1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * parameters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO if doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The output looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
173 */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
211
212 enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
224 MARGIN_MIN_PCT = 10,
225 MARGIN_LOW_PCT = 20,
226 MARGIN_TARGET_PCT = 50,
227
228 INUSE_ADJ_STEP_PCT = 25,
229
230 /* Have some play in timer operations */
231 TIMER_SLACK_PCT = 1,
232
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
235 };
236
237 enum {
238 /*
239 * As vtime is used to calculate the cost of each IO, it needs to
240 * be fairly high precision. For example, it should be able to
241 * represent the cost of a single page worth of discard with
242 * suffificient accuracy. At the same time, it should be able to
243 * represent reasonably long enough durations to be useful and
244 * convenient during operation.
245 *
246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
247 * granularity and days of wrap-around time even at extreme vrates.
248 */
249 VTIME_PER_SEC_SHIFT = 37,
250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
253
254 /* bound vrate adjustments within two orders of magnitude */
255 VRATE_MIN_PPM = 10000, /* 1% */
256 VRATE_MAX_PPM = 100000000, /* 10000% */
257
258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 VRATE_CLAMP_ADJ_PCT = 4,
260
261 /* switch iff the conditions are met for longer than this */
262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
263 };
264
265 enum {
266 /* if IOs end up waiting for requests, issue less */
267 RQ_WAIT_BUSY_PCT = 5,
268
269 /* unbusy hysterisis */
270 UNBUSY_THR_PCT = 75,
271
272 /*
273 * The effect of delay is indirect and non-linear and a huge amount of
274 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 * up delay as debt is going up and then let it decay exponentially.
276 * This gives us quick ramp ups while delay is accumulating and long
277 * tails which can help reducing the frequency of debt explosions on
278 * unthrottle. The parameters are experimentally determined.
279 *
280 * The delay mechanism provides adequate protection and behavior in many
281 * cases. However, this is far from ideal and falls shorts on both
282 * fronts. The debtors are often throttled too harshly costing a
283 * significant level of fairness and possibly total work while the
284 * protection against their impacts on the system can be choppy and
285 * unreliable.
286 *
287 * The shortcoming primarily stems from the fact that, unlike for page
288 * cache, the kernel doesn't have well-defined back-pressure propagation
289 * mechanism and policies for anonymous memory. Fully addressing this
290 * issue will likely require substantial improvements in the area.
291 */
292 MIN_DELAY_THR_PCT = 500,
293 MAX_DELAY_THR_PCT = 25000,
294 MIN_DELAY = 250,
295 MAX_DELAY = 250 * USEC_PER_MSEC,
296
297 /* halve debts if avg usage over 100ms is under 50% */
298 DFGV_USAGE_PCT = 50,
299 DFGV_PERIOD = 100 * USEC_PER_MSEC,
300
301 /* don't let cmds which take a very long time pin lagging for too long */
302 MAX_LAGGING_PERIODS = 10,
303
304 /*
305 * Count IO size in 4k pages. The 12bit shift helps keeping
306 * size-proportional components of cost calculation in closer
307 * numbers of digits to per-IO cost components.
308 */
309 IOC_PAGE_SHIFT = 12,
310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313 /* if apart further than 16M, consider randio for linear model */
314 LCOEF_RANDIO_PAGES = 4096,
315 };
316
317 enum ioc_running {
318 IOC_IDLE,
319 IOC_RUNNING,
320 IOC_STOP,
321 };
322
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325 QOS_ENABLE,
326 QOS_CTRL,
327 NR_QOS_CTRL_PARAMS,
328 };
329
330 /* io.cost.qos params */
331 enum {
332 QOS_RPPM,
333 QOS_RLAT,
334 QOS_WPPM,
335 QOS_WLAT,
336 QOS_MIN,
337 QOS_MAX,
338 NR_QOS_PARAMS,
339 };
340
341 /* io.cost.model controls */
342 enum {
343 COST_CTRL,
344 COST_MODEL,
345 NR_COST_CTRL_PARAMS,
346 };
347
348 /* builtin linear cost model coefficients */
349 enum {
350 I_LCOEF_RBPS,
351 I_LCOEF_RSEQIOPS,
352 I_LCOEF_RRANDIOPS,
353 I_LCOEF_WBPS,
354 I_LCOEF_WSEQIOPS,
355 I_LCOEF_WRANDIOPS,
356 NR_I_LCOEFS,
357 };
358
359 enum {
360 LCOEF_RPAGE,
361 LCOEF_RSEQIO,
362 LCOEF_RRANDIO,
363 LCOEF_WPAGE,
364 LCOEF_WSEQIO,
365 LCOEF_WRANDIO,
366 NR_LCOEFS,
367 };
368
369 enum {
370 AUTOP_INVALID,
371 AUTOP_HDD,
372 AUTOP_SSD_QD1,
373 AUTOP_SSD_DFL,
374 AUTOP_SSD_FAST,
375 };
376
377 struct ioc_params {
378 u32 qos[NR_QOS_PARAMS];
379 u64 i_lcoefs[NR_I_LCOEFS];
380 u64 lcoefs[NR_LCOEFS];
381 u32 too_fast_vrate_pct;
382 u32 too_slow_vrate_pct;
383 };
384
385 struct ioc_margins {
386 s64 min;
387 s64 low;
388 s64 target;
389 };
390
391 struct ioc_missed {
392 local_t nr_met;
393 local_t nr_missed;
394 u32 last_met;
395 u32 last_missed;
396 };
397
398 struct ioc_pcpu_stat {
399 struct ioc_missed missed[2];
400
401 local64_t rq_wait_ns;
402 u64 last_rq_wait_ns;
403 };
404
405 /* per device */
406 struct ioc {
407 struct rq_qos rqos;
408
409 bool enabled;
410
411 struct ioc_params params;
412 struct ioc_margins margins;
413 u32 period_us;
414 u32 timer_slack_ns;
415 u64 vrate_min;
416 u64 vrate_max;
417
418 spinlock_t lock;
419 struct timer_list timer;
420 struct list_head active_iocgs; /* active cgroups */
421 struct ioc_pcpu_stat __percpu *pcpu_stat;
422
423 enum ioc_running running;
424 atomic64_t vtime_rate;
425 u64 vtime_base_rate;
426 s64 vtime_err;
427
428 seqcount_spinlock_t period_seqcount;
429 u64 period_at; /* wallclock starttime */
430 u64 period_at_vtime; /* vtime starttime */
431
432 atomic64_t cur_period; /* inc'd each period */
433 int busy_level; /* saturation history */
434
435 bool weights_updated;
436 atomic_t hweight_gen; /* for lazy hweights */
437
438 /* debt forgivness */
439 u64 dfgv_period_at;
440 u64 dfgv_period_rem;
441 u64 dfgv_usage_us_sum;
442
443 u64 autop_too_fast_at;
444 u64 autop_too_slow_at;
445 int autop_idx;
446 bool user_qos_params:1;
447 bool user_cost_model:1;
448 };
449
450 struct iocg_pcpu_stat {
451 local64_t abs_vusage;
452 };
453
454 struct iocg_stat {
455 u64 usage_us;
456 u64 wait_us;
457 u64 indebt_us;
458 u64 indelay_us;
459 };
460
461 /* per device-cgroup pair */
462 struct ioc_gq {
463 struct blkg_policy_data pd;
464 struct ioc *ioc;
465
466 /*
467 * A iocg can get its weight from two sources - an explicit
468 * per-device-cgroup configuration or the default weight of the
469 * cgroup. `cfg_weight` is the explicit per-device-cgroup
470 * configuration. `weight` is the effective considering both
471 * sources.
472 *
473 * When an idle cgroup becomes active its `active` goes from 0 to
474 * `weight`. `inuse` is the surplus adjusted active weight.
475 * `active` and `inuse` are used to calculate `hweight_active` and
476 * `hweight_inuse`.
477 *
478 * `last_inuse` remembers `inuse` while an iocg is idle to persist
479 * surplus adjustments.
480 *
481 * `inuse` may be adjusted dynamically during period. `saved_*` are used
482 * to determine and track adjustments.
483 */
484 u32 cfg_weight;
485 u32 weight;
486 u32 active;
487 u32 inuse;
488
489 u32 last_inuse;
490 s64 saved_margin;
491
492 sector_t cursor; /* to detect randio */
493
494 /*
495 * `vtime` is this iocg's vtime cursor which progresses as IOs are
496 * issued. If lagging behind device vtime, the delta represents
497 * the currently available IO budget. If running ahead, the
498 * overage.
499 *
500 * `vtime_done` is the same but progressed on completion rather
501 * than issue. The delta behind `vtime` represents the cost of
502 * currently in-flight IOs.
503 */
504 atomic64_t vtime;
505 atomic64_t done_vtime;
506 u64 abs_vdebt;
507
508 /* current delay in effect and when it started */
509 u64 delay;
510 u64 delay_at;
511
512 /*
513 * The period this iocg was last active in. Used for deactivation
514 * and invalidating `vtime`.
515 */
516 atomic64_t active_period;
517 struct list_head active_list;
518
519 /* see __propagate_weights() and current_hweight() for details */
520 u64 child_active_sum;
521 u64 child_inuse_sum;
522 u64 child_adjusted_sum;
523 int hweight_gen;
524 u32 hweight_active;
525 u32 hweight_inuse;
526 u32 hweight_donating;
527 u32 hweight_after_donation;
528
529 struct list_head walk_list;
530 struct list_head surplus_list;
531
532 struct wait_queue_head waitq;
533 struct hrtimer waitq_timer;
534
535 /* timestamp at the latest activation */
536 u64 activated_at;
537
538 /* statistics */
539 struct iocg_pcpu_stat __percpu *pcpu_stat;
540 struct iocg_stat local_stat;
541 struct iocg_stat desc_stat;
542 struct iocg_stat last_stat;
543 u64 last_stat_abs_vusage;
544 u64 usage_delta_us;
545 u64 wait_since;
546 u64 indebt_since;
547 u64 indelay_since;
548
549 /* this iocg's depth in the hierarchy and ancestors including self */
550 int level;
551 struct ioc_gq *ancestors[];
552 };
553
554 /* per cgroup */
555 struct ioc_cgrp {
556 struct blkcg_policy_data cpd;
557 unsigned int dfl_weight;
558 };
559
560 struct ioc_now {
561 u64 now_ns;
562 u64 now;
563 u64 vnow;
564 u64 vrate;
565 };
566
567 struct iocg_wait {
568 struct wait_queue_entry wait;
569 struct bio *bio;
570 u64 abs_cost;
571 bool committed;
572 };
573
574 struct iocg_wake_ctx {
575 struct ioc_gq *iocg;
576 u32 hw_inuse;
577 s64 vbudget;
578 };
579
580 static const struct ioc_params autop[] = {
581 [AUTOP_HDD] = {
582 .qos = {
583 [QOS_RLAT] = 250000, /* 250ms */
584 [QOS_WLAT] = 250000,
585 [QOS_MIN] = VRATE_MIN_PPM,
586 [QOS_MAX] = VRATE_MAX_PPM,
587 },
588 .i_lcoefs = {
589 [I_LCOEF_RBPS] = 174019176,
590 [I_LCOEF_RSEQIOPS] = 41708,
591 [I_LCOEF_RRANDIOPS] = 370,
592 [I_LCOEF_WBPS] = 178075866,
593 [I_LCOEF_WSEQIOPS] = 42705,
594 [I_LCOEF_WRANDIOPS] = 378,
595 },
596 },
597 [AUTOP_SSD_QD1] = {
598 .qos = {
599 [QOS_RLAT] = 25000, /* 25ms */
600 [QOS_WLAT] = 25000,
601 [QOS_MIN] = VRATE_MIN_PPM,
602 [QOS_MAX] = VRATE_MAX_PPM,
603 },
604 .i_lcoefs = {
605 [I_LCOEF_RBPS] = 245855193,
606 [I_LCOEF_RSEQIOPS] = 61575,
607 [I_LCOEF_RRANDIOPS] = 6946,
608 [I_LCOEF_WBPS] = 141365009,
609 [I_LCOEF_WSEQIOPS] = 33716,
610 [I_LCOEF_WRANDIOPS] = 26796,
611 },
612 },
613 [AUTOP_SSD_DFL] = {
614 .qos = {
615 [QOS_RLAT] = 25000, /* 25ms */
616 [QOS_WLAT] = 25000,
617 [QOS_MIN] = VRATE_MIN_PPM,
618 [QOS_MAX] = VRATE_MAX_PPM,
619 },
620 .i_lcoefs = {
621 [I_LCOEF_RBPS] = 488636629,
622 [I_LCOEF_RSEQIOPS] = 8932,
623 [I_LCOEF_RRANDIOPS] = 8518,
624 [I_LCOEF_WBPS] = 427891549,
625 [I_LCOEF_WSEQIOPS] = 28755,
626 [I_LCOEF_WRANDIOPS] = 21940,
627 },
628 .too_fast_vrate_pct = 500,
629 },
630 [AUTOP_SSD_FAST] = {
631 .qos = {
632 [QOS_RLAT] = 5000, /* 5ms */
633 [QOS_WLAT] = 5000,
634 [QOS_MIN] = VRATE_MIN_PPM,
635 [QOS_MAX] = VRATE_MAX_PPM,
636 },
637 .i_lcoefs = {
638 [I_LCOEF_RBPS] = 3102524156LLU,
639 [I_LCOEF_RSEQIOPS] = 724816,
640 [I_LCOEF_RRANDIOPS] = 778122,
641 [I_LCOEF_WBPS] = 1742780862LLU,
642 [I_LCOEF_WSEQIOPS] = 425702,
643 [I_LCOEF_WRANDIOPS] = 443193,
644 },
645 .too_slow_vrate_pct = 10,
646 },
647 };
648
649 /*
650 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
651 * vtime credit shortage and down on device saturation.
