1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD CPU Microcode Update Driver for Linux
4 *
5 * This driver allows to upgrade microcode on F10h AMD
6 * CPUs and later.
7 *
8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9 * 2013-2018 Borislav Petkov <bp@alien8.de>
10 *
11 * Author: Peter Oruba <peter.oruba@amd.com>
12 *
13 * Based on work by:
14 * Tigran Aivazian <aivazian.tigran@gmail.com>
15 *
16 * early loader:
17 * Copyright (C) 2013 Advanced Micro Devices, Inc.
18 *
19 * Author: Jacob Shin <jacob.shin@amd.com>
20 * Fixes: Borislav Petkov <bp@suse.de>
21 */
22 #define pr_fmt(fmt) "microcode: " fmt
23
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31
32 #include <asm/microcode_amd.h>
33 #include <asm/microcode.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/cpu.h>
37 #include <asm/msr.h>
38
39 static struct equiv_cpu_table {
40 unsigned int num_entries;
41 struct equiv_cpu_entry *entry;
42 } equiv_table;
43
44 /*
45 * This points to the current valid container of microcode patches which we will
46 * save from the initrd/builtin before jettisoning its contents. @mc is the
47 * microcode patch we found to match.
48 */
49 struct cont_desc {
50 struct microcode_amd *mc;
51 u32 cpuid_1_eax;
52 u32 psize;
53 u8 *data;
54 size_t size;
55 };
56
57 static u32 ucode_new_rev;
58
59 /* One blob per node. */
60 static u8 amd_ucode_patch[MAX_NUMNODES][PATCH_MAX_SIZE];
61
62 /*
63 * Microcode patch container file is prepended to the initrd in cpio
64 * format. See Documentation/x86/microcode.rst
65 */
66 static const char
67 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
68
find_equiv_id(struct equiv_cpu_table * et,u32 sig)69 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
70 {
71 unsigned int i;
72
73 if (!et || !et->num_entries)
74 return 0;
75
76 for (i = 0; i < et->num_entries; i++) {
77 struct equiv_cpu_entry *e = &et->entry[i];
78
79 if (sig == e->installed_cpu)
80 return e->equiv_cpu;
81
82 e++;
83 }
84 return 0;
85 }
86
87 /*
88 * Check whether there is a valid microcode container file at the beginning
89 * of @buf of size @buf_size. Set @early to use this function in the early path.
90 */
verify_container(const u8 * buf,size_t buf_size,bool early)91 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
92 {
93 u32 cont_magic;
94
95 if (buf_size <= CONTAINER_HDR_SZ) {
96 if (!early)
97 pr_debug("Truncated microcode container header.\n");
98
99 return false;
100 }
101
102 cont_magic = *(const u32 *)buf;
103 if (cont_magic != UCODE_MAGIC) {
104 if (!early)
105 pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
106
107 return false;
108 }
109
110 return true;
111 }
112
113 /*
114 * Check whether there is a valid, non-truncated CPU equivalence table at the
115 * beginning of @buf of size @buf_size. Set @early to use this function in the
116 * early path.
117 */
verify_equivalence_table(const u8 * buf,size_t buf_size,bool early)118 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
119 {
120 const u32 *hdr = (const u32 *)buf;
121 u32 cont_type, equiv_tbl_len;
122
123 if (!verify_container(buf, buf_size, early))
124 return false;
125
126 cont_type = hdr[1];
127 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
128 if (!early)
129 pr_debug("Wrong microcode container equivalence table type: %u.\n",
130 cont_type);
131
132 return false;
133 }
134
135 buf_size -= CONTAINER_HDR_SZ;
136
137 equiv_tbl_len = hdr[2];
138 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
139 buf_size < equiv_tbl_len) {
140 if (!early)
141 pr_debug("Truncated equivalence table.\n");
142
143 return false;
144 }
145
146 return true;
147 }
148
149 /*
150 * Check whether there is a valid, non-truncated microcode patch section at the
151 * beginning of @buf of size @buf_size. Set @early to use this function in the
152 * early path.
153 *
154 * On success, @sh_psize returns the patch size according to the section header,
155 * to the caller.
