1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26
27 #include "internal.h"
28
29 #ifdef CONFIG_X86_INTEL_LPSS
30
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
34
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
36
37 #define LPSS_CLK_SIZE 0x04
38 #define LPSS_LTR_SIZE 0x18
39
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
42 #define LPSS_RESETS 0x04
43 #define LPSS_RESETS_RESET_FUNC BIT(0)
44 #define LPSS_RESETS_RESET_APB BIT(1)
45 #define LPSS_GENERAL 0x08
46 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
48 #define LPSS_SW_LTR 0x10
49 #define LPSS_AUTO_LTR 0x14
50 #define LPSS_LTR_SNOOP_REQ BIT(15)
51 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US 0x800
53 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
56 #define LPSS_LTR_MAX_VAL 0x3FF
57 #define LPSS_TX_INT 0x20
58 #define LPSS_TX_INT_MASK BIT(1)
59
60 #define LPSS_PRV_REG_COUNT 9
61
62 /* LPSS Flags */
63 #define LPSS_CLK BIT(0)
64 #define LPSS_CLK_GATE BIT(1)
65 #define LPSS_CLK_DIVIDER BIT(2)
66 #define LPSS_LTR BIT(3)
67 #define LPSS_SAVE_CTX BIT(4)
68 /*
69 * For some devices the DSDT AML code for another device turns off the device
70 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71 * as ctx register values.
72 * Luckily these devices always use the same ctx register values, so we can
73 * work around this by saving the ctx registers once on activation.
74 */
75 #define LPSS_SAVE_CTX_ONCE BIT(5)
76 #define LPSS_NO_D3_DELAY BIT(6)
77
78 struct lpss_private_data;
79
80 struct lpss_device_desc {
81 unsigned int flags;
82 const char *clk_con_id;
83 unsigned int prv_offset;
84 size_t prv_size_override;
85 struct property_entry *properties;
86 void (*setup)(struct lpss_private_data *pdata);
87 bool resume_from_noirq;
88 };
89
90 static const struct lpss_device_desc lpss_dma_desc = {
91 .flags = LPSS_CLK,
92 };
93
94 struct lpss_private_data {
95 struct acpi_device *adev;
96 void __iomem *mmio_base;
97 resource_size_t mmio_size;
98 unsigned int fixed_clk_rate;
99 struct clk *clk;
100 const struct lpss_device_desc *dev_desc;
101 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109
110 /*
111 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112 *
113 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114 * it can be powered off automatically whenever the last LPSS device goes down.
115 * In case of no power any access to the DMA controller will hang the system.
116 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117 * well as on ASuS T100TA transformer.
118 *
119 * This quirk overrides power state of entire LPSS island to keep DMA powered
120 * on whenever we have at least one other device in use.
121 */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
123
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR 0xF4
126 #define LPSS_UART_CPR_AFCE BIT(4)
127
lpss_uart_setup(struct lpss_private_data * pdata)128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130 unsigned int offset;
131 u32 val;
132
133 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 val = readl(pdata->mmio_base + offset);
135 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137 val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 if (!(val & LPSS_UART_CPR_AFCE)) {
139 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 val = readl(pdata->mmio_base + offset);
141 val |= LPSS_GENERAL_UART_RTS_OVRD;
142 writel(val, pdata->mmio_base + offset);
143 }
144 }
145
lpss_deassert_reset(struct lpss_private_data * pdata)146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148 unsigned int offset;
149 u32 val;
150
151 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 val = readl(pdata->mmio_base + offset);
153 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 writel(val, pdata->mmio_base + offset);
155 }
156
157 /*
158 * BYT PWM used for backlight control by the i915 driver on systems without
159 * the Crystal Cove PMIC.