652 */
653 static u32 vrate_adj_pct[] =
654 { 0, 0, 0, 0,
655 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
656 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
657 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
658
659 static struct blkcg_policy blkcg_policy_iocost;
660
661 /* accessors and helpers */
rqos_to_ioc(struct rq_qos * rqos)662 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
663 {
664 return container_of(rqos, struct ioc, rqos);
665 }
666
q_to_ioc(struct request_queue * q)667 static struct ioc *q_to_ioc(struct request_queue *q)
668 {
669 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
670 }
671
q_name(struct request_queue * q)672 static const char *q_name(struct request_queue *q)
673 {
674 if (blk_queue_registered(q))
675 return kobject_name(q->kobj.parent);
676 else
677 return "<unknown>";
678 }
679
ioc_name(struct ioc * ioc)680 static const char __maybe_unused *ioc_name(struct ioc *ioc)
681 {
682 return q_name(ioc->rqos.q);
683 }
684
pd_to_iocg(struct blkg_policy_data * pd)685 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
686 {
687 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
688 }
689
blkg_to_iocg(struct blkcg_gq * blkg)690 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
691 {
692 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
693 }
694
iocg_to_blkg(struct ioc_gq * iocg)695 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
696 {
697 return pd_to_blkg(&iocg->pd);
698 }
699
blkcg_to_iocc(struct blkcg * blkcg)700 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
701 {
702 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
703 struct ioc_cgrp, cpd);
704 }
705
706 /*
707 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
708 * weight, the more expensive each IO. Must round up.
709 */
abs_cost_to_cost(u64 abs_cost,u32 hw_inuse)710 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
711 {
712 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
713 }
714
715 /*
716 * The inverse of abs_cost_to_cost(). Must round up.
717 */
cost_to_abs_cost(u64 cost,u32 hw_inuse)718 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
719 {
720 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
721 }
722
iocg_commit_bio(struct ioc_gq * iocg,struct bio * bio,u64 abs_cost,u64 cost)723 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
724 u64 abs_cost, u64 cost)
725 {
726 struct iocg_pcpu_stat *gcs;
727
728 bio->bi_iocost_cost = cost;
729 atomic64_add(cost, &iocg->vtime);
730
731 gcs = get_cpu_ptr(iocg->pcpu_stat);
732 local64_add(abs_cost, &gcs->abs_vusage);
733 put_cpu_ptr(gcs);
734 }
735
iocg_lock(struct ioc_gq * iocg,bool lock_ioc,unsigned long * flags)736 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
737 {
738 if (lock_ioc) {
739 spin_lock_irqsave(&iocg->ioc->lock, *flags);
740 spin_lock(&iocg->waitq.lock);
741 } else {
742 spin_lock_irqsave(&iocg->waitq.lock, *flags);
743 }
744 }
745
iocg_unlock(struct ioc_gq * iocg,bool unlock_ioc,unsigned long * flags)746 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
747 {
748 if (unlock_ioc) {
749 spin_unlock(&iocg->waitq.lock);
750 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
751 } else {
752 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
753 }
754 }
755
756 #define CREATE_TRACE_POINTS
757 #include <trace/events/iocost.h>
758
ioc_refresh_margins(struct ioc * ioc)759 static void ioc_refresh_margins(struct ioc *ioc)
760 {
761 struct ioc_margins *margins = &ioc->margins;
762 u32 period_us = ioc->period_us;
763 u64 vrate = ioc->vtime_base_rate;
764
765 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
766 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
767 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
768 }
769
770 /* latency Qos params changed, update period_us and all the dependent params */
ioc_refresh_period_us(struct ioc * ioc)771 static void ioc_refresh_period_us(struct ioc *ioc)
772 {
773 u32 ppm, lat, multi, period_us;
774
775 lockdep_assert_held(&ioc->lock);
776
777 /* pick the higher latency target */
778 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
779 ppm = ioc->params.qos[QOS_RPPM];
780 lat = ioc->params.qos[QOS_RLAT];
781 } else {
782 ppm = ioc->params.qos[QOS_WPPM];
783 lat = ioc->params.qos[QOS_WLAT];
784 }
785
786 /*
787 * We want the period to be long enough to contain a healthy number
788 * of IOs while short enough for granular control. Define it as a
789 * multiple of the latency target. Ideally, the multiplier should
790 * be scaled according to the percentile so that it would nominally
791 * contain a certain number of requests. Let's be simpler and
792 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
793 */
794 if (ppm)
795 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
796 else
797 multi = 2;
798 period_us = multi * lat;
799 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
800
801 /* calculate dependent params */
802 ioc->period_us = period_us;
803 ioc->timer_slack_ns = div64_u64(
804 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
805 100);
806 ioc_refresh_margins(ioc);
807 }
808
ioc_autop_idx(struct ioc * ioc)809 static int ioc_autop_idx(struct ioc *ioc)
810 {
811 int idx = ioc->autop_idx;
812 const struct ioc_params *p = &autop[idx];
813 u32 vrate_pct;
814 u64 now_ns;
815
816 /* rotational? */
817 if (!blk_queue_nonrot(ioc->rqos.q))
818 return AUTOP_HDD;
819
820 /* handle SATA SSDs w/ broken NCQ */
821 if (blk_queue_depth(ioc->rqos.q) == 1)
822 return AUTOP_SSD_QD1;
823
824 /* use one of the normal ssd sets */
825 if (idx < AUTOP_SSD_DFL)
826 return AUTOP_SSD_DFL;
827
828 /* if user is overriding anything, maintain what was there */
829 if (ioc->user_qos_params || ioc->user_cost_model)
830 return idx;
831
832 /* step up/down based on the vrate */
833 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
834 now_ns = ktime_get_ns();
835
836 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
837 if (!ioc->autop_too_fast_at)
838 ioc->autop_too_fast_at = now_ns;
839 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
840 return idx + 1;
841 } else {
842 ioc->autop_too_fast_at = 0;
843 }
844
845 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
846 if (!ioc->autop_too_slow_at)
847 ioc->autop_too_slow_at = now_ns;
848 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
849 return idx - 1;
850 } else {
851 ioc->autop_too_slow_at = 0;
852 }
853
854 return idx;
855 }
856
857 /*
858 * Take the followings as input
859 *
860 * @bps maximum sequential throughput
861 * @seqiops maximum sequential 4k iops
862 * @randiops maximum random 4k iops
863 *
864 * and calculate the linear model cost coefficients.
865 *
866 * *@page per-page cost 1s / (@bps / 4096)
867 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
868 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
869 */
calc_lcoefs(u64 bps,u64 seqiops,u64 randiops,u64 * page,u64 * seqio,u64 * randio)870 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
871 u64 *page, u64 *seqio, u64 *randio)
872 {
873 u64 v;
874
875 *page = *seqio = *randio = 0;
876
877 if (bps) {
878 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
879
880 if (bps_pages)
881 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
882 else
883 *page = 1;
884 }
885
886 if (seqiops) {
887 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
888 if (v > *page)
889 *seqio = v - *page;
890 }
891
892 if (randiops) {
893 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
894 if (v > *page)
895 *randio = v - *page;
896 }
897 }
898
ioc_refresh_lcoefs(struct ioc * ioc)899 static void ioc_refresh_lcoefs(struct ioc *ioc)
900 {
901 u64 *u = ioc->params.i_lcoefs;
902 u64 *c = ioc->params.lcoefs;
903
904 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
905 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
906 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
907 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
908 }
909
ioc_refresh_params(struct ioc * ioc,bool force)910 static bool ioc_refresh_params(struct ioc *ioc, bool force)
911 {
912 const struct ioc_params *p;
913 int idx;
914
915 lockdep_assert_held(&ioc->lock);
916
917 idx = ioc_autop_idx(ioc);
918 p = &autop[idx];
919
920 if (idx == ioc->autop_idx && !force)
921 return false;
922
923 if (idx != ioc->autop_idx)
924 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
925
926 ioc->autop_idx = idx;
927 ioc->autop_too_fast_at = 0;
928 ioc->autop_too_slow_at = 0;
929
930 if (!ioc->user_qos_params)
931 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
932 if (!ioc->user_cost_model)
933 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
934
935 ioc_refresh_period_us(ioc);
936 ioc_refresh_lcoefs(ioc);
937
938 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
939 VTIME_PER_USEC, MILLION);
940 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
941 VTIME_PER_USEC, MILLION);
942
943 return true;
944 }
945
946 /*
947 * When an iocg accumulates too much vtime or gets deactivated, we throw away
948 * some vtime, which lowers the overall device utilization. As the exact amount
949 * which is being thrown away is known, we can compensate by accelerating the
950 * vrate accordingly so that the extra vtime generated in the current period
951 * matches what got lost.
952 */
ioc_refresh_vrate(struct ioc * ioc,struct ioc_now * now)953 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
954 {
955 s64 pleft = ioc->period_at + ioc->period_us - now->now;
956 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
957 s64 vcomp, vcomp_min, vcomp_max;
958
959 lockdep_assert_held(&ioc->lock);
960
961 /* we need some time left in this period */
962 if (pleft <= 0)
963 goto done;
964
965 /*
966 * Calculate how much vrate should be adjusted to offset the error.
967 * Limit the amount of adjustment and deduct the adjusted amount from
968 * the error.
969 */
970 vcomp = -div64_s64(ioc->vtime_err, pleft);
971 vcomp_min = -(ioc->vtime_base_rate >> 1);
972 vcomp_max = ioc->vtime_base_rate;
973 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
974
975 ioc->vtime_err += vcomp * pleft;
976
977 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
978 done:
979 /* bound how much error can accumulate */
980 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
981 }
982
ioc_adjust_base_vrate(struct ioc * ioc,u32 rq_wait_pct,int nr_lagging,int nr_shortages,int prev_busy_level,u32 * missed_ppm)983 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
984 int nr_lagging, int nr_shortages,
985 int prev_busy_level, u32 *missed_ppm)
986 {
987 u64 vrate = ioc->vtime_base_rate;
988 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
989
990 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
991 if (ioc->busy_level != prev_busy_level || nr_lagging)
992 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
993 missed_ppm, rq_wait_pct,
994 nr_lagging, nr_shortages);
995
996 return;
997 }
998
999 /*
1000 * If vrate is out of bounds, apply clamp gradually as the
1001 * bounds can change abruptly. Otherwise, apply busy_level
1002 * based adjustment.
1003 */
1004 if (vrate < vrate_min) {
1005 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1006 vrate = min(vrate, vrate_min);
1007 } else if (vrate > vrate_max) {
1008 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1009 vrate = max(vrate, vrate_max);
1010 } else {
1011 int idx = min_t(int, abs(ioc->busy_level),
1012 ARRAY_SIZE(vrate_adj_pct) - 1);
1013 u32 adj_pct = vrate_adj_pct[idx];
1014
1015 if (ioc->busy_level > 0)
1016 adj_pct = 100 - adj_pct;
1017 else
1018 adj_pct = 100 + adj_pct;
1019
1020 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1021 vrate_min, vrate_max);
1022 }
1023
1024 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1025 nr_lagging, nr_shortages);
1026
1027 ioc->vtime_base_rate = vrate;
1028 ioc_refresh_margins(ioc);
1029 }
1030
1031 /* take a snapshot of the current [v]time and vrate */
ioc_now(struct ioc * ioc,struct ioc_now * now)1032 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1033 {
1034 unsigned seq;
1035
1036 now->now_ns = ktime_get();
1037 now->now = ktime_to_us(now->now_ns);
1038 now->vrate = atomic64_read(&ioc->vtime_rate);
1039
1040 /*
1041 * The current vtime is
1042 *
1043 * vtime at period start + (wallclock time since the start) * vrate
1044 *
1045 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1046 * needed, they're seqcount protected.
1047 */
1048 do {
1049 seq = read_seqcount_begin(&ioc->period_seqcount);
1050 now->vnow = ioc->period_at_vtime +
1051 (now->now - ioc->period_at) * now->vrate;
1052 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1053 }
1054
ioc_start_period(struct ioc * ioc,struct ioc_now * now)1055 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1056 {
1057 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1058
1059 write_seqcount_begin(&ioc->period_seqcount);
1060 ioc->period_at = now->now;
1061 ioc->period_at_vtime = now->vnow;
1062 write_seqcount_end(&ioc->period_seqcount);
1063
1064 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1065 add_timer(&ioc->timer);
1066 }
1067
1068 /*
1069 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1070 * weight sums and propagate upwards accordingly. If @save, the current margin
1071 * is saved to be used as reference for later inuse in-period adjustments.