156 */
157 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize,bool early)158 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
159 {
160 u32 p_type, p_size;
161 const u32 *hdr;
162
163 if (buf_size < SECTION_HDR_SIZE) {
164 if (!early)
165 pr_debug("Truncated patch section.\n");
166
167 return false;
168 }
169
170 hdr = (const u32 *)buf;
171 p_type = hdr[0];
172 p_size = hdr[1];
173
174 if (p_type != UCODE_UCODE_TYPE) {
175 if (!early)
176 pr_debug("Invalid type field (0x%x) in container file section header.\n",
177 p_type);
178
179 return false;
180 }
181
182 if (p_size < sizeof(struct microcode_header_amd)) {
183 if (!early)
184 pr_debug("Patch of size %u too short.\n", p_size);
185
186 return false;
187 }
188
189 *sh_psize = p_size;
190
191 return true;
192 }
193
194 /*
195 * Check whether the passed remaining file @buf_size is large enough to contain
196 * a patch of the indicated @sh_psize (and also whether this size does not
197 * exceed the per-family maximum). @sh_psize is the size read from the section
198 * header.
199 */
__verify_patch_size(u8 family,u32 sh_psize,size_t buf_size)200 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
201 {
202 u32 max_size;
203
204 if (family >= 0x15)
205 return min_t(u32, sh_psize, buf_size);
206
207 #define F1XH_MPB_MAX_SIZE 2048
208 #define F14H_MPB_MAX_SIZE 1824
209
210 switch (family) {
211 case 0x10 ... 0x12:
212 max_size = F1XH_MPB_MAX_SIZE;
213 break;
214 case 0x14:
215 max_size = F14H_MPB_MAX_SIZE;
216 break;
217 default:
218 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
219 return 0;
220 }
221
222 if (sh_psize > min_t(u32, buf_size, max_size))
223 return 0;
224
225 return sh_psize;
226 }
227
228 /*
229 * Verify the patch in @buf.
230 *
231 * Returns:
232 * negative: on error
233 * positive: patch is not for this family, skip it
234 * 0: success
235 */
236 static int
verify_patch(u8 family,const u8 * buf,size_t buf_size,u32 * patch_size,bool early)237 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
238 {
239 struct microcode_header_amd *mc_hdr;
240 unsigned int ret;
241 u32 sh_psize;
242 u16 proc_id;
243 u8 patch_fam;
244
245 if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
246 return -1;
247
248 /*
249 * The section header length is not included in this indicated size
250 * but is present in the leftover file length so we need to subtract
251 * it before passing this value to the function below.
252 */
253 buf_size -= SECTION_HDR_SIZE;
254
255 /*
256 * Check if the remaining buffer is big enough to contain a patch of
257 * size sh_psize, as the section claims.
258 */
259 if (buf_size < sh_psize) {
260 if (!early)
261 pr_debug("Patch of size %u truncated.\n", sh_psize);
262
263 return -1;
264 }
265
266 ret = __verify_patch_size(family, sh_psize, buf_size);
267 if (!ret) {
268 if (!early)
269 pr_debug("Per-family patch size mismatch.\n");
270 return -1;
271 }
272
273 *patch_size = sh_psize;
274
275 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
276 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
277 if (!early)
278 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
279 return -1;
280 }
281
282 proc_id = mc_hdr->processor_rev_id;
283 patch_fam = 0xf + (proc_id >> 12);
284 if (patch_fam != family)
285 return 1;
286
287 return 0;
288 }
289
290 /*
291 * This scans the ucode blob for the proper container as we can have multiple
292 * containers glued together. Returns the equivalence ID from the equivalence
293 * table or 0 if none found.
294 * Returns the amount of bytes consumed while scanning. @desc contains all the
295 * data we're going to use in later stages of the application.
296 */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)297 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
298 {
299 struct equiv_cpu_table table;
300 size_t orig_size = size;
301 u32 *hdr = (u32 *)ucode;
302 u16 eq_id;
303 u8 *buf;
304
305 if (!verify_equivalence_table(ucode, size, true))
306 return 0;
307
308 buf = ucode;
309
310 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
311 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
312
313 /*
314 * Find the equivalence ID of our CPU in this table. Even if this table
315 * doesn't contain a patch for the CPU, scan through the whole container
316 * so that it can be skipped in case there are other containers appended.
317 */
318 eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
319
320 buf += hdr[2] + CONTAINER_HDR_SZ;
321 size -= hdr[2] + CONTAINER_HDR_SZ;
322
323 /*
324 * Scan through the rest of the container to find where it ends. We do
325 * some basic sanity-checking too.