160 */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164 "pwm-lpss-platform"),
165 };
166
byt_pwm_setup(struct lpss_private_data * pdata)167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169 struct acpi_device *adev = pdata->adev;
170
171 /* Only call pwm_add_table for the first PWM controller */
172 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173 return;
174
175 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176 }
177
178 #define LPSS_I2C_ENABLE 0x6c
179
byt_i2c_setup(struct lpss_private_data * pdata)180 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 {
182 const char *uid_str = acpi_device_uid(pdata->adev);
183 acpi_handle handle = pdata->adev->handle;
184 unsigned long long shared_host = 0;
185 acpi_status status;
186 long uid = 0;
187
188 /* Expected to always be true, but better safe then sorry */
189 if (uid_str && !kstrtol(uid_str, 10, &uid) && uid) {
190 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 if (ACPI_SUCCESS(status) && shared_host)
193 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194 }
195
196 lpss_deassert_reset(pdata);
197
198 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 pdata->fixed_clk_rate = 133000000;
200
201 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
208 "pwm-lpss-platform"),
209 };
210
bsw_pwm_setup(struct lpss_private_data * pdata)211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
212 {
213 struct acpi_device *adev = pdata->adev;
214
215 /* Only call pwm_add_table for the first PWM controller */
216 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
217 return;
218
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct lpss_device_desc lpt_dev_desc = {
223 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
224 | LPSS_SAVE_CTX,
225 .prv_offset = 0x800,
226 };
227
228 static const struct lpss_device_desc lpt_i2c_dev_desc = {
229 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
230 .prv_offset = 0x800,
231 };
232
233 static struct property_entry uart_properties[] = {
234 PROPERTY_ENTRY_U32("reg-io-width", 4),
235 PROPERTY_ENTRY_U32("reg-shift", 2),
236 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
237 { },
238 };
239
240 static const struct lpss_device_desc lpt_uart_dev_desc = {
241 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
242 | LPSS_SAVE_CTX,
243 .clk_con_id = "baudclk",
244 .prv_offset = 0x800,
245 .setup = lpss_uart_setup,
246 .properties = uart_properties,
247 };
248
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
250 .flags = LPSS_LTR,
251 .prv_offset = 0x1000,
252 .prv_size_override = 0x1018,
253 };
254
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256 .flags = LPSS_SAVE_CTX,
257 .prv_offset = 0x800,
258 .setup = byt_pwm_setup,
259 };
260
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
263 .prv_offset = 0x800,
264 .setup = bsw_pwm_setup,
265 .resume_from_noirq = true,
266 };
267
268 static const struct lpss_device_desc byt_uart_dev_desc = {
269 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
270 .clk_con_id = "baudclk",
271 .prv_offset = 0x800,
272 .setup = lpss_uart_setup,
273 .properties = uart_properties,
274 };
275
276 static const struct lpss_device_desc bsw_uart_dev_desc = {
277 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
278 | LPSS_NO_D3_DELAY,
279 .clk_con_id = "baudclk",
280 .prv_offset = 0x800,
281 .setup = lpss_uart_setup,
282 .properties = uart_properties,
283 };
284
285 static const struct lpss_device_desc byt_spi_dev_desc = {
286 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
287 .prv_offset = 0x400,
288 };
289
290 static const struct lpss_device_desc byt_sdio_dev_desc = {
291 .flags = LPSS_CLK,
292 };
293
294 static const struct lpss_device_desc byt_i2c_dev_desc = {
295 .flags = LPSS_CLK | LPSS_SAVE_CTX,
296 .prv_offset = 0x800,
297 .setup = byt_i2c_setup,
298 .resume_from_noirq = true,
299 };
300
301 static const struct lpss_device_desc bsw_i2c_dev_desc = {
302 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
303 .prv_offset = 0x800,
304 .setup = byt_i2c_setup,
305 .resume_from_noirq = true,
306 };
307
308 static const struct lpss_device_desc bsw_spi_dev_desc = {
309 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
310 | LPSS_NO_D3_DELAY,
311 .prv_offset = 0x400,
312 .setup = lpss_deassert_reset,
313 };
314
315 static const struct x86_cpu_id lpss_cpu_ids[] = {
316 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
317 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
318 {}
319 };
320
321 #else
322
323 #define LPSS_ADDR(desc) (0UL)
324
325 #endif /* CONFIG_X86_INTEL_LPSS */
326
327 static const struct acpi_device_id acpi_lpss_device_ids[] = {
328 /* Generic LPSS devices */
329 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
330
331 /* Lynxpoint LPSS devices */
332 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
