• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block rq-qos base io controller
4  *
5  * This works similar to wbt with a few exceptions
6  *
7  * - It's bio based, so the latency covers the whole block layer in addition to
8  *   the actual io.
9  * - We will throttle all IO that comes in here if we need to.
10  * - We use the mean latency over the 100ms window.  This is because writes can
11  *   be particularly fast, which could give us a false sense of the impact of
12  *   other workloads on our protected workload.
13  * - By default there's no throttling, we set the queue_depth to UINT_MAX so
14  *   that we can have as many outstanding bio's as we're allowed to.  Only at
15  *   throttle time do we pay attention to the actual queue depth.
16  *
17  * The hierarchy works like the cpu controller does, we track the latency at
18  * every configured node, and each configured node has it's own independent
19  * queue depth.  This means that we only care about our latency targets at the
20  * peer level.  Some group at the bottom of the hierarchy isn't going to affect
21  * a group at the end of some other path if we're only configred at leaf level.
22  *
23  * Consider the following
24  *
25  *                   root blkg
26  *             /                     \
27  *        fast (target=5ms)     slow (target=10ms)
28  *         /     \                  /        \
29  *       a        b          normal(15ms)   unloved
30  *
31  * "a" and "b" have no target, but their combined io under "fast" cannot exceed
32  * an average latency of 5ms.  If it does then we will throttle the "slow"
33  * group.  In the case of "normal", if it exceeds its 15ms target, we will
34  * throttle "unloved", but nobody else.
35  *
36  * In this example "fast", "slow", and "normal" will be the only groups actually
37  * accounting their io latencies.  We have to walk up the heirarchy to the root
38  * on every submit and complete so we can do the appropriate stat recording and
39  * adjust the queue depth of ourselves if needed.
40  *
41  * There are 2 ways we throttle IO.
42  *
43  * 1) Queue depth throttling.  As we throttle down we will adjust the maximum
44  * number of IO's we're allowed to have in flight.  This starts at (u64)-1 down
45  * to 1.  If the group is only ever submitting IO for itself then this is the
46  * only way we throttle.
47  *
48  * 2) Induced delay throttling.  This is for the case that a group is generating
49  * IO that has to be issued by the root cg to avoid priority inversion. So think
50  * REQ_META or REQ_SWAP.  If we are already at qd == 1 and we're getting a lot
51  * of work done for us on behalf of the root cg and are being asked to scale
52  * down more then we induce a latency at userspace return.  We accumulate the
53  * total amount of time we need to be punished by doing
54  *
55  * total_time += min_lat_nsec - actual_io_completion
56  *
57  * and then at throttle time will do
58  *
59  * throttle_time = min(total_time, NSEC_PER_SEC)
60  *
61  * This induced delay will throttle back the activity that is generating the
62  * root cg issued io's, wethere that's some metadata intensive operation or the
63  * group is using so much memory that it is pushing us into swap.
64  *
65  * Copyright (C) 2018 Josef Bacik
66  */
67 #include <linux/kernel.h>
68 #include <linux/blk_types.h>
69 #include <linux/backing-dev.h>
70 #include <linux/module.h>
71 #include <linux/timer.h>
72 #include <linux/memcontrol.h>
73 #include <linux/sched/loadavg.h>
74 #include <linux/sched/signal.h>
75 #include <trace/events/block.h>
76 #include <linux/blk-mq.h>
77 #include "blk-rq-qos.h"
78 #include "blk-stat.h"
79 #include "blk.h"
80 
81 #define DEFAULT_SCALE_COOKIE 1000000U
82 
83 static struct blkcg_policy blkcg_policy_iolatency;
84 struct iolatency_grp;
85 
86 struct blk_iolatency {
87 	struct rq_qos rqos;
88 	struct timer_list timer;
89 
90 	/*
91 	 * ->enabled is the master enable switch gating the throttling logic and
92 	 * inflight tracking. The number of cgroups which have iolat enabled is
93 	 * tracked in ->enable_cnt, and ->enable is flipped on/off accordingly
94 	 * from ->enable_work with the request_queue frozen. For details, See
95 	 * blkiolatency_enable_work_fn().
