• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 
27 #include "internal.h"
28 
29 #ifdef CONFIG_X86_INTEL_LPSS
30 
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
34 
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
36 
37 #define LPSS_CLK_SIZE	0x04
38 #define LPSS_LTR_SIZE	0x18
39 
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
42 #define LPSS_RESETS			0x04
43 #define LPSS_RESETS_RESET_FUNC		BIT(0)
44 #define LPSS_RESETS_RESET_APB		BIT(1)
45 #define LPSS_GENERAL			0x08
46 #define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
48 #define LPSS_SW_LTR			0x10
49 #define LPSS_AUTO_LTR			0x14
50 #define LPSS_LTR_SNOOP_REQ		BIT(15)
51 #define LPSS_LTR_SNOOP_MASK		0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US		0x800
53 #define LPSS_LTR_SNOOP_LAT_32US		0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT	5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
56 #define LPSS_LTR_MAX_VAL		0x3FF
57 #define LPSS_TX_INT			0x20
58 #define LPSS_TX_INT_MASK		BIT(1)
59 
60 #define LPSS_PRV_REG_COUNT		9
61 
62 /* LPSS Flags */
63 #define LPSS_CLK			BIT(0)
64 #define LPSS_CLK_GATE			BIT(1)
65 #define LPSS_CLK_DIVIDER		BIT(2)
66 #define LPSS_LTR			BIT(3)
67 #define LPSS_SAVE_CTX			BIT(4)
68 /*
69  * For some devices the DSDT AML code for another device turns off the device
70  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71  * as ctx register values.
72  * Luckily these devices always use the same ctx register values, so we can
73  * work around this by saving the ctx registers once on activation.
74  */
75 #define LPSS_SAVE_CTX_ONCE		BIT(5)
76 #define LPSS_NO_D3_DELAY		BIT(6)
77 
78 struct lpss_private_data;
79 
80 struct lpss_device_desc {
81 	unsigned int flags;
82 	const char *clk_con_id;
83 	unsigned int prv_offset;
84 	size_t prv_size_override;
85 	struct property_entry *properties;
86 	void (*setup)(struct lpss_private_data *pdata);
87 	bool resume_from_noirq;
88 };
89 
90 static const struct lpss_device_desc lpss_dma_desc = {
91 	.flags = LPSS_CLK,
92 };
93 
94 struct lpss_private_data {
95 	struct acpi_device *adev;
96 	void __iomem *mmio_base;
97 	resource_size_t mmio_size;
98 	unsigned int fixed_clk_rate;
99 	struct clk *clk;
100 	const struct lpss_device_desc *dev_desc;
101 	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103 
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106 
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109 
110 /*
111  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112  *
113  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114  * it can be powered off automatically whenever the last LPSS device goes down.
115  * In case of no power any access to the DMA controller will hang the system.
116  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117  * well as on ASuS T100TA transformer.
118  *
119  * This quirk overrides power state of entire LPSS island to keep DMA powered
120  * on whenever we have at least one other device in use.
121  */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
123 
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR			0xF4
126 #define LPSS_UART_CPR_AFCE		BIT(4)
127 
lpss_uart_setup(struct lpss_private_data * pdata)128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130 	unsigned int offset;
131 	u32 val;
132 
133 	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 	val = readl(pdata->mmio_base + offset);
135 	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136 
137 	val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 	if (!(val & LPSS_UART_CPR_AFCE)) {
139 		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 		val = readl(pdata->mmio_base + offset);
141 		val |= LPSS_GENERAL_UART_RTS_OVRD;
142 		writel(val, pdata->mmio_base + offset);
143 	}
144 }
145 
lpss_deassert_reset(struct lpss_private_data * pdata)146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148 	unsigned int offset;
149 	u32 val;
150 
151 	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 	val = readl(pdata->mmio_base + offset);
153 	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 	writel(val, pdata->mmio_base + offset);
155 }
156 
157 /*
158  * BYT PWM used for backlight control by the i915 driver on systems without
159  * the Crystal Cove PMIC.