333 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
335 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
337 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
339 { "INT33C7", },
340
341 /* BayTrail LPSS devices */
342 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
343 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
344 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
345 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
346 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
347 { "INT33B2", },
348 { "INT33FC", },
349
350 /* Braswell LPSS devices */
351 { "80862286", LPSS_ADDR(lpss_dma_desc) },
352 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
353 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
354 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
355 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
356 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
357
358 /* Broadwell LPSS devices */
359 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
360 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
362 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
364 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
366 { "INT3437", },
367
368 /* Wildcat Point LPSS devices */
369 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
370
371 { }
372 };
373
374 #ifdef CONFIG_X86_INTEL_LPSS
375
is_memory(struct acpi_resource * res,void * not_used)376 static int is_memory(struct acpi_resource *res, void *not_used)
377 {
378 struct resource r;
379
380 return !acpi_dev_resource_memory(res, &r);
381 }
382
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385
lpt_register_clock_device(void)386 static inline void lpt_register_clock_device(void)
387 {
388 lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
389 PLATFORM_DEVID_NONE,
390 NULL, 0);
391 }
392
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)393 static int register_device_clock(struct acpi_device *adev,
394 struct lpss_private_data *pdata)
395 {
396 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
397 const char *devname = dev_name(&adev->dev);
398 struct clk *clk;
399 struct lpss_clk_data *clk_data;
400 const char *parent, *clk_name;
401 void __iomem *prv_base;
402
403 if (!lpss_clk_dev)
404 lpt_register_clock_device();
405
406 if (IS_ERR(lpss_clk_dev))
407 return PTR_ERR(lpss_clk_dev);
408
409 clk_data = platform_get_drvdata(lpss_clk_dev);
410 if (!clk_data)
411 return -ENODEV;
412 clk = clk_data->clk;
413
414 if (!pdata->mmio_base
415 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
416 return -ENODATA;
417
418 parent = clk_data->name;
419 prv_base = pdata->mmio_base + dev_desc->prv_offset;
420
421 if (pdata->fixed_clk_rate) {
422 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
423 pdata->fixed_clk_rate);
424 goto out;
425 }
426
427 if (dev_desc->flags & LPSS_CLK_GATE) {
428 clk = clk_register_gate(NULL, devname, parent, 0,
429 prv_base, 0, 0, NULL);
430 parent = devname;
431 }
432
433 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
434 /* Prevent division by zero */
435 if (!readl(prv_base))
436 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
437
438 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
439 if (!clk_name)
440 return -ENOMEM;
441 clk = clk_register_fractional_divider(NULL, clk_name, parent,
442 0, prv_base, 1, 15, 16, 15,
443 CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
444 NULL);
445 parent = clk_name;
446
447 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
448 if (!clk_name) {
449 kfree(parent);
450 return -ENOMEM;
451 }
452 clk = clk_register_gate(NULL, clk_name, parent,
453 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
454 prv_base, 31, 0, NULL);
455 kfree(parent);
456 kfree(clk_name);
457 }
458 out:
459 if (IS_ERR(clk))
460 return PTR_ERR(clk);
461
462 pdata->clk = clk;
463 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
464 return 0;
465 }
466
467 struct lpss_device_links {
468 const char *supplier_hid;
469 const char *supplier_uid;
470 const char *consumer_hid;
471 const char *consumer_uid;
472 u32 flags;
473 const struct dmi_system_id *dep_missing_ids;
474 };
475
476 /* Please keep this list sorted alphabetically by vendor and model */
477 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
478 {
479 .matches = {
480 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
481 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
482 },
483 },
484 {}
485 };
486
487 /*
488 * The _DEP method is used to identify dependencies but instead of creating
489 * device links for every handle in _DEP, only links in the following list are
490 * created. That is necessary because, in the general case, _DEP can refer to
491 * devices that might not have drivers, or that are on different buses, or where
492 * the supplier is not enumerated until after the consumer is probed.