96 	 */
97 	bool enabled;
98 	atomic_t enable_cnt;
99 	struct work_struct enable_work;
100 };
101 
BLKIOLATENCY(struct rq_qos * rqos)102 static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
103 {
104 	return container_of(rqos, struct blk_iolatency, rqos);
105 }
106 
107 struct child_latency_info {
108 	spinlock_t lock;
109 
110 	/* Last time we adjusted the scale of everybody. */
111 	u64 last_scale_event;
112 
113 	/* The latency that we missed. */
114 	u64 scale_lat;
115 
116 	/* Total io's from all of our children for the last summation. */
117 	u64 nr_samples;
118 
119 	/* The guy who actually changed the latency numbers. */
120 	struct iolatency_grp *scale_grp;
121 
122 	/* Cookie to tell if we need to scale up or down. */
123 	atomic_t scale_cookie;
124 };
125 
126 struct percentile_stats {
127 	u64 total;
128 	u64 missed;
129 };
130 
131 struct latency_stat {
132 	union {
133 		struct percentile_stats ps;
134 		struct blk_rq_stat rqs;
135 	};
136 };
137 
138 struct iolatency_grp {
139 	struct blkg_policy_data pd;
140 	struct latency_stat __percpu *stats;
141 	struct latency_stat cur_stat;
142 	struct blk_iolatency *blkiolat;
143 	struct rq_depth rq_depth;
144 	struct rq_wait rq_wait;
145 	atomic64_t window_start;
146 	atomic_t scale_cookie;
147 	u64 min_lat_nsec;
148 	u64 cur_win_nsec;
149 
150 	/* total running average of our io latency. */
151 	u64 lat_avg;
152 
153 	/* Our current number of IO's for the last summation. */
154 	u64 nr_samples;
155 
156 	bool ssd;
157 	struct child_latency_info child_lat;
158 };
159 
160 #define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
161 #define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
162 /*
163  * These are the constants used to fake the fixed-point moving average
164  * calculation just like load average.  The call to calc_load() folds
165  * (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg.  The sampling
166  * window size is bucketed to try to approximately calculate average
167  * latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
168  * elapse immediately.  Note, windows only elapse with IO activity.  Idle
169  * periods extend the most recent window.
170  */
171 #define BLKIOLATENCY_NR_EXP_FACTORS 5
172 #define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
173 				      (BLKIOLATENCY_NR_EXP_FACTORS - 1))
174 static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
175 	2045, // exp(1/600) - 600 samples
176 	2039, // exp(1/240) - 240 samples
177 	2031, // exp(1/120) - 120 samples
178 	2023, // exp(1/80)  - 80 samples
179 	2014, // exp(1/60)  - 60 samples
180 };
181 
pd_to_lat(struct blkg_policy_data * pd)182 static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
183 {
184 	return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
185 }
186 
blkg_to_lat(struct blkcg_gq * blkg)187 static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
188 {
189 	return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
190 }
191 
lat_to_blkg(struct iolatency_grp * iolat)192 static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
193 {
194 	return pd_to_blkg(&iolat->pd);
195 }
196 
latency_stat_init(struct iolatency_grp * iolat,struct latency_stat * stat)197 static inline void latency_stat_init(struct iolatency_grp *iolat,
198 				     struct latency_stat *stat)
199 {
200 	if (iolat->ssd) {
201 		stat->ps.total = 0;
202 		stat->ps.missed = 0;
203 	} else
204 		blk_rq_stat_init(&stat->rqs);
205 }
206 
latency_stat_sum(struct iolatency_grp * iolat,struct latency_stat * sum,struct latency_stat * stat)207 static inline void latency_stat_sum(struct iolatency_grp *iolat,
208 				    struct latency_stat *sum,
209 				    struct latency_stat *stat)
210 {
211 	if (iolat->ssd) {
212 		sum->ps.total += stat->ps.total;
213 		sum->ps.missed += stat->ps.missed;
214 	} else
215 		blk_rq_stat_sum(&sum->rqs, &stat->rqs);
216 }
217 
latency_stat_record_time(struct iolatency_grp * iolat,u64 req_time)218 static inline void latency_stat_record_time(struct iolatency_grp *iolat,
219 					    u64 req_time)
220 {
221 	struct latency_stat *stat = get_cpu_ptr(iolat->stats);
222 	if (iolat->ssd) {
223 		if (req_time >= iolat->min_lat_nsec)
224 			stat->ps.missed++;
225 		stat->ps.total++;
226 	} else
227 		blk_rq_stat_add(&stat->rqs, req_time);
228 	put_cpu_ptr(stat);
229 }
230 
latency_sum_ok(struct iolatency_grp * iolat,struct latency_stat * stat)231 static inline bool latency_sum_ok(struct iolatency_grp *iolat,
232 				  struct latency_stat *stat)
233 {
234 	if (iolat->ssd) {
235 		u64 thresh = div64_u64(stat->ps.total, 10);
236 		thresh = max(thresh, 1ULL);
237 		return stat->ps.missed < thresh;
238 	}
239 	return stat->rqs.mean <= iolat->min_lat_nsec;
240 }
241 
latency_stat_samples(struct iolatency_grp * iolat,struct latency_stat * stat)242 static inline u64 latency_stat_samples(struct iolatency_grp *iolat,
243 				       struct latency_stat *stat)
244 {
245 	if (iolat->ssd)
246 		return stat->ps.total;
247 	return stat->rqs.nr_samples;
248 }
249 
iolat_update_total_lat_avg(struct iolatency_grp * iolat,struct latency_stat * stat)250 static inline void iolat_update_total_lat_avg(struct iolatency_grp *iolat,
251 					      struct latency_stat *stat)
252 {
253 	int exp_idx;
254 
255 	if (iolat->ssd)
256 		return;
257 
258 	/*
259 	 * calc_load() takes in a number stored in fixed point representation.
260 	 * Because we are using this for IO time in ns, the values stored
261 	 * are significantly larger than the FIXED_1 denominator (2048).
262 	 * Therefore, rounding errors in the calculation are negligible and
263 	 * can be ignored.