160  */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162 	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164 			       "pwm-lpss-platform"),
165 };
166 
byt_pwm_setup(struct lpss_private_data * pdata)167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169 	struct acpi_device *adev = pdata->adev;
170 
171 	/* Only call pwm_add_table for the first PWM controller */
172 	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173 		return;
174 
175 	pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176 }
177 
178 #define LPSS_I2C_ENABLE			0x6c
179 
byt_i2c_setup(struct lpss_private_data * pdata)180 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 {
182 	const char *uid_str = acpi_device_uid(pdata->adev);
183 	acpi_handle handle = pdata->adev->handle;
184 	unsigned long long shared_host = 0;
185 	acpi_status status;
186 	long uid = 0;
187 
188 	/* Expected to always be true, but better safe then sorry */
189 	if (uid_str && !kstrtol(uid_str, 10, &uid) && uid) {
190 		/* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 		status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 		if (ACPI_SUCCESS(status) && shared_host)
193 			pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194 	}
195 
196 	lpss_deassert_reset(pdata);
197 
198 	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 		pdata->fixed_clk_rate = 133000000;
200 
201 	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203 
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206 	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207 			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
208 			       "pwm-lpss-platform"),
209 };
210 
bsw_pwm_setup(struct lpss_private_data * pdata)211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
212 {
213 	struct acpi_device *adev = pdata->adev;
214 
215 	/* Only call pwm_add_table for the first PWM controller */
216 	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
217 		return;
218 
219 	pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221 
222 static const struct lpss_device_desc lpt_dev_desc = {
223 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
224 			| LPSS_SAVE_CTX,
225 	.prv_offset = 0x800,
226 };
227 
228 static const struct lpss_device_desc lpt_i2c_dev_desc = {
229 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
230 	.prv_offset = 0x800,
231 };
232 
233 static struct property_entry uart_properties[] = {
234 	PROPERTY_ENTRY_U32("reg-io-width", 4),
235 	PROPERTY_ENTRY_U32("reg-shift", 2),
236 	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
237 	{ },
238 };
239 
240 static const struct lpss_device_desc lpt_uart_dev_desc = {
241 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
242 			| LPSS_SAVE_CTX,
243 	.clk_con_id = "baudclk",
244 	.prv_offset = 0x800,
245 	.setup = lpss_uart_setup,
246 	.properties = uart_properties,
247 };
248 
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
250 	.flags = LPSS_LTR,
251 	.prv_offset = 0x1000,
252 	.prv_size_override = 0x1018,
253 };
254 
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256 	.flags = LPSS_SAVE_CTX,
257 	.prv_offset = 0x800,
258 	.setup = byt_pwm_setup,
259 };
260 
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
263 	.prv_offset = 0x800,
264 	.setup = bsw_pwm_setup,
265 	.resume_from_noirq = true,
266 };
267 
268 static const struct lpss_device_desc byt_uart_dev_desc = {
269 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
270 	.clk_con_id = "baudclk",
271 	.prv_offset = 0x800,
272 	.setup = lpss_uart_setup,
273 	.properties = uart_properties,
274 };
275 
276 static const struct lpss_device_desc bsw_uart_dev_desc = {
277 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
278 			| LPSS_NO_D3_DELAY,
279 	.clk_con_id = "baudclk",
280 	.prv_offset = 0x800,
281 	.setup = lpss_uart_setup,
282 	.properties = uart_properties,
283 };
284 
285 static const struct lpss_device_desc byt_spi_dev_desc = {
286 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
287 	.prv_offset = 0x400,
288 };
289 
290 static const struct lpss_device_desc byt_sdio_dev_desc = {
291 	.flags = LPSS_CLK,
292 };
293 
294 static const struct lpss_device_desc byt_i2c_dev_desc = {
295 	.flags = LPSS_CLK | LPSS_SAVE_CTX,
296 	.prv_offset = 0x800,
297 	.setup = byt_i2c_setup,
298 	.resume_from_noirq = true,
299 };
300 
301 static const struct lpss_device_desc bsw_i2c_dev_desc = {
302 	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
303 	.prv_offset = 0x800,
304 	.setup = byt_i2c_setup,
305 	.resume_from_noirq = true,
306 };
307 
308 static const struct lpss_device_desc bsw_spi_dev_desc = {
309 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
310 			| LPSS_NO_D3_DELAY,
311 	.prv_offset = 0x400,
312 	.setup = lpss_deassert_reset,
313 };
314 
315 static const struct x86_cpu_id lpss_cpu_ids[] = {
316 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	NULL),
317 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	NULL),
318 	{}
319 };
320 
321 #else
322 
323 #define LPSS_ADDR(desc) (0UL)
324 
325 #endif /* CONFIG_X86_INTEL_LPSS */
326 
327 static const struct acpi_device_id acpi_lpss_device_ids[] = {
328 	/* Generic LPSS devices */
329 	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
330 
331 	/* Lynxpoint LPSS devices */
332 	{ "INT33C0", LPSS_ADDR(lpt_dev_desc) },
333 	{ "INT33C1", LPSS_ADDR(lpt_dev_desc) },
334 	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
335 	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
336 	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
337 	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
338 	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
339 	{ "INT33C7", },
340 
341 	/* BayTrail LPSS devices */
342 	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
343 	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
344 	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
345 	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
