• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright 2021 Google LLC
4 */
5/*
6 * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
7 * instructions. It works on 8 blocks at a time, by precomputing the first 8
8 * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
9 * allows us to split finite field multiplication into two steps.
10 *
11 * In the first step, we consider h^i, m_i as normal polynomials of degree less
12 * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
13 * is simply polynomial multiplication.
14 *
15 * In the second step, we compute the reduction of p(x) modulo the finite field
16 * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
17 *
18 * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
19 * multiplication is finite field multiplication. The advantage is that the
20 * two-step process  only requires 1 finite field reduction for every 8
21 * polynomial multiplications. Further parallelism is gained by interleaving the
22 * multiplications and polynomial reductions.
23 */
24
25#include <linux/linkage.h>
26#include <asm/frame.h>
27
28#define STRIDE_BLOCKS 8
29
30#define GSTAR %xmm7
31#define PL %xmm8
32#define PH %xmm9
33#define TMP_XMM %xmm11
34#define LO %xmm12
35#define HI %xmm13
36#define MI %xmm14
37#define SUM %xmm15
38
39#define KEY_POWERS %rdi
40#define MSG %rsi
41#define BLOCKS_LEFT %rdx
42#define ACCUMULATOR %rcx
43#define TMP %rax
44
45.section    .rodata.cst16.gstar, "aM", @progbits, 16
46.align 16
47
48.Lgstar:
49	.quad 0xc200000000000000, 0xc200000000000000
50
51.text
52
53/*
54 * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
55 * count pointed to by MSG and KEY_POWERS.
56 */
57.macro schoolbook1 count
58	.set i, 0
59	.rept (\count)
60		schoolbook1_iteration i 0
61		.set i, (i +1)
62	.endr
63.endm
64
65/*
66 * Computes the product of two 128-bit polynomials at the memory locations
67 * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
68 * the 256-bit product into LO, MI, HI.
69 *
70 * Given:
71 *   X = [X_1 : X_0]
72 *   Y = [Y_1 : Y_0]
73 *
74 * We compute:
75 *   LO += X_0 * Y_0
76 *   MI += X_0 * Y_1 + X_1 * Y_0
77 *   HI += X_1 * Y_1
78 *
79 * Later, the 256-bit result can be extracted as:
80 *   [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
81 * This step is done when computing the polynomial reduction for efficiency
82 * reasons.
83 *
84 * If xor_sum == 1, then also XOR the value of SUM into m_0.  This avoids an
85 * extra multiplication of SUM and h^8.
86 */
87.macro schoolbook1_iteration i xor_sum
88	movups (16*\i)(MSG), %xmm0
89	.if (\i == 0 && \xor_sum == 1)
90		pxor SUM, %xmm0
91	.endif
92	vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
93	vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
94	vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
95	vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
96	vpxor %xmm2, MI, MI
97	vpxor %xmm1, LO, LO
98	vpxor %xmm4, HI, HI
99	vpxor %xmm3, MI, MI
100.endm
101
102/*
103 * Performs the same computation as schoolbook1_iteration, except we expect the
104 * arguments to already be loaded into xmm0 and xmm1 and we set the result
105 * registers LO, MI, and HI directly rather than XOR'ing into them.
106 */
107.macro schoolbook1_noload
108	vpclmulqdq $0x01, %xmm0, %xmm1, MI
109	vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
110	vpclmulqdq $0x00, %xmm0, %xmm1, LO
111	vpclmulqdq $0x11, %xmm0, %xmm1, HI
112	vpxor %xmm2, MI, MI
113.endm
114
115/*
116 * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
117 * the result in PL, PH.
118 *   [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
119 */
120.macro schoolbook2
121	vpslldq $8, MI, PL
122	vpsrldq $8, MI, PH
123	pxor LO, PL
124	pxor HI, PH
125.endm
126
127/*
128 * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
129 *
130 * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
131 * x^128 + x^127 + x^126 + x^121 + 1.
132 *
133 * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
134 * product of two 128-bit polynomials in Montgomery form.  We need to reduce it
135 * mod g(x).  Also, since polynomials in Montgomery form have an "extra" factor
136 * of x^128, this product has two extra factors of x^128.  To get it back into
137 * Montgomery form, we need to remove one of these factors by dividing by x^128.
138 *
139 * To accomplish both of these goals, we add multiples of g(x) that cancel out
140 * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
141 * bits are zero, the polynomial division by x^128 can be done by right shifting.
142 *
143 * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
144 * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x).  The CPU can
145 * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
146 * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x).  Adding this to
147 * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
148 * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63 got "folded" into bits 64-191.
149 *
150 * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
151 * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
152 * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
153 * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
154 * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
155 *
156 * So our final computation is:
157 *   T = T_1 : T_0 = g*(x) * P_0
158 *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)
159 *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
160 *
161 * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
162 * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
163 * T_1 into dest.  This allows us to reuse P_1 + T_0 when computing V.
