 1;
1454 for (i = 0; i < range_scan; i++, idx++) {
1455 te = aux_sdb_trailer(aux, idx);
1456 te->header.f = 0;
1457 te->header.a = 0;
1458 te->header.overflow = 0;
1459 }
1460 /* Save the position of empty SDBs */
1461 aux->empty_mark = aux->head + range - 1;
1462 }
1463
1464 /* Set alert indicator */
1465 aux->alert_mark = aux->head + range/2 - 1;
1466 te = aux_sdb_trailer(aux, aux->alert_mark);
1467 te->header.a = 1;
1468
1469 /* Reset hardware buffer head */
1470 head = AUX_SDB_INDEX(aux, aux->head);
1471 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1472 offset = head % CPUM_SF_SDB_PER_TABLE;
1473 cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1474 cpuhw->lsctl.dear = aux->sdb_index[head];
1475
1476 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1477 "index %ld tear %#lx dear %#lx\n", __func__,
1478 aux->head, aux->alert_mark, aux->empty_mark,
1479 head / CPUM_SF_SDB_PER_TABLE,
1480 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * Set alert indicator on SDB at index @alert_index while sampler is running.
1487 *
1488 * Return true if successfully.
1489 * Return false if full indicator is already set by hardware sampler.
1490 */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1491 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1492 unsigned long long *overflow)
1493 {
1494 union hws_trailer_header old, prev, new;
1495 struct hws_trailer_entry *te;
1496
1497 te = aux_sdb_trailer(aux, alert_index);
1498 /* READ_ONCE() 16 byte header */
1499 prev.val = __cdsg(&te->header.val, 0, 0);
1500 do {
1501 old.val = prev.val;
1502 new.val = prev.val;
1503 *overflow = old.overflow;
1504 if (old.f) {
1505 /*
1506 * SDB is already set by hardware.
1507 * Abort and try to set somewhere
1508 * behind.
1509 */
1510 return false;
1511 }
1512 new.a = 1;
1513 new.overflow = 0;
1514 prev.val = __cdsg(&te->header.val, old.val, new.val);
1515 } while (prev.val != old.val);
1516 return true;
1517 }
1518
1519 /*
1520 * aux_reset_buffer() - Scan and setup SDBs for new samples
1521 * @aux: The AUX buffer to set
1522 * @range: The range of SDBs to scan started from aux->head
1523 * @overflow: Set to overflow count
1524 *
1525 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1526 * marked as empty, check if it is already set full by the hardware sampler.
1527 * If yes, that means new data is already there before we can set an alert
1528 * indicator. Caller should try to set alert indicator to some position behind.
1529 *
1530 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1531 * previously and have already been consumed by user space. Reset these SDBs
1532 * (clear full indicator and alert indicator) for new data.
1533 * If aux->alert_mark fall in this area, just set it. Overflow count is
1534 * recorded while scanning.
1535 *
1536 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1537 * and ready for new samples. So scanning on this area could be skipped.
1538 *
1539 * Return true if alert indicator is set successfully and false if not.
1540 */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1541 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1542 unsigned long long *overflow)
1543 {
1544 unsigned long i, range_scan, idx, idx_old;
1545 union hws_trailer_header old, prev, new;
1546 unsigned long long orig_overflow;
1547 struct hws_trailer_entry *te;
1548
1549 debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1550 "empty %ld\n", __func__, range, aux->head,
1551 aux->alert_mark, aux->empty_mark);
1552 if (range <= AUX_SDB_NUM_EMPTY(aux))
1553 /*
1554 * No need to scan. All SDBs in range are marked as empty.
1555 * Just set alert indicator. Should check race with hardware
1556 * sampler.
1557 */
1558 return aux_set_alert(aux, aux->alert_mark, overflow);
1559
1560 if (aux->alert_mark <= aux->empty_mark)
1561 /*
1562 * Set alert indicator on empty SDB. Should check race
1563 * with hardware sampler.
1564 */
1565 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1566 return false;
1567
1568 /*
1569 * Scan the SDBs to clear full and alert indicator used previously.
1570 * Start scanning from one SDB behind empty_mark. If the new alert
1571 * indicator fall into this range, set it.