264 	 */
265 	exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
266 			div64_u64(iolat->cur_win_nsec,
267 				  BLKIOLATENCY_EXP_BUCKET_SIZE));
268 	iolat->lat_avg = calc_load(iolat->lat_avg,
269 				   iolatency_exp_factors[exp_idx],
270 				   stat->rqs.mean);
271 }
272 
iolat_cleanup_cb(struct rq_wait * rqw,void * private_data)273 static void iolat_cleanup_cb(struct rq_wait *rqw, void *private_data)
274 {
275 	atomic_dec(&rqw->inflight);
276 	wake_up(&rqw->wait);
277 }
278 
iolat_acquire_inflight(struct rq_wait * rqw,void * private_data)279 static bool iolat_acquire_inflight(struct rq_wait *rqw, void *private_data)
280 {
281 	struct iolatency_grp *iolat = private_data;
282 	return rq_wait_inc_below(rqw, iolat->rq_depth.max_depth);
283 }
284 
__blkcg_iolatency_throttle(struct rq_qos * rqos,struct iolatency_grp * iolat,bool issue_as_root,bool use_memdelay)285 static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
286 				       struct iolatency_grp *iolat,
287 				       bool issue_as_root,
288 				       bool use_memdelay)
289 {
290 	struct rq_wait *rqw = &iolat->rq_wait;
291 	unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
292 
293 	if (use_delay)
294 		blkcg_schedule_throttle(rqos->q, use_memdelay);
295 
296 	/*
297 	 * To avoid priority inversions we want to just take a slot if we are
298 	 * issuing as root.  If we're being killed off there's no point in
299 	 * delaying things, we may have been killed by OOM so throttling may
300 	 * make recovery take even longer, so just let the IO's through so the
301 	 * task can go away.
302 	 */
303 	if (issue_as_root || fatal_signal_pending(current)) {
304 		atomic_inc(&rqw->inflight);
305 		return;
306 	}
307 
308 	rq_qos_wait(rqw, iolat, iolat_acquire_inflight, iolat_cleanup_cb);
309 }
310 
311 #define SCALE_DOWN_FACTOR 2
312 #define SCALE_UP_FACTOR 4
313 
scale_amount(unsigned long qd,bool up)314 static inline unsigned long scale_amount(unsigned long qd, bool up)
315 {
316 	return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
317 }
318 
319 /*
320  * We scale the qd down faster than we scale up, so we need to use this helper
321  * to adjust the scale_cookie accordingly so we don't prematurely get
322  * scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
323  *
324  * Each group has their own local copy of the last scale cookie they saw, so if
325  * the global scale cookie goes up or down they know which way they need to go
326  * based on their last knowledge of it.
327  */
scale_cookie_change(struct blk_iolatency * blkiolat,struct child_latency_info * lat_info,bool up)328 static void scale_cookie_change(struct blk_iolatency *blkiolat,
329 				struct child_latency_info *lat_info,
330 				bool up)
331 {
332 	unsigned long qd = blkiolat->rqos.q->nr_requests;
333 	unsigned long scale = scale_amount(qd, up);
334 	unsigned long old = atomic_read(&lat_info->scale_cookie);
335 	unsigned long max_scale = qd << 1;
336 	unsigned long diff = 0;
337 
338 	if (old < DEFAULT_SCALE_COOKIE)
339 		diff = DEFAULT_SCALE_COOKIE - old;
340 
341 	if (up) {
342 		if (scale + old > DEFAULT_SCALE_COOKIE)
343 			atomic_set(&lat_info->scale_cookie,
344 				   DEFAULT_SCALE_COOKIE);
345 		else if (diff > qd)
346 			atomic_inc(&lat_info->scale_cookie);
347 		else
348 			atomic_add(scale, &lat_info->scale_cookie);
349 	} else {
350 		/*
351 		 * We don't want to dig a hole so deep that it takes us hours to
352 		 * dig out of it.  Just enough that we don't throttle/unthrottle
353 		 * with jagged workloads but can still unthrottle once pressure
354 		 * has sufficiently dissipated.
355 		 */
356 		if (diff > qd) {
357 			if (diff < max_scale)
358 				atomic_dec(&lat_info->scale_cookie);
359 		} else {
360 			atomic_sub(scale, &lat_info->scale_cookie);
361 		}
362 	}
363 }
364 
365 /*
366  * Change the queue depth of the iolatency_grp.  We add/subtract 1/16th of the
367  * queue depth at a time so we don't get wild swings and hopefully dial in to
368  * fairer distribution of the overall queue depth.
