1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 90 swapgs 91 /* tss.sp2 is scratch space. */ 92 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 93 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 94 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 95 96SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 97 98 /* Construct struct pt_regs on stack */ 99 pushq $__USER_DS /* pt_regs->ss */ 100 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 101 pushq %r11 /* pt_regs->flags */ 102 pushq $__USER_CS /* pt_regs->cs */ 103 pushq %rcx /* pt_regs->ip */ 104SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 105 pushq %rax /* pt_regs->orig_ax */ 106 107 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 108 109 /* IRQs are off. */ 110 movq %rsp, %rdi 111 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 112 movslq %eax, %rsi 113 114 /* clobbers %rax, make sure it is after saving the syscall nr */ 115 IBRS_ENTER 116 UNTRAIN_RET 117 118 call do_syscall_64 /* returns with IRQs disabled */ 119 120 /* 121 * Try to use SYSRET instead of IRET if we're returning to 122 * a completely clean 64-bit userspace context. If we're not, 123 * go to the slow exit path. 124 * In the Xen PV case we must use iret anyway. 125 */ 126 127 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 128 X86_FEATURE_XENPV 129 130 movq RCX(%rsp), %rcx 131 movq RIP(%rsp), %r11 132 133 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 134 jne swapgs_restore_regs_and_return_to_usermode 135 136 /* 137 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 138 * in kernel space. This essentially lets the user take over 139 * the kernel, since userspace controls RSP. 140 * 141 * If width of "canonical tail" ever becomes variable, this will need 142 * to be updated to remain correct on both old and new CPUs. 143 * 144 * Change top bits to match most significant bit (47th or 56th bit 145 * depending on paging mode) in the address. 146 */ 147#ifdef CONFIG_X86_5LEVEL 148 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 149 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 150#else 151 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 152 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 153#endif 154 155 /* If this changed %rcx, it was not canonical */ 156 cmpq %rcx, %r11 157 jne swapgs_restore_regs_and_return_to_usermode 158 159 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 160 jne swapgs_restore_regs_and_return_to_usermode 161 162 movq R11(%rsp), %r11 163 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 164 jne swapgs_restore_regs_and_return_to_usermode 165 166 /* 167 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 168 * restore RF properly. If the slowpath sets it for whatever reason, we 169 * need to restore it correctly. 170 * 171 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 172 * trap from userspace immediately after SYSRET. This would cause an 173 * infinite loop whenever #DB happens with register state that satisfies 174 * the opportunistic SYSRET conditions. For example, single-stepping 175 * this user code: 176 * 177 * movq $stuck_here, %rcx 178 * pushfq 179 * popq %r11 180 * stuck_here: 181 * 182 * would never get past 'stuck_here'. 183 */ 184 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 185 jnz swapgs_restore_regs_and_return_to_usermode 186 187 /* nothing to check for RSP */ 188 189 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 190 jne swapgs_restore_regs_and_return_to_usermode 191 192 /* 193 * We win! This label is here just for ease of understanding 194 * perf profiles. Nothing jumps here. 195 */ 196syscall_return_via_sysret: 197 IBRS_EXIT 198 POP_REGS pop_rdi=0 199 200 /* 201 * Now all regs are restored except RSP and RDI. 202 * Save old stack pointer and switch to trampoline stack. 203 */ 204 movq %rsp, %rdi 205 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 206 UNWIND_HINT_EMPTY 207 208 pushq RSP-RDI(%rdi) /* RSP */ 209 pushq (%rdi) /* RDI */ 210 211 /* 212 * We are on the trampoline stack. All regs except RDI are live. 213 * We can do future final exit work right here. 214 */ 215 STACKLEAK_ERASE_NOCLOBBER 216 217 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 218 219 popq %rdi 220 popq %rsp 221 swapgs 222 sysretq 223SYM_CODE_END(entry_SYSCALL_64) 224 225/* 226 * %rdi: prev task 227 * %rsi: next task 228 */ 229.pushsection .text, "ax" 230SYM_FUNC_START(__switch_to_asm) 231 /* 232 * Save callee-saved registers 233 * This must match the order in inactive_task_frame 234 */ 235 pushq %rbp 236 pushq %rbx 237 pushq %r12 238 pushq %r13 239 pushq %r14 240 pushq %r15 241 242 /* switch stack */ 243 movq %rsp, TASK_threadsp(%rdi) 244 movq TASK_threadsp(%rsi), %rsp 245 246#ifdef CONFIG_STACKPROTECTOR 247 movq TASK_stack_canary(%rsi), %rbx 248 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 249#endif 250 251 /* 252 * When switching from a shallower to a deeper call stack 253 * the RSB may either underflow or use entries populated 254 * with userspace addresses. On CPUs where those concerns 255 * exist, overwrite the RSB with entries which capture 256 * speculative execution to prevent attack. 257 */ 258 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 259 260 /* restore callee-saved registers */ 261 popq %r15 262 popq %r14 263 popq %r13 264 popq %r12 265 popq %rbx 266 popq %rbp 267 268 jmp __switch_to 269SYM_FUNC_END(__switch_to_asm) 270.popsection 271 272/* 273 * A newly forked process directly context switches into this address. 