• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode_amd.h>
33 #include <asm/microcode.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/cpu.h>
37 #include <asm/msr.h>
38 
39 static struct equiv_cpu_table {
40 	unsigned int num_entries;
41 	struct equiv_cpu_entry *entry;
42 } equiv_table;
43 
44 /*
45  * This points to the current valid container of microcode patches which we will
46  * save from the initrd/builtin before jettisoning its contents. @mc is the
47  * microcode patch we found to match.
48  */
49 struct cont_desc {
50 	struct microcode_amd *mc;
51 	u32		     cpuid_1_eax;
52 	u32		     psize;
53 	u8		     *data;
54 	size_t		     size;
55 };
56 
57 static u32 ucode_new_rev;
58 
59 /* One blob per node. */
60 static u8 amd_ucode_patch[MAX_NUMNODES][PATCH_MAX_SIZE];
61 
62 /*
63  * Microcode patch container file is prepended to the initrd in cpio
64  * format. See Documentation/x86/microcode.rst
65  */
66 static const char
67 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
68 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)69 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
70 {
71 	unsigned int i;
72 
73 	if (!et || !et->num_entries)
74 		return 0;
75 
76 	for (i = 0; i < et->num_entries; i++) {
77 		struct equiv_cpu_entry *e = &et->entry[i];
78 
79 		if (sig == e->installed_cpu)
80 			return e->equiv_cpu;
81 
82 		e++;
83 	}
84 	return 0;
85 }
86 
87 /*
88  * Check whether there is a valid microcode container file at the beginning
89  * of @buf of size @buf_size. Set @early to use this function in the early path.
90  */
verify_container(const u8 * buf,size_t buf_size,bool early)91 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
92 {
93 	u32 cont_magic;
94 
95 	if (buf_size <= CONTAINER_HDR_SZ) {
96 		if (!early)
97 			pr_debug("Truncated microcode container header.\n");
98 
99 		return false;
100 	}
101 
102 	cont_magic = *(const u32 *)buf;
103 	if (cont_magic != UCODE_MAGIC) {
104 		if (!early)
105 			pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
106 
107 		return false;
108 	}
109 
110 	return true;
111 }
112 
113 /*
114  * Check whether there is a valid, non-truncated CPU equivalence table at the
115  * beginning of @buf of size @buf_size. Set @early to use this function in the
116  * early path.
117  */
verify_equivalence_table(const u8 * buf,size_t buf_size,bool early)118 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
119 {
120 	const u32 *hdr = (const u32 *)buf;
121 	u32 cont_type, equiv_tbl_len;
122 
123 	if (!verify_container(buf, buf_size, early))
124 		return false;
125 
126 	cont_type = hdr[1];
127 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
128 		if (!early)
129 			pr_debug("Wrong microcode container equivalence table type: %u.\n",
130 			       cont_type);
131 
132 		return false;
133 	}
134 
135 	buf_size -= CONTAINER_HDR_SZ;
136 
137 	equiv_tbl_len = hdr[2];
138 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
139 	    buf_size < equiv_tbl_len) {
140 		if (!early)
141 			pr_debug("Truncated equivalence table.\n");
142 
143 		return false;
144 	}
145 
146 	return true;
147 }
148 
149 /*
150  * Check whether there is a valid, non-truncated microcode patch section at the
151  * beginning of @buf of size @buf_size. Set @early to use this function in the
152  * early path.
153  *
154  * On success, @sh_psize returns the patch size according to the section header,
155  * to the caller.