1072 */
__propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1073 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1074 bool save, struct ioc_now *now)
1075 {
1076 struct ioc *ioc = iocg->ioc;
1077 int lvl;
1078
1079 lockdep_assert_held(&ioc->lock);
1080
1081 /*
1082 * For an active leaf node, its inuse shouldn't be zero or exceed
1083 * @active. An active internal node's inuse is solely determined by the
1084 * inuse to active ratio of its children regardless of @inuse.
1085 */
1086 if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1087 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1088 iocg->child_active_sum);
1089 } else {
1090 inuse = clamp_t(u32, inuse, 1, active);
1091 }
1092
1093 iocg->last_inuse = iocg->inuse;
1094 if (save)
1095 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1096
1097 if (active == iocg->active && inuse == iocg->inuse)
1098 return;
1099
1100 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1101 struct ioc_gq *parent = iocg->ancestors[lvl];
1102 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1103 u32 parent_active = 0, parent_inuse = 0;
1104
1105 /* update the level sums */
1106 parent->child_active_sum += (s32)(active - child->active);
1107 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1108 /* apply the updates */
1109 child->active = active;
1110 child->inuse = inuse;
1111
1112 /*
1113 * The delta between inuse and active sums indicates that
1114 * much of weight is being given away. Parent's inuse
1115 * and active should reflect the ratio.
1116 */
1117 if (parent->child_active_sum) {
1118 parent_active = parent->weight;
1119 parent_inuse = DIV64_U64_ROUND_UP(
1120 parent_active * parent->child_inuse_sum,
1121 parent->child_active_sum);
1122 }
1123
1124 /* do we need to keep walking up? */
1125 if (parent_active == parent->active &&
1126 parent_inuse == parent->inuse)
1127 break;
1128
1129 active = parent_active;
1130 inuse = parent_inuse;
1131 }
1132
1133 ioc->weights_updated = true;
1134 }
1135
commit_weights(struct ioc * ioc)1136 static void commit_weights(struct ioc *ioc)
1137 {
1138 lockdep_assert_held(&ioc->lock);
1139
1140 if (ioc->weights_updated) {
1141 /* paired with rmb in current_hweight(), see there */
1142 smp_wmb();
1143 atomic_inc(&ioc->hweight_gen);
1144 ioc->weights_updated = false;
1145 }
1146 }
1147
propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1148 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1149 bool save, struct ioc_now *now)
1150 {
1151 __propagate_weights(iocg, active, inuse, save, now);
1152 commit_weights(iocg->ioc);
1153 }
1154
current_hweight(struct ioc_gq * iocg,u32 * hw_activep,u32 * hw_inusep)1155 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1156 {
1157 struct ioc *ioc = iocg->ioc;
1158 int lvl;
1159 u32 hwa, hwi;
1160 int ioc_gen;
1161
1162 /* hot path - if uptodate, use cached */
1163 ioc_gen = atomic_read(&ioc->hweight_gen);
1164 if (ioc_gen == iocg->hweight_gen)
1165 goto out;
1166
1167 /*
1168 * Paired with wmb in commit_weights(). If we saw the updated
1169 * hweight_gen, all the weight updates from __propagate_weights() are
1170 * visible too.
1171 *
1172 * We can race with weight updates during calculation and get it
1173 * wrong. However, hweight_gen would have changed and a future
1174 * reader will recalculate and we're guaranteed to discard the
1175 * wrong result soon.
1176 */
1177 smp_rmb();
1178
1179 hwa = hwi = WEIGHT_ONE;
1180 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1181 struct ioc_gq *parent = iocg->ancestors[lvl];
1182 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1183 u64 active_sum = READ_ONCE(parent->child_active_sum);
1184 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1185 u32 active = READ_ONCE(child->active);
1186 u32 inuse = READ_ONCE(child->inuse);
1187
1188 /* we can race with deactivations and either may read as zero */
1189 if (!active_sum || !inuse_sum)
1190 continue;
1191
1192 active_sum = max_t(u64, active, active_sum);
1193 hwa = div64_u64((u64)hwa * active, active_sum);
1194
1195 inuse_sum = max_t(u64, inuse, inuse_sum);
1196 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1197 }
1198
1199 iocg->hweight_active = max_t(u32, hwa, 1);
1200 iocg->hweight_inuse = max_t(u32, hwi, 1);
1201 iocg->hweight_gen = ioc_gen;
1202 out:
1203 if (hw_activep)
1204 *hw_activep = iocg->hweight_active;
1205 if (hw_inusep)
1206 *hw_inusep = iocg->hweight_inuse;
1207 }
1208
1209 /*
1210 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1211 * other weights stay unchanged.
1212 */
current_hweight_max(struct ioc_gq * iocg)1213 static u32 current_hweight_max(struct ioc_gq *iocg)
1214 {
1215 u32 hwm = WEIGHT_ONE;
1216 u32 inuse = iocg->active;
1217 u64 child_inuse_sum;
1218 int lvl;
1219
1220 lockdep_assert_held(&iocg->ioc->lock);
1221
1222 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1223 struct ioc_gq *parent = iocg->ancestors[lvl];
1224 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1225
1226 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1227 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1228 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1229 parent->child_active_sum);
1230 }
1231
1232 return max_t(u32, hwm, 1);
1233 }
1234
weight_updated(struct ioc_gq * iocg,struct ioc_now * now)1235 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1236 {
1237 struct ioc *ioc = iocg->ioc;
1238 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1239 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1240 u32 weight;
1241
1242 lockdep_assert_held(&ioc->lock);
1243
1244 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1245 if (weight != iocg->weight && iocg->active)
1246 propagate_weights(iocg, weight, iocg->inuse, true, now);
1247 iocg->weight = weight;
1248 }
1249
iocg_activate(struct ioc_gq * iocg,struct ioc_now * now)1250 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1251 {
1252 struct ioc *ioc = iocg->ioc;
1253 u64 last_period, cur_period;
1254 u64 vtime, vtarget;
1255 int i;
1256
1257 /*
1258 * If seem to be already active, just update the stamp to tell the
1259 * timer that we're still active. We don't mind occassional races.
1260 */
1261 if (!list_empty(&iocg->active_list)) {
1262 ioc_now(ioc, now);
1263 cur_period = atomic64_read(&ioc->cur_period);
1264 if (atomic64_read(&iocg->active_period) != cur_period)
1265 atomic64_set(&iocg->active_period, cur_period);
1266 return true;
1267 }
1268
1269 /* racy check on internal node IOs, treat as root level IOs */
1270 if (iocg->child_active_sum)
1271 return false;
1272
1273 spin_lock_irq(&ioc->lock);
1274
1275 ioc_now(ioc, now);
1276
1277 /* update period */
1278 cur_period = atomic64_read(&ioc->cur_period);
1279 last_period = atomic64_read(&iocg->active_period);
1280 atomic64_set(&iocg->active_period, cur_period);
1281
1282 /* already activated or breaking leaf-only constraint? */
1283 if (!list_empty(&iocg->active_list))
1284 goto succeed_unlock;
1285 for (i = iocg->level - 1; i > 0; i--)
1286 if (!list_empty(&iocg->ancestors[i]->active_list))
1287 goto fail_unlock;
1288
1289 if (iocg->child_active_sum)
1290 goto fail_unlock;
1291
1292 /*
1293 * Always start with the target budget. On deactivation, we throw away
1294 * anything above it.
1295 */
1296 vtarget = now->vnow - ioc->margins.target;
1297 vtime = atomic64_read(&iocg->vtime);
1298
1299 atomic64_add(vtarget - vtime, &iocg->vtime);
1300 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1301 vtime = vtarget;
1302
1303 /*
1304 * Activate, propagate weight and start period timer if not
1305 * running. Reset hweight_gen to avoid accidental match from
1306 * wrapping.
1307 */
1308 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1309 list_add(&iocg->active_list, &ioc->active_iocgs);
1310
1311 propagate_weights(iocg, iocg->weight,
1312 iocg->last_inuse ?: iocg->weight, true, now);
1313
1314 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1315 last_period, cur_period, vtime);
1316
1317 iocg->activated_at = now->now;
1318
1319 if (ioc->running == IOC_IDLE) {
1320 ioc->running = IOC_RUNNING;
1321 ioc->dfgv_period_at = now->now;
1322 ioc->dfgv_period_rem = 0;
1323 ioc_start_period(ioc, now);
1324 }
1325
1326 succeed_unlock:
1327 spin_unlock_irq(&ioc->lock);
1328 return true;
1329
1330 fail_unlock:
1331 spin_unlock_irq(&ioc->lock);
1332 return false;
1333 }
1334
iocg_kick_delay(struct ioc_gq * iocg,struct ioc_now * now)1335 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1336 {
1337 struct ioc *ioc = iocg->ioc;
1338 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1339 u64 tdelta, delay, new_delay;
1340 s64 vover, vover_pct;
1341 u32 hwa;
1342
1343 lockdep_assert_held(&iocg->waitq.lock);
1344
1345 /*
1346 * If the delay is set by another CPU, we may be in the past. No need to
1347 * change anything if so. This avoids decay calculation underflow.
1348 */
1349 if (time_before64(now->now, iocg->delay_at))
1350 return false;
1351
1352 /* calculate the current delay in effect - 1/2 every second */
1353 tdelta = now->now - iocg->delay_at;
1354 if (iocg->delay)
1355 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1356 else
1357 delay = 0;
1358
1359 /* calculate the new delay from the debt amount */
1360 current_hweight(iocg, &hwa, NULL);
1361 vover = atomic64_read(&iocg->vtime) +
1362 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1363 vover_pct = div64_s64(100 * vover,
1364 ioc->period_us * ioc->vtime_base_rate);
1365
1366 if (vover_pct <= MIN_DELAY_THR_PCT)
1367 new_delay = 0;
1368 else if (vover_pct >= MAX_DELAY_THR_PCT)
1369 new_delay = MAX_DELAY;
1370 else
1371 new_delay = MIN_DELAY +
1372 div_u64((MAX_DELAY - MIN_DELAY) *
1373 (vover_pct - MIN_DELAY_THR_PCT),
1374 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1375
1376 /* pick the higher one and apply */
1377 if (new_delay > delay) {
1378 iocg->delay = new_delay;
1379 iocg->delay_at = now->now;
1380 delay = new_delay;
1381 }
1382
1383 if (delay >= MIN_DELAY) {
1384 if (!iocg->indelay_since)
1385 iocg->indelay_since = now->now;
1386 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1387 return true;
1388 } else {
1389 if (iocg->indelay_since) {
1390 iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1391 iocg->indelay_since = 0;
1392 }
1393 iocg->delay = 0;
1394 blkcg_clear_delay(blkg);
1395 return false;
1396 }
1397 }
1398
iocg_incur_debt(struct ioc_gq * iocg,u64 abs_cost,struct ioc_now * now)1399 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1400 struct ioc_now *now)
1401 {
1402 struct iocg_pcpu_stat *gcs;
1403
1404 lockdep_assert_held(&iocg->ioc->lock);
1405 lockdep_assert_held(&iocg->waitq.lock);
1406 WARN_ON_ONCE(list_empty(&iocg->active_list));
1407
1408 /*
1409 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1410 * inuse donating all of it share to others until its debt is paid off.
1411 */
1412 if (!iocg->abs_vdebt && abs_cost) {
1413 iocg->indebt_since = now->now;
1414 propagate_weights(iocg, iocg->active, 0, false, now);
1415 }
1416
1417 iocg->abs_vdebt += abs_cost;
1418
1419 gcs = get_cpu_ptr(iocg->pcpu_stat);
1420 local64_add(abs_cost, &gcs->abs_vusage);
1421 put_cpu_ptr(gcs);
1422 }
1423
iocg_pay_debt(struct ioc_gq * iocg,u64 abs_vpay,struct ioc_now * now)1424 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1425 struct ioc_now *now)
1426 {
1427 lockdep_assert_held(&iocg->ioc->lock);
1428 lockdep_assert_held(&iocg->waitq.lock);
1429
1430 /* make sure that nobody messed with @iocg */
1431 WARN_ON_ONCE(list_empty(&iocg->active_list));
1432 WARN_ON_ONCE(iocg->inuse > 1);
1433
1434 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1435
1436 /* if debt is paid in full, restore inuse */
1437 if (!iocg->abs_vdebt) {
1438 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1439 iocg->indebt_since = 0;
1440
1441 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1442 false, now);
1443 }
1444 }
1445
iocg_wake_fn(struct wait_queue_entry * wq_entry,unsigned mode,int flags,void * key)1446 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1447 int flags, void *key)
1448 {
1449 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1450 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1451 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1452
1453 ctx->vbudget -= cost;
1454
1455 if (ctx->vbudget < 0)
1456 return -1;
1457
1458 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1459 wait->committed = true;
1460
1461 /*
1462 * autoremove_wake_function() removes the wait entry only when it
1463 * actually changed the task state. We want the wait always removed.
1464 * Remove explicitly and use default_wake_function(). Note that the
1465 * order of operations is important as finish_wait() tests whether
1466 * @wq_entry is removed without grabbing the lock.