274 * 275 * rax: prev task we switched from 276 * rbx: kernel thread func (NULL for user thread) 277 * r12: kernel thread arg 278 */ 279.pushsection .text, "ax" 280SYM_CODE_START(ret_from_fork) 281 UNWIND_HINT_EMPTY 282 movq %rax, %rdi 283 call schedule_tail /* rdi: 'prev' task parameter */ 284 285 testq %rbx, %rbx /* from kernel_thread? */ 286 jnz 1f /* kernel threads are uncommon */ 287 2882: 289 UNWIND_HINT_REGS 290 movq %rsp, %rdi 291 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 292 jmp swapgs_restore_regs_and_return_to_usermode 293 2941: 295 /* kernel thread */ 296 UNWIND_HINT_EMPTY 297 movq %r12, %rdi 298 CALL_NOSPEC rbx 299 /* 300 * A kernel thread is allowed to return here after successfully 301 * calling kernel_execve(). Exit to userspace to complete the execve() 302 * syscall. 303 */ 304 movq $0, RAX(%rsp) 305 jmp 2b 306SYM_CODE_END(ret_from_fork) 307.popsection 308 309.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 310#ifdef CONFIG_DEBUG_ENTRY 311 pushq %rax 312 SAVE_FLAGS 313 testl $X86_EFLAGS_IF, %eax 314 jz .Lokay_\@ 315 ud2 316.Lokay_\@: 317 popq %rax 318#endif 319.endm 320 321SYM_CODE_START_LOCAL(xen_error_entry) 322 UNWIND_HINT_FUNC 323 PUSH_AND_CLEAR_REGS save_ret=1 324 ENCODE_FRAME_POINTER 8 325 UNTRAIN_RET 326 RET 327SYM_CODE_END(xen_error_entry) 328 329/** 330 * idtentry_body - Macro to emit code calling the C function 331 * @cfunc: C function to be called 332 * @has_error_code: Hardware pushed error code on stack 333 */ 334.macro idtentry_body cfunc has_error_code:req 335 336 /* 337 * Call error_entry() and switch to the task stack if from userspace. 338 * 339 * When in XENPV, it is already in the task stack, and it can't fault 340 * for native_iret() nor native_load_gs_index() since XENPV uses its 341 * own pvops for IRET and load_gs_index(). And it doesn't need to 342 * switch the CR3. So it can skip invoking error_entry(). 343 */ 344 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 345 "call xen_error_entry", X86_FEATURE_XENPV 346 347 ENCODE_FRAME_POINTER 348 UNWIND_HINT_REGS 349 350 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 351 352 .if \has_error_code == 1 353 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 354 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 355 .endif 356 357 call \cfunc 358 359 jmp error_return 360.endm 361 362/** 363 * idtentry - Macro to generate entry stubs for simple IDT entries 364 * @vector: Vector number 365 * @asmsym: ASM symbol for the entry point 366 * @cfunc: C function to be called 367 * @has_error_code: Hardware pushed error code on stack 368 * 369 * The macro emits code to set up the kernel context for straight forward 370 * and simple IDT entries. No IST stack, no paranoid entry checks. 371 */ 372.macro idtentry vector asmsym cfunc has_error_code:req 373SYM_CODE_START(\asmsym) 374 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 375 ASM_CLAC 376 cld 377 378 .if \has_error_code == 0 379 pushq $-1 /* ORIG_RAX: no syscall to restart */ 380 .endif 381 382 .if \vector == X86_TRAP_BP 383 /* 384 * If coming from kernel space, create a 6-word gap to allow the 385 * int3 handler to emulate a call instruction. 386 */ 387 testb $3, CS-ORIG_RAX(%rsp) 388 jnz .Lfrom_usermode_no_gap_\@ 389 .rept 6 390 pushq 5*8(%rsp) 391 .endr 392 UNWIND_HINT_IRET_REGS offset=8 393.Lfrom_usermode_no_gap_\@: 394 .endif 395 396 idtentry_body \cfunc \has_error_code 397 398_ASM_NOKPROBE(\asmsym) 399SYM_CODE_END(\asmsym) 400.endm 401 402/* 403 * Interrupt entry/exit. 404 * 405 + The interrupt stubs push (vector) onto the stack, which is the error_code 406 * position of idtentry exceptions, and jump to one of the two idtentry points 407 * (common/spurious). 408 * 409 * common_interrupt is a hotpath, align it to a cache line 410 */ 411.macro idtentry_irq vector cfunc 412 .p2align CONFIG_X86_L1_CACHE_SHIFT 413 idtentry \vector asm_\cfunc \cfunc has_error_code=1 414.endm 415 416/* 417 * System vectors which invoke their handlers directly and are not 418 * going through the regular common device interrupt handling code. 419 */ 420.macro idtentry_sysvec vector cfunc 421 idtentry \vector asm_\cfunc \cfunc has_error_code=0 422.endm 423 424/** 425 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 426 * @vector: Vector number 427 * @asmsym: ASM symbol for the entry point 428 * @cfunc: C function to be called 429 * 430 * The macro emits code to set up the kernel context for #MC and #DB 431 * 432 * If the entry comes from user space it uses the normal entry path 433 * including the return to user space work and preemption checks on 434 * exit. 435 * 436 * If hits in kernel mode then it needs to go through the paranoid 437 * entry as the exception can hit any random state. No preemption 438 * check on exit to keep the paranoid path simple. 439 */ 440.macro idtentry_mce_db vector asmsym cfunc 441SYM_CODE_START(\asmsym) 442 UNWIND_HINT_IRET_REGS 443 ASM_CLAC 444 cld 445 446 pushq $-1 /* ORIG_RAX: no syscall to restart */ 447 448 /* 449 * If the entry is from userspace, switch stacks and treat it as 450 * a normal entry. 