156  */
157 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize,bool early)158 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
159 {
160 	u32 p_type, p_size;
161 	const u32 *hdr;
162 
163 	if (buf_size < SECTION_HDR_SIZE) {
164 		if (!early)
165 			pr_debug("Truncated patch section.\n");
166 
167 		return false;
168 	}
169 
170 	hdr = (const u32 *)buf;
171 	p_type = hdr[0];
172 	p_size = hdr[1];
173 
174 	if (p_type != UCODE_UCODE_TYPE) {
175 		if (!early)
176 			pr_debug("Invalid type field (0x%x) in container file section header.\n",
177 				p_type);
178 
179 		return false;
180 	}
181 
182 	if (p_size < sizeof(struct microcode_header_amd)) {
183 		if (!early)
184 			pr_debug("Patch of size %u too short.\n", p_size);
185 
186 		return false;
187 	}
188 
189 	*sh_psize = p_size;
190 
191 	return true;
192 }
193 
194 /*
195  * Check whether the passed remaining file @buf_size is large enough to contain
196  * a patch of the indicated @sh_psize (and also whether this size does not
197  * exceed the per-family maximum). @sh_psize is the size read from the section
198  * header.
199  */
__verify_patch_size(u8 family,u32 sh_psize,size_t buf_size)200 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
201 {
202 	u32 max_size;
203 
204 	if (family >= 0x15)
205 		return min_t(u32, sh_psize, buf_size);
206 
207 #define F1XH_MPB_MAX_SIZE 2048
208 #define F14H_MPB_MAX_SIZE 1824
209 
210 	switch (family) {
211 	case 0x10 ... 0x12:
212 		max_size = F1XH_MPB_MAX_SIZE;
213 		break;
214 	case 0x14:
215 		max_size = F14H_MPB_MAX_SIZE;
216 		break;
217 	default:
218 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
219 		return 0;
220 	}
221 
222 	if (sh_psize > min_t(u32, buf_size, max_size))
223 		return 0;
224 
225 	return sh_psize;
226 }
227 
228 /*
229  * Verify the patch in @buf.
230  *
231  * Returns:
232  * negative: on error
233  * positive: patch is not for this family, skip it
234  * 0: success
235  */
236 static int
verify_patch(u8 family,const u8 * buf,size_t buf_size,u32 * patch_size,bool early)237 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
238 {
239 	struct microcode_header_amd *mc_hdr;
240 	unsigned int ret;
241 	u32 sh_psize;
242 	u16 proc_id;
243 	u8 patch_fam;
244 
245 	if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
246 		return -1;
247 
248 	/*
249 	 * The section header length is not included in this indicated size
250 	 * but is present in the leftover file length so we need to subtract
251 	 * it before passing this value to the function below.
252 	 */
253 	buf_size -= SECTION_HDR_SIZE;
254 
255 	/*
256 	 * Check if the remaining buffer is big enough to contain a patch of
257 	 * size sh_psize, as the section claims.
258 	 */
259 	if (buf_size < sh_psize) {
260 		if (!early)
261 			pr_debug("Patch of size %u truncated.\n", sh_psize);
262 
263 		return -1;
264 	}
265 
266 	ret = __verify_patch_size(family, sh_psize, buf_size);
267 	if (!ret) {
268 		if (!early)
269 			pr_debug("Per-family patch size mismatch.\n");
270 		return -1;
271 	}
272 
273 	*patch_size = sh_psize;
274 
275 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
276 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
277 		if (!early)
278 			pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
279 		return -1;
280 	}
281 
282 	proc_id	= mc_hdr->processor_rev_id;
283 	patch_fam = 0xf + (proc_id >> 12);
284 	if (patch_fam != family)
285 		return 1;
286 
287 	return 0;
288 }
289 
290 /*
291  * This scans the ucode blob for the proper container as we can have multiple
292  * containers glued together. Returns the equivalence ID from the equivalence
293  * table or 0 if none found.
294  * Returns the amount of bytes consumed while scanning. @desc contains all the
295  * data we're going to use in later stages of the application.
296  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)297 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
298 {
299 	struct equiv_cpu_table table;
300 	size_t orig_size = size;
301 	u32 *hdr = (u32 *)ucode;
302 	u16 eq_id;
303 	u8 *buf;
304 
305 	if (!verify_equivalence_table(ucode, size, true))
306 		return 0;
307 
308 	buf = ucode;
309 
310 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
311 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
312 
313 	/*
314 	 * Find the equivalence ID of our CPU in this table. Even if this table
315 	 * doesn't contain a patch for the CPU, scan through the whole container
316 	 * so that it can be skipped in case there are other containers appended.