369  */
scale_change(struct iolatency_grp * iolat,bool up)370 static void scale_change(struct iolatency_grp *iolat, bool up)
371 {
372 	unsigned long qd = iolat->blkiolat->rqos.q->nr_requests;
373 	unsigned long scale = scale_amount(qd, up);
374 	unsigned long old = iolat->rq_depth.max_depth;
375 
376 	if (old > qd)
377 		old = qd;
378 
379 	if (up) {
380 		if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
381 			return;
382 
383 		if (old < qd) {
384 			old += scale;
385 			old = min(old, qd);
386 			iolat->rq_depth.max_depth = old;
387 			wake_up_all(&iolat->rq_wait.wait);
388 		}
389 	} else {
390 		old >>= 1;
391 		iolat->rq_depth.max_depth = max(old, 1UL);
392 	}
393 }
394 
395 /* Check our parent and see if the scale cookie has changed. */
check_scale_change(struct iolatency_grp * iolat)396 static void check_scale_change(struct iolatency_grp *iolat)
397 {
398 	struct iolatency_grp *parent;
399 	struct child_latency_info *lat_info;
400 	unsigned int cur_cookie;
401 	unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
402 	u64 scale_lat;
403 	unsigned int old;
404 	int direction = 0;
405 
406 	if (lat_to_blkg(iolat)->parent == NULL)
407 		return;
408 
409 	parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
410 	if (!parent)
411 		return;
412 
413 	lat_info = &parent->child_lat;
414 	cur_cookie = atomic_read(&lat_info->scale_cookie);
415 	scale_lat = READ_ONCE(lat_info->scale_lat);
416 
417 	if (cur_cookie < our_cookie)
418 		direction = -1;
419 	else if (cur_cookie > our_cookie)
420 		direction = 1;
421 	else
422 		return;
423 
424 	old = atomic_cmpxchg(&iolat->scale_cookie, our_cookie, cur_cookie);
425 
426 	/* Somebody beat us to the punch, just bail. */
427 	if (old != our_cookie)
428 		return;
429 
430 	if (direction < 0 && iolat->min_lat_nsec) {
431 		u64 samples_thresh;
432 
433 		if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
434 			return;
435 
436 		/*
437 		 * Sometimes high priority groups are their own worst enemy, so
438 		 * instead of taking it out on some poor other group that did 5%
439 		 * or less of the IO's for the last summation just skip this
440 		 * scale down event.
441 		 */
442 		samples_thresh = lat_info->nr_samples * 5;
443 		samples_thresh = max(1ULL, div64_u64(samples_thresh, 100));
444 		if (iolat->nr_samples <= samples_thresh)
445 			return;
446 	}
447 
448 	/* We're as low as we can go. */
449 	if (iolat->rq_depth.max_depth == 1 && direction < 0) {
450 		blkcg_use_delay(lat_to_blkg(iolat));
451 		return;
452 	}
453 
454 	/* We're back to the default cookie, unthrottle all the things. */
455 	if (cur_cookie == DEFAULT_SCALE_COOKIE) {
456 		blkcg_clear_delay(lat_to_blkg(iolat));
457 		iolat->rq_depth.max_depth = UINT_MAX;
458 		wake_up_all(&iolat->rq_wait.wait);
459 		return;
460 	}
461 
462 	scale_change(iolat, direction > 0);
463 }
464 
blkcg_iolatency_throttle(struct rq_qos * rqos,struct bio * bio)465 static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio)
466 {
467 	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
468 	struct blkcg_gq *blkg = bio->bi_blkg;
469 	bool issue_as_root = bio_issue_as_root_blkg(bio);
470 
471 	if (!blkiolat->enabled)
472 		return;
473 
474 	while (blkg && blkg->parent) {
475 		struct iolatency_grp *iolat = blkg_to_lat(blkg);
476 		if (!iolat) {
477 			blkg = blkg->parent;
478 			continue;
479 		}
480 
481 		check_scale_change(iolat);
482 		__blkcg_iolatency_throttle(rqos, iolat, issue_as_root,
483 				     (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
484 		blkg = blkg->parent;
485 	}
486 	if (!timer_pending(&blkiolat->timer))
487 		mod_timer(&blkiolat->timer, jiffies + HZ);
488 }
489 
iolatency_record_time(struct iolatency_grp * iolat,struct bio_issue * issue,u64 now,bool issue_as_root)490 static void iolatency_record_time(struct iolatency_grp *iolat,
491 				  struct bio_issue *issue, u64 now,
492 				  bool issue_as_root)
493 {
494 	u64 start = bio_issue_time(issue);
495 	u64 req_time;
496 
497 	/*
498 	 * Have to do this so we are truncated to the correct time that our
499 	 * issue is truncated to.
500 	 */
501 	now = __bio_issue_time(now);
502 
503 	if (now <= start)
504 		return;
505 
506 	req_time = now - start;
507 
508 	/*
509 	 * We don't want to count issue_as_root bio's in the cgroups latency
510 	 * statistics as it could skew the numbers downwards.