326 */
327 while (size > 0) {
328 struct microcode_amd *mc;
329 u32 patch_size;
330 int ret;
331
332 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
333 if (ret < 0) {
334 /*
335 * Patch verification failed, skip to the next
336 * container, if there's one:
337 */
338 goto out;
339 } else if (ret > 0) {
340 goto skip;
341 }
342
343 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
344 if (eq_id == mc->hdr.processor_rev_id) {
345 desc->psize = patch_size;
346 desc->mc = mc;
347 }
348
349 skip:
350 /* Skip patch section header too: */
351 buf += patch_size + SECTION_HDR_SIZE;
352 size -= patch_size + SECTION_HDR_SIZE;
353 }
354
355 /*
356 * If we have found a patch (desc->mc), it means we're looking at the
357 * container which has a patch for this CPU so return 0 to mean, @ucode
358 * already points to the proper container. Otherwise, we return the size
359 * we scanned so that we can advance to the next container in the
360 * buffer.
361 */
362 if (desc->mc) {
363 desc->data = ucode;
364 desc->size = orig_size - size;
365
366 return 0;
367 }
368
369 out:
370 return orig_size - size;
371 }
372
373 /*
374 * Scan the ucode blob for the proper container as we can have multiple
375 * containers glued together.
376 */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)377 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
378 {
379 while (size) {
380 size_t s = parse_container(ucode, size, desc);
381 if (!s)
382 return;
383
384 /* catch wraparound */
385 if (size >= s) {
386 ucode += s;
387 size -= s;
388 } else {
389 return;
390 }
391 }
392 }
393
__apply_microcode_amd(struct microcode_amd * mc)394 static int __apply_microcode_amd(struct microcode_amd *mc)
395 {
396 u32 rev, dummy;
397
398 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
399
400 /* verify patch application was successful */
401 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
402 if (rev != mc->hdr.patch_id)
403 return -1;
404
405 return 0;
406 }
407
408 /*
409 * Early load occurs before we can vmalloc(). So we look for the microcode
410 * patch container file in initrd, traverse equivalent cpu table, look for a
411 * matching microcode patch, and update, all in initrd memory in place.
412 * When vmalloc() is available for use later -- on 64-bit during first AP load,
413 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
414 * load_microcode_amd() to save equivalent cpu table and microcode patches in
415 * kernel heap memory.
416 *
417 * Returns true if container found (sets @desc), false otherwise.
418 */
419 static bool
apply_microcode_early_amd(u32 cpuid_1_eax,void * ucode,size_t size,bool save_patch)420 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
421 {
422 struct cont_desc desc = { 0 };
423 u8 (*patch)[PATCH_MAX_SIZE];
424 struct microcode_amd *mc;
425 u32 rev, dummy, *new_rev;
426 bool ret = false;
427
428 #ifdef CONFIG_X86_32
429 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
430 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
431 #else
432 new_rev = &ucode_new_rev;
433 patch = &amd_ucode_patch[0];
434 #endif
435
436 desc.cpuid_1_eax = cpuid_1_eax;
437
438 scan_containers(ucode, size, &desc);
439
440 mc = desc.mc;
441 if (!mc)
442 return ret;
443
444 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
445
446 /*
447 * Allow application of the same revision to pick up SMT-specific
448 * changes even if the revision of the other SMT thread is already
449 * up-to-date.
450 */
451 if (rev > mc->hdr.patch_id)
452 return ret;
453
454 if (!__apply_microcode_amd(mc)) {
455 *new_rev = mc->hdr.patch_id;
456 ret = true;
457
458 if (save_patch)
459 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
460 }
461
462 return ret;
463 }
464
get_builtin_microcode(struct cpio_data * cp,unsigned int family)465 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
466 {
467 #ifdef CONFIG_X86_64
468 char fw_name[36] = "amd-ucode/microcode_amd.bin";
469
470 if (family >= 0x15)
471 snprintf(fw_name, sizeof(fw_name),
472 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
473
474 return get_builtin_firmware(cp, fw_name);
475 #else
476 return false;
477 #endif
478 }
479
__load_ucode_amd(unsigned int cpuid_1_eax,struct cpio_data * ret)480 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
481 {
482 struct ucode_cpu_info *uci;
483 struct cpio_data cp;
484 const char *path;
485 bool use_pa;
486
487 if (IS_ENABLED(CONFIG_X86_32)) {
488 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
489 path = (const char *)__pa_nodebug(ucode_path);
490 use_pa = true;
491 } else {
492 uci = ucode_cpu_info;
493 path = ucode_path;
494 use_pa = false;
495 }
496
497 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
498 cp = find_microcode_in_initrd(path, use_pa);
499
500 /* Needed in load_microcode_amd() */
501 uci->cpu_sig.sig = cpuid_1_eax;
502
503 *ret = cp;
504 }
505
load_ucode_amd_bsp(unsigned int cpuid_1_eax)506 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
507 {
508 struct cpio_data cp = { };
509
510 __load_ucode_amd(cpuid_1_eax, &cp);
511 if (!(cp.data && cp.size))
512 return;
513
514 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
515 }
516
load_ucode_amd_ap(unsigned int cpuid_1_eax)517 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
518 {
519 struct microcode_amd *mc;
520 struct cpio_data cp;
521 u32 *new_rev, rev, dummy;
522
523 if (IS_ENABLED(CONFIG_X86_32)) {
524 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
525 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
526 } else {
527 mc = (struct microcode_amd *)amd_ucode_patch;
528 new_rev = &ucode_new_rev;
529 }
530
531 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
532
533 /*
534 * Check whether a new patch has been saved already. Also, allow application of
535 * the same revision in order to pick up SMT-thread-specific configuration even
536 * if the sibling SMT thread already has an up-to-date revision.