317 	 */
318 	eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
319 
320 	buf  += hdr[2] + CONTAINER_HDR_SZ;
321 	size -= hdr[2] + CONTAINER_HDR_SZ;
322 
323 	/*
324 	 * Scan through the rest of the container to find where it ends. We do
325 	 * some basic sanity-checking too.
326 	 */
327 	while (size > 0) {
328 		struct microcode_amd *mc;
329 		u32 patch_size;
330 		int ret;
331 
332 		ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
333 		if (ret < 0) {
334 			/*
335 			 * Patch verification failed, skip to the next
336 			 * container, if there's one:
337 			 */
338 			goto out;
339 		} else if (ret > 0) {
340 			goto skip;
341 		}
342 
343 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
344 		if (eq_id == mc->hdr.processor_rev_id) {
345 			desc->psize = patch_size;
346 			desc->mc = mc;
347 		}
348 
349 skip:
350 		/* Skip patch section header too: */
351 		buf  += patch_size + SECTION_HDR_SIZE;
352 		size -= patch_size + SECTION_HDR_SIZE;
353 	}
354 
355 	/*
356 	 * If we have found a patch (desc->mc), it means we're looking at the
357 	 * container which has a patch for this CPU so return 0 to mean, @ucode
358 	 * already points to the proper container. Otherwise, we return the size
359 	 * we scanned so that we can advance to the next container in the
360 	 * buffer.
361 	 */
362 	if (desc->mc) {
363 		desc->data = ucode;
364 		desc->size = orig_size - size;
365 
366 		return 0;
367 	}
368 
369 out:
370 	return orig_size - size;
371 }
372 
373 /*
374  * Scan the ucode blob for the proper container as we can have multiple
375  * containers glued together.
376  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)377 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
378 {
379 	while (size) {
380 		size_t s = parse_container(ucode, size, desc);
381 		if (!s)
382 			return;
383 
384 		/* catch wraparound */
385 		if (size >= s) {
386 			ucode += s;
387 			size  -= s;
388 		} else {
389 			return;
390 		}
391 	}
392 }
393 
__apply_microcode_amd(struct microcode_amd * mc)394 static int __apply_microcode_amd(struct microcode_amd *mc)
395 {
396 	u32 rev, dummy;
397 
398 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
399 
400 	/* verify patch application was successful */
401 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
402 	if (rev != mc->hdr.patch_id)
403 		return -1;
404 
405 	return 0;
406 }
407 
408 /*
409  * Early load occurs before we can vmalloc(). So we look for the microcode
410  * patch container file in initrd, traverse equivalent cpu table, look for a
411  * matching microcode patch, and update, all in initrd memory in place.
412  * When vmalloc() is available for use later -- on 64-bit during first AP load,
413  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
414  * load_microcode_amd() to save equivalent cpu table and microcode patches in
415  * kernel heap memory.
416  *
417  * Returns true if container found (sets @desc), false otherwise.
418  */
419 static bool
apply_microcode_early_amd(u32 cpuid_1_eax,void * ucode,size_t size,bool save_patch)420 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
421 {
422 	struct cont_desc desc = { 0 };
423 	u8 (*patch)[PATCH_MAX_SIZE];
424 	struct microcode_amd *mc;
425 	u32 rev, dummy, *new_rev;
426 	bool ret = false;
427 
428 #ifdef CONFIG_X86_32
429 	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
430 	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
431 #else
432 	new_rev = &ucode_new_rev;
433 	patch	= &amd_ucode_patch[0];
434 #endif
435 
436 	desc.cpuid_1_eax = cpuid_1_eax;
437 
438 	scan_containers(ucode, size, &desc);
439 
440 	mc = desc.mc;
441 	if (!mc)
442 		return ret;
443 
444 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
445 
446 	/*
447 	 * Allow application of the same revision to pick up SMT-specific
448 	 * changes even if the revision of the other SMT thread is already
449 	 * up-to-date.