1572 */
1573 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1574 idx_old = idx = aux->empty_mark + 1;
1575 for (i = 0; i < range_scan; i++, idx++) {
1576 te = aux_sdb_trailer(aux, idx);
1577 /* READ_ONCE() 16 byte header */
1578 prev.val = __cdsg(&te->header.val, 0, 0);
1579 do {
1580 old.val = prev.val;
1581 new.val = prev.val;
1582 orig_overflow = old.overflow;
1583 new.f = 0;
1584 new.overflow = 0;
1585 if (idx == aux->alert_mark)
1586 new.a = 1;
1587 else
1588 new.a = 0;
1589 prev.val = __cdsg(&te->header.val, old.val, new.val);
1590 } while (prev.val != old.val);
1591 *overflow += orig_overflow;
1592 }
1593
1594 /* Update empty_mark to new position */
1595 aux->empty_mark = aux->head + range - 1;
1596
1597 debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1598 "empty %ld\n", __func__, range_scan, idx_old,
1599 idx - 1, aux->empty_mark);
1600 return true;
1601 }
1602
1603 /*
1604 * Measurement alert handler for diagnostic mode sampling.
1605 */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1606 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1607 {
1608 struct aux_buffer *aux;
1609 int done = 0;
1610 unsigned long range = 0, size;
1611 unsigned long long overflow = 0;
1612 struct perf_output_handle *handle = &cpuhw->handle;
1613 unsigned long num_sdb;
1614
1615 aux = perf_get_aux(handle);
1616 if (WARN_ON_ONCE(!aux))
1617 return;
1618
1619 /* Inform user space new data arrived */
1620 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1621 debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1622 size >> PAGE_SHIFT);
1623 perf_aux_output_end(handle, size);
1624
1625 num_sdb = aux->sfb.num_sdb;
1626 while (!done) {
1627 /* Get an output handle */
1628 aux = perf_aux_output_begin(handle, cpuhw->event);
1629 if (handle->size == 0) {
1630 pr_err("The AUX buffer with %lu pages for the "
1631 "diagnostic-sampling mode is full\n",
1632 num_sdb);
1633 debug_sprintf_event(sfdbg, 1,
1634 "%s: AUX buffer used up\n",
1635 __func__);
1636 break;
1637 }
1638 if (WARN_ON_ONCE(!aux))
1639 return;
1640
1641 /* Update head and alert_mark to new position */
1642 aux->head = handle->head >> PAGE_SHIFT;
1643 range = (handle->size + 1) >> PAGE_SHIFT;
1644 if (range == 1)
1645 aux->alert_mark = aux->head;
1646 else
1647 aux->alert_mark = aux->head + range/2 - 1;
1648
1649 if (aux_reset_buffer(aux, range, &overflow)) {
1650 if (!overflow) {
1651 done = 1;
1652 break;
1653 }
1654 size = range << PAGE_SHIFT;
1655 perf_aux_output_end(&cpuhw->handle, size);
1656 pr_err("Sample data caused the AUX buffer with %lu "
1657 "pages to overflow\n", aux->sfb.num_sdb);
1658 debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1659 "overflow %lld\n", __func__,
1660 aux->head, range, overflow);
1661 } else {
1662 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1663 perf_aux_output_end(&cpuhw->handle, size);
1664 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1665 "already full, try another\n",
1666 __func__,
1667 aux->head, aux->alert_mark);
1668 }
1669 }
1670
1671 if (done)
1672 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1673 "empty %ld\n", __func__, aux->head,
1674 aux->alert_mark, aux->empty_mark);
1675 }
1676
1677 /*
1678 * Callback when freeing AUX buffers.
1679 */
aux_buffer_free(void * data)1680 static void aux_buffer_free(void *data)
1681 {
1682 struct aux_buffer *aux = data;
1683 unsigned long i, num_sdbt;
1684
1685 if (!aux)
1686 return;
1687
1688 /* Free SDBT. SDB is freed by the caller */
1689 num_sdbt = aux->sfb.num_sdbt;
1690 for (i = 0; i < num_sdbt; i++)
1691 free_page(aux->sdbt_index[i]);
1692
1693 kfree(aux->sdbt_index);
1694 kfree(aux->sdb_index);
1695 kfree(aux);
1696
1697 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1698 }
1699
aux_sdb_init(unsigned long sdb)1700 static void aux_sdb_init(unsigned long sdb)
1701 {
1702 struct hws_trailer_entry *te;
1703
1704 te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1705
1706 /* Save clock base */
1707 te->clock_base = 1;
1708 te->progusage2 = tod_clock_base.tod;
1709 }
1710
1711 /*
1712 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1713 * @event: Event the buffer is setup for, event->cpu == -1 means current
1714 * @pages: Array of pointers to buffer pages passed from perf core
1715 * @nr_pages: Total pages
1716 * @snapshot: Flag for snapshot mode
1717 *
1718 * This is the callback when setup an event using AUX buffer. Perf tool can
1719 * trigger this by an additional mmap() call on the event. Unlike the buffer
1720 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1721 * the task among online cpus when it is a per-thread event.