493 */
494 static const struct lpss_device_links lpss_device_links[] = {
495 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
496 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
497 /* CHT iGPU depends on PMIC I2C controller */
498 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
499 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
500 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
501 i2c1_dep_missing_dmi_ids},
502 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
503 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
504 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
505 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
506 };
507
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)508 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
509 const struct lpss_device_links *link)
510 {
511 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
512 }
513
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)514 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
515 const struct lpss_device_links *link)
516 {
517 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
518 }
519
520 struct hid_uid {
521 const char *hid;
522 const char *uid;
523 };
524
match_hid_uid(struct device * dev,const void * data)525 static int match_hid_uid(struct device *dev, const void *data)
526 {
527 struct acpi_device *adev = ACPI_COMPANION(dev);
528 const struct hid_uid *id = data;
529
530 if (!adev)
531 return 0;
532
533 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
534 }
535
acpi_lpss_find_device(const char * hid,const char * uid)536 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
537 {
538 struct device *dev;
539
540 struct hid_uid data = {
541 .hid = hid,
542 .uid = uid,
543 };
544
545 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
546 if (dev)
547 return dev;
548
549 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
550 }
551
acpi_lpss_dep(struct acpi_device * adev,acpi_handle handle)552 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
553 {
554 struct acpi_handle_list dep_devices;
555 acpi_status status;
556 int i;
557
558 if (!acpi_has_method(adev->handle, "_DEP"))
559 return false;
560
561 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
562 &dep_devices);
563 if (ACPI_FAILURE(status)) {
564 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
565 return false;
566 }
567
568 for (i = 0; i < dep_devices.count; i++) {
569 if (dep_devices.handles[i] == handle)
570 return true;
571 }
572
573 return false;
574 }
575
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)576 static void acpi_lpss_link_consumer(struct device *dev1,
577 const struct lpss_device_links *link)
578 {
579 struct device *dev2;
580
581 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
582 if (!dev2)
583 return;
584
585 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
586 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
587 device_link_add(dev2, dev1, link->flags);
588
589 put_device(dev2);
590 }
591
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)592 static void acpi_lpss_link_supplier(struct device *dev1,
593 const struct lpss_device_links *link)
594 {
595 struct device *dev2;
596
597 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
598 if (!dev2)
599 return;
600
601 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
602 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
603 device_link_add(dev1, dev2, link->flags);
604
605 put_device(dev2);
606 }
607
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)608 static void acpi_lpss_create_device_links(struct acpi_device *adev,
609 struct platform_device *pdev)
610 {
611 int i;
612
613 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
614 const struct lpss_device_links *link = &lpss_device_links[i];
615
616 if (acpi_lpss_is_supplier(adev, link))
617 acpi_lpss_link_consumer(&pdev->dev, link);
618
619 if (acpi_lpss_is_consumer(adev, link))
620 acpi_lpss_link_supplier(&pdev->dev, link);
621 }
622 }
623
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)624 static int acpi_lpss_create_device(struct acpi_device *adev,
625 const struct acpi_device_id *id)
626 {
627 const struct lpss_device_desc *dev_desc;
628 struct lpss_private_data *pdata;
629 struct resource_entry *rentry;
630 struct list_head resource_list;
631 struct platform_device *pdev;
632 int ret;
633
634 dev_desc = (const struct lpss_device_desc *)id->driver_data;
635 if (!dev_desc) {
636 pdev = acpi_create_platform_device(adev, NULL);
637 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
638 }
639 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
640 if (!pdata)
641 return -ENOMEM;
642
643 INIT_LIST_HEAD(&resource_list);
644 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
645 if (ret < 0)
646 goto err_out;
647
648 list_for_each_entry(rentry, &resource_list, node)
649 if (resource_type(rentry->res) == IORESOURCE_MEM) {
650 if (dev_desc->prv_size_override)
651 pdata->mmio_size = dev_desc->prv_size_override;
652 else
653 pdata->mmio_size = resource_size(rentry->res);
654 pdata->mmio_base = ioremap(rentry->res->start,
655 pdata->mmio_size);
656 break;
657 }
658
659 acpi_dev_free_resource_list(&resource_list);
660
661 if (!pdata->mmio_base) {
662 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
663 adev->pnp.type.platform_id = 0;
664 /* Skip the device, but continue the namespace scan. */
665 ret = 0;
666 goto err_out;
667 }
668
669 pdata->adev = adev;
670 pdata->dev_desc = dev_desc;
671
672 if (dev_desc->setup)
673 dev_desc->setup(pdata);
674
675 if (dev_desc->flags & LPSS_CLK) {
676 ret = register_device_clock(adev, pdata);
677 if (ret) {
678 /* Skip the device, but continue the namespace scan. */
679 ret = 0;
680 goto err_out;
681 }
682 }
683
684 /*
685 * This works around a known issue in ACPI tables where LPSS devices
686 * have _PS0 and _PS3 without _PSC (and no power resources), so
687 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
688 */
689 acpi_device_fix_up_power(adev);
690
691 adev->driver_data = pdata;
692 pdev = acpi_create_platform_device(adev, dev_desc->properties);
693 if (!IS_ERR_OR_NULL(pdev)) {
694 acpi_lpss_create_device_links(adev, pdev);
695 return 1;
696 }
697
698 ret = PTR_ERR(pdev);