164 */
165.macro montgomery_reduction dest
166	vpclmulqdq $0x00, PL, GSTAR, TMP_XMM	# TMP_XMM = T_1 : T_0 = P_0 * g*(x)
167	pshufd $0b01001110, TMP_XMM, TMP_XMM	# TMP_XMM = T_0 : T_1
168	pxor PL, TMP_XMM			# TMP_XMM = P_1 + T_0 : P_0 + T_1
169	pxor TMP_XMM, PH			# PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
170	pclmulqdq $0x11, GSTAR, TMP_XMM		# TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
171	vpxor TMP_XMM, PH, \dest
172.endm
173
174/*
175 * Compute schoolbook multiplication for 8 blocks
176 * m_0h^8 + ... + m_7h^1
177 *
178 * If reduce is set, also computes the montgomery reduction of the
179 * previous full_stride call and XORs with the first message block.
180 * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
181 * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
182 */
183.macro full_stride reduce
184	pxor LO, LO
185	pxor HI, HI
186	pxor MI, MI
187
188	schoolbook1_iteration 7 0
189	.if \reduce
190		vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
191	.endif
192
193	schoolbook1_iteration 6 0
194	.if \reduce
195		pshufd $0b01001110, TMP_XMM, TMP_XMM
196	.endif
197
198	schoolbook1_iteration 5 0
199	.if \reduce
200		pxor PL, TMP_XMM
201	.endif
202
203	schoolbook1_iteration 4 0
204	.if \reduce
205		pxor TMP_XMM, PH
206	.endif
207
208	schoolbook1_iteration 3 0
209	.if \reduce
210		pclmulqdq $0x11, GSTAR, TMP_XMM
211	.endif
212
213	schoolbook1_iteration 2 0
214	.if \reduce
215		vpxor TMP_XMM, PH, SUM
216	.endif
217
218	schoolbook1_iteration 1 0
219
220	schoolbook1_iteration 0 1
221
222	addq $(8*16), MSG
223	schoolbook2
224.endm
225
226/*
227 * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
228 */
229.macro partial_stride
230	mov BLOCKS_LEFT, TMP
231	shlq $4, TMP
232	addq $(16*STRIDE_BLOCKS), KEY_POWERS
233	subq TMP, KEY_POWERS
234
235	movups (MSG), %xmm0
236	pxor SUM, %xmm0
237	movaps (KEY_POWERS), %xmm1
238	schoolbook1_noload
239	dec BLOCKS_LEFT
240	addq $16, MSG
241	addq $16, KEY_POWERS
242
243	test $4, BLOCKS_LEFT
244	jz .Lpartial4BlocksDone
245	schoolbook1 4
246	addq $(4*16), MSG
247	addq $(4*16), KEY_POWERS
248.Lpartial4BlocksDone:
249	test $2, BLOCKS_LEFT
250	jz .Lpartial2BlocksDone
251	schoolbook1 2
252	addq $(2*16), MSG
253	addq $(2*16), KEY_POWERS
254.Lpartial2BlocksDone:
255	test $1, BLOCKS_LEFT
256	jz .LpartialDone
257	schoolbook1 1
258.LpartialDone:
259	schoolbook2
260	montgomery_reduction SUM
261.endm
262
263/*
264 * Perform montgomery multiplication in GF(2^128) and store result in op1.
265 *
266 * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
267 * If op1, op2 are in montgomery form, this computes the montgomery
268 * form of op1*op2.
269 *
270 * void clmul_polyval_mul(u8 *op1, const u8 *op2);
271 */
272SYM_FUNC_START(clmul_polyval_mul)
273	FRAME_BEGIN
274	vmovdqa .Lgstar(%rip), GSTAR
275	movups (%rdi), %xmm0
276	movups (%rsi), %xmm1
277	schoolbook1_noload
278	schoolbook2
279	montgomery_reduction SUM
280	movups SUM, (%rdi)
281	FRAME_END
282	RET
283SYM_FUNC_END(clmul_polyval_mul)
284
285/*
286 * Perform polynomial evaluation as specified by POLYVAL.  This computes:
287 *	h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
288 * where n=nblocks, h is the hash key, and m_i are the message blocks.
289 *
290 * rdi - pointer to precomputed key powers h^8 ... h^1
291 * rsi - pointer to message blocks
292 * rdx - number of blocks to hash
293 * rcx - pointer to the accumulator
294 *
295 * void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
296 *	const u8 *in, size_t nblocks, u8 *accumulator);
297 */
298SYM_FUNC_START(clmul_polyval_update)
299	FRAME_BEGIN
300	vmovdqa .Lgstar(%rip), GSTAR
301	movups (ACCUMULATOR), SUM
302	subq $STRIDE_BLOCKS, BLOCKS_LEFT
303	js .LstrideLoopExit
304	full_stride 0
305	subq $STRIDE_BLOCKS, BLOCKS_LEFT
306	js .LstrideLoopExitReduce
307.LstrideLoop:
308	full_stride 1
309	subq $STRIDE_BLOCKS, BLOCKS_LEFT
310	jns .LstrideLoop
311.LstrideLoopExitReduce:
312	montgomery_reduction SUM
313.LstrideLoopExit:
314	add $STRIDE_BLOCKS, BLOCKS_LEFT
315	jz .LskipPartial
316	partial_stride
317.LskipPartial:
318	movups SUM, (ACCUMULATOR)
319	FRAME_END
320	RET
321SYM_FUNC_END(clmul_polyval_update)
322