451 */ 452 testb $3, CS-ORIG_RAX(%rsp) 453 jnz .Lfrom_usermode_switch_stack_\@ 454 455 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 456 call paranoid_entry 457 458 UNWIND_HINT_REGS 459 460 movq %rsp, %rdi /* pt_regs pointer */ 461 462 call \cfunc 463 464 jmp paranoid_exit 465 466 /* Switch to the regular task stack and use the noist entry point */ 467.Lfrom_usermode_switch_stack_\@: 468 idtentry_body noist_\cfunc, has_error_code=0 469 470_ASM_NOKPROBE(\asmsym) 471SYM_CODE_END(\asmsym) 472.endm 473 474#ifdef CONFIG_AMD_MEM_ENCRYPT 475/** 476 * idtentry_vc - Macro to generate entry stub for #VC 477 * @vector: Vector number 478 * @asmsym: ASM symbol for the entry point 479 * @cfunc: C function to be called 480 * 481 * The macro emits code to set up the kernel context for #VC. The #VC handler 482 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 483 * 484 * To make this work the #VC entry code tries its best to pretend it doesn't use 485 * an IST stack by switching to the task stack if coming from user-space (which 486 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 487 * entered from kernel-mode. 488 * 489 * If entered from kernel-mode the return stack is validated first, and if it is 490 * not safe to use (e.g. because it points to the entry stack) the #VC handler 491 * will switch to a fall-back stack (VC2) and call a special handler function. 492 * 493 * The macro is only used for one vector, but it is planned to be extended in 494 * the future for the #HV exception. 495 */ 496.macro idtentry_vc vector asmsym cfunc 497SYM_CODE_START(\asmsym) 498 UNWIND_HINT_IRET_REGS 499 ASM_CLAC 500 cld 501 502 /* 503 * If the entry is from userspace, switch stacks and treat it as 504 * a normal entry. 505 */ 506 testb $3, CS-ORIG_RAX(%rsp) 507 jnz .Lfrom_usermode_switch_stack_\@ 508 509 /* 510 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 511 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 512 */ 513 call paranoid_entry 514 515 UNWIND_HINT_REGS 516 517 /* 518 * Switch off the IST stack to make it free for nested exceptions. The 519 * vc_switch_off_ist() function will switch back to the interrupted 520 * stack if it is safe to do so. If not it switches to the VC fall-back 521 * stack. 522 */ 523 movq %rsp, %rdi /* pt_regs pointer */ 524 call vc_switch_off_ist 525 movq %rax, %rsp /* Switch to new stack */ 526 527 ENCODE_FRAME_POINTER 528 UNWIND_HINT_REGS 529 530 /* Update pt_regs */ 531 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 532 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 533 534 movq %rsp, %rdi /* pt_regs pointer */ 535 536 call kernel_\cfunc 537 538 /* 539 * No need to switch back to the IST stack. The current stack is either 540 * identical to the stack in the IRET frame or the VC fall-back stack, 541 * so it is definitely mapped even with PTI enabled. 542 */ 543 jmp paranoid_exit 544 545 /* Switch to the regular task stack */ 546.Lfrom_usermode_switch_stack_\@: 547 idtentry_body user_\cfunc, has_error_code=1 548 549_ASM_NOKPROBE(\asmsym) 550SYM_CODE_END(\asmsym) 551.endm 552#endif 553 554/* 555 * Double fault entry. Straight paranoid. No checks from which context 556 * this comes because for the espfix induced #DF this would do the wrong 557 * thing. 558 */ 559.macro idtentry_df vector asmsym cfunc 560SYM_CODE_START(\asmsym) 561 UNWIND_HINT_IRET_REGS offset=8 562 ASM_CLAC 563 cld 564 565 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 566 call paranoid_entry 567 UNWIND_HINT_REGS 568 569 movq %rsp, %rdi /* pt_regs pointer into first argument */ 570 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 571 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 572 call \cfunc 573 574 jmp paranoid_exit 575 576_ASM_NOKPROBE(\asmsym) 577SYM_CODE_END(\asmsym) 578.endm 579 580/* 581 * Include the defines which emit the idt entries which are shared 582 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 583 * so the stacktrace boundary checks work. 584 */ 585 .align 16 586 .globl __irqentry_text_start 587__irqentry_text_start: 588 589#include <asm/idtentry.h> 590 591 .align 16 592 .globl __irqentry_text_end 593__irqentry_text_end: 594 595SYM_CODE_START_LOCAL(common_interrupt_return) 596SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 597 IBRS_EXIT 598#ifdef CONFIG_DEBUG_ENTRY 599 /* Assert that pt_regs indicates user mode. */ 600 testb $3, CS(%rsp) 601 jnz 1f 602 ud2 6031: 604#endif 605#ifdef CONFIG_XEN_PV 606 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 607#endif 608 609 POP_REGS pop_rdi=0 610 611 /* 612 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 613 * Save old stack pointer and switch to trampoline stack. 614 */ 615 movq %rsp, %rdi 616 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 617 UNWIND_HINT_EMPTY 618 619 /* Copy the IRET frame to the trampoline stack. */ 620 pushq 6*8(%rdi) /* SS */ 621 pushq 5*8(%rdi) /* RSP */ 622 pushq 4*8(%rdi) /* EFLAGS */ 623 pushq 3*8(%rdi) /* CS */ 624 pushq 2*8(%rdi) /* RIP */ 625 626 /* Push user RDI on the trampoline stack. */ 627 pushq (%rdi) 628 629 /* 630 * We are on the trampoline stack. All regs except RDI are live. 631 * We can do future final exit work right here. 632 */ 633 STACKLEAK_ERASE_NOCLOBBER 634 635 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 636 637 /* Restore RDI. */ 638 popq %rdi 639 SWAPGS 640 INTERRUPT_RETURN 641 642 643SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 644#ifdef CONFIG_DEBUG_ENTRY 645 /* Assert that pt_regs indicates kernel mode. */ 646 testb $3, CS(%rsp) 647 jz 1f 648 ud2 6491: 650#endif 651 POP_REGS 652 addq $8, %rsp /* skip regs->orig_ax */ 653 /* 654 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 655 * when returning from IPI handler. 