699 adev->driver_data = NULL;
700
701 err_out:
702 kfree(pdata);
703 return ret;
704 }
705
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)706 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
707 {
708 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
709 }
710
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)711 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
712 unsigned int reg)
713 {
714 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
715 }
716
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)717 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
718 {
719 struct acpi_device *adev;
720 struct lpss_private_data *pdata;
721 unsigned long flags;
722 int ret;
723
724 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
725 if (WARN_ON(ret))
726 return ret;
727
728 spin_lock_irqsave(&dev->power.lock, flags);
729 if (pm_runtime_suspended(dev)) {
730 ret = -EAGAIN;
731 goto out;
732 }
733 pdata = acpi_driver_data(adev);
734 if (WARN_ON(!pdata || !pdata->mmio_base)) {
735 ret = -ENODEV;
736 goto out;
737 }
738 *val = __lpss_reg_read(pdata, reg);
739
740 out:
741 spin_unlock_irqrestore(&dev->power.lock, flags);
742 return ret;
743 }
744
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)745 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
746 char *buf)
747 {
748 u32 ltr_value = 0;
749 unsigned int reg;
750 int ret;
751
752 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
753 ret = lpss_reg_read(dev, reg, <r_value);
754 if (ret)
755 return ret;
756
757 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
758 }
759
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)760 static ssize_t lpss_ltr_mode_show(struct device *dev,
761 struct device_attribute *attr, char *buf)
762 {
763 u32 ltr_mode = 0;
764 char *outstr;
765 int ret;
766
767 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
768 if (ret)
769 return ret;
770
771 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
772 return sprintf(buf, "%s\n", outstr);
773 }
774
775 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
776 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
777 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
778
779 static struct attribute *lpss_attrs[] = {
780 &dev_attr_auto_ltr.attr,
781 &dev_attr_sw_ltr.attr,
782 &dev_attr_ltr_mode.attr,
783 NULL,
784 };
785
786 static const struct attribute_group lpss_attr_group = {
787 .attrs = lpss_attrs,
788 .name = "lpss_ltr",
789 };
790
acpi_lpss_set_ltr(struct device * dev,s32 val)791 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
792 {
793 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
794 u32 ltr_mode, ltr_val;
795
796 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
797 if (val < 0) {
798 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
799 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
800 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
801 }
802 return;
803 }
804 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
805 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
806 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
807 val = LPSS_LTR_MAX_VAL;
808 } else if (val > LPSS_LTR_MAX_VAL) {
809 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
810 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
811 } else {
812 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
813 }
814 ltr_val |= val;
815 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
816 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
817 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
818 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
819 }
820 }
821
822 #ifdef CONFIG_PM
823 /**
824 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
825 * @dev: LPSS device
826 * @pdata: pointer to the private data of the LPSS device
827 *
828 * Most LPSS devices have private registers which may loose their context when
829 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
830 * prv_reg_ctx array.
831 */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)832 static void acpi_lpss_save_ctx(struct device *dev,
833 struct lpss_private_data *pdata)
834 {
835 unsigned int i;
836
837 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
838 unsigned long offset = i * sizeof(u32);
839
840 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
841 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
842 pdata->prv_reg_ctx[i], offset);
843 }
844 }
845
846 /**
847 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
848 * @dev: LPSS device
849 * @pdata: pointer to the private data of the LPSS device
850 *
851 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
852 */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)853 static void acpi_lpss_restore_ctx(struct device *dev,
854 struct lpss_private_data *pdata)
855 {
856 unsigned int i;
857
858 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
859 unsigned long offset = i * sizeof(u32);
860
861 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
862 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
863 pdata->prv_reg_ctx[i], offset);
864 }
865 }
866
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)867 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
868 {
869 /*
870 * The following delay is needed or the subsequent write operations may
871 * fail. The LPSS devices are actually PCI devices and the PCI spec
872 * expects 10ms delay before the device can be accessed after D3 to D0
873 * transition. However some platforms like BSW does not need this delay.
874 */
875 unsigned int delay = 10; /* default 10ms delay */
876
877 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
878 delay = 0;
879
880 msleep(delay);
881 }
882
acpi_lpss_activate(struct device * dev)883 static int acpi_lpss_activate(struct device *dev)
884 {
885 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
886 int ret;
887
888 ret = acpi_dev_resume(dev);
889 if (ret)
890 return ret;
891
892 acpi_lpss_d3_to_d0_delay(pdata);
893
894 /*
895 * This is called only on ->probe() stage where a device is either in
896 * known state defined by BIOS or most likely powered off. Due to this
897 * we have to deassert reset line to be sure that ->probe() will
898 * recognize the device.