537 */
538 if (*new_rev && rev <= mc->hdr.patch_id) {
539 if (!__apply_microcode_amd(mc)) {
540 *new_rev = mc->hdr.patch_id;
541 return;
542 }
543 }
544
545 __load_ucode_amd(cpuid_1_eax, &cp);
546 if (!(cp.data && cp.size))
547 return;
548
549 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
550 }
551
552 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
553
save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)554 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
555 {
556 struct cont_desc desc = { 0 };
557 enum ucode_state ret;
558 struct cpio_data cp;
559
560 cp = find_microcode_in_initrd(ucode_path, false);
561 if (!(cp.data && cp.size))
562 return -EINVAL;
563
564 desc.cpuid_1_eax = cpuid_1_eax;
565
566 scan_containers(cp.data, cp.size, &desc);
567 if (!desc.mc)
568 return -EINVAL;
569
570 ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
571 if (ret > UCODE_UPDATED)
572 return -EINVAL;
573
574 return 0;
575 }
576
reload_ucode_amd(unsigned int cpu)577 void reload_ucode_amd(unsigned int cpu)
578 {
579 u32 rev, dummy __always_unused;
580 struct microcode_amd *mc;
581
582 mc = (struct microcode_amd *)amd_ucode_patch[cpu_to_node(cpu)];
583
584 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
585
586 if (rev < mc->hdr.patch_id) {
587 if (!__apply_microcode_amd(mc)) {
588 ucode_new_rev = mc->hdr.patch_id;
589 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
590 }
591 }
592 }
__find_equiv_id(unsigned int cpu)593 static u16 __find_equiv_id(unsigned int cpu)
594 {
595 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
596 return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
597 }
598
599 /*
600 * a small, trivial cache of per-family ucode patches
601 */
cache_find_patch(u16 equiv_cpu)602 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
603 {
604 struct ucode_patch *p;
605
606 list_for_each_entry(p, µcode_cache, plist)
607 if (p->equiv_cpu == equiv_cpu)
608 return p;
609 return NULL;
610 }
611
update_cache(struct ucode_patch * new_patch)612 static void update_cache(struct ucode_patch *new_patch)
613 {
614 struct ucode_patch *p;
615
616 list_for_each_entry(p, µcode_cache, plist) {
617 if (p->equiv_cpu == new_patch->equiv_cpu) {
618 if (p->patch_id >= new_patch->patch_id) {
619 /* we already have the latest patch */
620 kfree(new_patch->data);
621 kfree(new_patch);
622 return;
623 }
624
625 list_replace(&p->plist, &new_patch->plist);
626 kfree(p->data);
627 kfree(p);
628 return;
629 }
630 }
631 /* no patch found, add it */
632 list_add_tail(&new_patch->plist, µcode_cache);
633 }
634
free_cache(void)635 static void free_cache(void)
636 {
637 struct ucode_patch *p, *tmp;
638
639 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
640 __list_del(p->plist.prev, p->plist.next);
641 kfree(p->data);
642 kfree(p);
643 }
644 }
645
find_patch(unsigned int cpu)646 static struct ucode_patch *find_patch(unsigned int cpu)
647 {
648 u16 equiv_id;
649
650 equiv_id = __find_equiv_id(cpu);
651 if (!equiv_id)
652 return NULL;
653
654 return cache_find_patch(equiv_id);
655 }
656