511 	 */
512 	if (unlikely(issue_as_root && iolat->rq_depth.max_depth != UINT_MAX)) {
513 		u64 sub = iolat->min_lat_nsec;
514 		if (req_time < sub)
515 			blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
516 		return;
517 	}
518 
519 	latency_stat_record_time(iolat, req_time);
520 }
521 
522 #define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
523 #define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
524 
iolatency_check_latencies(struct iolatency_grp * iolat,u64 now)525 static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
526 {
527 	struct blkcg_gq *blkg = lat_to_blkg(iolat);
528 	struct iolatency_grp *parent;
529 	struct child_latency_info *lat_info;
530 	struct latency_stat stat;
531 	unsigned long flags;
532 	int cpu;
533 
534 	latency_stat_init(iolat, &stat);
535 	preempt_disable();
536 	for_each_online_cpu(cpu) {
537 		struct latency_stat *s;
538 		s = per_cpu_ptr(iolat->stats, cpu);
539 		latency_stat_sum(iolat, &stat, s);
540 		latency_stat_init(iolat, s);
541 	}
542 	preempt_enable();
543 
544 	parent = blkg_to_lat(blkg->parent);
545 	if (!parent)
546 		return;
547 
548 	lat_info = &parent->child_lat;
549 
550 	iolat_update_total_lat_avg(iolat, &stat);
551 
552 	/* Everything is ok and we don't need to adjust the scale. */
553 	if (latency_sum_ok(iolat, &stat) &&
554 	    atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
555 		return;
556 
557 	/* Somebody beat us to the punch, just bail. */
558 	spin_lock_irqsave(&lat_info->lock, flags);
559 
560 	latency_stat_sum(iolat, &iolat->cur_stat, &stat);
561 	lat_info->nr_samples -= iolat->nr_samples;
562 	lat_info->nr_samples += latency_stat_samples(iolat, &iolat->cur_stat);
563 	iolat->nr_samples = latency_stat_samples(iolat, &iolat->cur_stat);
564 
565 	if ((lat_info->last_scale_event >= now ||
566 	    now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME))
567 		goto out;
568 
569 	if (latency_sum_ok(iolat, &iolat->cur_stat) &&
570 	    latency_sum_ok(iolat, &stat)) {
571 		if (latency_stat_samples(iolat, &iolat->cur_stat) <
572 		    BLKIOLATENCY_MIN_GOOD_SAMPLES)
573 			goto out;
574 		if (lat_info->scale_grp == iolat) {
575 			lat_info->last_scale_event = now;
576 			scale_cookie_change(iolat->blkiolat, lat_info, true);
577 		}
578 	} else if (lat_info->scale_lat == 0 ||
579 		   lat_info->scale_lat >= iolat->min_lat_nsec) {
580 		lat_info->last_scale_event = now;
581 		if (!lat_info->scale_grp ||
582 		    lat_info->scale_lat > iolat->min_lat_nsec) {
583 			WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
584 			lat_info->scale_grp = iolat;
585 		}
586 		scale_cookie_change(iolat->blkiolat, lat_info, false);
587 	}
588 	latency_stat_init(iolat, &iolat->cur_stat);
589 out:
590 	spin_unlock_irqrestore(&lat_info->lock, flags);
591 }
592 
blkcg_iolatency_done_bio(struct rq_qos * rqos,struct bio * bio)593 static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
594 {
595 	struct blkcg_gq *blkg;
596 	struct rq_wait *rqw;
597 	struct iolatency_grp *iolat;
598 	u64 window_start;
599 	u64 now;
600 	bool issue_as_root = bio_issue_as_root_blkg(bio);
601 	int inflight = 0;
602 
603 	blkg = bio->bi_blkg;
604 	if (!blkg || !bio_flagged(bio, BIO_QOS_THROTTLED))
605 		return;
606 
607 	iolat = blkg_to_lat(bio->bi_blkg);
608 	if (!iolat)
609 		return;
610 
611 	if (!iolat->blkiolat->enabled)
612 		return;
613 
614 	now = ktime_to_ns(ktime_get());
615 	while (blkg && blkg->parent) {
616 		iolat = blkg_to_lat(blkg);
617 		if (!iolat) {
618 			blkg = blkg->parent;
619 			continue;
620 		}
621 		rqw = &iolat->rq_wait;
622 
623 		inflight = atomic_dec_return(&rqw->inflight);
624 		WARN_ON_ONCE(inflight < 0);
625 		/*
626 		 * If bi_status is BLK_STS_AGAIN, the bio wasn't actually
627 		 * submitted, so do not account for it.
628 		 */
629 		if (iolat->min_lat_nsec && bio->bi_status != BLK_STS_AGAIN) {
630 			iolatency_record_time(iolat, &bio->bi_issue, now,
631 					      issue_as_root);
632 			window_start = atomic64_read(&iolat->window_start);
633 			if (now > window_start &&
634 			    (now - window_start) >= iolat->cur_win_nsec) {
635 				if (atomic64_cmpxchg(&iolat->window_start,
636 					     window_start, now) == window_start)
637 					iolatency_check_latencies(iolat, now);
638 			}
639 		}
640 		wake_up(&rqw->wait);
641 		blkg = blkg->parent;
642 	}
643 }
644 
blkcg_iolatency_exit(struct rq_qos * rqos)645 static void blkcg_iolatency_exit(struct rq_qos *rqos)
646 {
647 	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
648 
649 	del_timer_sync(&blkiolat->timer);
650 	flush_work(&blkiolat->enable_work);
651 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
652 	kfree(blkiolat);
653 }
654 
655 static struct rq_qos_ops blkcg_iolatency_ops = {
656 	.throttle = blkcg_iolatency_throttle,
657 	.done_bio = blkcg_iolatency_done_bio,
658 	.exit = blkcg_iolatency_exit,
659 };
660 
blkiolatency_timer_fn(struct timer_list * t)661 static void blkiolatency_timer_fn(struct timer_list *t)
662 {
663 	struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
664 	struct blkcg_gq *blkg;
665 	struct cgroup_subsys_state *pos_css;
666 	u64 now = ktime_to_ns(ktime_get());
667 
668 	rcu_read_lock();
669 	blkg_for_each_descendant_pre(blkg, pos_css,
670 				     blkiolat->rqos.q->root_blkg) {
671 		struct iolatency_grp *iolat;
672 		struct child_latency_info *lat_info;
673 		unsigned long flags;
674 		u64 cookie;
675 
676 		/*
677 		 * We could be exiting, don't access the pd unless we have a
678 		 * ref on the blkg.