346 	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
347 	{ "INT33B2", },
348 	{ "INT33FC", },
349 
350 	/* Braswell LPSS devices */
351 	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
352 	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
353 	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
354 	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
355 	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
356 	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
357 
358 	/* Broadwell LPSS devices */
359 	{ "INT3430", LPSS_ADDR(lpt_dev_desc) },
360 	{ "INT3431", LPSS_ADDR(lpt_dev_desc) },
361 	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
362 	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
363 	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
364 	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
365 	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
366 	{ "INT3437", },
367 
368 	/* Wildcat Point LPSS devices */
369 	{ "INT3438", LPSS_ADDR(lpt_dev_desc) },
370 
371 	{ }
372 };
373 
374 #ifdef CONFIG_X86_INTEL_LPSS
375 
is_memory(struct acpi_resource * res,void * not_used)376 static int is_memory(struct acpi_resource *res, void *not_used)
377 {
378 	struct resource r;
379 
380 	return !acpi_dev_resource_memory(res, &r);
381 }
382 
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385 
lpt_register_clock_device(void)386 static inline void lpt_register_clock_device(void)
387 {
388 	lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
389 						       PLATFORM_DEVID_NONE,
390 						       NULL, 0);
391 }
392 
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)393 static int register_device_clock(struct acpi_device *adev,
394 				 struct lpss_private_data *pdata)
395 {
396 	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
397 	const char *devname = dev_name(&adev->dev);
398 	struct clk *clk;
399 	struct lpss_clk_data *clk_data;
400 	const char *parent, *clk_name;
401 	void __iomem *prv_base;
402 
403 	if (!lpss_clk_dev)
404 		lpt_register_clock_device();
405 
406 	if (IS_ERR(lpss_clk_dev))
407 		return PTR_ERR(lpss_clk_dev);
408 
409 	clk_data = platform_get_drvdata(lpss_clk_dev);
410 	if (!clk_data)
411 		return -ENODEV;
412 	clk = clk_data->clk;
413 
414 	if (!pdata->mmio_base
415 	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
416 		return -ENODATA;
417 
418 	parent = clk_data->name;
419 	prv_base = pdata->mmio_base + dev_desc->prv_offset;
420 
421 	if (pdata->fixed_clk_rate) {
422 		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
423 					      pdata->fixed_clk_rate);
424 		goto out;
425 	}
426 
427 	if (dev_desc->flags & LPSS_CLK_GATE) {
428 		clk = clk_register_gate(NULL, devname, parent, 0,
429 					prv_base, 0, 0, NULL);
430 		parent = devname;
431 	}
432 
433 	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
434 		/* Prevent division by zero */
435 		if (!readl(prv_base))
436 			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
437 
438 		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
439 		if (!clk_name)
440 			return -ENOMEM;
441 		clk = clk_register_fractional_divider(NULL, clk_name, parent,
442 						      0, prv_base, 1, 15, 16, 15,
443 						      CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
444 						      NULL);
445 		parent = clk_name;
446 
447 		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
448 		if (!clk_name) {
449 			kfree(parent);
450 			return -ENOMEM;
451 		}
452 		clk = clk_register_gate(NULL, clk_name, parent,
453 					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
454 					prv_base, 31, 0, NULL);
455 		kfree(parent);
456 		kfree(clk_name);
457 	}
458 out:
459 	if (IS_ERR(clk))
460 		return PTR_ERR(clk);
461 
462 	pdata->clk = clk;
463 	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
464 	return 0;
465 }
466 
467 struct lpss_device_links {
468 	const char *supplier_hid;
469 	const char *supplier_uid;
470 	const char *consumer_hid;
471 	const char *consumer_uid;
472 	u32 flags;
473 	const struct dmi_system_id *dep_missing_ids;
474 };
475 
476 /* Please keep this list sorted alphabetically by vendor and model */
477 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
478 	{
479 		.matches = {
480 			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
481 			DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
482 		},
483 	},
484 	{}
485 };
486 
487 /*
488  * The _DEP method is used to identify dependencies but instead of creating
489  * device links for every handle in _DEP, only links in the following list are
490  * created. That is necessary because, in the general case, _DEP can refer to
491  * devices that might not have drivers, or that are on different buses, or where
492  * the supplier is not enumerated until after the consumer is probed.
493  */
494 static const struct lpss_device_links lpss_device_links[] = {
495 	/* CHT External sdcard slot controller depends on PMIC I2C ctrl */
496 	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
497 	/* CHT iGPU depends on PMIC I2C controller */
498 	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
499 	/* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
500 	{"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
501 	 i2c1_dep_missing_dmi_ids},
502 	/* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
503 	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
504 	/* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
505 	{"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
506 };
507 
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)508 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
509 				  const struct lpss_device_links *link)
510 {
511 	return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
512 }
513 
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)514 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
515 				  const struct lpss_device_links *link)
516 {