1467 */
1468 default_wake_function(wq_entry, mode, flags, key);
1469 list_del_init_careful(&wq_entry->entry);
1470 return 0;
1471 }
1472
1473 /*
1474 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1475 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1476 * addition to iocg->waitq.lock.
1477 */
iocg_kick_waitq(struct ioc_gq * iocg,bool pay_debt,struct ioc_now * now)1478 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1479 struct ioc_now *now)
1480 {
1481 struct ioc *ioc = iocg->ioc;
1482 struct iocg_wake_ctx ctx = { .iocg = iocg };
1483 u64 vshortage, expires, oexpires;
1484 s64 vbudget;
1485 u32 hwa;
1486
1487 lockdep_assert_held(&iocg->waitq.lock);
1488
1489 current_hweight(iocg, &hwa, NULL);
1490 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1491
1492 /* pay off debt */
1493 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1494 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1495 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1496 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1497
1498 lockdep_assert_held(&ioc->lock);
1499
1500 atomic64_add(vpay, &iocg->vtime);
1501 atomic64_add(vpay, &iocg->done_vtime);
1502 iocg_pay_debt(iocg, abs_vpay, now);
1503 vbudget -= vpay;
1504 }
1505
1506 if (iocg->abs_vdebt || iocg->delay)
1507 iocg_kick_delay(iocg, now);
1508
1509 /*
1510 * Debt can still be outstanding if we haven't paid all yet or the
1511 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1512 * under debt. Make sure @vbudget reflects the outstanding amount and is
1513 * not positive.
1514 */
1515 if (iocg->abs_vdebt) {
1516 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1517 vbudget = min_t(s64, 0, vbudget - vdebt);
1518 }
1519
1520 /*
1521 * Wake up the ones which are due and see how much vtime we'll need for
1522 * the next one. As paying off debt restores hw_inuse, it must be read
1523 * after the above debt payment.
1524 */
1525 ctx.vbudget = vbudget;
1526 current_hweight(iocg, NULL, &ctx.hw_inuse);
1527
1528 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1529
1530 if (!waitqueue_active(&iocg->waitq)) {
1531 if (iocg->wait_since) {
1532 iocg->local_stat.wait_us += now->now - iocg->wait_since;
1533 iocg->wait_since = 0;
1534 }
1535 return;
1536 }
1537
1538 if (!iocg->wait_since)
1539 iocg->wait_since = now->now;
1540
1541 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1542 return;
1543
1544 /* determine next wakeup, add a timer margin to guarantee chunking */
1545 vshortage = -ctx.vbudget;
1546 expires = now->now_ns +
1547 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1548 NSEC_PER_USEC;
1549 expires += ioc->timer_slack_ns;
1550
1551 /* if already active and close enough, don't bother */
1552 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1553 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1554 abs(oexpires - expires) <= ioc->timer_slack_ns)
1555 return;
1556
1557 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1558 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1559 }
1560
iocg_waitq_timer_fn(struct hrtimer * timer)1561 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1562 {
1563 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1564 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1565 struct ioc_now now;
1566 unsigned long flags;
1567
1568 ioc_now(iocg->ioc, &now);
1569
1570 iocg_lock(iocg, pay_debt, &flags);
1571 iocg_kick_waitq(iocg, pay_debt, &now);
1572 iocg_unlock(iocg, pay_debt, &flags);
1573
1574 return HRTIMER_NORESTART;
1575 }
1576
ioc_lat_stat(struct ioc * ioc,u32 * missed_ppm_ar,u32 * rq_wait_pct_p)1577 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1578 {
1579 u32 nr_met[2] = { };
1580 u32 nr_missed[2] = { };
1581 u64 rq_wait_ns = 0;
1582 int cpu, rw;
1583
1584 for_each_online_cpu(cpu) {
1585 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1586 u64 this_rq_wait_ns;
1587
1588 for (rw = READ; rw <= WRITE; rw++) {
1589 u32 this_met = local_read(&stat->missed[rw].nr_met);
1590 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1591
1592 nr_met[rw] += this_met - stat->missed[rw].last_met;
1593 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1594 stat->missed[rw].last_met = this_met;
1595 stat->missed[rw].last_missed = this_missed;
1596 }
1597
1598 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1599 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1600 stat->last_rq_wait_ns = this_rq_wait_ns;
1601 }
1602
1603 for (rw = READ; rw <= WRITE; rw++) {
1604 if (nr_met[rw] + nr_missed[rw])
1605 missed_ppm_ar[rw] =
1606 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1607 nr_met[rw] + nr_missed[rw]);
1608 else
1609 missed_ppm_ar[rw] = 0;
1610 }
1611
1612 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1613 ioc->period_us * NSEC_PER_USEC);
1614 }
1615
1616 /* was iocg idle this period? */
iocg_is_idle(struct ioc_gq * iocg)1617 static bool iocg_is_idle(struct ioc_gq *iocg)
1618 {
1619 struct ioc *ioc = iocg->ioc;
1620
1621 /* did something get issued this period? */
1622 if (atomic64_read(&iocg->active_period) ==
1623 atomic64_read(&ioc->cur_period))
1624 return false;
1625
1626 /* is something in flight? */
1627 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1628 return false;
1629
1630 return true;
1631 }
1632
1633 /*
1634 * Call this function on the target leaf @iocg's to build pre-order traversal
1635 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1636 * ->walk_list and the caller is responsible for dissolving the list after use.
1637 */
iocg_build_inner_walk(struct ioc_gq * iocg,struct list_head * inner_walk)1638 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1639 struct list_head *inner_walk)
1640 {
1641 int lvl;
1642
1643 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1644
1645 /* find the first ancestor which hasn't been visited yet */
1646 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1647 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1648 break;
1649 }
1650
1651 /* walk down and visit the inner nodes to get pre-order traversal */
1652 while (++lvl <= iocg->level - 1) {
1653 struct ioc_gq *inner = iocg->ancestors[lvl];
1654
1655 /* record traversal order */
1656 list_add_tail(&inner->walk_list, inner_walk);
1657 }
1658 }
1659
1660 /* collect per-cpu counters and propagate the deltas to the parent */
iocg_flush_stat_one(struct ioc_gq * iocg,struct ioc_now * now)1661 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1662 {
1663 struct ioc *ioc = iocg->ioc;
1664 struct iocg_stat new_stat;
1665 u64 abs_vusage = 0;
1666 u64 vusage_delta;
1667 int cpu;
1668
1669 lockdep_assert_held(&iocg->ioc->lock);
1670
1671 /* collect per-cpu counters */
1672 for_each_possible_cpu(cpu) {
1673 abs_vusage += local64_read(
1674 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1675 }
1676 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1677 iocg->last_stat_abs_vusage = abs_vusage;
1678
1679 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1680 iocg->local_stat.usage_us += iocg->usage_delta_us;
1681
1682 /* propagate upwards */
1683 new_stat.usage_us =
1684 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1685 new_stat.wait_us =
1686 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1687 new_stat.indebt_us =
1688 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1689 new_stat.indelay_us =
1690 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1691
1692 /* propagate the deltas to the parent */
1693 if (iocg->level > 0) {
1694 struct iocg_stat *parent_stat =
1695 &iocg->ancestors[iocg->level - 1]->desc_stat;
1696
1697 parent_stat->usage_us +=
1698 new_stat.usage_us - iocg->last_stat.usage_us;
1699 parent_stat->wait_us +=
1700 new_stat.wait_us - iocg->last_stat.wait_us;
1701 parent_stat->indebt_us +=
1702 new_stat.indebt_us - iocg->last_stat.indebt_us;
1703 parent_stat->indelay_us +=
1704 new_stat.indelay_us - iocg->last_stat.indelay_us;
1705 }
1706
1707 iocg->last_stat = new_stat;
1708 }
1709
1710 /* get stat counters ready for reading on all active iocgs */
iocg_flush_stat(struct list_head * target_iocgs,struct ioc_now * now)1711 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1712 {
1713 LIST_HEAD(inner_walk);
1714 struct ioc_gq *iocg, *tiocg;
1715
1716 /* flush leaves and build inner node walk list */
1717 list_for_each_entry(iocg, target_iocgs, active_list) {
1718 iocg_flush_stat_one(iocg, now);
1719 iocg_build_inner_walk(iocg, &inner_walk);
1720 }
1721
1722 /* keep flushing upwards by walking the inner list backwards */
1723 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1724 iocg_flush_stat_one(iocg, now);
1725 list_del_init(&iocg->walk_list);
1726 }
1727 }
1728
1729 /*
1730 * Determine what @iocg's hweight_inuse should be after donating unused
1731 * capacity. @hwm is the upper bound and used to signal no donation. This
1732 * function also throws away @iocg's excess budget.
1733 */
hweight_after_donation(struct ioc_gq * iocg,u32 old_hwi,u32 hwm,u32 usage,struct ioc_now * now)1734 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1735 u32 usage, struct ioc_now *now)
1736 {
1737 struct ioc *ioc = iocg->ioc;
1738 u64 vtime = atomic64_read(&iocg->vtime);
1739 s64 excess, delta, target, new_hwi;
1740
1741 /* debt handling owns inuse for debtors */
1742 if (iocg->abs_vdebt)
1743 return 1;
1744
1745 /* see whether minimum margin requirement is met */
1746 if (waitqueue_active(&iocg->waitq) ||
1747 time_after64(vtime, now->vnow - ioc->margins.min))
1748 return hwm;
1749
1750 /* throw away excess above target */
1751 excess = now->vnow - vtime - ioc->margins.target;
1752 if (excess > 0) {
1753 atomic64_add(excess, &iocg->vtime);
1754 atomic64_add(excess, &iocg->done_vtime);
1755 vtime += excess;
1756 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1757 }
1758
1759 /*
1760 * Let's say the distance between iocg's and device's vtimes as a
1761 * fraction of period duration is delta. Assuming that the iocg will
1762 * consume the usage determined above, we want to determine new_hwi so
1763 * that delta equals MARGIN_TARGET at the end of the next period.
1764 *
1765 * We need to execute usage worth of IOs while spending the sum of the
1766 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1767 * (delta):
1768 *
1769 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1770 *
1771 * Therefore, the new_hwi is:
1772 *
1773 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1774 */
1775 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1776 now->vnow - ioc->period_at_vtime);
1777 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1778 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1779
1780 return clamp_t(s64, new_hwi, 1, hwm);
1781 }
1782
1783 /*
1784 * For work-conservation, an iocg which isn't using all of its share should
1785 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1786 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1787 *
1788 * #1 is mathematically simpler but has the drawback of requiring synchronous
1789 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1790 * change due to donation snapbacks as it has the possibility of grossly
1791 * overshooting what's allowed by the model and vrate.
1792 *
1793 * #2 is inherently safe with local operations. The donating iocg can easily
1794 * snap back to higher weights when needed without worrying about impacts on
1795 * other nodes as the impacts will be inherently correct. This also makes idle
1796 * iocg activations safe. The only effect activations have is decreasing
1797 * hweight_inuse of others, the right solution to which is for those iocgs to
1798 * snap back to higher weights.
1799 *
1800 * So, we go with #2. The challenge is calculating how each donating iocg's
1801 * inuse should be adjusted to achieve the target donation amounts. This is done
1802 * using Andy's method described in the following pdf.
1803 *
1804 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1805 *
1806 * Given the weights and target after-donation hweight_inuse values, Andy's
1807 * method determines how the proportional distribution should look like at each
1808 * sibling level to maintain the relative relationship between all non-donating
1809 * pairs. To roughly summarize, it divides the tree into donating and
1810 * non-donating parts, calculates global donation rate which is used to
1811 * determine the target hweight_inuse for each node, and then derives per-level
1812 * proportions.
1813 *
1814 * The following pdf shows that global distribution calculated this way can be
1815 * achieved by scaling inuse weights of donating leaves and propagating the
1816 * adjustments upwards proportionally.
1817 *
1818 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1819 *
1820 * Combining the above two, we can determine how each leaf iocg's inuse should
1821 * be adjusted to achieve the target donation.
1822 *
1823 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1824 *
1825 * The inline comments use symbols from the last pdf.
1826 *
1827 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1828 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1829 * t is the sum of the absolute budgets of donating nodes in the subtree.
1830 * w is the weight of the node. w = w_f + w_t
1831 * w_f is the non-donating portion of w. w_f = w * f / b
1832 * w_b is the donating portion of w. w_t = w * t / b
1833 * s is the sum of all sibling weights. s = Sum(w) for siblings
1834 * s_f and s_t are the non-donating and donating portions of s.
1835 *
1836 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1837 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1838 * after adjustments. Subscript r denotes the root node's values.
1839 */
transfer_surpluses(struct list_head * surpluses,struct ioc_now * now)1840 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1841 {
1842 LIST_HEAD(over_hwa);
1843 LIST_HEAD(inner_walk);
1844 struct ioc_gq *iocg, *tiocg, *root_iocg;
1845 u32 after_sum, over_sum, over_target, gamma;
1846
1847 /*
1848 * It's pretty unlikely but possible for the total sum of
1849 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1850 * confuse the following calculations. If such condition is detected,
1851 * scale down everyone over its full share equally to keep the sum below
1852 * WEIGHT_ONE.
