• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/boot/head.S
4 *
5 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
6 */
7
8/*
9 *  head.S contains the 32-bit startup code.
10 *
11 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
12 * the page directory will exist. The startup code will be overwritten by
13 * the page directory. [According to comments etc elsewhere on a compressed
14 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 *
16 * Page 0 is deliberately kept safe, since System Management Mode code in
17 * laptops may need to access the BIOS data stored there.  This is also
18 * useful for future device drivers that either access the BIOS via VM86
19 * mode.
20 */
21
22/*
23 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
24 */
25	.code32
26	.text
27
28#include <linux/init.h>
29#include <linux/linkage.h>
30#include <asm/segment.h>
31#include <asm/boot.h>
32#include <asm/msr.h>
33#include <asm/processor-flags.h>
34#include <asm/asm-offsets.h>
35#include <asm/bootparam.h>
36#include <asm/desc_defs.h>
37#include <asm/trapnr.h>
38#include "pgtable.h"
39
40/*
41 * Locally defined symbols should be marked hidden:
42 */
43	.hidden _bss
44	.hidden _ebss
45	.hidden _end
46
47	__HEAD
48
49/*
50 * This macro gives the relative virtual address of X, i.e. the offset of X
51 * from startup_32. This is the same as the link-time virtual address of X,
52 * since startup_32 is at 0, but defining it this way tells the
53 * assembler/linker that we do not want the actual run-time address of X. This
54 * prevents the linker from trying to create unwanted run-time relocation
55 * entries for the reference when the compressed kernel is linked as PIE.
56 *
57 * A reference X(%reg) will result in the link-time VA of X being stored with
58 * the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
59 * adds the 64-bit base address where the kernel is loaded.
60 *
61 * Replacing it with (X-startup_32)(%reg) results in the offset being stored,
62 * and no run-time relocation.
63 *
64 * The macro should be used as a displacement with a base register containing
65 * the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
66 * [$ rva(X)].
67 *
68 * This macro can only be used from within the .head.text section, since the
69 * expression requires startup_32 to be in the same section as the code being
70 * assembled.
71 */
72#define rva(X) ((X) - startup_32)
73
74	.code32
75SYM_FUNC_START(startup_32)
76	/*
77	 * 32bit entry is 0 and it is ABI so immutable!
78	 * If we come here directly from a bootloader,
79	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
80	 * all need to be under the 4G limit.
81	 */
82	cld
83	cli
84
85/*
86 * Calculate the delta between where we were compiled to run
87 * at and where we were actually loaded at.  This can only be done
88 * with a short local call on x86.  Nothing  else will tell us what
89 * address we are running at.  The reserved chunk of the real-mode
90 * data at 0x1e4 (defined as a scratch field) are used as the stack
91 * for this calculation. Only 4 bytes are needed.
92 */
93	leal	(BP_scratch+4)(%esi), %esp
94	call	1f
951:	popl	%ebp
96	subl	$ rva(1b), %ebp
97
98	/* Load new GDT with the 64bit segments using 32bit descriptor */
99	leal	rva(gdt)(%ebp), %eax
100	movl	%eax, 2(%eax)
101	lgdt	(%eax)
102
103	/* Load segment registers with our descriptors */
104	movl	$__BOOT_DS, %eax
105	movl	%eax, %ds
106	movl	%eax, %es
107	movl	%eax, %fs
108	movl	%eax, %gs
109	movl	%eax, %ss
110
111	/* Setup a stack and load CS from current GDT */
112	leal	rva(boot_stack_end)(%ebp), %esp
113
114	pushl	$__KERNEL32_CS
115	leal	rva(1f)(%ebp), %eax
116	pushl	%eax
117	lretl
1181:
119
120	/* Setup Exception handling for SEV-ES */
121	call	startup32_load_idt
122
123	/* Make sure cpu supports long mode. */
124	call	verify_cpu
125	testl	%eax, %eax
126	jnz	.Lno_longmode
127
128/*
129 * Compute the delta between where we were compiled to run at
130 * and where the code will actually run at.
131 *
132 * %ebp contains the address we are loaded at by the boot loader and %ebx
133 * contains the address where we should move the kernel image temporarily
134 * for safe in-place decompression.