1722 *
1723 * Return the private AUX buffer structure if success or NULL if fails.
1724 */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1725 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1726 int nr_pages, bool snapshot)
1727 {
1728 struct sf_buffer *sfb;
1729 struct aux_buffer *aux;
1730 unsigned long *new, *tail;
1731 int i, n_sdbt;
1732
1733 if (!nr_pages || !pages)
1734 return NULL;
1735
1736 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1737 pr_err("AUX buffer size (%i pages) is larger than the "
1738 "maximum sampling buffer limit\n",
1739 nr_pages);
1740 return NULL;
1741 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1742 pr_err("AUX buffer size (%i pages) is less than the "
1743 "minimum sampling buffer limit\n",
1744 nr_pages);
1745 return NULL;
1746 }
1747
1748 /* Allocate aux_buffer struct for the event */
1749 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1750 if (!aux)
1751 goto no_aux;
1752 sfb = &aux->sfb;
1753
1754 /* Allocate sdbt_index for fast reference */
1755 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1756 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1757 if (!aux->sdbt_index)
1758 goto no_sdbt_index;
1759
1760 /* Allocate sdb_index for fast reference */
1761 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1762 if (!aux->sdb_index)
1763 goto no_sdb_index;
1764
1765 /* Allocate the first SDBT */
1766 sfb->num_sdbt = 0;
1767 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1768 if (!sfb->sdbt)
1769 goto no_sdbt;
1770 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1771 tail = sfb->tail = sfb->sdbt;
1772
1773 /*
1774 * Link the provided pages of AUX buffer to SDBT.
1775 * Allocate SDBT if needed.
1776 */
1777 for (i = 0; i < nr_pages; i++, tail++) {
1778 if (require_table_link(tail)) {
1779 new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1780 if (!new)
1781 goto no_sdbt;
1782 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1783 /* Link current page to tail of chain */
1784 *tail = (unsigned long)(void *) new + 1;
1785 tail = new;
1786 }
1787 /* Tail is the entry in a SDBT */
1788 *tail = (unsigned long)pages[i];
1789 aux->sdb_index[i] = (unsigned long)pages[i];
1790 aux_sdb_init((unsigned long)pages[i]);
1791 }
1792 sfb->num_sdb = nr_pages;
1793
1794 /* Link the last entry in the SDBT to the first SDBT */
1795 *tail = (unsigned long) sfb->sdbt + 1;
1796 sfb->tail = tail;
1797
1798 /*
1799 * Initial all SDBs are zeroed. Mark it as empty.
1800 * So there is no need to clear the full indicator
1801 * when this event is first added.
1802 */
1803 aux->empty_mark = sfb->num_sdb - 1;
1804
1805 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1806 sfb->num_sdbt, sfb->num_sdb);
1807
1808 return aux;
1809
1810 no_sdbt:
1811 /* SDBs (AUX buffer pages) are freed by caller */
1812 for (i = 0; i < sfb->num_sdbt; i++)
1813 free_page(aux->sdbt_index[i]);
1814 kfree(aux->sdb_index);
1815 no_sdb_index:
1816 kfree(aux->sdbt_index);
1817 no_sdbt_index:
1818 kfree(aux);
1819 no_aux:
1820 return NULL;
1821 }
1822
cpumsf_pmu_read(struct perf_event * event)1823 static void cpumsf_pmu_read(struct perf_event *event)
1824 {
1825 /* Nothing to do ... updates are interrupt-driven */
1826 }
1827
1828 /* Check if the new sampling period/freqeuncy is appropriate.
1829 *
1830 * Return non-zero on error and zero on passed checks.
1831 */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1832 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1833 {
1834 struct hws_qsi_info_block si;
1835 unsigned long rate;
1836 bool do_freq;
1837
1838 memset(&si, 0, sizeof(si));
1839 if (event->cpu == -1) {
1840 if (qsi(&si))
1841 return -ENODEV;
1842 } else {
1843 /* Event is pinned to a particular CPU, retrieve the per-CPU
1844 * sampling structure for accessing the CPU-specific QSI.