450 	 */
451 	if (rev > mc->hdr.patch_id)
452 		return ret;
453 
454 	if (!__apply_microcode_amd(mc)) {
455 		*new_rev = mc->hdr.patch_id;
456 		ret      = true;
457 
458 		if (save_patch)
459 			memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
460 	}
461 
462 	return ret;
463 }
464 
get_builtin_microcode(struct cpio_data * cp,unsigned int family)465 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
466 {
467 #ifdef CONFIG_X86_64
468 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
469 
470 	if (family >= 0x15)
471 		snprintf(fw_name, sizeof(fw_name),
472 			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
473 
474 	return get_builtin_firmware(cp, fw_name);
475 #else
476 	return false;
477 #endif
478 }
479 
__load_ucode_amd(unsigned int cpuid_1_eax,struct cpio_data * ret)480 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
481 {
482 	struct ucode_cpu_info *uci;
483 	struct cpio_data cp;
484 	const char *path;
485 	bool use_pa;
486 
487 	if (IS_ENABLED(CONFIG_X86_32)) {
488 		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
489 		path	= (const char *)__pa_nodebug(ucode_path);
490 		use_pa	= true;
491 	} else {
492 		uci     = ucode_cpu_info;
493 		path	= ucode_path;
494 		use_pa	= false;
495 	}
496 
497 	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
498 		cp = find_microcode_in_initrd(path, use_pa);
499 
500 	/* Needed in load_microcode_amd() */
501 	uci->cpu_sig.sig = cpuid_1_eax;
502 
503 	*ret = cp;
504 }
505 
load_ucode_amd_bsp(unsigned int cpuid_1_eax)506 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
507 {
508 	struct cpio_data cp = { };
509 
510 	__load_ucode_amd(cpuid_1_eax, &cp);
511 	if (!(cp.data && cp.size))
512 		return;
513 
514 	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
515 }
516 
load_ucode_amd_ap(unsigned int cpuid_1_eax)517 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
518 {
519 	struct microcode_amd *mc;
520 	struct cpio_data cp;
521 	u32 *new_rev, rev, dummy;
522 
523 	if (IS_ENABLED(CONFIG_X86_32)) {
524 		mc	= (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
525 		new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
526 	} else {
527 		mc	= (struct microcode_amd *)amd_ucode_patch;
528 		new_rev = &ucode_new_rev;
529 	}
530 
531 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
532 
533 	/*
534 	 * Check whether a new patch has been saved already. Also, allow application of
535 	 * the same revision in order to pick up SMT-thread-specific configuration even
536 	 * if the sibling SMT thread already has an up-to-date revision.