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)657 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
658 {
659 struct cpuinfo_x86 *c = &cpu_data(cpu);
660 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
661 struct ucode_patch *p;
662
663 csig->sig = cpuid_eax(0x00000001);
664 csig->rev = c->microcode;
665
666 /*
667 * a patch could have been loaded early, set uci->mc so that
668 * mc_bp_resume() can call apply_microcode()
669 */
670 p = find_patch(cpu);
671 if (p && (p->patch_id == csig->rev))
672 uci->mc = p->data;
673
674 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
675
676 return 0;
677 }
678
apply_microcode_amd(int cpu)679 static enum ucode_state apply_microcode_amd(int cpu)
680 {
681 struct cpuinfo_x86 *c = &cpu_data(cpu);
682 struct microcode_amd *mc_amd;
683 struct ucode_cpu_info *uci;
684 struct ucode_patch *p;
685 enum ucode_state ret;
686 u32 rev, dummy __always_unused;
687
688 BUG_ON(raw_smp_processor_id() != cpu);
689
690 uci = ucode_cpu_info + cpu;
691
692 p = find_patch(cpu);
693 if (!p)
694 return UCODE_NFOUND;
695
696 mc_amd = p->data;
697 uci->mc = p->data;
698
699 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
700
701 /* need to apply patch? */
702 if (rev > mc_amd->hdr.patch_id) {
703 ret = UCODE_OK;
704 goto out;
705 }
706
707 if (__apply_microcode_amd(mc_amd)) {
708 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
709 cpu, mc_amd->hdr.patch_id);
710 return UCODE_ERROR;
711 }
712
713 rev = mc_amd->hdr.patch_id;
714 ret = UCODE_UPDATED;
715
716 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
717
718 out:
719 uci->cpu_sig.rev = rev;
720 c->microcode = rev;
721
722 /* Update boot_cpu_data's revision too, if we're on the BSP: */
723 if (c->cpu_index == boot_cpu_data.cpu_index)
724 boot_cpu_data.microcode = rev;
725
726 return ret;
727 }
728
install_equiv_cpu_table(const u8 * buf,size_t buf_size)729 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
730 {
731 u32 equiv_tbl_len;
732 const u32 *hdr;
733
734 if (!verify_equivalence_table(buf, buf_size, false))
735 return 0;
736
737 hdr = (const u32 *)buf;
738 equiv_tbl_len = hdr[2];
739
740 equiv_table.entry = vmalloc(equiv_tbl_len);
741 if (!equiv_table.entry) {
742 pr_err("failed to allocate equivalent CPU table\n");
743 return 0;
744 }
745
746 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
747 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
748
749 /* add header length */
750 return equiv_tbl_len + CONTAINER_HDR_SZ;
751 }
752
free_equiv_cpu_table(void)753 static void free_equiv_cpu_table(void)
754 {
755 vfree(equiv_table.entry);
756 memset(&equiv_table, 0, sizeof(equiv_table));
757 }
758
cleanup(void)759 static void cleanup(void)
760 {
761 free_equiv_cpu_table();
762 free_cache();
763 }
764
765 /*
766 * Return a non-negative value even if some of the checks failed so that
767 * we can skip over the next patch. If we return a negative value, we
768 * signal a grave error like a memory allocation has failed and the
769 * driver cannot continue functioning normally. In such cases, we tear
770 * down everything we've used up so far and exit.