517 	return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
518 }
519 
520 struct hid_uid {
521 	const char *hid;
522 	const char *uid;
523 };
524 
match_hid_uid(struct device * dev,const void * data)525 static int match_hid_uid(struct device *dev, const void *data)
526 {
527 	struct acpi_device *adev = ACPI_COMPANION(dev);
528 	const struct hid_uid *id = data;
529 
530 	if (!adev)
531 		return 0;
532 
533 	return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
534 }
535 
acpi_lpss_find_device(const char * hid,const char * uid)536 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
537 {
538 	struct device *dev;
539 
540 	struct hid_uid data = {
541 		.hid = hid,
542 		.uid = uid,
543 	};
544 
545 	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
546 	if (dev)
547 		return dev;
548 
549 	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
550 }
551 
acpi_lpss_dep(struct acpi_device * adev,acpi_handle handle)552 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
553 {
554 	struct acpi_handle_list dep_devices;
555 	acpi_status status;
556 	int i;
557 
558 	if (!acpi_has_method(adev->handle, "_DEP"))
559 		return false;
560 
561 	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
562 					 &dep_devices);
563 	if (ACPI_FAILURE(status)) {
564 		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
565 		return false;
566 	}
567 
568 	for (i = 0; i < dep_devices.count; i++) {
569 		if (dep_devices.handles[i] == handle)
570 			return true;
571 	}
572 
573 	return false;
574 }
575 
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)576 static void acpi_lpss_link_consumer(struct device *dev1,
577 				    const struct lpss_device_links *link)
578 {
579 	struct device *dev2;
580 
581 	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
582 	if (!dev2)
583 		return;
584 
585 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
586 	    || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
587 		device_link_add(dev2, dev1, link->flags);
588 
589 	put_device(dev2);
590 }
591 
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)592 static void acpi_lpss_link_supplier(struct device *dev1,
593 				    const struct lpss_device_links *link)
594 {
595 	struct device *dev2;
596 
597 	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
598 	if (!dev2)
599 		return;
600 
601 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
602 	    || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
603 		device_link_add(dev1, dev2, link->flags);
604 
605 	put_device(dev2);
606 }
607 
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)608 static void acpi_lpss_create_device_links(struct acpi_device *adev,
609 					  struct platform_device *pdev)
610 {
611 	int i;
612 
613 	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
614 		const struct lpss_device_links *link = &lpss_device_links[i];
615 
616 		if (acpi_lpss_is_supplier(adev, link))
617 			acpi_lpss_link_consumer(&pdev->dev, link);
618 
619 		if (acpi_lpss_is_consumer(adev, link))
620 			acpi_lpss_link_supplier(&pdev->dev, link);
621 	}
622 }
623 
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)624 static int acpi_lpss_create_device(struct acpi_device *adev,
625 				   const struct acpi_device_id *id)
626 {
627 	const struct lpss_device_desc *dev_desc;
628 	struct lpss_private_data *pdata;
629 	struct resource_entry *rentry;
630 	struct list_head resource_list;
631 	struct platform_device *pdev;
632 	int ret;
633 
634 	dev_desc = (const struct lpss_device_desc *)id->driver_data;
635 	if (!dev_desc) {
636 		pdev = acpi_create_platform_device(adev, NULL);
637 		return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
638 	}
639 	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
640 	if (!pdata)
641 		return -ENOMEM;
642 
643 	INIT_LIST_HEAD(&resource_list);
644 	ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
645 	if (ret < 0)
646 		goto err_out;
647 
648 	list_for_each_entry(rentry, &resource_list, node)
649 		if (resource_type(rentry->res) == IORESOURCE_MEM) {
650 			if (dev_desc->prv_size_override)
651 				pdata->mmio_size = dev_desc->prv_size_override;
652 			else
653 				pdata->mmio_size = resource_size(rentry->res);
654 			pdata->mmio_base = ioremap(rentry->res->start,
655 						   pdata->mmio_size);
656 			break;
657 		}
658 
659 	acpi_dev_free_resource_list(&resource_list);
660 
661 	if (!pdata->mmio_base) {
662 		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
663 		adev->pnp.type.platform_id = 0;
664 		/* Skip the device, but continue the namespace scan. */
665 		ret = 0;
666 		goto err_out;
667 	}
668 
669 	pdata->adev = adev;
670 	pdata->dev_desc = dev_desc;
671 
672 	if (dev_desc->setup)
673 		dev_desc->setup(pdata);
674 
675 	if (dev_desc->flags & LPSS_CLK) {
676 		ret = register_device_clock(adev, pdata);
677 		if (ret) {
678 			/* Skip the device, but continue the namespace scan. */
679 			ret = 0;
680 			goto err_out;
681 		}
682 	}
683 
684 	/*
685 	 * This works around a known issue in ACPI tables where LPSS devices
686 	 * have _PS0 and _PS3 without _PSC (and no power resources), so
687 	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
688 	 */
689 	acpi_device_fix_up_power(adev);
690 
691 	adev->driver_data = pdata;
692 	pdev = acpi_create_platform_device(adev, dev_desc->properties);
693 	if (!IS_ERR_OR_NULL(pdev)) {
694 		acpi_lpss_create_device_links(adev, pdev);
695 		return 1;
696 	}
697 
698 	ret = PTR_ERR(pdev);
699 	adev->driver_data = NULL;
700 
701  err_out:
702 	kfree(pdata);
703 	return ret;
704 }
705 
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)706 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
707 {
708 	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
709 }
710 
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)711 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
712 			     unsigned int reg)
713 {
714 	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
715 }
716 