1853 */
1854 after_sum = 0;
1855 over_sum = 0;
1856 list_for_each_entry(iocg, surpluses, surplus_list) {
1857 u32 hwa;
1858
1859 current_hweight(iocg, &hwa, NULL);
1860 after_sum += iocg->hweight_after_donation;
1861
1862 if (iocg->hweight_after_donation > hwa) {
1863 over_sum += iocg->hweight_after_donation;
1864 list_add(&iocg->walk_list, &over_hwa);
1865 }
1866 }
1867
1868 if (after_sum >= WEIGHT_ONE) {
1869 /*
1870 * The delta should be deducted from the over_sum, calculate
1871 * target over_sum value.
1872 */
1873 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1874 WARN_ON_ONCE(over_sum <= over_delta);
1875 over_target = over_sum - over_delta;
1876 } else {
1877 over_target = 0;
1878 }
1879
1880 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1881 if (over_target)
1882 iocg->hweight_after_donation =
1883 div_u64((u64)iocg->hweight_after_donation *
1884 over_target, over_sum);
1885 list_del_init(&iocg->walk_list);
1886 }
1887
1888 /*
1889 * Build pre-order inner node walk list and prepare for donation
1890 * adjustment calculations.
1891 */
1892 list_for_each_entry(iocg, surpluses, surplus_list) {
1893 iocg_build_inner_walk(iocg, &inner_walk);
1894 }
1895
1896 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1897 WARN_ON_ONCE(root_iocg->level > 0);
1898
1899 list_for_each_entry(iocg, &inner_walk, walk_list) {
1900 iocg->child_adjusted_sum = 0;
1901 iocg->hweight_donating = 0;
1902 iocg->hweight_after_donation = 0;
1903 }
1904
1905 /*
1906 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1907 * up the hierarchy.
1908 */
1909 list_for_each_entry(iocg, surpluses, surplus_list) {
1910 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1911
1912 parent->hweight_donating += iocg->hweight_donating;
1913 parent->hweight_after_donation += iocg->hweight_after_donation;
1914 }
1915
1916 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1917 if (iocg->level > 0) {
1918 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1919
1920 parent->hweight_donating += iocg->hweight_donating;
1921 parent->hweight_after_donation += iocg->hweight_after_donation;
1922 }
1923 }
1924
1925 /*
1926 * Calculate inner hwa's (b) and make sure the donation values are
1927 * within the accepted ranges as we're doing low res calculations with
1928 * roundups.
1929 */
1930 list_for_each_entry(iocg, &inner_walk, walk_list) {
1931 if (iocg->level) {
1932 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1933
1934 iocg->hweight_active = DIV64_U64_ROUND_UP(
1935 (u64)parent->hweight_active * iocg->active,
1936 parent->child_active_sum);
1937
1938 }
1939
1940 iocg->hweight_donating = min(iocg->hweight_donating,
1941 iocg->hweight_active);
1942 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1943 iocg->hweight_donating - 1);
1944 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1945 iocg->hweight_donating <= 1 ||
1946 iocg->hweight_after_donation == 0)) {
1947 pr_warn("iocg: invalid donation weights in ");
1948 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1949 pr_cont(": active=%u donating=%u after=%u\n",
1950 iocg->hweight_active, iocg->hweight_donating,
1951 iocg->hweight_after_donation);
1952 }
1953 }
1954
1955 /*
1956 * Calculate the global donation rate (gamma) - the rate to adjust
1957 * non-donating budgets by.
1958 *
1959 * No need to use 64bit multiplication here as the first operand is
1960 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1961 *
1962 * We know that there are beneficiary nodes and the sum of the donating
1963 * hweights can't be whole; however, due to the round-ups during hweight
1964 * calculations, root_iocg->hweight_donating might still end up equal to
1965 * or greater than whole. Limit the range when calculating the divider.
1966 *
1967 * gamma = (1 - t_r') / (1 - t_r)
1968 */
1969 gamma = DIV_ROUND_UP(
1970 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1971 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1972
1973 /*
1974 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1975 * nodes.
1976 */
1977 list_for_each_entry(iocg, &inner_walk, walk_list) {
1978 struct ioc_gq *parent;
1979 u32 inuse, wpt, wptp;
1980 u64 st, sf;
1981
1982 if (iocg->level == 0) {
1983 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1984 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1985 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1986 WEIGHT_ONE - iocg->hweight_after_donation);
1987 continue;
1988 }
1989
1990 parent = iocg->ancestors[iocg->level - 1];
1991
1992 /* b' = gamma * b_f + b_t' */
1993 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1994 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1995 WEIGHT_ONE) + iocg->hweight_after_donation;
1996
1997 /* w' = s' * b' / b'_p */
1998 inuse = DIV64_U64_ROUND_UP(
1999 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
2000 parent->hweight_inuse);
2001
2002 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2003 st = DIV64_U64_ROUND_UP(
2004 iocg->child_active_sum * iocg->hweight_donating,
2005 iocg->hweight_active);
2006 sf = iocg->child_active_sum - st;
2007 wpt = DIV64_U64_ROUND_UP(
2008 (u64)iocg->active * iocg->hweight_donating,
2009 iocg->hweight_active);
2010 wptp = DIV64_U64_ROUND_UP(
2011 (u64)inuse * iocg->hweight_after_donation,
2012 iocg->hweight_inuse);
2013
2014 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2015 }
2016
2017 /*
2018 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2019 * we can finally determine leaf adjustments.
2020 */
2021 list_for_each_entry(iocg, surpluses, surplus_list) {
2022 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2023 u32 inuse;
2024
2025 /*
2026 * In-debt iocgs participated in the donation calculation with
2027 * the minimum target hweight_inuse. Configuring inuse
2028 * accordingly would work fine but debt handling expects
2029 * @iocg->inuse stay at the minimum and we don't wanna
2030 * interfere.
2031 */
2032 if (iocg->abs_vdebt) {
2033 WARN_ON_ONCE(iocg->inuse > 1);
2034 continue;
2035 }
2036
2037 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2038 inuse = DIV64_U64_ROUND_UP(
2039 parent->child_adjusted_sum * iocg->hweight_after_donation,
2040 parent->hweight_inuse);
2041
2042 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2043 iocg->inuse, inuse,
2044 iocg->hweight_inuse,
2045 iocg->hweight_after_donation);
2046
2047 __propagate_weights(iocg, iocg->active, inuse, true, now);
2048 }
2049
2050 /* walk list should be dissolved after use */
2051 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2052 list_del_init(&iocg->walk_list);
2053 }
2054
2055 /*
2056 * A low weight iocg can amass a large amount of debt, for example, when
2057 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2058 * memory paired with a slow IO device, the debt can span multiple seconds or
2059 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2060 * up blocked paying its debt while the IO device is idle.
2061 *
2062 * The following protects against such cases. If the device has been
2063 * sufficiently idle for a while, the debts are halved and delays are
2064 * recalculated.
2065 */
ioc_forgive_debts(struct ioc * ioc,u64 usage_us_sum,int nr_debtors,struct ioc_now * now)2066 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2067 struct ioc_now *now)
2068 {
2069 struct ioc_gq *iocg;
2070 u64 dur, usage_pct, nr_cycles;
2071
2072 /* if no debtor, reset the cycle */
2073 if (!nr_debtors) {
2074 ioc->dfgv_period_at = now->now;
2075 ioc->dfgv_period_rem = 0;
2076 ioc->dfgv_usage_us_sum = 0;
2077 return;
2078 }
2079
2080 /*
2081 * Debtors can pass through a lot of writes choking the device and we
2082 * don't want to be forgiving debts while the device is struggling from
2083 * write bursts. If we're missing latency targets, consider the device
2084 * fully utilized.
2085 */
2086 if (ioc->busy_level > 0)
2087 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2088
2089 ioc->dfgv_usage_us_sum += usage_us_sum;
2090 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2091 return;
2092
2093 /*
2094 * At least DFGV_PERIOD has passed since the last period. Calculate the
2095 * average usage and reset the period counters.
2096 */
2097 dur = now->now - ioc->dfgv_period_at;
2098 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2099
2100 ioc->dfgv_period_at = now->now;
2101 ioc->dfgv_usage_us_sum = 0;
2102
2103 /* if was too busy, reset everything */
2104 if (usage_pct > DFGV_USAGE_PCT) {
2105 ioc->dfgv_period_rem = 0;
2106 return;
2107 }
2108
2109 /*
2110 * Usage is lower than threshold. Let's forgive some debts. Debt
2111 * forgiveness runs off of the usual ioc timer but its period usually
2112 * doesn't match ioc's. Compensate the difference by performing the
2113 * reduction as many times as would fit in the duration since the last
2114 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2115 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2116 * reductions is doubled.
2117 */
2118 nr_cycles = dur + ioc->dfgv_period_rem;
2119 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2120
2121 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2122 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2123
2124 if (!iocg->abs_vdebt && !iocg->delay)
2125 continue;
2126
2127 spin_lock(&iocg->waitq.lock);
2128
2129 old_debt = iocg->abs_vdebt;
2130 old_delay = iocg->delay;
2131
2132 if (iocg->abs_vdebt)
2133 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2134 if (iocg->delay)
2135 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2136
2137 iocg_kick_waitq(iocg, true, now);
2138
2139 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2140 old_debt, iocg->abs_vdebt,
2141 old_delay, iocg->delay);
2142
2143 spin_unlock(&iocg->waitq.lock);
2144 }
2145 }
2146
2147 /*
2148 * Check the active iocgs' state to avoid oversleeping and deactive
2149 * idle iocgs.
2150 *
2151 * Since waiters determine the sleep durations based on the vrate
2152 * they saw at the time of sleep, if vrate has increased, some
2153 * waiters could be sleeping for too long. Wake up tardy waiters
2154 * which should have woken up in the last period and expire idle
2155 * iocgs.
2156 */
ioc_check_iocgs(struct ioc * ioc,struct ioc_now * now)2157 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2158 {
2159 int nr_debtors = 0;
2160 struct ioc_gq *iocg, *tiocg;
2161
2162 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2163 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2164 !iocg->delay && !iocg_is_idle(iocg))
2165 continue;
2166
2167 spin_lock(&iocg->waitq.lock);
2168
2169 /* flush wait and indebt stat deltas */
2170 if (iocg->wait_since) {
2171 iocg->local_stat.wait_us += now->now - iocg->wait_since;
2172 iocg->wait_since = now->now;
2173 }
2174 if (iocg->indebt_since) {
2175 iocg->local_stat.indebt_us +=
2176 now->now - iocg->indebt_since;
2177 iocg->indebt_since = now->now;
2178 }
2179 if (iocg->indelay_since) {
2180 iocg->local_stat.indelay_us +=
2181 now->now - iocg->indelay_since;
2182 iocg->indelay_since = now->now;
2183 }
2184
2185 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2186 iocg->delay) {
2187 /* might be oversleeping vtime / hweight changes, kick */
2188 iocg_kick_waitq(iocg, true, now);
2189 if (iocg->abs_vdebt || iocg->delay)
2190 nr_debtors++;
2191 } else if (iocg_is_idle(iocg)) {
2192 /* no waiter and idle, deactivate */
2193 u64 vtime = atomic64_read(&iocg->vtime);
2194 s64 excess;
2195
2196 /*
2197 * @iocg has been inactive for a full duration and will
2198 * have a high budget. Account anything above target as
2199 * error and throw away. On reactivation, it'll start
2200 * with the target budget.
2201 */
2202 excess = now->vnow - vtime - ioc->margins.target;
2203 if (excess > 0) {
2204 u32 old_hwi;
2205
2206 current_hweight(iocg, NULL, &old_hwi);
2207 ioc->vtime_err -= div64_u64(excess * old_hwi,
2208 WEIGHT_ONE);
2209 }
2210
2211 TRACE_IOCG_PATH(iocg_idle, iocg, now,
2212 atomic64_read(&iocg->active_period),
2213 atomic64_read(&ioc->cur_period), vtime);
2214 __propagate_weights(iocg, 0, 0, false, now);
2215 list_del_init(&iocg->active_list);
2216 }
2217
2218 spin_unlock(&iocg->waitq.lock);
2219 }
2220
2221 commit_weights(ioc);
2222 return nr_debtors;
2223 }
2224
ioc_timer_fn(struct timer_list * timer)2225 static void ioc_timer_fn(struct timer_list *timer)
2226 {
2227 struct ioc *ioc = container_of(timer, struct ioc, timer);
2228 struct ioc_gq *iocg, *tiocg;
2229 struct ioc_now now;
2230 LIST_HEAD(surpluses);
2231 int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2232 u64 usage_us_sum = 0;
2233 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2234 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2235 u32 missed_ppm[2], rq_wait_pct;
2236 u64 period_vtime;
2237 int prev_busy_level;
2238
2239 /* how were the latencies during the period? */
2240 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2241
2242 /* take care of active iocgs */
2243 spin_lock_irq(&ioc->lock);
2244
2245 ioc_now(ioc, &now);
2246
2247 period_vtime = now.vnow - ioc->period_at_vtime;
2248 if (WARN_ON_ONCE(!period_vtime)) {
2249 spin_unlock_irq(&ioc->lock);
2250 return;
2251 }
2252
2253 nr_debtors = ioc_check_iocgs(ioc, &now);
2254
2255 /*
2256 * Wait and indebt stat are flushed above and the donation calculation
2257 * below needs updated usage stat. Let's bring stat up-to-date.