135 */
136
137#ifdef CONFIG_RELOCATABLE
138	movl	%ebp, %ebx
139
140#ifdef CONFIG_EFI_STUB
141/*
142 * If we were loaded via the EFI LoadImage service, startup_32 will be at an
143 * offset to the start of the space allocated for the image. efi_pe_entry will
144 * set up image_offset to tell us where the image actually starts, so that we
145 * can use the full available buffer.
146 *	image_offset = startup_32 - image_base
147 * Otherwise image_offset will be zero and has no effect on the calculations.
148 */
149	subl    rva(image_offset)(%ebp), %ebx
150#endif
151
152	movl	BP_kernel_alignment(%esi), %eax
153	decl	%eax
154	addl	%eax, %ebx
155	notl	%eax
156	andl	%eax, %ebx
157	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
158	jae	1f
159#endif
160	movl	$LOAD_PHYSICAL_ADDR, %ebx
1611:
162
163	/* Target address to relocate to for decompression */
164	addl	BP_init_size(%esi), %ebx
165	subl	$ rva(_end), %ebx
166
167/*
168 * Prepare for entering 64 bit mode
169 */
170
171	/* Enable PAE mode */
172	movl	%cr4, %eax
173	orl	$X86_CR4_PAE, %eax
174	movl	%eax, %cr4
175
176 /*
177  * Build early 4G boot pagetable
178  */
179	/*
180	 * If SEV is active then set the encryption mask in the page tables.
181	 * This will insure that when the kernel is copied and decompressed
182	 * it will be done so encrypted.
183	 */
184	call	get_sev_encryption_bit
185	xorl	%edx, %edx
186#ifdef	CONFIG_AMD_MEM_ENCRYPT
187	testl	%eax, %eax
188	jz	1f
189	subl	$32, %eax	/* Encryption bit is always above bit 31 */
190	bts	%eax, %edx	/* Set encryption mask for page tables */
191	/*
192	 * Mark SEV as active in sev_status so that startup32_check_sev_cbit()
193	 * will do a check. The sev_status memory will be fully initialized
194	 * with the contents of MSR_AMD_SEV_STATUS later in
195	 * set_sev_encryption_mask(). For now it is sufficient to know that SEV
196	 * is active.
197	 */
198	movl	$1, rva(sev_status)(%ebp)
1991:
200#endif
201
202	/* Initialize Page tables to 0 */
203	leal	rva(pgtable)(%ebx), %edi
204	xorl	%eax, %eax
205	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
206	rep	stosl
207
208	/* Build Level 4 */
209	leal	rva(pgtable + 0)(%ebx), %edi
210	leal	0x1007 (%edi), %eax
211	movl	%eax, 0(%edi)
212	addl	%edx, 4(%edi)
213
214	/* Build Level 3 */
215	leal	rva(pgtable + 0x1000)(%ebx), %edi
216	leal	0x1007(%edi), %eax
217	movl	$4, %ecx
2181:	movl	%eax, 0x00(%edi)
219	addl	%edx, 0x04(%edi)
220	addl	$0x00001000, %eax
221	addl	$8, %edi
222	decl	%ecx
223	jnz	1b
224
225	/* Build Level 2 */
226	leal	rva(pgtable + 0x2000)(%ebx), %edi
227	movl	$0x00000183, %eax
228	movl	$2048, %ecx
2291:	movl	%eax, 0(%edi)
230	addl	%edx, 4(%edi)
231	addl	$0x00200000, %eax
232	addl	$8, %edi
233	decl	%ecx
234	jnz	1b
235
236	/* Enable the boot page tables */
237	leal	rva(pgtable)(%ebx), %eax
238	movl	%eax, %cr3
239
240	/* Enable Long mode in EFER (Extended Feature Enable Register) */
241	movl	$MSR_EFER, %ecx
242	rdmsr
243	btsl	$_EFER_LME, %eax
244	wrmsr
245
246	/* After gdt is loaded */
247	xorl	%eax, %eax
248	lldt	%ax
249	movl    $__BOOT_TSS, %eax
250	ltr	%ax
251
252	/*
253	 * Setup for the jump to 64bit mode
254	 *
255	 * When the jump is performed we will be in long mode but
256	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
257	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
258	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
259	 * We place all of the values on our mini stack so lret can
260	 * used to perform that far jump.