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)717 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
718 {
719 	struct acpi_device *adev;
720 	struct lpss_private_data *pdata;
721 	unsigned long flags;
722 	int ret;
723 
724 	ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
725 	if (WARN_ON(ret))
726 		return ret;
727 
728 	spin_lock_irqsave(&dev->power.lock, flags);
729 	if (pm_runtime_suspended(dev)) {
730 		ret = -EAGAIN;
731 		goto out;
732 	}
733 	pdata = acpi_driver_data(adev);
734 	if (WARN_ON(!pdata || !pdata->mmio_base)) {
735 		ret = -ENODEV;
736 		goto out;
737 	}
738 	*val = __lpss_reg_read(pdata, reg);
739 
740  out:
741 	spin_unlock_irqrestore(&dev->power.lock, flags);
742 	return ret;
743 }
744 
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)745 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
746 			     char *buf)
747 {
748 	u32 ltr_value = 0;
749 	unsigned int reg;
750 	int ret;
751 
752 	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
753 	ret = lpss_reg_read(dev, reg, &ltr_value);
754 	if (ret)
755 		return ret;
756 
757 	return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
758 }
759 
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)760 static ssize_t lpss_ltr_mode_show(struct device *dev,
761 				  struct device_attribute *attr, char *buf)
762 {
763 	u32 ltr_mode = 0;
764 	char *outstr;
765 	int ret;
766 
767 	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
768 	if (ret)
769 		return ret;
770 
771 	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
772 	return sprintf(buf, "%s\n", outstr);
773 }
774 
775 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
776 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
777 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
778 
779 static struct attribute *lpss_attrs[] = {
780 	&dev_attr_auto_ltr.attr,
781 	&dev_attr_sw_ltr.attr,
782 	&dev_attr_ltr_mode.attr,
783 	NULL,
784 };
785 
786 static const struct attribute_group lpss_attr_group = {
787 	.attrs = lpss_attrs,
788 	.name = "lpss_ltr",
789 };
790 
acpi_lpss_set_ltr(struct device * dev,s32 val)791 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
792 {
793 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
794 	u32 ltr_mode, ltr_val;
795 
796 	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
797 	if (val < 0) {
798 		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
799 			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
800 			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
801 		}
802 		return;
803 	}
804 	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
805 	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
806 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
807 		val = LPSS_LTR_MAX_VAL;
808 	} else if (val > LPSS_LTR_MAX_VAL) {
809 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
810 		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
811 	} else {
812 		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
813 	}
814 	ltr_val |= val;
815 	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
816 	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
817 		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
818 		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
819 	}
820 }
821 
822 #ifdef CONFIG_PM
823 /**
824  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
825  * @dev: LPSS device
826  * @pdata: pointer to the private data of the LPSS device
827  *
828  * Most LPSS devices have private registers which may loose their context when
829  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
830  * prv_reg_ctx array.
831  */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)832 static void acpi_lpss_save_ctx(struct device *dev,
833 			       struct lpss_private_data *pdata)
834 {
835 	unsigned int i;
836 
837 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
838 		unsigned long offset = i * sizeof(u32);
839 
840 		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
841 		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
842 			pdata->prv_reg_ctx[i], offset);
843 	}
844 }
845 
846 /**
847  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
848  * @dev: LPSS device
849  * @pdata: pointer to the private data of the LPSS device
850  *
851  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
852  */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)853 static void acpi_lpss_restore_ctx(struct device *dev,
854 				  struct lpss_private_data *pdata)
855 {
856 	unsigned int i;
857 
858 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
859 		unsigned long offset = i * sizeof(u32);
860 
861 		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
862 		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
863 			pdata->prv_reg_ctx[i], offset);
864 	}
865 }
866 
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)867 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
868 {
869 	/*
870 	 * The following delay is needed or the subsequent write operations may
871 	 * fail. The LPSS devices are actually PCI devices and the PCI spec
872 	 * expects 10ms delay before the device can be accessed after D3 to D0
873 	 * transition. However some platforms like BSW does not need this delay.
874 	 */
875 	unsigned int delay = 10;	/* default 10ms delay */
876 
877 	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
878 		delay = 0;
879 
880 	msleep(delay);
881 }
882 
acpi_lpss_activate(struct device * dev)883 static int acpi_lpss_activate(struct device *dev)
884 {
885 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
886 	int ret;
887 
888 	ret = acpi_dev_resume(dev);
889 	if (ret)
890 		return ret;
891 
892 	acpi_lpss_d3_to_d0_delay(pdata);
893 
894 	/*
895 	 * This is called only on ->probe() stage where a device is either in
896 	 * known state defined by BIOS or most likely powered off. Due to this
897 	 * we have to deassert reset line to be sure that ->probe() will
898 	 * recognize the device.