537 	 */
538 	if (*new_rev && rev <= mc->hdr.patch_id) {
539 		if (!__apply_microcode_amd(mc)) {
540 			*new_rev = mc->hdr.patch_id;
541 			return;
542 		}
543 	}
544 
545 	__load_ucode_amd(cpuid_1_eax, &cp);
546 	if (!(cp.data && cp.size))
547 		return;
548 
549 	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
550 }
551 
552 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
553 
save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)554 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
555 {
556 	struct cont_desc desc = { 0 };
557 	enum ucode_state ret;
558 	struct cpio_data cp;
559 
560 	cp = find_microcode_in_initrd(ucode_path, false);
561 	if (!(cp.data && cp.size))
562 		return -EINVAL;
563 
564 	desc.cpuid_1_eax = cpuid_1_eax;
565 
566 	scan_containers(cp.data, cp.size, &desc);
567 	if (!desc.mc)
568 		return -EINVAL;
569 
570 	ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
571 	if (ret > UCODE_UPDATED)
572 		return -EINVAL;
573 
574 	return 0;
575 }
576 
reload_ucode_amd(unsigned int cpu)577 void reload_ucode_amd(unsigned int cpu)
578 {
579 	u32 rev, dummy __always_unused;
580 	struct microcode_amd *mc;
581 
582 	mc = (struct microcode_amd *)amd_ucode_patch[cpu_to_node(cpu)];
583 
584 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
585 
586 	if (rev < mc->hdr.patch_id) {
587 		if (!__apply_microcode_amd(mc)) {
588 			ucode_new_rev = mc->hdr.patch_id;
589 			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
590 		}
591 	}
592 }
__find_equiv_id(unsigned int cpu)593 static u16 __find_equiv_id(unsigned int cpu)
594 {
595 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
596 	return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
597 }
598 
599 /*
600  * a small, trivial cache of per-family ucode patches
601  */
cache_find_patch(u16 equiv_cpu)602 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
603 {
604 	struct ucode_patch *p;
605 
606 	list_for_each_entry(p, &microcode_cache, plist)
607 		if (p->equiv_cpu == equiv_cpu)
608 			return p;
609 	return NULL;
610 }
611 
update_cache(struct ucode_patch * new_patch)612 static void update_cache(struct ucode_patch *new_patch)
613 {
614 	struct ucode_patch *p;
615 
616 	list_for_each_entry(p, &microcode_cache, plist) {
617 		if (p->equiv_cpu == new_patch->equiv_cpu) {
618 			if (p->patch_id >= new_patch->patch_id) {
619 				/* we already have the latest patch */
620 				kfree(new_patch->data);
621 				kfree(new_patch);
622 				return;
623 			}
624 
625 			list_replace(&p->plist, &new_patch->plist);
626 			kfree(p->data);
627 			kfree(p);
628 			return;
629 		}
630 	}
631 	/* no patch found, add it */
632 	list_add_tail(&new_patch->plist, &microcode_cache);
633 }
634 
free_cache(void)635 static void free_cache(void)
636 {
637 	struct ucode_patch *p, *tmp;
638 
639 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
640 		__list_del(p->plist.prev, p->plist.next);
641 		kfree(p->data);
642 		kfree(p);
643 	}
644 }
645 
find_patch(unsigned int cpu)646 static struct ucode_patch *find_patch(unsigned int cpu)
647 {
648 	u16 equiv_id;
649 
650 	equiv_id = __find_equiv_id(cpu);
651 	if (!equiv_id)
652 		return NULL;
653 
654 	return cache_find_patch(equiv_id);
655 }
656 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)657 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
658 {
659 	struct cpuinfo_x86 *c = &cpu_data(cpu);
660 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
661 	struct ucode_patch *p;
662 
663 	csig->sig = cpuid_eax(0x00000001);
664 	csig->rev = c->microcode;
665 
666 	/*
667 	 * a patch could have been loaded early, set uci->mc so that
668 	 * mc_bp_resume() can call apply_microcode()
669 	 */
670 	p = find_patch(cpu);
671 	if (p && (p->patch_id == csig->rev))
672 		uci->mc = p->data;
673 
674 	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
675 
676 	return 0;
677 }
678 
apply_microcode_amd(int cpu)679 static enum ucode_state apply_microcode_amd(int cpu)
680 {
681 	struct cpuinfo_x86 *c = &cpu_data(cpu);
682 	struct microcode_amd *mc_amd;