679 		 */
680 		if (!blkg_tryget(blkg))
681 			continue;
682 
683 		iolat = blkg_to_lat(blkg);
684 		if (!iolat)
685 			goto next;
686 
687 		lat_info = &iolat->child_lat;
688 		cookie = atomic_read(&lat_info->scale_cookie);
689 
690 		if (cookie >= DEFAULT_SCALE_COOKIE)
691 			goto next;
692 
693 		spin_lock_irqsave(&lat_info->lock, flags);
694 		if (lat_info->last_scale_event >= now)
695 			goto next_lock;
696 
697 		/*
698 		 * We scaled down but don't have a scale_grp, scale up and carry
699 		 * on.
700 		 */
701 		if (lat_info->scale_grp == NULL) {
702 			scale_cookie_change(iolat->blkiolat, lat_info, true);
703 			goto next_lock;
704 		}
705 
706 		/*
707 		 * It's been 5 seconds since our last scale event, clear the
708 		 * scale grp in case the group that needed the scale down isn't
709 		 * doing any IO currently.
710 		 */
711 		if (now - lat_info->last_scale_event >=
712 		    ((u64)NSEC_PER_SEC * 5))
713 			lat_info->scale_grp = NULL;
714 next_lock:
715 		spin_unlock_irqrestore(&lat_info->lock, flags);
716 next:
717 		blkg_put(blkg);
718 	}
719 	rcu_read_unlock();
720 }
721 
722 /**
723  * blkiolatency_enable_work_fn - Enable or disable iolatency on the device
724  * @work: enable_work of the blk_iolatency of interest
725  *
726  * iolatency needs to keep track of the number of in-flight IOs per cgroup. This
727  * is relatively expensive as it involves walking up the hierarchy twice for
728  * every IO. Thus, if iolatency is not enabled in any cgroup for the device, we
729  * want to disable the in-flight tracking.
730  *
731  * We have to make sure that the counting is balanced - we don't want to leak
732  * the in-flight counts by disabling accounting in the completion path while IOs
733  * are in flight. This is achieved by ensuring that no IO is in flight by
734  * freezing the queue while flipping ->enabled. As this requires a sleepable
735  * context, ->enabled flipping is punted to this work function.
736  */
blkiolatency_enable_work_fn(struct work_struct * work)737 static void blkiolatency_enable_work_fn(struct work_struct *work)
738 {
739 	struct blk_iolatency *blkiolat = container_of(work, struct blk_iolatency,
740 						      enable_work);
741 	bool enabled;
742 
743 	/*
744 	 * There can only be one instance of this function running for @blkiolat
745 	 * and it's guaranteed to be executed at least once after the latest
746 	 * ->enabled_cnt modification. Acting on the latest ->enable_cnt is
747 	 * sufficient.
748 	 *
749 	 * Also, we know @blkiolat is safe to access as ->enable_work is flushed
750 	 * in blkcg_iolatency_exit().