261	 */
262	leal	rva(startup_64)(%ebp), %eax
263#ifdef CONFIG_EFI_MIXED
264	movl	rva(efi32_boot_args)(%ebp), %edi
265	testl	%edi, %edi
266	jz	1f
267	leal	rva(efi64_stub_entry)(%ebp), %eax
268	movl	rva(efi32_boot_args+4)(%ebp), %esi
269	movl	rva(efi32_boot_args+8)(%ebp), %edx	// saved bootparams pointer
270	testl	%edx, %edx
271	jnz	1f
272	/*
273	 * efi_pe_entry uses MS calling convention, which requires 32 bytes of
274	 * shadow space on the stack even if all arguments are passed in
275	 * registers. We also need an additional 8 bytes for the space that
276	 * would be occupied by the return address, and this also results in
277	 * the correct stack alignment for entry.
278	 */
279	subl	$40, %esp
280	leal	rva(efi_pe_entry)(%ebp), %eax
281	movl	%edi, %ecx			// MS calling convention
282	movl	%esi, %edx
2831:
284#endif
285	/* Check if the C-bit position is correct when SEV is active */
286	call	startup32_check_sev_cbit
287
288	pushl	$__KERNEL_CS
289	pushl	%eax
290
291	/* Enter paged protected Mode, activating Long Mode */
292	movl	$(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
293	movl	%eax, %cr0
294
295	/* Jump from 32bit compatibility mode into 64bit mode. */
296	lret
297SYM_FUNC_END(startup_32)
298
299#ifdef CONFIG_EFI_MIXED
300	.org 0x190
301SYM_FUNC_START(efi32_stub_entry)
302	add	$0x4, %esp		/* Discard return address */
303	popl	%ecx
304	popl	%edx
305	popl	%esi
306
307	call	1f
3081:	pop	%ebp
309	subl	$ rva(1b), %ebp
310
311	movl	%esi, rva(efi32_boot_args+8)(%ebp)
312SYM_INNER_LABEL(efi32_pe_stub_entry, SYM_L_LOCAL)
313	movl	%ecx, rva(efi32_boot_args)(%ebp)
314	movl	%edx, rva(efi32_boot_args+4)(%ebp)
315	movb	$0, rva(efi_is64)(%ebp)
316
317	/* Save firmware GDTR and code/data selectors */
318	sgdtl	rva(efi32_boot_gdt)(%ebp)
319	movw	%cs, rva(efi32_boot_cs)(%ebp)
320	movw	%ds, rva(efi32_boot_ds)(%ebp)
321
322	/* Store firmware IDT descriptor */
323	sidtl	rva(efi32_boot_idt)(%ebp)
324
325	/* Disable paging */
326	movl	%cr0, %eax
327	btrl	$X86_CR0_PG_BIT, %eax
328	movl	%eax, %cr0
329
330	jmp	startup_32
331SYM_FUNC_END(efi32_stub_entry)
332#endif
333
334	.code64
335	.org 0x200
336SYM_CODE_START(startup_64)
337	/*
338	 * 64bit entry is 0x200 and it is ABI so immutable!
339	 * We come here either from startup_32 or directly from a
340	 * 64bit bootloader.
341	 * If we come here from a bootloader, kernel(text+data+bss+brk),
342	 * ramdisk, zero_page, command line could be above 4G.
343	 * We depend on an identity mapped page table being provided
344	 * that maps our entire kernel(text+data+bss+brk), zero page
345	 * and command line.
346	 */
347
348	cld
349	cli
350
351	/* Setup data segments. */
352	xorl	%eax, %eax
353	movl	%eax, %ds
354	movl	%eax, %es
355	movl	%eax, %ss
356	movl	%eax, %fs
357	movl	%eax, %gs
358
359	/*
360	 * Compute the decompressed kernel start address.  It is where
361	 * we were loaded at aligned to a 2M boundary. %rbp contains the
362	 * decompressed kernel start address.
363	 *
364	 * If it is a relocatable kernel then decompress and run the kernel
365	 * from load address aligned to 2MB addr, otherwise decompress and
366	 * run the kernel from LOAD_PHYSICAL_ADDR
367	 *
368	 * We cannot rely on the calculation done in 32-bit mode, since we
369	 * may have been invoked via the 64-bit entry point.
370	 */
371
372	/* Start with the delta to where the kernel will run at. */
373#ifdef CONFIG_RELOCATABLE
374	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
375
376#ifdef CONFIG_EFI_STUB
377/*
378 * If we were loaded via the EFI LoadImage service, startup_32 will be at an
379 * offset to the start of the space allocated for the image. efi_pe_entry will
380 * set up image_offset to tell us where the image actually starts, so that we
381 * can use the full available buffer.