2258 */
2259 iocg_flush_stat(&ioc->active_iocgs, &now);
2260
2261 /* calc usage and see whether some weights need to be moved around */
2262 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2263 u64 vdone, vtime, usage_us;
2264 u32 hw_active, hw_inuse;
2265
2266 /*
2267 * Collect unused and wind vtime closer to vnow to prevent
2268 * iocgs from accumulating a large amount of budget.
2269 */
2270 vdone = atomic64_read(&iocg->done_vtime);
2271 vtime = atomic64_read(&iocg->vtime);
2272 current_hweight(iocg, &hw_active, &hw_inuse);
2273
2274 /*
2275 * Latency QoS detection doesn't account for IOs which are
2276 * in-flight for longer than a period. Detect them by
2277 * comparing vdone against period start. If lagging behind
2278 * IOs from past periods, don't increase vrate.
2279 */
2280 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2281 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2282 time_after64(vtime, vdone) &&
2283 time_after64(vtime, now.vnow -
2284 MAX_LAGGING_PERIODS * period_vtime) &&
2285 time_before64(vdone, now.vnow - period_vtime))
2286 nr_lagging++;
2287
2288 /*
2289 * Determine absolute usage factoring in in-flight IOs to avoid
2290 * high-latency completions appearing as idle.
2291 */
2292 usage_us = iocg->usage_delta_us;
2293 usage_us_sum += usage_us;
2294
2295 /* see whether there's surplus vtime */
2296 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2297 if (hw_inuse < hw_active ||
2298 (!waitqueue_active(&iocg->waitq) &&
2299 time_before64(vtime, now.vnow - ioc->margins.low))) {
2300 u32 hwa, old_hwi, hwm, new_hwi, usage;
2301 u64 usage_dur;
2302
2303 if (vdone != vtime) {
2304 u64 inflight_us = DIV64_U64_ROUND_UP(
2305 cost_to_abs_cost(vtime - vdone, hw_inuse),
2306 ioc->vtime_base_rate);
2307
2308 usage_us = max(usage_us, inflight_us);
2309 }
2310
2311 /* convert to hweight based usage ratio */
2312 if (time_after64(iocg->activated_at, ioc->period_at))
2313 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2314 else
2315 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2316
2317 usage = clamp_t(u32,
2318 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2319 usage_dur),
2320 1, WEIGHT_ONE);
2321
2322 /*
2323 * Already donating or accumulated enough to start.
2324 * Determine the donation amount.
2325 */
2326 current_hweight(iocg, &hwa, &old_hwi);
2327 hwm = current_hweight_max(iocg);
2328 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2329 usage, &now);
2330 /*
2331 * Donation calculation assumes hweight_after_donation
2332 * to be positive, a condition that a donor w/ hwa < 2
2333 * can't meet. Don't bother with donation if hwa is
2334 * below 2. It's not gonna make a meaningful difference
2335 * anyway.
2336 */
2337 if (new_hwi < hwm && hwa >= 2) {
2338 iocg->hweight_donating = hwa;
2339 iocg->hweight_after_donation = new_hwi;
2340 list_add(&iocg->surplus_list, &surpluses);
2341 } else if (!iocg->abs_vdebt) {
2342 /*
2343 * @iocg doesn't have enough to donate. Reset
2344 * its inuse to active.
2345 *
2346 * Don't reset debtors as their inuse's are
2347 * owned by debt handling. This shouldn't affect
2348 * donation calculuation in any meaningful way
2349 * as @iocg doesn't have a meaningful amount of
2350 * share anyway.
2351 */
2352 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2353 iocg->inuse, iocg->active,
2354 iocg->hweight_inuse, new_hwi);
2355
2356 __propagate_weights(iocg, iocg->active,
2357 iocg->active, true, &now);
2358 nr_shortages++;
2359 }
2360 } else {
2361 /* genuinely short on vtime */
2362 nr_shortages++;
2363 }
2364 }
2365
2366 if (!list_empty(&surpluses) && nr_shortages)
2367 transfer_surpluses(&surpluses, &now);
2368
2369 commit_weights(ioc);
2370
2371 /* surplus list should be dissolved after use */
2372 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2373 list_del_init(&iocg->surplus_list);
2374
2375 /*
2376 * If q is getting clogged or we're missing too much, we're issuing
2377 * too much IO and should lower vtime rate. If we're not missing
2378 * and experiencing shortages but not surpluses, we're too stingy
2379 * and should increase vtime rate.
2380 */
2381 prev_busy_level = ioc->busy_level;
2382 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2383 missed_ppm[READ] > ppm_rthr ||
2384 missed_ppm[WRITE] > ppm_wthr) {
2385 /* clearly missing QoS targets, slow down vrate */
2386 ioc->busy_level = max(ioc->busy_level, 0);
2387 ioc->busy_level++;
2388 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2389 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2390 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2391 /* QoS targets are being met with >25% margin */
2392 if (nr_shortages) {
2393 /*
2394 * We're throttling while the device has spare
2395 * capacity. If vrate was being slowed down, stop.
2396 */
2397 ioc->busy_level = min(ioc->busy_level, 0);
2398
2399 /*
2400 * If there are IOs spanning multiple periods, wait
2401 * them out before pushing the device harder.
2402 */
2403 if (!nr_lagging)
2404 ioc->busy_level--;
2405 } else {
2406 /*
2407 * Nobody is being throttled and the users aren't
2408 * issuing enough IOs to saturate the device. We
2409 * simply don't know how close the device is to
2410 * saturation. Coast.
2411 */
2412 ioc->busy_level = 0;
2413 }
2414 } else {
2415 /* inside the hysterisis margin, we're good */
2416 ioc->busy_level = 0;
2417 }
2418
2419 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2420
2421 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2422 prev_busy_level, missed_ppm);
2423
2424 ioc_refresh_params(ioc, false);
2425
2426 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2427
2428 /*
2429 * This period is done. Move onto the next one. If nothing's
2430 * going on with the device, stop the timer.
2431 */
2432 atomic64_inc(&ioc->cur_period);
2433
2434 if (ioc->running != IOC_STOP) {
2435 if (!list_empty(&ioc->active_iocgs)) {
2436 ioc_start_period(ioc, &now);
2437 } else {
2438 ioc->busy_level = 0;
2439 ioc->vtime_err = 0;
2440 ioc->running = IOC_IDLE;
2441 }
2442
2443 ioc_refresh_vrate(ioc, &now);
2444 }
2445
2446 spin_unlock_irq(&ioc->lock);
2447 }
2448
adjust_inuse_and_calc_cost(struct ioc_gq * iocg,u64 vtime,u64 abs_cost,struct ioc_now * now)2449 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2450 u64 abs_cost, struct ioc_now *now)
2451 {
2452 struct ioc *ioc = iocg->ioc;
2453 struct ioc_margins *margins = &ioc->margins;
2454 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2455 u32 hwi, adj_step;
2456 s64 margin;
2457 u64 cost, new_inuse;
2458 unsigned long flags;
2459
2460 current_hweight(iocg, NULL, &hwi);
2461 old_hwi = hwi;
2462 cost = abs_cost_to_cost(abs_cost, hwi);
2463 margin = now->vnow - vtime - cost;
2464
2465 /* debt handling owns inuse for debtors */
2466 if (iocg->abs_vdebt)
2467 return cost;
2468
2469 /*
2470 * We only increase inuse during period and do so if the margin has
2471 * deteriorated since the previous adjustment.
2472 */
2473 if (margin >= iocg->saved_margin || margin >= margins->low ||
2474 iocg->inuse == iocg->active)
2475 return cost;
2476
2477 spin_lock_irqsave(&ioc->lock, flags);
2478
2479 /* we own inuse only when @iocg is in the normal active state */
2480 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2481 spin_unlock_irqrestore(&ioc->lock, flags);
2482 return cost;
2483 }
2484
2485 /*
2486 * Bump up inuse till @abs_cost fits in the existing budget.
2487 * adj_step must be determined after acquiring ioc->lock - we might
2488 * have raced and lost to another thread for activation and could
2489 * be reading 0 iocg->active before ioc->lock which will lead to
2490 * infinite loop.
2491 */
2492 new_inuse = iocg->inuse;
2493 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2494 do {
2495 new_inuse = new_inuse + adj_step;
2496 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2497 current_hweight(iocg, NULL, &hwi);
2498 cost = abs_cost_to_cost(abs_cost, hwi);
2499 } while (time_after64(vtime + cost, now->vnow) &&
2500 iocg->inuse != iocg->active);
2501
2502 spin_unlock_irqrestore(&ioc->lock, flags);
2503
2504 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2505 old_inuse, iocg->inuse, old_hwi, hwi);
2506
2507 return cost;
2508 }
2509
calc_vtime_cost_builtin(struct bio * bio,struct ioc_gq * iocg,bool is_merge,u64 * costp)2510 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2511 bool is_merge, u64 *costp)
2512 {
2513 struct ioc *ioc = iocg->ioc;
2514 u64 coef_seqio, coef_randio, coef_page;
2515 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2516 u64 seek_pages = 0;
2517 u64 cost = 0;
2518
2519 switch (bio_op(bio)) {
2520 case REQ_OP_READ:
2521 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2522 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2523 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2524 break;
2525 case REQ_OP_WRITE:
2526 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2527 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2528 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2529 break;
2530 default:
2531 goto out;
2532 }
2533
2534 if (iocg->cursor) {
2535 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2536 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2537 }
2538
2539 if (!is_merge) {
2540 if (seek_pages > LCOEF_RANDIO_PAGES) {
2541 cost += coef_randio;
2542 } else {
2543 cost += coef_seqio;
2544 }
2545 }
2546 cost += pages * coef_page;
2547 out:
2548 *costp = cost;
2549 }
2550
calc_vtime_cost(struct bio * bio,struct ioc_gq * iocg,bool is_merge)2551 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2552 {
2553 u64 cost;
2554
2555 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2556 return cost;
2557 }
2558
calc_size_vtime_cost_builtin(struct request * rq,struct ioc * ioc,u64 * costp)2559 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2560 u64 *costp)
2561 {
2562 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2563
2564 switch (req_op(rq)) {
2565 case REQ_OP_READ:
2566 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2567 break;
2568 case REQ_OP_WRITE:
2569 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2570 break;
2571 default:
2572 *costp = 0;
2573 }
2574 }
2575
calc_size_vtime_cost(struct request * rq,struct ioc * ioc)2576 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2577 {
2578 u64 cost;
2579
2580 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2581 return cost;
2582 }
2583
ioc_rqos_throttle(struct rq_qos * rqos,struct bio * bio)2584 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2585 {
2586 struct blkcg_gq *blkg = bio->bi_blkg;
2587 struct ioc *ioc = rqos_to_ioc(rqos);
2588 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2589 struct ioc_now now;
2590 struct iocg_wait wait;
2591 u64 abs_cost, cost, vtime;
2592 bool use_debt, ioc_locked;
2593 unsigned long flags;
2594
2595 /* bypass IOs if disabled, still initializing, or for root cgroup */
2596 if (!ioc->enabled || !iocg || !iocg->level)
2597 return;
2598
2599 /* calculate the absolute vtime cost */
2600 abs_cost = calc_vtime_cost(bio, iocg, false);
2601 if (!abs_cost)
2602 return;
2603
2604 if (!iocg_activate(iocg, &now))
2605 return;
2606
2607 iocg->cursor = bio_end_sector(bio);
2608 vtime = atomic64_read(&iocg->vtime);
2609 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2610
2611 /*
2612 * If no one's waiting and within budget, issue right away. The
2613 * tests are racy but the races aren't systemic - we only miss once
2614 * in a while which is fine.
2615 */
2616 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2617 time_before_eq64(vtime + cost, now.vnow)) {
2618 iocg_commit_bio(iocg, bio, abs_cost, cost);
2619 return;
2620 }
2621
2622 /*
2623 * We're over budget. This can be handled in two ways. IOs which may
2624 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2625 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2626 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2627 * whether debt handling is needed and acquire locks accordingly.
2628 */
2629 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2630 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2631 retry_lock:
2632 iocg_lock(iocg, ioc_locked, &flags);
2633
2634 /*
2635 * @iocg must stay activated for debt and waitq handling. Deactivation
2636 * is synchronized against both ioc->lock and waitq.lock and we won't
2637 * get deactivated as long as we're waiting or has debt, so we're good
2638 * if we're activated here. In the unlikely cases that we aren't, just
2639 * issue the IO.
2640 */
2641 if (unlikely(list_empty(&iocg->active_list))) {
2642 iocg_unlock(iocg, ioc_locked, &flags);
2643 iocg_commit_bio(iocg, bio, abs_cost, cost);
2644 return;
2645 }
2646
2647 /*
2648 * We're over budget. If @bio has to be issued regardless, remember
2649 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2650 * off the debt before waking more IOs.
2651 *
2652 * This way, the debt is continuously paid off each period with the
2653 * actual budget available to the cgroup. If we just wound vtime, we
2654 * would incorrectly use the current hw_inuse for the entire amount
2655 * which, for example, can lead to the cgroup staying blocked for a
2656 * long time even with substantially raised hw_inuse.