656 */ 657 INTERRUPT_RETURN 658 659SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL) 660 UNWIND_HINT_IRET_REGS 661 /* 662 * Are we returning to a stack segment from the LDT? Note: in 663 * 64-bit mode SS:RSP on the exception stack is always valid. 664 */ 665#ifdef CONFIG_X86_ESPFIX64 666 testb $4, (SS-RIP)(%rsp) 667 jnz native_irq_return_ldt 668#endif 669 670SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 671 /* 672 * This may fault. Non-paranoid faults on return to userspace are 673 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 674 * Double-faults due to espfix64 are handled in exc_double_fault. 675 * Other faults here are fatal. 676 */ 677 iretq 678 679#ifdef CONFIG_X86_ESPFIX64 680native_irq_return_ldt: 681 /* 682 * We are running with user GSBASE. All GPRs contain their user 683 * values. We have a percpu ESPFIX stack that is eight slots 684 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 685 * of the ESPFIX stack. 686 * 687 * We clobber RAX and RDI in this code. We stash RDI on the 688 * normal stack and RAX on the ESPFIX stack. 689 * 690 * The ESPFIX stack layout we set up looks like this: 691 * 692 * --- top of ESPFIX stack --- 693 * SS 694 * RSP 695 * RFLAGS 696 * CS 697 * RIP <-- RSP points here when we're done 698 * RAX <-- espfix_waddr points here 699 * --- bottom of ESPFIX stack --- 700 */ 701 702 pushq %rdi /* Stash user RDI */ 703 swapgs /* to kernel GS */ 704 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 705 UNTRAIN_RET 706 707 movq PER_CPU_VAR(espfix_waddr), %rdi 708 movq %rax, (0*8)(%rdi) /* user RAX */ 709 movq (1*8)(%rsp), %rax /* user RIP */ 710 movq %rax, (1*8)(%rdi) 711 movq (2*8)(%rsp), %rax /* user CS */ 712 movq %rax, (2*8)(%rdi) 713 movq (3*8)(%rsp), %rax /* user RFLAGS */ 714 movq %rax, (3*8)(%rdi) 715 movq (5*8)(%rsp), %rax /* user SS */ 716 movq %rax, (5*8)(%rdi) 717 movq (4*8)(%rsp), %rax /* user RSP */ 718 movq %rax, (4*8)(%rdi) 719 /* Now RAX == RSP. */ 720 721 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 722 723 /* 724 * espfix_stack[31:16] == 0. The page tables are set up such that 725 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 726 * espfix_waddr for any X. That is, there are 65536 RO aliases of 727 * the same page. Set up RSP so that RSP[31:16] contains the 728 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 729 * still points to an RO alias of the ESPFIX stack. 730 */ 731 orq PER_CPU_VAR(espfix_stack), %rax 732 733 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 734 swapgs /* to user GS */ 735 popq %rdi /* Restore user RDI */ 736 737 movq %rax, %rsp 738 UNWIND_HINT_IRET_REGS offset=8 739 740 /* 741 * At this point, we cannot write to the stack any more, but we can 742 * still read. 743 */ 744 popq %rax /* Restore user RAX */ 745 746 /* 747 * RSP now points to an ordinary IRET frame, except that the page 748 * is read-only and RSP[31:16] are preloaded with the userspace 749 * values. We can now IRET back to userspace. 750 */ 751 jmp native_irq_return_iret 752#endif 753SYM_CODE_END(common_interrupt_return) 754_ASM_NOKPROBE(common_interrupt_return) 755 756/* 757 * Reload gs selector with exception handling 758 * edi: new selector 759 * 760 * Is in entry.text as it shouldn't be instrumented. 761 */ 762SYM_FUNC_START(asm_load_gs_index) 763 FRAME_BEGIN 764 swapgs 765.Lgs_change: 766 movl %edi, %gs 7672: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 768 swapgs 769 FRAME_END 770 RET 771SYM_FUNC_END(asm_load_gs_index) 772EXPORT_SYMBOL(asm_load_gs_index) 773 774 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 775 .section .fixup, "ax" 776 /* running with kernelgs */ 777SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs) 778 swapgs /* switch back to user gs */ 779.macro ZAP_GS 780 /* This can't be a string because the preprocessor needs to see it. */ 781 movl $__USER_DS, %eax 782 movl %eax, %gs 783.endm 784 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 785 xorl %eax, %eax 786 movl %eax, %gs 787 jmp 2b 788SYM_CODE_END(.Lbad_gs) 789 .previous 790 791#ifdef CONFIG_XEN_PV 792/* 793 * A note on the "critical region" in our callback handler. 794 * We want to avoid stacking callback handlers due to events occurring 795 * during handling of the last event. To do this, we keep events disabled 796 * until we've done all processing. HOWEVER, we must enable events before 797 * popping the stack frame (can't be done atomically) and so it would still 798 * be possible to get enough handler activations to overflow the stack. 799 * Although unlikely, bugs of that kind are hard to track down, so we'd 800 * like to avoid the possibility. 801 * So, on entry to the handler we detect whether we interrupted an 802 * existing activation in its critical region -- if so, we pop the current 803 * activation and restart the handler using the previous one. 804 * 805 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 806 */ 807SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 808 809/* 810 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 811 * see the correct pointer to the pt_regs 812 */ 813 UNWIND_HINT_FUNC 814 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 815 UNWIND_HINT_REGS 816 817 call xen_pv_evtchn_do_upcall 818 819 jmp error_return 820SYM_CODE_END(exc_xen_hypervisor_callback) 821 822/* 823 * Hypervisor uses this for application faults while it executes. 824 * We get here for two reasons: 825 * 1. Fault while reloading DS, ES, FS or GS 826 * 2. Fault while executing IRET 827 * Category 1 we do not need to fix up as Xen has already reloaded all segment 828 * registers that could be reloaded and zeroed the others. 