382 *	image_offset = startup_32 - image_base
383 * Otherwise image_offset will be zero and has no effect on the calculations.
384 */
385	movl    image_offset(%rip), %eax
386	subq	%rax, %rbp
387#endif
388
389	movl	BP_kernel_alignment(%rsi), %eax
390	decl	%eax
391	addq	%rax, %rbp
392	notq	%rax
393	andq	%rax, %rbp
394	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
395	jae	1f
396#endif
397	movq	$LOAD_PHYSICAL_ADDR, %rbp
3981:
399
400	/* Target address to relocate to for decompression */
401	movl	BP_init_size(%rsi), %ebx
402	subl	$ rva(_end), %ebx
403	addq	%rbp, %rbx
404
405	/* Set up the stack */
406	leaq	rva(boot_stack_end)(%rbx), %rsp
407
408	/*
409	 * At this point we are in long mode with 4-level paging enabled,
410	 * but we might want to enable 5-level paging or vice versa.
411	 *
412	 * The problem is that we cannot do it directly. Setting or clearing
413	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
414	 * long mode and paging first.
415	 *
416	 * We also need a trampoline in lower memory to switch over from
417	 * 4- to 5-level paging for cases when the bootloader puts the kernel
418	 * above 4G, but didn't enable 5-level paging for us.
419	 *
420	 * The same trampoline can be used to switch from 5- to 4-level paging
421	 * mode, like when starting 4-level paging kernel via kexec() when
422	 * original kernel worked in 5-level paging mode.
423	 *
424	 * For the trampoline, we need the top page table to reside in lower
425	 * memory as we don't have a way to load 64-bit values into CR3 in
426	 * 32-bit mode.
427	 *
428	 * We go though the trampoline even if we don't have to: if we're
429	 * already in a desired paging mode. This way the trampoline code gets
430	 * tested on every boot.
431	 */
432
433	/* Make sure we have GDT with 32-bit code segment */
434	leaq	gdt64(%rip), %rax
435	addq	%rax, 2(%rax)
436	lgdt	(%rax)
437
438	/* Reload CS so IRET returns to a CS actually in the GDT */
439	pushq	$__KERNEL_CS
440	leaq	.Lon_kernel_cs(%rip), %rax
441	pushq	%rax
442	lretq
443
444.Lon_kernel_cs:
445
446	pushq	%rsi
447	call	load_stage1_idt
448	popq	%rsi
449
450	/*
451	 * paging_prepare() sets up the trampoline and checks if we need to
452	 * enable 5-level paging.
453	 *
454	 * paging_prepare() returns a two-quadword structure which lands
455	 * into RDX:RAX:
456	 *   - Address of the trampoline is returned in RAX.
457	 *   - Non zero RDX means trampoline needs to enable 5-level
458	 *     paging.
459	 *
460	 * RSI holds real mode data and needs to be preserved across
461	 * this function call.
462	 */
463	pushq	%rsi
464	movq	%rsi, %rdi		/* real mode address */
465	call	paging_prepare
466	popq	%rsi
467
468	/* Save the trampoline address in RCX */
469	movq	%rax, %rcx
470
471	/* Set up 32-bit addressable stack */
472	leaq	TRAMPOLINE_32BIT_STACK_END(%rcx), %rsp
473
474	/*
475	 * Preserve live 64-bit registers on the stack: this is necessary
476	 * because the architecture does not guarantee that GPRs will retain
477	 * their full 64-bit values across a 32-bit mode switch.
478	 */
479	pushq	%rbp
480	pushq	%rbx
481	pushq	%rsi
482
483	/*
484	 * Push the 64-bit address of trampoline_return() onto the new stack.
485	 * It will be used by the trampoline to return to the main code. Due to
486	 * the 32-bit mode switch, it cannot be kept it in a register either.
487	 */
488	leaq	trampoline_return(%rip), %rdi
489	pushq	%rdi
490
491	/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
492	pushq	$__KERNEL32_CS
493	leaq	TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
494	pushq	%rax
495	lretq
496trampoline_return:
497	/* Restore live 64-bit registers */
498	popq	%rsi
499	popq	%rbx
500	popq	%rbp
501
502	/* Restore the stack, the 32-bit trampoline uses its own stack */
503	leaq	rva(boot_stack_end)(%rbx), %rsp
504
505	/*
506	 * cleanup_trampoline() would restore trampoline memory.