751 	 */
752 	enabled = atomic_read(&blkiolat->enable_cnt);
753 	if (enabled != blkiolat->enabled) {
754 		blk_mq_freeze_queue(blkiolat->rqos.q);
755 		blkiolat->enabled = enabled;
756 		blk_mq_unfreeze_queue(blkiolat->rqos.q);
757 	}
758 }
759 
blk_iolatency_init(struct request_queue * q)760 int blk_iolatency_init(struct request_queue *q)
761 {
762 	struct blk_iolatency *blkiolat;
763 	struct rq_qos *rqos;
764 	int ret;
765 
766 	blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
767 	if (!blkiolat)
768 		return -ENOMEM;
769 
770 	rqos = &blkiolat->rqos;
771 	rqos->id = RQ_QOS_LATENCY;
772 	rqos->ops = &blkcg_iolatency_ops;
773 	rqos->q = q;
774 
775 	ret = rq_qos_add(q, rqos);
776 	if (ret)
777 		goto err_free;
778 	ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
779 	if (ret)
780 		goto err_qos_del;
781 
782 	timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
783 	INIT_WORK(&blkiolat->enable_work, blkiolatency_enable_work_fn);
784 
785 	return 0;
786 
787 err_qos_del:
788 	rq_qos_del(q, rqos);
789 err_free:
790 	kfree(blkiolat);
791 	return ret;
792 }
793 
iolatency_set_min_lat_nsec(struct blkcg_gq * blkg,u64 val)794 static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
795 {
796 	struct iolatency_grp *iolat = blkg_to_lat(blkg);
797 	struct blk_iolatency *blkiolat = iolat->blkiolat;
798 	u64 oldval = iolat->min_lat_nsec;
799 
800 	iolat->min_lat_nsec = val;
801 	iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
802 	iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
803 				    BLKIOLATENCY_MAX_WIN_SIZE);
804 
805 	if (!oldval && val) {
806 		if (atomic_inc_return(&blkiolat->enable_cnt) == 1)
807 			schedule_work(&blkiolat->enable_work);
808 	}
809 	if (oldval && !val) {
810 		blkcg_clear_delay(blkg);
811 		if (atomic_dec_return(&blkiolat->enable_cnt) == 0)
812 			schedule_work(&blkiolat->enable_work);
813 	}
814 }
815 
iolatency_clear_scaling(struct blkcg_gq * blkg)816 static void iolatency_clear_scaling(struct blkcg_gq *blkg)
817 {
818 	if (blkg->parent) {
819 		struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
820 		struct child_latency_info *lat_info;
821 		if (!iolat)
822 			return;
823 
824 		lat_info = &iolat->child_lat;
825 		spin_lock(&lat_info->lock);
826 		atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
827 		lat_info->last_scale_event = 0;
828 		lat_info->scale_grp = NULL;
829 		lat_info->scale_lat = 0;
830 		spin_unlock(&lat_info->lock);
831 	}
832 }
833 
iolatency_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)834 static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
835 			     size_t nbytes, loff_t off)
836 {
837 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
838 	struct blkcg_gq *blkg;
839 	struct blkg_conf_ctx ctx;
840 	struct iolatency_grp *iolat;
841 	char *p, *tok;
842 	u64 lat_val = 0;
843 	u64 oldval;
844 	int ret;
845 
846 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
847 	if (ret)
848 		return ret;
849 
850 	iolat = blkg_to_lat(ctx.blkg);
851 	p = ctx.body;
852 
853 	ret = -EINVAL;
854 	while ((tok = strsep(&p, " "))) {
855 		char key[16];
856 		char val[21];	/* 18446744073709551616 */
857 
858 		if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
859 			goto out;
860 
861 		if (!strcmp(key, "target")) {
862 			u64 v;
863 
864 			if (!strcmp(val, "max"))
865 				lat_val = 0;
866 			else if (sscanf(val, "%llu", &v) == 1)
867 				lat_val = v * NSEC_PER_USEC;
868 			else
869 				goto out;
870 		} else {
871 			goto out;
872 		}
873 	}
874 
875 	/* Walk up the tree to see if our new val is lower than it should be. */
876 	blkg = ctx.blkg;
877 	oldval = iolat->min_lat_nsec;
878 
879 	iolatency_set_min_lat_nsec(blkg, lat_val);
880 	if (oldval != iolat->min_lat_nsec)
881 		iolatency_clear_scaling(blkg);
882 	ret = 0;
883 out:
884 	blkg_conf_finish(&ctx);
885 	return ret ?: nbytes;
886 }
887 
iolatency_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)888 static u64 iolatency_prfill_limit(struct seq_file *sf,
889 				  struct blkg_policy_data *pd, int off)
890 {
891 	struct iolatency_grp *iolat = pd_to_lat(pd);
892 	const char *dname = blkg_dev_name(pd->blkg);
893 
894 	if (!dname || !iolat->min_lat_nsec)
895 		return 0;
896 	seq_printf(sf, "%s target=%llu\n",
897 		   dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
898 	return 0;
899 }
900 
iolatency_print_limit(struct seq_file * sf,void * v)901 static int iolatency_print_limit(struct seq_file *sf, void *v)
902 {
903 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
904 			  iolatency_prfill_limit,
905 			  &blkcg_policy_iolatency, seq_cft(sf)->private, false);
906 	return 0;
907 }
908 
iolatency_ssd_stat(struct iolatency_grp * iolat,struct seq_file * s)909 static bool iolatency_ssd_stat(struct iolatency_grp *iolat, struct seq_file *s)
910 {
911 	struct latency_stat stat;
912 	int cpu;
913 
914 	latency_stat_init(iolat, &stat);
915 	preempt_disable();
916 	for_each_online_cpu(cpu) {
917 		struct latency_stat *s;