1845 */
1846 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1847
1848 si = cpuhw->qsi;
1849 }
1850
1851 do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1852 rate = getrate(do_freq, value, &si);
1853 if (!rate)
1854 return -EINVAL;
1855
1856 event->attr.sample_period = rate;
1857 SAMPL_RATE(&event->hw) = rate;
1858 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1859 debug_sprintf_event(sfdbg, 4, "%s:"
1860 " cpu %d value %#llx period %#llx freq %d\n",
1861 __func__, event->cpu, value,
1862 event->attr.sample_period, do_freq);
1863 return 0;
1864 }
1865
1866 /* Activate sampling control.
1867 * Next call of pmu_enable() starts sampling.
1868 */
cpumsf_pmu_start(struct perf_event * event,int flags)1869 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1870 {
1871 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1872
1873 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1874 return;
1875
1876 if (flags & PERF_EF_RELOAD)
1877 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1878
1879 perf_pmu_disable(event->pmu);
1880 event->hw.state = 0;
1881 cpuhw->lsctl.cs = 1;
1882 if (SAMPL_DIAG_MODE(&event->hw))
1883 cpuhw->lsctl.cd = 1;
1884 perf_pmu_enable(event->pmu);
1885 }
1886
1887 /* Deactivate sampling control.
1888 * Next call of pmu_enable() stops sampling.
1889 */
cpumsf_pmu_stop(struct perf_event * event,int flags)1890 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1891 {
1892 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1893
1894 if (event->hw.state & PERF_HES_STOPPED)
1895 return;
1896
1897 perf_pmu_disable(event->pmu);
1898 cpuhw->lsctl.cs = 0;
1899 cpuhw->lsctl.cd = 0;
1900 event->hw.state |= PERF_HES_STOPPED;
1901
1902 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1903 hw_perf_event_update(event, 1);
1904 event->hw.state |= PERF_HES_UPTODATE;
1905 }
1906 perf_pmu_enable(event->pmu);
1907 }
1908
cpumsf_pmu_add(struct perf_event * event,int flags)1909 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1910 {
1911 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1912 struct aux_buffer *aux;
1913 int err;
1914
1915 if (cpuhw->flags & PMU_F_IN_USE)
1916 return -EAGAIN;
1917
1918 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1919 return -EINVAL;
1920
1921 err = 0;
1922 perf_pmu_disable(event->pmu);
1923
1924 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1925
1926 /* Set up sampling controls. Always program the sampling register
1927 * using the SDB-table start. Reset TEAR_REG event hardware register
1928 * that is used by hw_perf_event_update() to store the sampling buffer
1929 * position after samples have been flushed.
1930 */
1931 cpuhw->lsctl.s = 0;
1932 cpuhw->lsctl.h = 1;
1933 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1934 if (!SAMPL_DIAG_MODE(&event->hw)) {
1935 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1936 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1937 TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
1938 }
1939
1940 /* Ensure sampling functions are in the disabled state. If disabled,
1941 * switch on sampling enable control. */
1942 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1943 err = -EAGAIN;
1944 goto out;
1945 }
1946 if (SAMPL_DIAG_MODE(&event->hw)) {
1947 aux = perf_aux_output_begin(&cpuhw->handle, event);
1948 if (!aux) {
1949 err = -EINVAL;
1950 goto out;
1951 }
1952 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1953 if (err)
1954 goto out;
1955 cpuhw->lsctl.ed = 1;
1956 }
1957 cpuhw->lsctl.es = 1;
1958
1959 /* Set in_use flag and store event */
1960 cpuhw->event = event;
1961 cpuhw->flags |= PMU_F_IN_USE;
1962
1963 if (flags & PERF_EF_START)
1964 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1965 out:
1966 perf_event_update_userpage(event);
1967 perf_pmu_enable(event->pmu);
1968 return err;
1969 }
1970
cpumsf_pmu_del(struct perf_event * event,int flags)1971 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1972 {
1973 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1974
1975 perf_pmu_disable(event->pmu);
1976 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1977
1978 cpuhw->lsctl.es = 0;
1979 cpuhw->lsctl.ed = 0;
1980 cpuhw->flags &= ~PMU_F_IN_USE;
1981 cpuhw->event = NULL;
1982
1983 if (SAMPL_DIAG_MODE(&event->hw))
1984 aux_output_end(&cpuhw->handle);
1985 perf_event_update_userpage(event);
1986 perf_pmu_enable(event->pmu);
1987 }
1988
1989 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1990 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1991
1992 /* Attribute list for CPU_SF.