829 * Category 2 we fix up by killing the current process. We cannot use the 830 * normal Linux return path in this case because if we use the IRET hypercall 831 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 832 * We distinguish between categories by comparing each saved segment register 833 * with its current contents: any discrepancy means we in category 1. 834 */ 835SYM_CODE_START(xen_failsafe_callback) 836 UNWIND_HINT_EMPTY 837 movl %ds, %ecx 838 cmpw %cx, 0x10(%rsp) 839 jne 1f 840 movl %es, %ecx 841 cmpw %cx, 0x18(%rsp) 842 jne 1f 843 movl %fs, %ecx 844 cmpw %cx, 0x20(%rsp) 845 jne 1f 846 movl %gs, %ecx 847 cmpw %cx, 0x28(%rsp) 848 jne 1f 849 /* All segments match their saved values => Category 2 (Bad IRET). */ 850 movq (%rsp), %rcx 851 movq 8(%rsp), %r11 852 addq $0x30, %rsp 853 pushq $0 /* RIP */ 854 UNWIND_HINT_IRET_REGS offset=8 855 jmp asm_exc_general_protection 8561: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 857 movq (%rsp), %rcx 858 movq 8(%rsp), %r11 859 addq $0x30, %rsp 860 UNWIND_HINT_IRET_REGS 861 pushq $-1 /* orig_ax = -1 => not a system call */ 862 PUSH_AND_CLEAR_REGS 863 ENCODE_FRAME_POINTER 864 jmp error_return 865SYM_CODE_END(xen_failsafe_callback) 866#endif /* CONFIG_XEN_PV */ 867 868/* 869 * Save all registers in pt_regs. Return GSBASE related information 870 * in EBX depending on the availability of the FSGSBASE instructions: 871 * 872 * FSGSBASE R/EBX 873 * N 0 -> SWAPGS on exit 874 * 1 -> no SWAPGS on exit 875 * 876 * Y GSBASE value at entry, must be restored in paranoid_exit 877 * 878 * R14 - old CR3 879 * R15 - old SPEC_CTRL 880 */ 881SYM_CODE_START_LOCAL(paranoid_entry) 882 UNWIND_HINT_FUNC 883 PUSH_AND_CLEAR_REGS save_ret=1 884 ENCODE_FRAME_POINTER 8 885 886 /* 887 * Always stash CR3 in %r14. This value will be restored, 888 * verbatim, at exit. Needed if paranoid_entry interrupted 889 * another entry that already switched to the user CR3 value 890 * but has not yet returned to userspace. 891 * 892 * This is also why CS (stashed in the "iret frame" by the 893 * hardware at entry) can not be used: this may be a return 894 * to kernel code, but with a user CR3 value. 895 * 896 * Switching CR3 does not depend on kernel GSBASE so it can 897 * be done before switching to the kernel GSBASE. This is 898 * required for FSGSBASE because the kernel GSBASE has to 899 * be retrieved from a kernel internal table. 900 */ 901 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 902 903 /* 904 * Handling GSBASE depends on the availability of FSGSBASE. 905 * 906 * Without FSGSBASE the kernel enforces that negative GSBASE 907 * values indicate kernel GSBASE. With FSGSBASE no assumptions 908 * can be made about the GSBASE value when entering from user 909 * space. 910 */ 911 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 912 913 /* 914 * Read the current GSBASE and store it in %rbx unconditionally, 915 * retrieve and set the current CPUs kernel GSBASE. The stored value 916 * has to be restored in paranoid_exit unconditionally. 917 * 918 * The unconditional write to GS base below ensures that no subsequent 919 * loads based on a mispredicted GS base can happen, therefore no LFENCE 920 * is needed here. 921 */ 922 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 923 jmp .Lparanoid_gsbase_done 924 925.Lparanoid_entry_checkgs: 926 /* EBX = 1 -> kernel GSBASE active, no restore required */ 927 movl $1, %ebx 928 929 /* 930 * The kernel-enforced convention is a negative GSBASE indicates 931 * a kernel value. No SWAPGS needed on entry and exit. 932 */ 933 movl $MSR_GS_BASE, %ecx 934 rdmsr 935 testl %edx, %edx 936 js .Lparanoid_kernel_gsbase 937 938 /* EBX = 0 -> SWAPGS required on exit */ 939 xorl %ebx, %ebx 940 swapgs 941.Lparanoid_kernel_gsbase: 942 FENCE_SWAPGS_KERNEL_ENTRY 943.Lparanoid_gsbase_done: 944 945 /* 946 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 947 * CR3 above, keep the old value in a callee saved register. 948 */ 949 IBRS_ENTER save_reg=%r15 950 UNTRAIN_RET 951 952 RET 953SYM_CODE_END(paranoid_entry) 954 955/* 956 * "Paranoid" exit path from exception stack. This is invoked 957 * only on return from non-NMI IST interrupts that came 958 * from kernel space. 959 * 960 * We may be returning to very strange contexts (e.g. very early 961 * in syscall entry), so checking for preemption here would 962 * be complicated. Fortunately, there's no good reason to try 963 * to handle preemption here. 964 * 965 * R/EBX contains the GSBASE related information depending on the 966 * availability of the FSGSBASE instructions: 967 * 968 * FSGSBASE R/EBX 969 * N 0 -> SWAPGS on exit 970 * 1 -> no SWAPGS on exit 971 * 972 * Y User space GSBASE, must be restored unconditionally 973 * 974 * R14 - old CR3 975 * R15 - old SPEC_CTRL 976 */ 977SYM_CODE_START_LOCAL(paranoid_exit) 978 UNWIND_HINT_REGS 979 980 /* 981 * Must restore IBRS state before both CR3 and %GS since we need access 982 * to the per-CPU x86_spec_ctrl_shadow variable. 983 */ 984 IBRS_EXIT save_reg=%r15 985 986 /* 987 * The order of operations is important. RESTORE_CR3 requires 988 * kernel GSBASE. 989 * 990 * NB to anyone to try to optimize this code: this code does 991 * not execute at all for exceptions from user mode. Those 992 * exceptions go through error_exit instead. 