918 		s = per_cpu_ptr(iolat->stats, cpu);
919 		latency_stat_sum(iolat, &stat, s);
920 	}
921 	preempt_enable();
922 
923 	if (iolat->rq_depth.max_depth == UINT_MAX)
924 		seq_printf(s, " missed=%llu total=%llu depth=max",
925 			(unsigned long long)stat.ps.missed,
926 			(unsigned long long)stat.ps.total);
927 	else
928 		seq_printf(s, " missed=%llu total=%llu depth=%u",
929 			(unsigned long long)stat.ps.missed,
930 			(unsigned long long)stat.ps.total,
931 			iolat->rq_depth.max_depth);
932 	return true;
933 }
934 
iolatency_pd_stat(struct blkg_policy_data * pd,struct seq_file * s)935 static bool iolatency_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
936 {
937 	struct iolatency_grp *iolat = pd_to_lat(pd);
938 	unsigned long long avg_lat;
939 	unsigned long long cur_win;
940 
941 	if (!blkcg_debug_stats)
942 		return false;
943 
944 	if (iolat->ssd)
945 		return iolatency_ssd_stat(iolat, s);
946 
947 	avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
948 	cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
949 	if (iolat->rq_depth.max_depth == UINT_MAX)
950 		seq_printf(s, " depth=max avg_lat=%llu win=%llu",
951 			avg_lat, cur_win);
952 	else
953 		seq_printf(s, " depth=%u avg_lat=%llu win=%llu",
954 			iolat->rq_depth.max_depth, avg_lat, cur_win);
955 	return true;
956 }
957 
iolatency_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)958 static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp,
959 						   struct request_queue *q,
960 						   struct blkcg *blkcg)
961 {
962 	struct iolatency_grp *iolat;
963 
964 	iolat = kzalloc_node(sizeof(*iolat), gfp, q->node);
965 	if (!iolat)
966 		return NULL;
967 	iolat->stats = __alloc_percpu_gfp(sizeof(struct latency_stat),
968 				       __alignof__(struct latency_stat), gfp);
969 	if (!iolat->stats) {
970 		kfree(iolat);
971 		return NULL;
972 	}
973 	return &iolat->pd;
974 }
975 
iolatency_pd_init(struct blkg_policy_data * pd)976 static void iolatency_pd_init(struct blkg_policy_data *pd)
977 {
978 	struct iolatency_grp *iolat = pd_to_lat(pd);
979 	struct blkcg_gq *blkg = lat_to_blkg(iolat);
980 	struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
981 	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
982 	u64 now = ktime_to_ns(ktime_get());
983 	int cpu;
984 
985 	if (blk_queue_nonrot(blkg->q))
986 		iolat->ssd = true;
987 	else
988 		iolat->ssd = false;
989 
990 	for_each_possible_cpu(cpu) {
991 		struct latency_stat *stat;
992 		stat = per_cpu_ptr(iolat->stats, cpu);
993 		latency_stat_init(iolat, stat);
994 	}
995 
996 	latency_stat_init(iolat, &iolat->cur_stat);
997 	rq_wait_init(&iolat->rq_wait);
998 	spin_lock_init(&iolat->child_lat.lock);
999 	iolat->rq_depth.queue_depth = blkg->q->nr_requests;
1000 	iolat->rq_depth.max_depth = UINT_MAX;
1001 	iolat->rq_depth.default_depth = iolat->rq_depth.queue_depth;
1002 	iolat->blkiolat = blkiolat;
1003 	iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
1004 	atomic64_set(&iolat->window_start, now);
1005 
1006 	/*
1007 	 * We init things in list order, so the pd for the parent may not be
1008 	 * init'ed yet for whatever reason.
1009 	 */
1010 	if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
1011 		struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
1012 		atomic_set(&iolat->scale_cookie,
1013 			   atomic_read(&parent->child_lat.scale_cookie));
1014 	} else {
1015 		atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
1016 	}
1017 
1018 	atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
1019 }
1020 
iolatency_pd_offline(struct blkg_policy_data * pd)1021 static void iolatency_pd_offline(struct blkg_policy_data *pd)
1022 {
1023 	struct iolatency_grp *iolat = pd_to_lat(pd);
1024 	struct blkcg_gq *blkg = lat_to_blkg(iolat);
1025 
1026 	iolatency_set_min_lat_nsec(blkg, 0);
1027 	iolatency_clear_scaling(blkg);
1028 }
1029 
iolatency_pd_free(struct blkg_policy_data * pd)1030 static void iolatency_pd_free(struct blkg_policy_data *pd)
1031 {
1032 	struct iolatency_grp *iolat = pd_to_lat(pd);
1033 	free_percpu(iolat->stats);
1034 	kfree(iolat);
1035 }
1036 
1037 static struct cftype iolatency_files[] = {
1038 	{
1039 		.name = "latency",
1040 		.flags = CFTYPE_NOT_ON_ROOT,
1041 		.seq_show = iolatency_print_limit,
1042 		.write = iolatency_set_limit,
1043 	},
1044 	{}
1045 };
1046 
1047 static struct blkcg_policy blkcg_policy_iolatency = {
1048 	.dfl_cftypes	= iolatency_files,
1049 	.pd_alloc_fn	= iolatency_pd_alloc,
1050 	.pd_init_fn	= iolatency_pd_init,
1051 	.pd_offline_fn	= iolatency_pd_offline,
1052 	.pd_free_fn	= iolatency_pd_free,
1053 	.pd_stat_fn	= iolatency_pd_stat,
1054 };
1055 
iolatency_init(void)1056 static int __init iolatency_init(void)
1057 {
1058 	return blkcg_policy_register(&blkcg_policy_iolatency);
1059 }
1060 
iolatency_exit(void)1061 static void __exit iolatency_exit(void)
1062 {
1063 	blkcg_policy_unregister(&blkcg_policy_iolatency);
1064 }
1065 
1066 module_init(iolatency_init);
1067 module_exit(iolatency_exit);
1068