1993 *
1994 * The availablitiy depends on the CPU_MF sampling facility authorization
1995 * for basic + diagnositic samples. This is determined at initialization
1996 * time by the sampling facility device driver.
1997 * If the authorization for basic samples is turned off, it should be
1998 * also turned off for diagnostic sampling.
1999 *
2000 * During initialization of the device driver, check the authorization
2001 * level for diagnostic sampling and installs the attribute
2002 * file for diagnostic sampling if necessary.
2003 *
2004 * For now install a placeholder to reference all possible attributes:
2005 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
2006 * Add another entry for the final NULL pointer.
2007 */
2008 enum {
2009 SF_CYCLES_BASIC_ATTR_IDX = 0,
2010 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
2011 SF_CYCLES_ATTR_MAX
2012 };
2013
2014 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
2015 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
2016 };
2017
2018 PMU_FORMAT_ATTR(event, "config:0-63");
2019
2020 static struct attribute *cpumsf_pmu_format_attr[] = {
2021 &format_attr_event.attr,
2022 NULL,
2023 };
2024
2025 static struct attribute_group cpumsf_pmu_events_group = {
2026 .name = "events",
2027 .attrs = cpumsf_pmu_events_attr,
2028 };
2029
2030 static struct attribute_group cpumsf_pmu_format_group = {
2031 .name = "format",
2032 .attrs = cpumsf_pmu_format_attr,
2033 };
2034
2035 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2036 &cpumsf_pmu_events_group,
2037 &cpumsf_pmu_format_group,
2038 NULL,
2039 };
2040
2041 static struct pmu cpumf_sampling = {
2042 .pmu_enable = cpumsf_pmu_enable,
2043 .pmu_disable = cpumsf_pmu_disable,
2044
2045 .event_init = cpumsf_pmu_event_init,
2046 .add = cpumsf_pmu_add,
2047 .del = cpumsf_pmu_del,
2048
2049 .start = cpumsf_pmu_start,
2050 .stop = cpumsf_pmu_stop,
2051 .read = cpumsf_pmu_read,
2052
2053 .attr_groups = cpumsf_pmu_attr_groups,
2054
2055 .setup_aux = aux_buffer_setup,
2056 .free_aux = aux_buffer_free,
2057
2058 .check_period = cpumsf_pmu_check_period,
2059 };
2060
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)2061 static void cpumf_measurement_alert(struct ext_code ext_code,
2062 unsigned int alert, unsigned long unused)
2063 {
2064 struct cpu_hw_sf *cpuhw;
2065
2066 if (!(alert & CPU_MF_INT_SF_MASK))
2067 return;
2068 inc_irq_stat(IRQEXT_CMS);
2069 cpuhw = this_cpu_ptr(&cpu_hw_sf);
2070
2071 /* Measurement alerts are shared and might happen when the PMU
2072 * is not reserved. Ignore these alerts in this case. */
2073 if (!(cpuhw->flags & PMU_F_RESERVED))
2074 return;
2075
2076 /* The processing below must take care of multiple alert events that
2077 * might be indicated concurrently. */
2078
2079 /* Program alert request */
2080 if (alert & CPU_MF_INT_SF_PRA) {
2081 if (cpuhw->flags & PMU_F_IN_USE)
2082 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2083 hw_collect_aux(cpuhw);
2084 else
2085 hw_perf_event_update(cpuhw->event, 0);
2086 else
2087 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2088 }
2089
2090 /* Report measurement alerts only for non-PRA codes */
2091 if (alert != CPU_MF_INT_SF_PRA)
2092 debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2093 alert);
2094
2095 /* Sampling authorization change request */
2096 if (alert & CPU_MF_INT_SF_SACA)
2097 qsi(&cpuhw->qsi);
2098
2099 /* Loss of sample data due to high-priority machine activities */
2100 if (alert & CPU_MF_INT_SF_LSDA) {
2101 pr_err("Sample data was lost\n");
2102 cpuhw->flags |= PMU_F_ERR_LSDA;
2103 sf_disable();
2104 }
2105
2106 /* Invalid sampling buffer entry */
2107 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2108 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2109 alert);
2110 cpuhw->flags |= PMU_F_ERR_IBE;
2111 sf_disable();
2112 }
2113 }
2114
cpusf_pmu_setup(unsigned int cpu,int flags)2115 static int cpusf_pmu_setup(unsigned int cpu, int flags)
2116 {
2117 /* Ignore the notification if no events are scheduled on the PMU.