683 	struct ucode_cpu_info *uci;
684 	struct ucode_patch *p;
685 	enum ucode_state ret;
686 	u32 rev, dummy __always_unused;
687 
688 	BUG_ON(raw_smp_processor_id() != cpu);
689 
690 	uci = ucode_cpu_info + cpu;
691 
692 	p = find_patch(cpu);
693 	if (!p)
694 		return UCODE_NFOUND;
695 
696 	mc_amd  = p->data;
697 	uci->mc = p->data;
698 
699 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
700 
701 	/* need to apply patch? */
702 	if (rev > mc_amd->hdr.patch_id) {
703 		ret = UCODE_OK;
704 		goto out;
705 	}
706 
707 	if (__apply_microcode_amd(mc_amd)) {
708 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
709 			cpu, mc_amd->hdr.patch_id);
710 		return UCODE_ERROR;
711 	}
712 
713 	rev = mc_amd->hdr.patch_id;
714 	ret = UCODE_UPDATED;
715 
716 	pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
717 
718 out:
719 	uci->cpu_sig.rev = rev;
720 	c->microcode	 = rev;
721 
722 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
723 	if (c->cpu_index == boot_cpu_data.cpu_index)
724 		boot_cpu_data.microcode = rev;
725 
726 	return ret;
727 }
728 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)729 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
730 {
731 	u32 equiv_tbl_len;
732 	const u32 *hdr;
733 
734 	if (!verify_equivalence_table(buf, buf_size, false))
735 		return 0;
736 
737 	hdr = (const u32 *)buf;
738 	equiv_tbl_len = hdr[2];
739 
740 	equiv_table.entry = vmalloc(equiv_tbl_len);
741 	if (!equiv_table.entry) {
742 		pr_err("failed to allocate equivalent CPU table\n");
743 		return 0;
744 	}
745 
746 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
747 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
748 
749 	/* add header length */
750 	return equiv_tbl_len + CONTAINER_HDR_SZ;
751 }
752 
free_equiv_cpu_table(void)753 static void free_equiv_cpu_table(void)
754 {
755 	vfree(equiv_table.entry);
756 	memset(&equiv_table, 0, sizeof(equiv_table));
757 }
758 
cleanup(void)759 static void cleanup(void)
760 {
761 	free_equiv_cpu_table();
762 	free_cache();
763 }
764 
765 /*
766  * Return a non-negative value even if some of the checks failed so that
767  * we can skip over the next patch. If we return a negative value, we
768  * signal a grave error like a memory allocation has failed and the
769  * driver cannot continue functioning normally. In such cases, we tear
770  * down everything we've used up so far and exit.
771  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)772 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
773 				unsigned int *patch_size)
774 {
775 	struct microcode_header_amd *mc_hdr;
776 	struct ucode_patch *patch;
777 	u16 proc_id;
778 	int ret;
779 
780 	ret = verify_patch(family, fw, leftover, patch_size, false);
781 	if (ret)
782 		return ret;
783 
784 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
785 	if (!patch) {
786 		pr_err("Patch allocation failure.\n");
787 		return -EINVAL;
788 	}
789 
790 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
791 	if (!patch->data) {
792 		pr_err("Patch data allocation failure.\n");
793 		kfree(patch);
794 		return -EINVAL;
795 	}
796 	patch->size = *patch_size;
797 
798 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
799 	proc_id     = mc_hdr->processor_rev_id;
800 
801 	INIT_LIST_HEAD(&patch->plist);
802 	patch->patch_id  = mc_hdr->patch_id;
803 	patch->equiv_cpu = proc_id;
804 
805 	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
806 		 __func__, patch->patch_id, proc_id);
807 
808 	/* ... and add to cache. */
809 	update_cache(patch);
810 
811 	return 0;
812 }
813 
__load_microcode_amd(u8 family,const u8 * data,size_t size)814 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
815 					     size_t size)
816 {
817 	u8 *fw = (u8 *)data;
818 	size_t offset;
819 
820 	offset = install_equiv_cpu_table(data, size);
821 	if (!offset)
822 		return UCODE_ERROR;
823 
824 	fw   += offset;
825 	size -= offset;
826 
827 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