2657 *
2658 * An iocg with vdebt should stay online so that the timer can keep
2659 * deducting its vdebt and [de]activate use_delay mechanism
2660 * accordingly. We don't want to race against the timer trying to
2661 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2662 * penalizing the cgroup and its descendants.
2663 */
2664 if (use_debt) {
2665 iocg_incur_debt(iocg, abs_cost, &now);
2666 if (iocg_kick_delay(iocg, &now))
2667 blkcg_schedule_throttle(rqos->q,
2668 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2669 iocg_unlock(iocg, ioc_locked, &flags);
2670 return;
2671 }
2672
2673 /* guarantee that iocgs w/ waiters have maximum inuse */
2674 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2675 if (!ioc_locked) {
2676 iocg_unlock(iocg, false, &flags);
2677 ioc_locked = true;
2678 goto retry_lock;
2679 }
2680 propagate_weights(iocg, iocg->active, iocg->active, true,
2681 &now);
2682 }
2683
2684 /*
2685 * Append self to the waitq and schedule the wakeup timer if we're
2686 * the first waiter. The timer duration is calculated based on the
2687 * current vrate. vtime and hweight changes can make it too short
2688 * or too long. Each wait entry records the absolute cost it's
2689 * waiting for to allow re-evaluation using a custom wait entry.
2690 *
2691 * If too short, the timer simply reschedules itself. If too long,
2692 * the period timer will notice and trigger wakeups.
2693 *
2694 * All waiters are on iocg->waitq and the wait states are
2695 * synchronized using waitq.lock.
2696 */
2697 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2698 wait.wait.private = current;
2699 wait.bio = bio;
2700 wait.abs_cost = abs_cost;
2701 wait.committed = false; /* will be set true by waker */
2702
2703 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2704 iocg_kick_waitq(iocg, ioc_locked, &now);
2705
2706 iocg_unlock(iocg, ioc_locked, &flags);
2707
2708 while (true) {
2709 set_current_state(TASK_UNINTERRUPTIBLE);
2710 if (wait.committed)
2711 break;
2712 io_schedule();
2713 }
2714
2715 /* waker already committed us, proceed */
2716 finish_wait(&iocg->waitq, &wait.wait);
2717 }
2718
ioc_rqos_merge(struct rq_qos * rqos,struct request * rq,struct bio * bio)2719 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2720 struct bio *bio)
2721 {
2722 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2723 struct ioc *ioc = rqos_to_ioc(rqos);
2724 sector_t bio_end = bio_end_sector(bio);
2725 struct ioc_now now;
2726 u64 vtime, abs_cost, cost;
2727 unsigned long flags;
2728
2729 /* bypass if disabled, still initializing, or for root cgroup */
2730 if (!ioc->enabled || !iocg || !iocg->level)
2731 return;
2732
2733 abs_cost = calc_vtime_cost(bio, iocg, true);
2734 if (!abs_cost)
2735 return;
2736
2737 ioc_now(ioc, &now);
2738
2739 vtime = atomic64_read(&iocg->vtime);
2740 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2741
2742 /* update cursor if backmerging into the request at the cursor */
2743 if (blk_rq_pos(rq) < bio_end &&
2744 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2745 iocg->cursor = bio_end;
2746
2747 /*
2748 * Charge if there's enough vtime budget and the existing request has
2749 * cost assigned.
2750 */
2751 if (rq->bio && rq->bio->bi_iocost_cost &&
2752 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2753 iocg_commit_bio(iocg, bio, abs_cost, cost);
2754 return;
2755 }
2756
2757 /*
2758 * Otherwise, account it as debt if @iocg is online, which it should
2759 * be for the vast majority of cases. See debt handling in
2760 * ioc_rqos_throttle() for details.
2761 */
2762 spin_lock_irqsave(&ioc->lock, flags);
2763 spin_lock(&iocg->waitq.lock);
2764
2765 if (likely(!list_empty(&iocg->active_list))) {
2766 iocg_incur_debt(iocg, abs_cost, &now);
2767 if (iocg_kick_delay(iocg, &now))
2768 blkcg_schedule_throttle(rqos->q,
2769 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2770 } else {
2771 iocg_commit_bio(iocg, bio, abs_cost, cost);
2772 }
2773
2774 spin_unlock(&iocg->waitq.lock);
2775 spin_unlock_irqrestore(&ioc->lock, flags);
2776 }
2777
ioc_rqos_done_bio(struct rq_qos * rqos,struct bio * bio)2778 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2779 {
2780 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2781
2782 if (iocg && bio->bi_iocost_cost)
2783 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2784 }
2785
ioc_rqos_done(struct rq_qos * rqos,struct request * rq)2786 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2787 {
2788 struct ioc *ioc = rqos_to_ioc(rqos);
2789 struct ioc_pcpu_stat *ccs;
2790 u64 on_q_ns, rq_wait_ns, size_nsec;
2791 int pidx, rw;
2792
2793 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2794 return;
2795
2796 switch (req_op(rq) & REQ_OP_MASK) {
2797 case REQ_OP_READ:
2798 pidx = QOS_RLAT;
2799 rw = READ;
2800 break;
2801 case REQ_OP_WRITE:
2802 pidx = QOS_WLAT;
2803 rw = WRITE;
2804 break;
2805 default:
2806 return;
2807 }
2808
2809 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2810 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2811 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2812
2813 ccs = get_cpu_ptr(ioc->pcpu_stat);
2814
2815 if (on_q_ns <= size_nsec ||
2816 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2817 local_inc(&ccs->missed[rw].nr_met);
2818 else
2819 local_inc(&ccs->missed[rw].nr_missed);
2820
2821 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2822
2823 put_cpu_ptr(ccs);
2824 }
2825
ioc_rqos_queue_depth_changed(struct rq_qos * rqos)2826 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2827 {
2828 struct ioc *ioc = rqos_to_ioc(rqos);
2829
2830 spin_lock_irq(&ioc->lock);
2831 ioc_refresh_params(ioc, false);
2832 spin_unlock_irq(&ioc->lock);
2833 }
2834
ioc_rqos_exit(struct rq_qos * rqos)2835 static void ioc_rqos_exit(struct rq_qos *rqos)
2836 {
2837 struct ioc *ioc = rqos_to_ioc(rqos);
2838
2839 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2840
2841 spin_lock_irq(&ioc->lock);
2842 ioc->running = IOC_STOP;
2843 spin_unlock_irq(&ioc->lock);
2844
2845 del_timer_sync(&ioc->timer);
2846 free_percpu(ioc->pcpu_stat);
2847 kfree(ioc);
2848 }
2849
2850 static struct rq_qos_ops ioc_rqos_ops = {
2851 .throttle = ioc_rqos_throttle,
2852 .merge = ioc_rqos_merge,
2853 .done_bio = ioc_rqos_done_bio,
2854 .done = ioc_rqos_done,
2855 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2856 .exit = ioc_rqos_exit,
2857 };
2858
blk_iocost_init(struct request_queue * q)2859 static int blk_iocost_init(struct request_queue *q)
2860 {
2861 struct ioc *ioc;
2862 struct rq_qos *rqos;
2863 int i, cpu, ret;
2864
2865 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2866 if (!ioc)
2867 return -ENOMEM;
2868
2869 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2870 if (!ioc->pcpu_stat) {
2871 kfree(ioc);
2872 return -ENOMEM;
2873 }
2874
2875 for_each_possible_cpu(cpu) {
2876 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2877
2878 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2879 local_set(&ccs->missed[i].nr_met, 0);
2880 local_set(&ccs->missed[i].nr_missed, 0);
2881 }
2882 local64_set(&ccs->rq_wait_ns, 0);
2883 }
2884
2885 rqos = &ioc->rqos;
2886 rqos->id = RQ_QOS_COST;
2887 rqos->ops = &ioc_rqos_ops;
2888 rqos->q = q;
2889
2890 spin_lock_init(&ioc->lock);
2891 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2892 INIT_LIST_HEAD(&ioc->active_iocgs);
2893
2894 ioc->running = IOC_IDLE;
2895 ioc->vtime_base_rate = VTIME_PER_USEC;
2896 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2897 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2898 ioc->period_at = ktime_to_us(ktime_get());
2899 atomic64_set(&ioc->cur_period, 0);
2900 atomic_set(&ioc->hweight_gen, 0);
2901
2902 spin_lock_irq(&ioc->lock);
2903 ioc->autop_idx = AUTOP_INVALID;
2904 ioc_refresh_params(ioc, true);
2905 spin_unlock_irq(&ioc->lock);
2906
2907 /*
2908 * rqos must be added before activation to allow iocg_pd_init() to
2909 * lookup the ioc from q. This means that the rqos methods may get
2910 * called before policy activation completion, can't assume that the
2911 * target bio has an iocg associated and need to test for NULL iocg.
2912 */
2913 ret = rq_qos_add(q, rqos);
2914 if (ret)
2915 goto err_free_ioc;
2916
2917 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2918 if (ret)
2919 goto err_del_qos;
2920 return 0;
2921
2922 err_del_qos:
2923 rq_qos_del(q, rqos);
2924 err_free_ioc:
2925 free_percpu(ioc->pcpu_stat);
2926 kfree(ioc);
2927 return ret;
2928 }
2929
ioc_cpd_alloc(gfp_t gfp)2930 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2931 {
2932 struct ioc_cgrp *iocc;
2933
2934 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2935 if (!iocc)
2936 return NULL;
2937
2938 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2939 return &iocc->cpd;
2940 }
2941
ioc_cpd_free(struct blkcg_policy_data * cpd)2942 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2943 {
2944 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2945 }
2946
ioc_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)2947 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2948 struct blkcg *blkcg)
2949 {
2950 int levels = blkcg->css.cgroup->level + 1;
2951 struct ioc_gq *iocg;
2952
2953 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2954 if (!iocg)
2955 return NULL;
2956
2957 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2958 if (!iocg->pcpu_stat) {
2959 kfree(iocg);
2960 return NULL;
2961 }
2962
2963 return &iocg->pd;
2964 }
2965
ioc_pd_init(struct blkg_policy_data * pd)2966 static void ioc_pd_init(struct blkg_policy_data *pd)
2967 {
2968 struct ioc_gq *iocg = pd_to_iocg(pd);
2969 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2970 struct ioc *ioc = q_to_ioc(blkg->q);
2971 struct ioc_now now;
2972 struct blkcg_gq *tblkg;
2973 unsigned long flags;
2974
2975 ioc_now(ioc, &now);
2976
2977 iocg->ioc = ioc;
2978 atomic64_set(&iocg->vtime, now.vnow);
2979 atomic64_set(&iocg->done_vtime, now.vnow);
2980 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2981 INIT_LIST_HEAD(&iocg->active_list);
2982 INIT_LIST_HEAD(&iocg->walk_list);
2983 INIT_LIST_HEAD(&iocg->surplus_list);
2984 iocg->hweight_active = WEIGHT_ONE;
2985 iocg->hweight_inuse = WEIGHT_ONE;
2986
2987 init_waitqueue_head(&iocg->waitq);
2988 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2989 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2990
2991 iocg->level = blkg->blkcg->css.cgroup->level;
2992
2993 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2994 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2995 iocg->ancestors[tiocg->level] = tiocg;
2996 }
2997
2998 spin_lock_irqsave(&ioc->lock, flags);
2999 weight_updated(iocg, &now);
3000 spin_unlock_irqrestore(&ioc->lock, flags);
3001 }
3002
ioc_pd_free(struct blkg_policy_data * pd)3003 static void ioc_pd_free(struct blkg_policy_data *pd)
3004 {
3005 struct ioc_gq *iocg = pd_to_iocg(pd);
3006 struct ioc *ioc = iocg->ioc;
3007 unsigned long flags;
3008
3009 if (ioc) {
3010 spin_lock_irqsave(&ioc->lock, flags);
3011
3012 if (!list_empty(&iocg->active_list)) {
3013 struct ioc_now now;
3014
3015 ioc_now(ioc, &now);
3016 propagate_weights(iocg, 0, 0, false, &now);
3017 list_del_init(&iocg->active_list);
3018 }
3019
3020 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3021 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3022
3023 spin_unlock_irqrestore(&ioc->lock, flags);
3024
3025 hrtimer_cancel(&iocg->waitq_timer);
3026 }
3027 free_percpu(iocg->pcpu_stat);
3028 kfree(iocg);
3029 }
3030
ioc_pd_stat(struct blkg_policy_data * pd,struct seq_file * s)3031 static bool ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3032 {
3033 struct ioc_gq *iocg = pd_to_iocg(pd);
3034 struct ioc *ioc = iocg->ioc;
3035
3036 if (!ioc->enabled)
3037 return false;
3038
3039 if (iocg->level == 0) {
3040 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3041 ioc->vtime_base_rate * 10000,
3042 VTIME_PER_USEC);
3043 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3044 }
3045