2118 * This might be racy...
2119 */
2120 if (!atomic_read(&num_events))
2121 return 0;
2122
2123 local_irq_disable();
2124 setup_pmc_cpu(&flags);
2125 local_irq_enable();
2126 return 0;
2127 }
2128
s390_pmu_sf_online_cpu(unsigned int cpu)2129 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2130 {
2131 return cpusf_pmu_setup(cpu, PMC_INIT);
2132 }
2133
s390_pmu_sf_offline_cpu(unsigned int cpu)2134 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2135 {
2136 return cpusf_pmu_setup(cpu, PMC_RELEASE);
2137 }
2138
param_get_sfb_size(char * buffer,const struct kernel_param * kp)2139 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2140 {
2141 if (!cpum_sf_avail())
2142 return -ENODEV;
2143 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2144 }
2145
param_set_sfb_size(const char * val,const struct kernel_param * kp)2146 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2147 {
2148 int rc;
2149 unsigned long min, max;
2150
2151 if (!cpum_sf_avail())
2152 return -ENODEV;
2153 if (!val || !strlen(val))
2154 return -EINVAL;
2155
2156 /* Valid parameter values: "min,max" or "max" */
2157 min = CPUM_SF_MIN_SDB;
2158 max = CPUM_SF_MAX_SDB;
2159 if (strchr(val, ','))
2160 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2161 else
2162 rc = kstrtoul(val, 10, &max);
2163
2164 if (min < 2 || min >= max || max > get_num_physpages())
2165 rc = -EINVAL;
2166 if (rc)
2167 return rc;
2168
2169 sfb_set_limits(min, max);
2170 pr_info("The sampling buffer limits have changed to: "
2171 "min %lu max %lu (diag %lu)\n",
2172 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2173 return 0;
2174 }
2175
2176 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2177 static const struct kernel_param_ops param_ops_sfb_size = {
2178 .set = param_set_sfb_size,
2179 .get = param_get_sfb_size,
2180 };
2181
2182 #define RS_INIT_FAILURE_QSI 0x0001
2183 #define RS_INIT_FAILURE_BSDES 0x0002
2184 #define RS_INIT_FAILURE_ALRT 0x0003
2185 #define RS_INIT_FAILURE_PERF 0x0004
pr_cpumsf_err(unsigned int reason)2186 static void __init pr_cpumsf_err(unsigned int reason)
2187 {
2188 pr_err("Sampling facility support for perf is not available: "
2189 "reason %#x\n", reason);
2190 }
2191
init_cpum_sampling_pmu(void)2192 static int __init init_cpum_sampling_pmu(void)
2193 {
2194 struct hws_qsi_info_block si;
2195 int err;
2196
2197 if (!cpum_sf_avail())
2198 return -ENODEV;
2199
2200 memset(&si, 0, sizeof(si));
2201 if (qsi(&si)) {
2202 pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2203 return -ENODEV;
2204 }
2205
2206 if (!si.as && !si.ad)
2207 return -ENODEV;
2208
2209 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2210 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2211 return -EINVAL;
2212 }
2213
2214 if (si.ad) {
2215 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2216 /* Sampling of diagnostic data authorized,
2217 * install event into attribute list of PMU device.
2218 */
2219 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2220 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2221 }
2222
2223 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2224 if (!sfdbg) {
2225 pr_err("Registering for s390dbf failed\n");
2226 return -ENOMEM;
2227 }
2228 debug_register_view(sfdbg, &debug_sprintf_view);
2229
2230 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2231 cpumf_measurement_alert);
2232 if (err) {
2233 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2234 debug_unregister(sfdbg);
2235 goto out;
2236 }
2237
2238 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2239 if (err) {
2240 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2241 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2242 cpumf_measurement_alert);
2243 debug_unregister(sfdbg);
2244 goto out;
2245 }
2246
2247 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2248 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2249 out:
2250 return err;
2251 }
2252
2253 arch_initcall(init_cpum_sampling_pmu);
2254 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2255