828 		pr_err("invalid type field in container file section header\n");
829 		free_equiv_cpu_table();
830 		return UCODE_ERROR;
831 	}
832 
833 	while (size > 0) {
834 		unsigned int crnt_size = 0;
835 		int ret;
836 
837 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
838 		if (ret < 0)
839 			return UCODE_ERROR;
840 
841 		fw   +=  crnt_size + SECTION_HDR_SIZE;
842 		size -= (crnt_size + SECTION_HDR_SIZE);
843 	}
844 
845 	return UCODE_OK;
846 }
847 
load_microcode_amd(u8 family,const u8 * data,size_t size)848 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
849 {
850 	struct cpuinfo_x86 *c;
851 	unsigned int nid, cpu;
852 	struct ucode_patch *p;
853 	enum ucode_state ret;
854 
855 	/* free old equiv table */
856 	free_equiv_cpu_table();
857 
858 	ret = __load_microcode_amd(family, data, size);
859 	if (ret != UCODE_OK) {
860 		cleanup();
861 		return ret;
862 	}
863 
864 	for_each_node(nid) {
865 		cpu = cpumask_first(cpumask_of_node(nid));
866 		c = &cpu_data(cpu);
867 
868 		p = find_patch(cpu);
869 		if (!p)
870 			continue;
871 
872 		if (c->microcode >= p->patch_id)
873 			continue;
874 
875 		ret = UCODE_NEW;
876 
877 		memset(&amd_ucode_patch[nid], 0, PATCH_MAX_SIZE);
878 		memcpy(&amd_ucode_patch[nid], p->data, min_t(u32, p->size, PATCH_MAX_SIZE));
879 	}
880 
881 	return ret;
882 }
883 
884 /*
885  * AMD microcode firmware naming convention, up to family 15h they are in
886  * the legacy file:
887  *
888  *    amd-ucode/microcode_amd.bin
889  *
890  * This legacy file is always smaller than 2K in size.
891  *
892  * Beginning with family 15h, they are in family-specific firmware files:
893  *
894  *    amd-ucode/microcode_amd_fam15h.bin
895  *    amd-ucode/microcode_amd_fam16h.bin
896  *    ...
897  *
898  * These might be larger than 2K.
899  */
request_microcode_amd(int cpu,struct device * device,bool refresh_fw)900 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
901 					      bool refresh_fw)
902 {
903 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
904 	struct cpuinfo_x86 *c = &cpu_data(cpu);
905 	enum ucode_state ret = UCODE_NFOUND;
906 	const struct firmware *fw;
907 
908 	/* reload ucode container only on the boot cpu */
909 	if (!refresh_fw)
910 		return UCODE_OK;
911 
912 	if (c->x86 >= 0x15)
913 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
914 
915 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
916 		pr_debug("failed to load file %s\n", fw_name);
917 		goto out;
918 	}
919 
920 	ret = UCODE_ERROR;
921 	if (!verify_container(fw->data, fw->size, false))
922 		goto fw_release;
923 
924 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
925 
926  fw_release:
927 	release_firmware(fw);
928 
929  out:
930 	return ret;
931 }
932 
933 static enum ucode_state
request_microcode_user(int cpu,const void __user * buf,size_t size)934 request_microcode_user(int cpu, const void __user *buf, size_t size)
935 {
936 	return UCODE_ERROR;
937 }
938 
microcode_fini_cpu_amd(int cpu)939 static void microcode_fini_cpu_amd(int cpu)
940 {
941 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
942 
943 	uci->mc = NULL;
944 }
945 
946 static struct microcode_ops microcode_amd_ops = {
947 	.request_microcode_user           = request_microcode_user,
948 	.request_microcode_fw             = request_microcode_amd,
949 	.collect_cpu_info                 = collect_cpu_info_amd,
950 	.apply_microcode                  = apply_microcode_amd,
951 	.microcode_fini_cpu               = microcode_fini_cpu_amd,
952 };
953 
init_amd_microcode(void)954 struct microcode_ops * __init init_amd_microcode(void)
955 {
956 	struct cpuinfo_x86 *c = &boot_cpu_data;
957 
958 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
959 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
960 		return NULL;
961 	}
962 
963 	if (ucode_new_rev)
964 		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
965 			     ucode_new_rev);
966 
967 	return &microcode_amd_ops;
968 }
969 
exit_amd_microcode(void)970 void __exit exit_amd_microcode(void)
971 {
972 	cleanup();
973 }
974