507	 *
508	 * RDI is address of the page table to use instead of page table
509	 * in trampoline memory (if required).
510	 *
511	 * RSI holds real mode data and needs to be preserved across
512	 * this function call.
513	 */
514	pushq	%rsi
515	leaq	rva(top_pgtable)(%rbx), %rdi
516	call	cleanup_trampoline
517	popq	%rsi
518
519	/* Zero EFLAGS */
520	pushq	$0
521	popfq
522
523/*
524 * Copy the compressed kernel to the end of our buffer
525 * where decompression in place becomes safe.
526 */
527	pushq	%rsi
528	leaq	(_bss-8)(%rip), %rsi
529	leaq	rva(_bss-8)(%rbx), %rdi
530	movl	$(_bss - startup_32), %ecx
531	shrl	$3, %ecx
532	std
533	rep	movsq
534	cld
535	popq	%rsi
536
537	/*
538	 * The GDT may get overwritten either during the copy we just did or
539	 * during extract_kernel below. To avoid any issues, repoint the GDTR
540	 * to the new copy of the GDT.
541	 */
542	leaq	rva(gdt64)(%rbx), %rax
543	leaq	rva(gdt)(%rbx), %rdx
544	movq	%rdx, 2(%rax)
545	lgdt	(%rax)
546
547/*
548 * Jump to the relocated address.
549 */
550	leaq	rva(.Lrelocated)(%rbx), %rax
551	jmp	*%rax
552SYM_CODE_END(startup_64)
553
554#ifdef CONFIG_EFI_STUB
555	.org 0x390
556SYM_FUNC_START(efi64_stub_entry)
557SYM_FUNC_START_ALIAS(efi_stub_entry)
558	and	$~0xf, %rsp			/* realign the stack */
559	movq	%rdx, %rbx			/* save boot_params pointer */
560	call	efi_main
561	movq	%rbx,%rsi
562	leaq	rva(startup_64)(%rax), %rax
563	jmp	*%rax
564SYM_FUNC_END(efi64_stub_entry)
565SYM_FUNC_END_ALIAS(efi_stub_entry)
566#endif
567
568	.text
569SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
570
571/*
572 * Clear BSS (stack is currently empty)
573 */
574	xorl	%eax, %eax
575	leaq    _bss(%rip), %rdi
576	leaq    _ebss(%rip), %rcx
577	subq	%rdi, %rcx
578	shrq	$3, %rcx
579	rep	stosq
580
581/*
582 * If running as an SEV guest, the encryption mask is required in the
583 * page-table setup code below. When the guest also has SEV-ES enabled
584 * set_sev_encryption_mask() will cause #VC exceptions, but the stage2
585 * handler can't map its GHCB because the page-table is not set up yet.
586 * So set up the encryption mask here while still on the stage1 #VC
587 * handler. Then load stage2 IDT and switch to the kernel's own
588 * page-table.
589 */
590	pushq	%rsi
591	call	set_sev_encryption_mask
592	call	load_stage2_idt
593
594	/* Pass boot_params to initialize_identity_maps() */
595	movq	(%rsp), %rdi
596	call	initialize_identity_maps
597	popq	%rsi
598
599/*
600 * Do the extraction, and jump to the new kernel..
601 */
602	pushq	%rsi			/* Save the real mode argument */
603	movq	%rsi, %rdi		/* real mode address */
604	leaq	boot_heap(%rip), %rsi	/* malloc area for uncompression */
605	leaq	input_data(%rip), %rdx  /* input_data */
606	movl	input_len(%rip), %ecx	/* input_len */
607	movq	%rbp, %r8		/* output target address */
608	movl	output_len(%rip), %r9d	/* decompressed length, end of relocs */
609	call	extract_kernel		/* returns kernel location in %rax */
610	popq	%rsi
611
612/*
613 * Jump to the decompressed kernel.
614 */
615	jmp	*%rax
616SYM_FUNC_END(.Lrelocated)
617
618	.code32
619/*
620 * This is the 32-bit trampoline that will be copied over to low memory.
621 *
622 * Return address is at the top of the stack (might be above 4G).
623 * ECX contains the base address of the trampoline memory.
624 * Non zero RDX means trampoline needs to enable 5-level paging.