899 	 */
900 	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
901 		lpss_deassert_reset(pdata);
902 
903 #ifdef CONFIG_PM
904 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
905 		acpi_lpss_save_ctx(dev, pdata);
906 #endif
907 
908 	return 0;
909 }
910 
acpi_lpss_dismiss(struct device * dev)911 static void acpi_lpss_dismiss(struct device *dev)
912 {
913 	acpi_dev_suspend(dev, false);
914 }
915 
916 /* IOSF SB for LPSS island */
917 #define LPSS_IOSF_UNIT_LPIOEP		0xA0
918 #define LPSS_IOSF_UNIT_LPIO1		0xAB
919 #define LPSS_IOSF_UNIT_LPIO2		0xAC
920 
921 #define LPSS_IOSF_PMCSR			0x84
922 #define LPSS_PMCSR_D0			0
923 #define LPSS_PMCSR_D3hot		3
924 #define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
925 
926 #define LPSS_IOSF_GPIODEF0		0x154
927 #define LPSS_GPIODEF0_DMA1_D3		BIT(2)
928 #define LPSS_GPIODEF0_DMA2_D3		BIT(3)
929 #define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
930 #define LPSS_GPIODEF0_DMA_LLP		BIT(13)
931 
932 static DEFINE_MUTEX(lpss_iosf_mutex);
933 static bool lpss_iosf_d3_entered = true;
934 
lpss_iosf_enter_d3_state(void)935 static void lpss_iosf_enter_d3_state(void)
936 {
937 	u32 value1 = 0;
938 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
939 	u32 value2 = LPSS_PMCSR_D3hot;
940 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
941 	/*
942 	 * PMC provides an information about actual status of the LPSS devices.
943 	 * Here we read the values related to LPSS power island, i.e. LPSS
944 	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
945 	 */
946 	u32 func_dis, d3_sts_0, pmc_status;
947 	int ret;
948 
949 	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
950 	if (ret)
951 		return;
952 
953 	mutex_lock(&lpss_iosf_mutex);
954 
955 	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
956 	if (ret)
957 		goto exit;
958 
959 	/*
960 	 * Get the status of entire LPSS power island per device basis.
961 	 * Shutdown both LPSS DMA controllers if and only if all other devices
962 	 * are already in D3hot.
963 	 */
964 	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
965 	if (pmc_status)
966 		goto exit;
967 
968 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
969 			LPSS_IOSF_PMCSR, value2, mask2);
970 
971 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
972 			LPSS_IOSF_PMCSR, value2, mask2);
973 
974 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
975 			LPSS_IOSF_GPIODEF0, value1, mask1);
976 
977 	lpss_iosf_d3_entered = true;
978 
979 exit:
980 	mutex_unlock(&lpss_iosf_mutex);
981 }
982 
lpss_iosf_exit_d3_state(void)983 static void lpss_iosf_exit_d3_state(void)
984 {
985 	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
986 		     LPSS_GPIODEF0_DMA_LLP;
987 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
988 	u32 value2 = LPSS_PMCSR_D0;
989 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
990 
991 	mutex_lock(&lpss_iosf_mutex);
992 
993 	if (!lpss_iosf_d3_entered)
994 		goto exit;
995 
996 	lpss_iosf_d3_entered = false;
997 
998 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
999 			LPSS_IOSF_GPIODEF0, value1, mask1);
1000 
1001 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1002 			LPSS_IOSF_PMCSR, value2, mask2);
1003 
1004 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1005 			LPSS_IOSF_PMCSR, value2, mask2);
1006 
1007 exit:
1008 	mutex_unlock(&lpss_iosf_mutex);
1009 }
1010 
acpi_lpss_suspend(struct device * dev,bool wakeup)1011 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1012 {
1013 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1014 	int ret;
1015 
1016 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1017 		acpi_lpss_save_ctx(dev, pdata);
1018 
1019 	ret = acpi_dev_suspend(dev, wakeup);
1020 
1021 	/*
1022 	 * This call must be last in the sequence, otherwise PMC will return
1023 	 * wrong status for devices being about to be powered off. See
1024 	 * lpss_iosf_enter_d3_state() for further information.
1025 	 */
1026 	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1027 	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1028 		lpss_iosf_enter_d3_state();
1029 
1030 	return ret;
1031 }
1032 
acpi_lpss_resume(struct device * dev)1033 static int acpi_lpss_resume(struct device *dev)
1034 {
1035 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1036 	int ret;
1037 
1038 	/*
1039 	 * This call is kept first to be in symmetry with
1040 	 * acpi_lpss_runtime_suspend() one.
1041 	 */
1042 	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1043 		lpss_iosf_exit_d3_state();
1044 
1045 	ret = acpi_dev_resume(dev);
1046 	if (ret)
1047 		return ret;
1048 
1049 	acpi_lpss_d3_to_d0_delay(pdata);
1050 
1051 	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1052 		acpi_lpss_restore_ctx(dev, pdata);
1053 
1054 	return 0;
1055 }
1056 
1057 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1058 static int acpi_lpss_do_suspend_late(struct device *dev)
1059 {
1060 	int ret;
1061 
1062 	if (dev_pm_skip_suspend(dev))
1063 		return 0;
1064 
1065 	ret = pm_generic_suspend_late(dev);
1066 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1067 }
1068 
acpi_lpss_suspend_late(struct device * dev)1069 static int acpi_lpss_suspend_late(struct device *dev)
1070 {
1071 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1072 
1073 	if (pdata->dev_desc->resume_from_noirq)
1074 		return 0;
1075 
1076 	return acpi_lpss_do_suspend_late(dev);
1077 }
1078 
acpi_lpss_suspend_noirq(struct device * dev)1079 static int acpi_lpss_suspend_noirq(struct device *dev)
1080 {
1081 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1082 	int ret;
1083 
1084 	if (pdata->dev_desc->resume_from_noirq) {
1085 		/*
1086 		 * The driver's ->suspend_late callback will be invoked by
1087 		 * acpi_lpss_do_suspend_late(), with the assumption that the
1088 		 * driver really wanted to run that code in ->suspend_noirq, but
1089 		 * it could not run after acpi_dev_suspend() and the driver
1090 		 * expected the latter to be called in the "late" phase.