993 */ 994 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 995 996 /* Handle the three GSBASE cases */ 997 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 998 999 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 1000 wrgsbase %rbx 1001 jmp restore_regs_and_return_to_kernel 1002 1003.Lparanoid_exit_checkgs: 1004 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 1005 testl %ebx, %ebx 1006 jnz restore_regs_and_return_to_kernel 1007 1008 /* We are returning to a context with user GSBASE */ 1009 swapgs 1010 jmp restore_regs_and_return_to_kernel 1011SYM_CODE_END(paranoid_exit) 1012 1013/* 1014 * Switch GS and CR3 if needed. 1015 */ 1016SYM_CODE_START_LOCAL(error_entry) 1017 UNWIND_HINT_FUNC 1018 1019 PUSH_AND_CLEAR_REGS save_ret=1 1020 ENCODE_FRAME_POINTER 8 1021 1022 testb $3, CS+8(%rsp) 1023 jz .Lerror_kernelspace 1024 1025 /* 1026 * We entered from user mode or we're pretending to have entered 1027 * from user mode due to an IRET fault. 1028 */ 1029 SWAPGS 1030 FENCE_SWAPGS_USER_ENTRY 1031 /* We have user CR3. Change to kernel CR3. */ 1032 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1033 IBRS_ENTER 1034 UNTRAIN_RET 1035 1036 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1037.Lerror_entry_from_usermode_after_swapgs: 1038 1039 /* Put us onto the real thread stack. */ 1040 call sync_regs 1041 RET 1042 1043 /* 1044 * There are two places in the kernel that can potentially fault with 1045 * usergs. Handle them here. B stepping K8s sometimes report a 1046 * truncated RIP for IRET exceptions returning to compat mode. Check 1047 * for these here too. 1048 */ 1049.Lerror_kernelspace: 1050 leaq native_irq_return_iret(%rip), %rcx 1051 cmpq %rcx, RIP+8(%rsp) 1052 je .Lerror_bad_iret 1053 movl %ecx, %eax /* zero extend */ 1054 cmpq %rax, RIP+8(%rsp) 1055 je .Lbstep_iret 1056 cmpq $.Lgs_change, RIP+8(%rsp) 1057 jne .Lerror_entry_done_lfence 1058 1059 /* 1060 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1061 * gsbase and proceed. We'll fix up the exception and land in 1062 * .Lgs_change's error handler with kernel gsbase. 1063 */ 1064 SWAPGS 1065 1066 /* 1067 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1068 * kernel or user gsbase. 1069 */ 1070.Lerror_entry_done_lfence: 1071 FENCE_SWAPGS_KERNEL_ENTRY 1072 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1073 ANNOTATE_UNRET_END 1074 RET 1075 1076.Lbstep_iret: 1077 /* Fix truncated RIP */ 1078 movq %rcx, RIP+8(%rsp) 1079 /* fall through */ 1080 1081.Lerror_bad_iret: 1082 /* 1083 * We came from an IRET to user mode, so we have user 1084 * gsbase and CR3. Switch to kernel gsbase and CR3: 1085 */ 1086 SWAPGS 1087 FENCE_SWAPGS_USER_ENTRY 1088 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1089 IBRS_ENTER 1090 UNTRAIN_RET 1091 1092 /* 1093 * Pretend that the exception came from user mode: set up pt_regs 1094 * as if we faulted immediately after IRET. 1095 */ 1096 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1097 call fixup_bad_iret 1098 mov %rax, %rdi 1099 jmp .Lerror_entry_from_usermode_after_swapgs 1100SYM_CODE_END(error_entry) 1101 1102SYM_CODE_START_LOCAL(error_return) 1103 UNWIND_HINT_REGS 1104 DEBUG_ENTRY_ASSERT_IRQS_OFF 1105 testb $3, CS(%rsp) 1106 jz restore_regs_and_return_to_kernel 1107 jmp swapgs_restore_regs_and_return_to_usermode 1108SYM_CODE_END(error_return) 1109 1110/* 1111 * Runs on exception stack. Xen PV does not go through this path at all, 1112 * so we can use real assembly here. 1113 * 1114 * Registers: 1115 * %r14: Used to save/restore the CR3 of the interrupted context 1116 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1117 */ 1118SYM_CODE_START(asm_exc_nmi) 1119 UNWIND_HINT_IRET_REGS 1120 1121 /* 1122 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1123 * the iretq it performs will take us out of NMI context. 1124 * This means that we can have nested NMIs where the next 1125 * NMI is using the top of the stack of the previous NMI. We 1126 * can't let it execute because the nested NMI will corrupt the 1127 * stack of the previous NMI. NMI handlers are not re-entrant 1128 * anyway. 1129 * 1130 * To handle this case we do the following: 1131 * Check the a special location on the stack that contains 1132 * a variable that is set when NMIs are executing. 1133 * The interrupted task's stack is also checked to see if it 1134 * is an NMI stack. 1135 * If the variable is not set and the stack is not the NMI 1136 * stack then: 1137 * o Set the special variable on the stack 1138 * o Copy the interrupt frame into an "outermost" location on the 1139 * stack 1140 * o Copy the interrupt frame into an "iret" location on the stack 1141 * o Continue processing the NMI 1142 * If the variable is set or the previous stack is the NMI stack: 1143 * o Modify the "iret" location to jump to the repeat_nmi 1144 * o return back to the first NMI 1145 * 1146 * Now on exit of the first NMI, we first clear the stack variable 1147 * The NMI stack will tell any nested NMIs at that point that it is 1148 * nested. Then we pop the stack normally with iret, and if there was 1149 * a nested NMI that updated the copy interrupt stack frame, a 1150 * jump will be made to the repeat_nmi code that will handle the second 1151 * NMI. 1152 * 1153 * However, espfix prevents us from directly returning to userspace 1154 * with a single IRET instruction. Similarly, IRET to user mode 1155 * can fault. We therefore handle NMIs from user space like 1156 * other IST entries. 