625 */
626SYM_CODE_START(trampoline_32bit_src)
627	/* Set up data and stack segments */
628	movl	$__KERNEL_DS, %eax
629	movl	%eax, %ds
630	movl	%eax, %ss
631
632	/* Disable paging */
633	movl	%cr0, %eax
634	btrl	$X86_CR0_PG_BIT, %eax
635	movl	%eax, %cr0
636
637	/* Check what paging mode we want to be in after the trampoline */
638	testl	%edx, %edx
639	jz	1f
640
641	/* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
642	movl	%cr4, %eax
643	testl	$X86_CR4_LA57, %eax
644	jnz	3f
645	jmp	2f
6461:
647	/* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
648	movl	%cr4, %eax
649	testl	$X86_CR4_LA57, %eax
650	jz	3f
6512:
652	/* Point CR3 to the trampoline's new top level page table */
653	leal	TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
654	movl	%eax, %cr3
6553:
656	/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
657	pushl	%ecx
658	pushl	%edx
659	movl	$MSR_EFER, %ecx
660	rdmsr
661	btsl	$_EFER_LME, %eax
662	wrmsr
663	popl	%edx
664	popl	%ecx
665
666	/* Enable PAE and LA57 (if required) paging modes */
667	movl	$X86_CR4_PAE, %eax
668	testl	%edx, %edx
669	jz	1f
670	orl	$X86_CR4_LA57, %eax
6711:
672	movl	%eax, %cr4
673
674	/* Calculate address of paging_enabled() once we are executing in the trampoline */
675	leal	.Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax
676
677	/* Prepare the stack for far return to Long Mode */
678	pushl	$__KERNEL_CS
679	pushl	%eax
680
681	/* Enable paging again */
682	movl	$(X86_CR0_PG | X86_CR0_PE), %eax
683	movl	%eax, %cr0
684
685	lret
686SYM_CODE_END(trampoline_32bit_src)
687
688	.code64
689SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled)
690	/* Return from the trampoline */
691	retq
692SYM_FUNC_END(.Lpaging_enabled)
693
694	/*
695         * The trampoline code has a size limit.
696         * Make sure we fail to compile if the trampoline code grows
697         * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
698	 */
699	.org	trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
700
701	.code32
702SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
703	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
7041:
705	hlt
706	jmp     1b
707SYM_FUNC_END(.Lno_longmode)
708
709#include "../../kernel/verify_cpu.S"
710
711	.data
712SYM_DATA_START_LOCAL(gdt64)
713	.word	gdt_end - gdt - 1
714	.quad   gdt - gdt64
715SYM_DATA_END(gdt64)
716	.balign	8
717SYM_DATA_START_LOCAL(gdt)
718	.word	gdt_end - gdt - 1
719	.long	0
720	.word	0
721	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
722	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
723	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
724	.quad	0x0080890000000000	/* TS descriptor */
725	.quad   0x0000000000000000	/* TS continued */
726SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
727
728SYM_DATA_START(boot_idt_desc)
729	.word	boot_idt_end - boot_idt - 1
730	.quad	0
731SYM_DATA_END(boot_idt_desc)
732	.balign 8
733SYM_DATA_START(boot_idt)
734	.rept	BOOT_IDT_ENTRIES
735	.quad	0
736	.quad	0
737	.endr
738SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)
739
740#ifdef CONFIG_AMD_MEM_ENCRYPT
741SYM_DATA_START(boot32_idt_desc)
742	.word   boot32_idt_end - boot32_idt - 1
743	.long   0
744SYM_DATA_END(boot32_idt_desc)
745	.balign 8
746SYM_DATA_START(boot32_idt)
747	.rept 32
748	.quad 0
749	.endr
750SYM_DATA_END_LABEL(boot32_idt, SYM_L_GLOBAL, boot32_idt_end)
751#endif
752
753#ifdef CONFIG_EFI_STUB
754SYM_DATA(image_offset, .long 0)
755#endif
756#ifdef CONFIG_EFI_MIXED
757SYM_DATA_LOCAL(efi32_boot_args, .long 0, 0, 0)
758SYM_DATA(efi_is64, .byte 1)
759
760#define ST32_boottime		60 // offsetof(efi_system_table_32_t, boottime)
761#define BS32_handle_protocol	88 // offsetof(efi_boot_services_32_t, handle_protocol)
762#define LI32_image_base		32 // offsetof(efi_loaded_image_32_t, image_base)
763
764	__HEAD
765	.code32
766SYM_FUNC_START(efi32_pe_entry)
767/*
768 * efi_status_t efi32_pe_entry(efi_handle_t image_handle,
769 *			       efi_system_table_32_t *sys_table)
770 */
771
772	pushl	%ebp
773	movl	%esp, %ebp
774	pushl	%eax				// dummy push to allocate loaded_image
775
776	pushl	%ebx				// save callee-save registers
777	pushl	%edi
778
779	call	verify_cpu			// check for long mode support
780	testl	%eax, %eax
781	movl	$0x80000003, %eax		// EFI_UNSUPPORTED
782	jnz	2f
783
784	call	1f
7851:	pop	%ebx
786	subl	$ rva(1b), %ebx
787
788	/* Get the loaded image protocol pointer from the image handle */
789	leal	-4(%ebp), %eax
790	pushl	%eax				// &loaded_image
791	leal	rva(loaded_image_proto)(%ebx), %eax
792	pushl	%eax				// pass the GUID address
793	pushl	8(%ebp)				// pass the image handle
794
795	/*
796	 * Note the alignment of the stack frame.