771 */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)772 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
773 unsigned int *patch_size)
774 {
775 struct microcode_header_amd *mc_hdr;
776 struct ucode_patch *patch;
777 u16 proc_id;
778 int ret;
779
780 ret = verify_patch(family, fw, leftover, patch_size, false);
781 if (ret)
782 return ret;
783
784 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
785 if (!patch) {
786 pr_err("Patch allocation failure.\n");
787 return -EINVAL;
788 }
789
790 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
791 if (!patch->data) {
792 pr_err("Patch data allocation failure.\n");
793 kfree(patch);
794 return -EINVAL;
795 }
796 patch->size = *patch_size;
797
798 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
799 proc_id = mc_hdr->processor_rev_id;
800
801 INIT_LIST_HEAD(&patch->plist);
802 patch->patch_id = mc_hdr->patch_id;
803 patch->equiv_cpu = proc_id;
804
805 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
806 __func__, patch->patch_id, proc_id);
807
808 /* ... and add to cache. */
809 update_cache(patch);
810
811 return 0;
812 }
813
__load_microcode_amd(u8 family,const u8 * data,size_t size)814 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
815 size_t size)
816 {
817 u8 *fw = (u8 *)data;
818 size_t offset;
819
820 offset = install_equiv_cpu_table(data, size);
821 if (!offset)
822 return UCODE_ERROR;
823
824 fw += offset;
825 size -= offset;
826
827 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
828 pr_err("invalid type field in container file section header\n");
829 free_equiv_cpu_table();
830 return UCODE_ERROR;
831 }
832
833 while (size > 0) {
834 unsigned int crnt_size = 0;
835 int ret;
836
837 ret = verify_and_add_patch(family, fw, size, &crnt_size);
838 if (ret < 0)
839 return UCODE_ERROR;
840
841 fw += crnt_size + SECTION_HDR_SIZE;
842 size -= (crnt_size + SECTION_HDR_SIZE);
843 }
844
845 return UCODE_OK;
846 }
847
load_microcode_amd(u8 family,const u8 * data,size_t size)848 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
849 {
850 struct cpuinfo_x86 *c;
851 unsigned int nid, cpu;
852 struct ucode_patch *p;
853 enum ucode_state ret;
854
855 /* free old equiv table */
856 free_equiv_cpu_table();
857
858 ret = __load_microcode_amd(family, data, size);
859 if (ret != UCODE_OK) {
860 cleanup();
861 return ret;
862 }
863
864 for_each_node(nid) {
865 cpu = cpumask_first(cpumask_of_node(nid));
866 c = &cpu_data(cpu);
867
868 p = find_patch(cpu);
869 if (!p)
870 continue;
871
872 if (c->microcode >= p->patch_id)
873 continue;
874
875 ret = UCODE_NEW;
876
877 memset(&amd_ucode_patch[nid], 0, PATCH_MAX_SIZE);
878 memcpy(&amd_ucode_patch[nid], p->data, min_t(u32, p->size, PATCH_MAX_SIZE));
879 }
880
881 return ret;
882 }
883
884 /*
885 * AMD microcode firmware naming convention, up to family 15h they are in
886 * the legacy file:
887 *
888 * amd-ucode/microcode_amd.bin
889 *
890 * This legacy file is always smaller than 2K in size.
891 *
892 * Beginning with family 15h, they are in family-specific firmware files:
893 *
894 * amd-ucode/microcode_amd_fam15h.bin
895 * amd-ucode/microcode_amd_fam16h.bin
896 * ...
897 *
898 * These might be larger than 2K.
899 */
request_microcode_amd(int cpu,struct device * device,bool refresh_fw)900 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
901 bool refresh_fw)
902 {
903 char fw_name[36] = "amd-ucode/microcode_amd.bin";
904 struct cpuinfo_x86 *c = &cpu_data(cpu);
905 enum ucode_state ret = UCODE_NFOUND;
906 const struct firmware *fw;
907
908 /* reload ucode container only on the boot cpu */
909 if (!refresh_fw)
910 return UCODE_OK;
911
912 if (c->x86 >= 0x15)
913 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
914
915 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
916 pr_debug("failed to load file %s\n", fw_name);
917 goto out;
918 }
919
920 ret = UCODE_ERROR;
921 if (!verify_container(fw->data, fw->size, false))
922 goto fw_release;
923
924 ret = load_microcode_amd(c->x86, fw->data, fw->size);
925
926 fw_release:
927 release_firmware(fw);
928
929 out:
930 return ret;
931 }
932
933 static enum ucode_state
request_microcode_user(int cpu,const void __user * buf,size_t size)934 request_microcode_user(int cpu, const void __user *buf, size_t size)
935 {
936 return UCODE_ERROR;
937 }
938
microcode_fini_cpu_amd(int cpu)939 static void microcode_fini_cpu_amd(int cpu)
940 {
941 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
942
943 uci->mc = NULL;
944 }
945
946 static struct microcode_ops microcode_amd_ops = {
947 .request_microcode_user = request_microcode_user,
948 .request_microcode_fw = request_microcode_amd,
949 .collect_cpu_info = collect_cpu_info_amd,
950 .apply_microcode = apply_microcode_amd,
951 .microcode_fini_cpu = microcode_fini_cpu_amd,
952 };
953
init_amd_microcode(void)954 struct microcode_ops * __init init_amd_microcode(void)
955 {
956 struct cpuinfo_x86 *c = &boot_cpu_data;
957
958 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
959 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
960 return NULL;
961 }
962
963 if (ucode_new_rev)
964 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
965 ucode_new_rev);
966
967 return µcode_amd_ops;
968 }
969
exit_amd_microcode(void)970 void __exit exit_amd_microcode(void)
971 {
972 cleanup();
973 }
974