1157 */ 1158 1159 ASM_CLAC 1160 cld 1161 1162 /* Use %rdx as our temp variable throughout */ 1163 pushq %rdx 1164 1165 testb $3, CS-RIP+8(%rsp) 1166 jz .Lnmi_from_kernel 1167 1168 /* 1169 * NMI from user mode. We need to run on the thread stack, but we 1170 * can't go through the normal entry paths: NMIs are masked, and 1171 * we don't want to enable interrupts, because then we'll end 1172 * up in an awkward situation in which IRQs are on but NMIs 1173 * are off. 1174 * 1175 * We also must not push anything to the stack before switching 1176 * stacks lest we corrupt the "NMI executing" variable. 1177 */ 1178 1179 swapgs 1180 FENCE_SWAPGS_USER_ENTRY 1181 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1182 movq %rsp, %rdx 1183 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1184 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1185 pushq 5*8(%rdx) /* pt_regs->ss */ 1186 pushq 4*8(%rdx) /* pt_regs->rsp */ 1187 pushq 3*8(%rdx) /* pt_regs->flags */ 1188 pushq 2*8(%rdx) /* pt_regs->cs */ 1189 pushq 1*8(%rdx) /* pt_regs->rip */ 1190 UNWIND_HINT_IRET_REGS 1191 pushq $-1 /* pt_regs->orig_ax */ 1192 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1193 ENCODE_FRAME_POINTER 1194 1195 IBRS_ENTER 1196 UNTRAIN_RET 1197 1198 /* 1199 * At this point we no longer need to worry about stack damage 1200 * due to nesting -- we're on the normal thread stack and we're 1201 * done with the NMI stack. 1202 */ 1203 1204 movq %rsp, %rdi 1205 movq $-1, %rsi 1206 call exc_nmi 1207 1208 /* 1209 * Return back to user mode. We must *not* do the normal exit 1210 * work, because we don't want to enable interrupts. 1211 */ 1212 jmp swapgs_restore_regs_and_return_to_usermode 1213 1214.Lnmi_from_kernel: 1215 /* 1216 * Here's what our stack frame will look like: 1217 * +---------------------------------------------------------+ 1218 * | original SS | 1219 * | original Return RSP | 1220 * | original RFLAGS | 1221 * | original CS | 1222 * | original RIP | 1223 * +---------------------------------------------------------+ 1224 * | temp storage for rdx | 1225 * +---------------------------------------------------------+ 1226 * | "NMI executing" variable | 1227 * +---------------------------------------------------------+ 1228 * | iret SS } Copied from "outermost" frame | 1229 * | iret Return RSP } on each loop iteration; overwritten | 1230 * | iret RFLAGS } by a nested NMI to force another | 1231 * | iret CS } iteration if needed. | 1232 * | iret RIP } | 1233 * +---------------------------------------------------------+ 1234 * | outermost SS } initialized in first_nmi; | 1235 * | outermost Return RSP } will not be changed before | 1236 * | outermost RFLAGS } NMI processing is done. | 1237 * | outermost CS } Copied to "iret" frame on each | 1238 * | outermost RIP } iteration. | 1239 * +---------------------------------------------------------+ 1240 * | pt_regs | 1241 * +---------------------------------------------------------+ 1242 * 1243 * The "original" frame is used by hardware. Before re-enabling 1244 * NMIs, we need to be done with it, and we need to leave enough 1245 * space for the asm code here. 1246 * 1247 * We return by executing IRET while RSP points to the "iret" frame. 1248 * That will either return for real or it will loop back into NMI 1249 * processing. 1250 * 1251 * The "outermost" frame is copied to the "iret" frame on each 1252 * iteration of the loop, so each iteration starts with the "iret" 1253 * frame pointing to the final return target. 1254 */ 1255 1256 /* 1257 * Determine whether we're a nested NMI. 1258 * 1259 * If we interrupted kernel code between repeat_nmi and 1260 * end_repeat_nmi, then we are a nested NMI. We must not 1261 * modify the "iret" frame because it's being written by 1262 * the outer NMI. That's okay; the outer NMI handler is 1263 * about to about to call exc_nmi() anyway, so we can just 1264 * resume the outer NMI. 1265 */ 1266 1267 movq $repeat_nmi, %rdx 1268 cmpq 8(%rsp), %rdx 1269 ja 1f 1270 movq $end_repeat_nmi, %rdx 1271 cmpq 8(%rsp), %rdx 1272 ja nested_nmi_out 12731: 1274 1275 /* 1276 * Now check "NMI executing". If it's set, then we're nested. 1277 * This will not detect if we interrupted an outer NMI just 1278 * before IRET. 1279 */ 1280 cmpl $1, -8(%rsp) 1281 je nested_nmi 1282 1283 /* 1284 * Now test if the previous stack was an NMI stack. This covers 1285 * the case where we interrupt an outer NMI after it clears 1286 * "NMI executing" but before IRET. We need to be careful, though: 1287 * there is one case in which RSP could point to the NMI stack 1288 * despite there being no NMI active: naughty userspace controls 1289 * RSP at the very beginning of the SYSCALL targets. We can 1290 * pull a fast one on naughty userspace, though: we program 1291 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1292 * if it controls the kernel's RSP. We set DF before we clear 1293 * "NMI executing". 1294 */ 1295 lea 6*8(%rsp), %rdx 1296 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1297 cmpq %rdx, 4*8(%rsp) 1298 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1299 ja first_nmi 1300 1301 subq $EXCEPTION_STKSZ, %rdx 1302 cmpq %rdx, 4*8(%rsp) 1303 /* If it is below the NMI stack, it is a normal NMI */ 1304 jb first_nmi 1305 1306 /* Ah, it is within the NMI stack. */ 1307 1308 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1309 jz first_nmi /* RSP was user controlled. */ 1310 1311 /* This is a nested NMI. */ 1312 1313nested_nmi: 1314 /* 1315 * Modify the "iret" frame to point to repeat_nmi, forcing another 1316 * iteration of NMI handling. 