797	 *   sys_table
798	 *   handle             <-- 16-byte aligned on entry by ABI
799	 *   return address
800	 *   frame pointer
801	 *   loaded_image       <-- local variable
802	 *   saved %ebx		<-- 16-byte aligned here
803	 *   saved %edi
804	 *   &loaded_image
805	 *   &loaded_image_proto
806	 *   handle             <-- 16-byte aligned for call to handle_protocol
807	 */
808
809	movl	12(%ebp), %eax			// sys_table
810	movl	ST32_boottime(%eax), %eax	// sys_table->boottime
811	call	*BS32_handle_protocol(%eax)	// sys_table->boottime->handle_protocol
812	addl	$12, %esp			// restore argument space
813	testl	%eax, %eax
814	jnz	2f
815
816	movl	8(%ebp), %ecx			// image_handle
817	movl	12(%ebp), %edx			// sys_table
818	movl	-4(%ebp), %esi			// loaded_image
819	movl	LI32_image_base(%esi), %esi	// loaded_image->image_base
820	movl	%ebx, %ebp			// startup_32 for efi32_pe_stub_entry
821	/*
822	 * We need to set the image_offset variable here since startup_32() will
823	 * use it before we get to the 64-bit efi_pe_entry() in C code.
824	 */
825	subl	%esi, %ebx
826	movl	%ebx, rva(image_offset)(%ebp)	// save image_offset
827	jmp	efi32_pe_stub_entry
828
8292:	popl	%edi				// restore callee-save registers
830	popl	%ebx
831	leave
832	RET
833SYM_FUNC_END(efi32_pe_entry)
834
835	.section ".rodata"
836	/* EFI loaded image protocol GUID */
837	.balign 4
838SYM_DATA_START_LOCAL(loaded_image_proto)
839	.long	0x5b1b31a1
840	.word	0x9562, 0x11d2
841	.byte	0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b
842SYM_DATA_END(loaded_image_proto)
843#endif
844
845#ifdef CONFIG_AMD_MEM_ENCRYPT
846	__HEAD
847	.code32
848/*
849 * Write an IDT entry into boot32_idt
850 *
851 * Parameters:
852 *
853 * %eax:	Handler address
854 * %edx:	Vector number
855 *
856 * Physical offset is expected in %ebp
857 */
858SYM_FUNC_START(startup32_set_idt_entry)
859	push    %ebx
860	push    %ecx
861
862	/* IDT entry address to %ebx */
863	leal    rva(boot32_idt)(%ebp), %ebx
864	shl	$3, %edx
865	addl    %edx, %ebx
866
867	/* Build IDT entry, lower 4 bytes */
868	movl    %eax, %edx
869	andl    $0x0000ffff, %edx	# Target code segment offset [15:0]
870	movl    $__KERNEL32_CS, %ecx	# Target code segment selector
871	shl     $16, %ecx
872	orl     %ecx, %edx
873
874	/* Store lower 4 bytes to IDT */
875	movl    %edx, (%ebx)
876
877	/* Build IDT entry, upper 4 bytes */
878	movl    %eax, %edx
879	andl    $0xffff0000, %edx	# Target code segment offset [31:16]
880	orl     $0x00008e00, %edx	# Present, Type 32-bit Interrupt Gate
881
882	/* Store upper 4 bytes to IDT */
883	movl    %edx, 4(%ebx)
884
885	pop     %ecx
886	pop     %ebx
887	RET
888SYM_FUNC_END(startup32_set_idt_entry)
889#endif
890
891SYM_FUNC_START(startup32_load_idt)
892#ifdef CONFIG_AMD_MEM_ENCRYPT
893	/* #VC handler */
894	leal    rva(startup32_vc_handler)(%ebp), %eax
895	movl    $X86_TRAP_VC, %edx
896	call    startup32_set_idt_entry
897
898	/* Load IDT */
899	leal	rva(boot32_idt)(%ebp), %eax
900	movl	%eax, rva(boot32_idt_desc+2)(%ebp)
901	lidt    rva(boot32_idt_desc)(%ebp)
902#endif
903	RET
904SYM_FUNC_END(startup32_load_idt)
905
906/*
907 * Check for the correct C-bit position when the startup_32 boot-path is used.