3046 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3047
3048 if (blkcg_debug_stats)
3049 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3050 iocg->last_stat.wait_us,
3051 iocg->last_stat.indebt_us,
3052 iocg->last_stat.indelay_us);
3053 return true;
3054 }
3055
ioc_weight_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3056 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3057 int off)
3058 {
3059 const char *dname = blkg_dev_name(pd->blkg);
3060 struct ioc_gq *iocg = pd_to_iocg(pd);
3061
3062 if (dname && iocg->cfg_weight)
3063 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3064 return 0;
3065 }
3066
3067
ioc_weight_show(struct seq_file * sf,void * v)3068 static int ioc_weight_show(struct seq_file *sf, void *v)
3069 {
3070 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3071 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3072
3073 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3074 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3075 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3076 return 0;
3077 }
3078
ioc_weight_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3079 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3080 size_t nbytes, loff_t off)
3081 {
3082 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3083 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3084 struct blkg_conf_ctx ctx;
3085 struct ioc_now now;
3086 struct ioc_gq *iocg;
3087 u32 v;
3088 int ret;
3089
3090 if (!strchr(buf, ':')) {
3091 struct blkcg_gq *blkg;
3092
3093 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3094 return -EINVAL;
3095
3096 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3097 return -EINVAL;
3098
3099 spin_lock_irq(&blkcg->lock);
3100 iocc->dfl_weight = v * WEIGHT_ONE;
3101 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3102 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3103
3104 if (iocg) {
3105 spin_lock(&iocg->ioc->lock);
3106 ioc_now(iocg->ioc, &now);
3107 weight_updated(iocg, &now);
3108 spin_unlock(&iocg->ioc->lock);
3109 }
3110 }
3111 spin_unlock_irq(&blkcg->lock);
3112
3113 return nbytes;
3114 }
3115
3116 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3117 if (ret)
3118 return ret;
3119
3120 iocg = blkg_to_iocg(ctx.blkg);
3121
3122 if (!strncmp(ctx.body, "default", 7)) {
3123 v = 0;
3124 } else {
3125 if (!sscanf(ctx.body, "%u", &v))
3126 goto einval;
3127 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3128 goto einval;
3129 }
3130
3131 spin_lock(&iocg->ioc->lock);
3132 iocg->cfg_weight = v * WEIGHT_ONE;
3133 ioc_now(iocg->ioc, &now);
3134 weight_updated(iocg, &now);
3135 spin_unlock(&iocg->ioc->lock);
3136
3137 blkg_conf_finish(&ctx);
3138 return nbytes;
3139
3140 einval:
3141 blkg_conf_finish(&ctx);
3142 return -EINVAL;
3143 }
3144
ioc_qos_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3145 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3146 int off)
3147 {
3148 const char *dname = blkg_dev_name(pd->blkg);
3149 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3150
3151 if (!dname)
3152 return 0;
3153
3154 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3155 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3156 ioc->params.qos[QOS_RPPM] / 10000,
3157 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3158 ioc->params.qos[QOS_RLAT],
3159 ioc->params.qos[QOS_WPPM] / 10000,
3160 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3161 ioc->params.qos[QOS_WLAT],
3162 ioc->params.qos[QOS_MIN] / 10000,
3163 ioc->params.qos[QOS_MIN] % 10000 / 100,
3164 ioc->params.qos[QOS_MAX] / 10000,
3165 ioc->params.qos[QOS_MAX] % 10000 / 100);
3166 return 0;
3167 }
3168
ioc_qos_show(struct seq_file * sf,void * v)3169 static int ioc_qos_show(struct seq_file *sf, void *v)
3170 {
3171 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3172
3173 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3174 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3175 return 0;
3176 }
3177
3178 static const match_table_t qos_ctrl_tokens = {
3179 { QOS_ENABLE, "enable=%u" },
3180 { QOS_CTRL, "ctrl=%s" },
3181 { NR_QOS_CTRL_PARAMS, NULL },
3182 };
3183
3184 static const match_table_t qos_tokens = {
3185 { QOS_RPPM, "rpct=%s" },
3186 { QOS_RLAT, "rlat=%u" },
3187 { QOS_WPPM, "wpct=%s" },
3188 { QOS_WLAT, "wlat=%u" },
3189 { QOS_MIN, "min=%s" },
3190 { QOS_MAX, "max=%s" },
3191 { NR_QOS_PARAMS, NULL },
3192 };
3193
ioc_qos_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3194 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3195 size_t nbytes, loff_t off)
3196 {
3197 struct block_device *bdev;
3198 struct ioc *ioc;
3199 u32 qos[NR_QOS_PARAMS];
3200 bool enable, user;
3201 char *p;
3202 int ret;
3203
3204 bdev = blkcg_conf_open_bdev(&input);
3205 if (IS_ERR(bdev))
3206 return PTR_ERR(bdev);
3207
3208 ioc = q_to_ioc(bdev->bd_disk->queue);
3209 if (!ioc) {
3210 ret = blk_iocost_init(bdev->bd_disk->queue);
3211 if (ret)
3212 goto err;
3213 ioc = q_to_ioc(bdev->bd_disk->queue);
3214 }
3215
3216 spin_lock_irq(&ioc->lock);
3217 memcpy(qos, ioc->params.qos, sizeof(qos));
3218 enable = ioc->enabled;
3219 user = ioc->user_qos_params;
3220 spin_unlock_irq(&ioc->lock);
3221
3222 while ((p = strsep(&input, " \t\n"))) {
3223 substring_t args[MAX_OPT_ARGS];
3224 char buf[32];
3225 int tok;
3226 s64 v;
3227
3228 if (!*p)
3229 continue;
3230
3231 switch (match_token(p, qos_ctrl_tokens, args)) {
3232 case QOS_ENABLE:
3233 match_u64(&args[0], &v);
3234 enable = v;
3235 continue;
3236 case QOS_CTRL:
3237 match_strlcpy(buf, &args[0], sizeof(buf));
3238 if (!strcmp(buf, "auto"))
3239 user = false;
3240 else if (!strcmp(buf, "user"))
3241 user = true;
3242 else
3243 goto einval;
3244 continue;
3245 }
3246
3247 tok = match_token(p, qos_tokens, args);
3248 switch (tok) {
3249 case QOS_RPPM:
3250 case QOS_WPPM:
3251 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3252 sizeof(buf))
3253 goto einval;
3254 if (cgroup_parse_float(buf, 2, &v))
3255 goto einval;
3256 if (v < 0 || v > 10000)
3257 goto einval;
3258 qos[tok] = v * 100;
3259 break;
3260 case QOS_RLAT:
3261 case QOS_WLAT:
3262 if (match_u64(&args[0], &v))
3263 goto einval;
3264 qos[tok] = v;
3265 break;
3266 case QOS_MIN:
3267 case QOS_MAX:
3268 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3269 sizeof(buf))
3270 goto einval;
3271 if (cgroup_parse_float(buf, 2, &v))
3272 goto einval;
3273 if (v < 0)
3274 goto einval;
3275 qos[tok] = clamp_t(s64, v * 100,
3276 VRATE_MIN_PPM, VRATE_MAX_PPM);
3277 break;
3278 default:
3279 goto einval;
3280 }
3281 user = true;
3282 }
3283
3284 if (qos[QOS_MIN] > qos[QOS_MAX])
3285 goto einval;
3286
3287 spin_lock_irq(&ioc->lock);
3288
3289 if (enable) {
3290 blk_stat_enable_accounting(ioc->rqos.q);
3291 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3292 ioc->enabled = true;
3293 } else {
3294 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3295 ioc->enabled = false;
3296 }
3297
3298 if (user) {
3299 memcpy(ioc->params.qos, qos, sizeof(qos));
3300 ioc->user_qos_params = true;
3301 } else {
3302 ioc->user_qos_params = false;
3303 }
3304
3305 ioc_refresh_params(ioc, true);
3306 spin_unlock_irq(&ioc->lock);
3307
3308 blkdev_put_no_open(bdev);
3309 return nbytes;
3310 einval:
3311 ret = -EINVAL;
3312 err:
3313 blkdev_put_no_open(bdev);
3314 return ret;
3315 }
3316
ioc_cost_model_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3317 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3318 struct blkg_policy_data *pd, int off)
3319 {
3320 const char *dname = blkg_dev_name(pd->blkg);
3321 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3322 u64 *u = ioc->params.i_lcoefs;
3323
3324 if (!dname)
3325 return 0;
3326
3327 seq_printf(sf, "%s ctrl=%s model=linear "
3328 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3329 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3330 dname, ioc->user_cost_model ? "user" : "auto",
3331 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3332 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3333 return 0;
3334 }
3335
ioc_cost_model_show(struct seq_file * sf,void * v)3336 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3337 {
3338 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3339
3340 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3341 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3342 return 0;
3343 }
3344
3345 static const match_table_t cost_ctrl_tokens = {
3346 { COST_CTRL, "ctrl=%s" },
3347 { COST_MODEL, "model=%s" },
3348 { NR_COST_CTRL_PARAMS, NULL },
3349 };
3350
3351 static const match_table_t i_lcoef_tokens = {
3352 { I_LCOEF_RBPS, "rbps=%u" },
3353 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3354 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3355 { I_LCOEF_WBPS, "wbps=%u" },
3356 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3357 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3358 { NR_I_LCOEFS, NULL },
3359 };
3360
ioc_cost_model_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3361 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3362 size_t nbytes, loff_t off)
3363 {
3364 struct block_device *bdev;
3365 struct ioc *ioc;
3366 u64 u[NR_I_LCOEFS];
3367 bool user;
3368 char *p;
3369 int ret;
3370
3371 bdev = blkcg_conf_open_bdev(&input);
3372 if (IS_ERR(bdev))
3373 return PTR_ERR(bdev);
3374
3375 ioc = q_to_ioc(bdev->bd_disk->queue);
3376 if (!ioc) {
3377 ret = blk_iocost_init(bdev->bd_disk->queue);
3378 if (ret)
3379 goto err;
3380 ioc = q_to_ioc(bdev->bd_disk->queue);
3381 }
3382
3383 spin_lock_irq(&ioc->lock);
3384 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3385 user = ioc->user_cost_model;
3386 spin_unlock_irq(&ioc->lock);
3387
3388 while ((p = strsep(&input, " \t\n"))) {
3389 substring_t args[MAX_OPT_ARGS];
3390 char buf[32];
3391 int tok;
3392 u64 v;
3393
3394 if (!*p)
3395 continue;
3396
3397 switch (match_token(p, cost_ctrl_tokens, args)) {
3398 case COST_CTRL:
3399 match_strlcpy(buf, &args[0], sizeof(buf));
3400 if (!strcmp(buf, "auto"))
3401 user = false;
3402 else if (!strcmp(buf, "user"))
3403 user = true;
3404 else
3405 goto einval;
3406 continue;
3407 case COST_MODEL:
3408 match_strlcpy(buf, &args[0], sizeof(buf));
3409 if (strcmp(buf, "linear"))
3410 goto einval;
3411 continue;
3412 }
3413
3414 tok = match_token(p, i_lcoef_tokens, args);
3415 if (tok == NR_I_LCOEFS)
3416 goto einval;
3417 if (match_u64(&args[0], &v))
3418 goto einval;
3419 u[tok] = v;
3420 user = true;
3421 }
3422
3423 spin_lock_irq(&ioc->lock);
3424 if (user) {
3425 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3426 ioc->user_cost_model = true;
3427 } else {
3428 ioc->user_cost_model = false;
3429 }
3430 ioc_refresh_params(ioc, true);
3431 spin_unlock_irq(&ioc->lock);
3432
3433 blkdev_put_no_open(bdev);
3434 return nbytes;
3435
3436 einval:
3437 ret = -EINVAL;
3438 err:
3439 blkdev_put_no_open(bdev);
3440 return ret;
3441 }
3442
3443 static struct cftype ioc_files[] = {
3444 {
3445 .name = "weight",
3446 .flags = CFTYPE_NOT_ON_ROOT,
3447 .seq_show = ioc_weight_show,
3448 .write = ioc_weight_write,
3449 },
3450 {
3451 .name = "cost.qos",
3452 .flags = CFTYPE_ONLY_ON_ROOT,
3453 .seq_show = ioc_qos_show,
3454 .write = ioc_qos_write,
3455 },
3456 {
3457 .name = "cost.model",
3458 .flags = CFTYPE_ONLY_ON_ROOT,
3459 .seq_show = ioc_cost_model_show,
3460 .write = ioc_cost_model_write,
3461 },
3462 {}
3463 };
3464
3465 static struct blkcg_policy blkcg_policy_iocost = {
3466 .dfl_cftypes = ioc_files,
3467 .cpd_alloc_fn = ioc_cpd_alloc,
3468 .cpd_free_fn = ioc_cpd_free,
3469 .pd_alloc_fn = ioc_pd_alloc,
3470 .pd_init_fn = ioc_pd_init,
3471 .pd_free_fn = ioc_pd_free,
3472 .pd_stat_fn = ioc_pd_stat,
3473 };
3474
ioc_init(void)3475 static int __init ioc_init(void)
3476 {
3477 return blkcg_policy_register(&blkcg_policy_iocost);
3478 }
3479
ioc_exit(void)3480 static void __exit ioc_exit(void)
3481 {
3482 blkcg_policy_unregister(&blkcg_policy_iocost);
3483 }
3484
3485 module_init(ioc_init);
3486 module_exit(ioc_exit);
3487