1317 */ 1318 subq $8, %rsp 1319 leaq -10*8(%rsp), %rdx 1320 pushq $__KERNEL_DS 1321 pushq %rdx 1322 pushfq 1323 pushq $__KERNEL_CS 1324 pushq $repeat_nmi 1325 1326 /* Put stack back */ 1327 addq $(6*8), %rsp 1328 1329nested_nmi_out: 1330 popq %rdx 1331 1332 /* We are returning to kernel mode, so this cannot result in a fault. */ 1333 iretq 1334 1335first_nmi: 1336 /* Restore rdx. */ 1337 movq (%rsp), %rdx 1338 1339 /* Make room for "NMI executing". */ 1340 pushq $0 1341 1342 /* Leave room for the "iret" frame */ 1343 subq $(5*8), %rsp 1344 1345 /* Copy the "original" frame to the "outermost" frame */ 1346 .rept 5 1347 pushq 11*8(%rsp) 1348 .endr 1349 UNWIND_HINT_IRET_REGS 1350 1351 /* Everything up to here is safe from nested NMIs */ 1352 1353#ifdef CONFIG_DEBUG_ENTRY 1354 /* 1355 * For ease of testing, unmask NMIs right away. Disabled by 1356 * default because IRET is very expensive. 1357 */ 1358 pushq $0 /* SS */ 1359 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1360 addq $8, (%rsp) /* Fix up RSP */ 1361 pushfq /* RFLAGS */ 1362 pushq $__KERNEL_CS /* CS */ 1363 pushq $1f /* RIP */ 1364 iretq /* continues at repeat_nmi below */ 1365 UNWIND_HINT_IRET_REGS 13661: 1367#endif 1368 1369repeat_nmi: 1370 /* 1371 * If there was a nested NMI, the first NMI's iret will return 1372 * here. But NMIs are still enabled and we can take another 1373 * nested NMI. The nested NMI checks the interrupted RIP to see 1374 * if it is between repeat_nmi and end_repeat_nmi, and if so 1375 * it will just return, as we are about to repeat an NMI anyway. 1376 * This makes it safe to copy to the stack frame that a nested 1377 * NMI will update. 1378 * 1379 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1380 * we're repeating an NMI, gsbase has the same value that it had on 1381 * the first iteration. paranoid_entry will load the kernel 1382 * gsbase if needed before we call exc_nmi(). "NMI executing" 1383 * is zero. 1384 */ 1385 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1386 1387 /* 1388 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1389 * here must not modify the "iret" frame while we're writing to 1390 * it or it will end up containing garbage. 1391 */ 1392 addq $(10*8), %rsp 1393 .rept 5 1394 pushq -6*8(%rsp) 1395 .endr 1396 subq $(5*8), %rsp 1397end_repeat_nmi: 1398 1399 /* 1400 * Everything below this point can be preempted by a nested NMI. 1401 * If this happens, then the inner NMI will change the "iret" 1402 * frame to point back to repeat_nmi. 1403 */ 1404 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1405 1406 /* 1407 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1408 * as we should not be calling schedule in NMI context. 1409 * Even with normal interrupts enabled. An NMI should not be 1410 * setting NEED_RESCHED or anything that normal interrupts and 1411 * exceptions might do. 1412 */ 1413 call paranoid_entry 1414 UNWIND_HINT_REGS 1415 1416 movq %rsp, %rdi 1417 movq $-1, %rsi 1418 call exc_nmi 1419 1420 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1421 IBRS_EXIT save_reg=%r15 1422 1423 /* Always restore stashed CR3 value (see paranoid_entry) */ 1424 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1425 1426 /* 1427 * The above invocation of paranoid_entry stored the GSBASE 1428 * related information in R/EBX depending on the availability 1429 * of FSGSBASE. 1430 * 1431 * If FSGSBASE is enabled, restore the saved GSBASE value 1432 * unconditionally, otherwise take the conditional SWAPGS path. 1433 */ 1434 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1435 1436 wrgsbase %rbx 1437 jmp nmi_restore 1438 1439nmi_no_fsgsbase: 1440 /* EBX == 0 -> invoke SWAPGS */ 1441 testl %ebx, %ebx 1442 jnz nmi_restore 1443 1444nmi_swapgs: 1445 swapgs 1446 1447nmi_restore: 1448 POP_REGS 1449 1450 /* 1451 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1452 * at the "iret" frame. 1453 */ 1454 addq $6*8, %rsp 1455 1456 /* 1457 * Clear "NMI executing". Set DF first so that we can easily 1458 * distinguish the remaining code between here and IRET from 1459 * the SYSCALL entry and exit paths. 1460 * 1461 * We arguably should just inspect RIP instead, but I (Andy) wrote 1462 * this code when I had the misapprehension that Xen PV supported 1463 * NMIs, and Xen PV would break that approach. 1464 */ 1465 std 1466 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1467 1468 /* 1469 * iretq reads the "iret" frame and exits the NMI stack in a 1470 * single instruction. We are returning to kernel mode, so this 1471 * cannot result in a fault. Similarly, we don't need to worry 1472 * about espfix64 on the way back to kernel mode. 1473 */ 1474 iretq 1475SYM_CODE_END(asm_exc_nmi) 1476 1477#ifndef CONFIG_IA32_EMULATION 1478/* 1479 * This handles SYSCALL from 32-bit code. There is no way to program 1480 * MSRs to fully disable 32-bit SYSCALL. 1481 */ 1482SYM_CODE_START(ignore_sysret) 1483 UNWIND_HINT_EMPTY 1484 mov $-ENOSYS, %eax 1485 sysretl 1486SYM_CODE_END(ignore_sysret) 1487#endif 1488 1489.pushsection .text, "ax" 1490SYM_CODE_START(rewind_stack_and_make_dead) 1491 UNWIND_HINT_FUNC 1492 /* Prevent any naive code from trying to unwind to our caller. */ 1493 xorl %ebp, %ebp 1494 1495 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1496 leaq -PTREGS_SIZE(%rax), %rsp 1497 UNWIND_HINT_REGS 1498 1499 call make_task_dead 1500SYM_CODE_END(rewind_stack_and_make_dead) 1501.popsection 1502