908 *
909 * The check makes use of the fact that all memory is encrypted when paging is
910 * disabled. The function creates 64 bits of random data using the RDRAND
911 * instruction. RDRAND is mandatory for SEV guests, so always available. If the
912 * hypervisor violates that the kernel will crash right here.
913 *
914 * The 64 bits of random data are stored to a memory location and at the same
915 * time kept in the %eax and %ebx registers. Since encryption is always active
916 * when paging is off the random data will be stored encrypted in main memory.
917 *
918 * Then paging is enabled. When the C-bit position is correct all memory is
919 * still mapped encrypted and comparing the register values with memory will
920 * succeed. An incorrect C-bit position will map all memory unencrypted, so that
921 * the compare will use the encrypted random data and fail.
922 */
923SYM_FUNC_START(startup32_check_sev_cbit)
924#ifdef CONFIG_AMD_MEM_ENCRYPT
925	pushl	%eax
926	pushl	%ebx
927	pushl	%ecx
928	pushl	%edx
929
930	/* Check for non-zero sev_status */
931	movl	rva(sev_status)(%ebp), %eax
932	testl	%eax, %eax
933	jz	4f
934
935	/*
936	 * Get two 32-bit random values - Don't bail out if RDRAND fails
937	 * because it is better to prevent forward progress if no random value
938	 * can be gathered.
939	 */
9401:	rdrand	%eax
941	jnc	1b
9422:	rdrand	%ebx
943	jnc	2b
944
945	/* Store to memory and keep it in the registers */
946	movl	%eax, rva(sev_check_data)(%ebp)
947	movl	%ebx, rva(sev_check_data+4)(%ebp)
948
949	/* Enable paging to see if encryption is active */
950	movl	%cr0, %edx			 /* Backup %cr0 in %edx */
951	movl	$(X86_CR0_PG | X86_CR0_PE), %ecx /* Enable Paging and Protected mode */
952	movl	%ecx, %cr0
953
954	cmpl	%eax, rva(sev_check_data)(%ebp)
955	jne	3f
956	cmpl	%ebx, rva(sev_check_data+4)(%ebp)
957	jne	3f
958
959	movl	%edx, %cr0	/* Restore previous %cr0 */
960
961	jmp	4f
962
9633:	/* Check failed - hlt the machine */
964	hlt
965	jmp	3b
966
9674:
968	popl	%edx
969	popl	%ecx
970	popl	%ebx
971	popl	%eax
972#endif
973	RET
974SYM_FUNC_END(startup32_check_sev_cbit)
975
976/*
977 * Stack and heap for uncompression
978 */
979	.bss
980	.balign 4
981SYM_DATA_LOCAL(boot_heap,	.fill BOOT_HEAP_SIZE, 1, 0)
982
983SYM_DATA_START_LOCAL(boot_stack)
984	.fill BOOT_STACK_SIZE, 1, 0
985	.balign 16
986SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
987
988/*
989 * Space for page tables (not in .bss so not zeroed)
990 */
991	.section ".pgtable","aw",@nobits
992	.balign 4096
993SYM_DATA_LOCAL(pgtable,		.fill BOOT_PGT_SIZE, 1, 0)
994
995/*
996 * The page table is going to be used instead of page table in the trampoline
997 * memory.
998 */
999SYM_DATA_LOCAL(top_pgtable,	.fill PAGE_SIZE, 1, 0)
1000