1091 		 */
1092 		ret = acpi_lpss_do_suspend_late(dev);
1093 		if (ret)
1094 			return ret;
1095 	}
1096 
1097 	return acpi_subsys_suspend_noirq(dev);
1098 }
1099 
acpi_lpss_do_resume_early(struct device * dev)1100 static int acpi_lpss_do_resume_early(struct device *dev)
1101 {
1102 	int ret = acpi_lpss_resume(dev);
1103 
1104 	return ret ? ret : pm_generic_resume_early(dev);
1105 }
1106 
acpi_lpss_resume_early(struct device * dev)1107 static int acpi_lpss_resume_early(struct device *dev)
1108 {
1109 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1110 
1111 	if (pdata->dev_desc->resume_from_noirq)
1112 		return 0;
1113 
1114 	if (dev_pm_skip_resume(dev))
1115 		return 0;
1116 
1117 	return acpi_lpss_do_resume_early(dev);
1118 }
1119 
acpi_lpss_resume_noirq(struct device * dev)1120 static int acpi_lpss_resume_noirq(struct device *dev)
1121 {
1122 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1123 	int ret;
1124 
1125 	/* Follow acpi_subsys_resume_noirq(). */
1126 	if (dev_pm_skip_resume(dev))
1127 		return 0;
1128 
1129 	ret = pm_generic_resume_noirq(dev);
1130 	if (ret)
1131 		return ret;
1132 
1133 	if (!pdata->dev_desc->resume_from_noirq)
1134 		return 0;
1135 
1136 	/*
1137 	 * The driver's ->resume_early callback will be invoked by
1138 	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1139 	 * really wanted to run that code in ->resume_noirq, but it could not
1140 	 * run before acpi_dev_resume() and the driver expected the latter to be
1141 	 * called in the "early" phase.
1142 	 */
1143 	return acpi_lpss_do_resume_early(dev);
1144 }
1145 
acpi_lpss_do_restore_early(struct device * dev)1146 static int acpi_lpss_do_restore_early(struct device *dev)
1147 {
1148 	int ret = acpi_lpss_resume(dev);
1149 
1150 	return ret ? ret : pm_generic_restore_early(dev);
1151 }
1152 
acpi_lpss_restore_early(struct device * dev)1153 static int acpi_lpss_restore_early(struct device *dev)
1154 {
1155 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1156 
1157 	if (pdata->dev_desc->resume_from_noirq)
1158 		return 0;
1159 
1160 	return acpi_lpss_do_restore_early(dev);
1161 }
1162 
acpi_lpss_restore_noirq(struct device * dev)1163 static int acpi_lpss_restore_noirq(struct device *dev)
1164 {
1165 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1166 	int ret;
1167 
1168 	ret = pm_generic_restore_noirq(dev);
1169 	if (ret)
1170 		return ret;
1171 
1172 	if (!pdata->dev_desc->resume_from_noirq)
1173 		return 0;
1174 
1175 	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1176 	return acpi_lpss_do_restore_early(dev);
1177 }
1178 
acpi_lpss_do_poweroff_late(struct device * dev)1179 static int acpi_lpss_do_poweroff_late(struct device *dev)
1180 {
1181 	int ret = pm_generic_poweroff_late(dev);
1182 
1183 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1184 }
1185 
acpi_lpss_poweroff_late(struct device * dev)1186 static int acpi_lpss_poweroff_late(struct device *dev)
1187 {
1188 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1189 
1190 	if (dev_pm_skip_suspend(dev))
1191 		return 0;
1192 
1193 	if (pdata->dev_desc->resume_from_noirq)
1194 		return 0;
1195 
1196 	return acpi_lpss_do_poweroff_late(dev);
1197 }
1198 
acpi_lpss_poweroff_noirq(struct device * dev)1199 static int acpi_lpss_poweroff_noirq(struct device *dev)
1200 {
1201 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1202 
1203 	if (dev_pm_skip_suspend(dev))
1204 		return 0;
1205 
1206 	if (pdata->dev_desc->resume_from_noirq) {
1207 		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1208 		int ret = acpi_lpss_do_poweroff_late(dev);
1209 
1210 		if (ret)
1211 			return ret;
1212 	}
1213 
1214 	return pm_generic_poweroff_noirq(dev);
1215 }
1216 #endif /* CONFIG_PM_SLEEP */
1217 
acpi_lpss_runtime_suspend(struct device * dev)1218 static int acpi_lpss_runtime_suspend(struct device *dev)
1219 {
1220 	int ret = pm_generic_runtime_suspend(dev);
1221 
1222 	return ret ? ret : acpi_lpss_suspend(dev, true);
1223 }
1224 
acpi_lpss_runtime_resume(struct device * dev)1225 static int acpi_lpss_runtime_resume(struct device *dev)
1226 {
1227 	int ret = acpi_lpss_resume(dev);
1228 
1229 	return ret ? ret : pm_generic_runtime_resume(dev);
1230 }
1231 #endif /* CONFIG_PM */
1232 
1233 static struct dev_pm_domain acpi_lpss_pm_domain = {
1234 #ifdef CONFIG_PM
1235 	.activate = acpi_lpss_activate,
1236 	.dismiss = acpi_lpss_dismiss,
1237 #endif
1238 	.ops = {
1239 #ifdef CONFIG_PM
1240 #ifdef CONFIG_PM_SLEEP
1241 		.prepare = acpi_subsys_prepare,
1242 		.complete = acpi_subsys_complete,
1243 		.suspend = acpi_subsys_suspend,
1244 		.suspend_late = acpi_lpss_suspend_late,
1245 		.suspend_noirq = acpi_lpss_suspend_noirq,
1246 		.resume_noirq = acpi_lpss_resume_noirq,
1247 		.resume_early = acpi_lpss_resume_early,
1248 		.freeze = acpi_subsys_freeze,
1249 		.poweroff = acpi_subsys_poweroff,
1250 		.poweroff_late = acpi_lpss_poweroff_late,
1251 		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1252 		.restore_noirq = acpi_lpss_restore_noirq,
1253 		.restore_early = acpi_lpss_restore_early,
1254 #endif
1255 		.runtime_suspend = acpi_lpss_runtime_suspend,
1256 		.runtime_resume = acpi_lpss_runtime_resume,
1257 #endif
1258 	},
1259 };
1260 
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1261 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1262 				     unsigned long action, void *data)
1263 {
1264 	struct platform_device *pdev = to_platform_device(data);
1265 	struct lpss_private_data *pdata;
1266 	struct acpi_device *adev;
1267 	const struct acpi_device_id *id;
1268 
1269 	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1270 	if (!id || !id->driver_data)
1271 		return 0;
1272 
1273 	if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1274 		return 0;
1275 
1276 	pdata = acpi_driver_data(adev);
1277 	if (!pdata)
1278 		return 0;
1279 
1280 	if (pdata->mmio_base &&
1281 	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1282 		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1283 		return 0;
1284 	}
1285 
1286 	switch (action) {
1287 	case BUS_NOTIFY_BIND_DRIVER:
1288 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1289 		break;
1290 	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1291 	case BUS_NOTIFY_UNBOUND_DRIVER:
1292 		dev_pm_domain_set(&pdev->dev, NULL);
1293 		break;
1294 	case BUS_NOTIFY_ADD_DEVICE:
1295 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1296 		if (pdata->dev_desc->flags & LPSS_LTR)
1297 			return sysfs_create_group(&pdev->dev.kobj,
1298 						  &lpss_attr_group);
1299 		break;
1300 	case BUS_NOTIFY_DEL_DEVICE:
1301 		if (pdata->dev_desc->flags & LPSS_LTR)
1302 			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1303 		dev_pm_domain_set(&pdev->dev, NULL);
1304 		break;
1305 	default:
1306 		break;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 static struct notifier_block acpi_lpss_nb = {
1313 	.notifier_call = acpi_lpss_platform_notify,
1314 };
1315 
acpi_lpss_bind(struct device * dev)1316 static void acpi_lpss_bind(struct device *dev)
1317 {
1318 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1319 
1320 	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1321 		return;
1322 
1323 	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1324 		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1325 	else
1326 		dev_err(dev, "MMIO size insufficient to access LTR\n");
1327 }
1328 
acpi_lpss_unbind(struct device * dev)1329 static void acpi_lpss_unbind(struct device *dev)
1330 {
1331 	dev->power.set_latency_tolerance = NULL;
1332 }
1333 
1334 static struct acpi_scan_handler lpss_handler = {
1335 	.ids = acpi_lpss_device_ids,
1336 	.attach = acpi_lpss_create_device,
1337 	.bind = acpi_lpss_bind,
1338 	.unbind = acpi_lpss_unbind,
1339 };
1340 
acpi_lpss_init(void)1341 void __init acpi_lpss_init(void)
1342 {
1343 	const struct x86_cpu_id *id;
1344 	int ret;
1345 
1346 	ret = lpss_atom_clk_init();
1347 	if (ret)
1348 		return;
1349 
1350 	id = x86_match_cpu(lpss_cpu_ids);
1351 	if (id)
1352 		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1353 
1354 	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1355 	acpi_scan_add_handler(&lpss_handler);
1356 }
1357 
1358 #else
1359 
1360 static struct acpi_scan_handler lpss_handler = {
1361 	.ids = acpi_lpss_device_ids,
1362 };
1363 
acpi_lpss_init(void)1364 void __init acpi_lpss_init(void)
1365 {
1366 	acpi_scan_add_handler(&lpss_handler);
1367 }
1368 
1369 #endif /* CONFIG_X86_INTEL_LPSS */
1370