899 */
900 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
901 lpss_deassert_reset(pdata);
902
903 #ifdef CONFIG_PM
904 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
905 acpi_lpss_save_ctx(dev, pdata);
906 #endif
907
908 return 0;
909 }
910
acpi_lpss_dismiss(struct device * dev)911 static void acpi_lpss_dismiss(struct device *dev)
912 {
913 acpi_dev_suspend(dev, false);
914 }
915
916 /* IOSF SB for LPSS island */
917 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
918 #define LPSS_IOSF_UNIT_LPIO1 0xAB
919 #define LPSS_IOSF_UNIT_LPIO2 0xAC
920
921 #define LPSS_IOSF_PMCSR 0x84
922 #define LPSS_PMCSR_D0 0
923 #define LPSS_PMCSR_D3hot 3
924 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
925
926 #define LPSS_IOSF_GPIODEF0 0x154
927 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
928 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
929 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
930 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
931
932 static DEFINE_MUTEX(lpss_iosf_mutex);
933 static bool lpss_iosf_d3_entered = true;
934
lpss_iosf_enter_d3_state(void)935 static void lpss_iosf_enter_d3_state(void)
936 {
937 u32 value1 = 0;
938 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
939 u32 value2 = LPSS_PMCSR_D3hot;
940 u32 mask2 = LPSS_PMCSR_Dx_MASK;
941 /*
942 * PMC provides an information about actual status of the LPSS devices.
943 * Here we read the values related to LPSS power island, i.e. LPSS
944 * devices, excluding both LPSS DMA controllers, along with SCC domain.
945 */
946 u32 func_dis, d3_sts_0, pmc_status;
947 int ret;
948
949 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
950 if (ret)
951 return;
952
953 mutex_lock(&lpss_iosf_mutex);
954
955 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
956 if (ret)
957 goto exit;
958
959 /*
960 * Get the status of entire LPSS power island per device basis.
961 * Shutdown both LPSS DMA controllers if and only if all other devices
962 * are already in D3hot.
963 */
964 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
965 if (pmc_status)
966 goto exit;
967
968 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
969 LPSS_IOSF_PMCSR, value2, mask2);
970
971 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
972 LPSS_IOSF_PMCSR, value2, mask2);
973
974 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
975 LPSS_IOSF_GPIODEF0, value1, mask1);
976
977 lpss_iosf_d3_entered = true;
978
979 exit:
980 mutex_unlock(&lpss_iosf_mutex);
981 }
982
lpss_iosf_exit_d3_state(void)983 static void lpss_iosf_exit_d3_state(void)
984 {
985 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
986 LPSS_GPIODEF0_DMA_LLP;
987 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
988 u32 value2 = LPSS_PMCSR_D0;
989 u32 mask2 = LPSS_PMCSR_Dx_MASK;
990
991 mutex_lock(&lpss_iosf_mutex);
992
993 if (!lpss_iosf_d3_entered)
994 goto exit;
995
996 lpss_iosf_d3_entered = false;
997
998 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
999 LPSS_IOSF_GPIODEF0, value1, mask1);
1000
1001 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1002 LPSS_IOSF_PMCSR, value2, mask2);
1003
1004 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1005 LPSS_IOSF_PMCSR, value2, mask2);
1006
1007 exit:
1008 mutex_unlock(&lpss_iosf_mutex);
1009 }
1010
acpi_lpss_suspend(struct device * dev,bool wakeup)1011 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1012 {
1013 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1014 int ret;
1015
1016 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1017 acpi_lpss_save_ctx(dev, pdata);
1018
1019 ret = acpi_dev_suspend(dev, wakeup);
1020
1021 /*
1022 * This call must be last in the sequence, otherwise PMC will return
1023 * wrong status for devices being about to be powered off. See
1024 * lpss_iosf_enter_d3_state() for further information.
1025 */
1026 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1027 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1028 lpss_iosf_enter_d3_state();
1029
1030 return ret;
1031 }
1032
acpi_lpss_resume(struct device * dev)1033 static int acpi_lpss_resume(struct device *dev)
1034 {
1035 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1036 int ret;
1037
1038 /*
1039 * This call is kept first to be in symmetry with
1040 * acpi_lpss_runtime_suspend() one.
1041 */
1042 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1043 lpss_iosf_exit_d3_state();
1044
1045 ret = acpi_dev_resume(dev);
1046 if (ret)
1047 return ret;
1048
1049 acpi_lpss_d3_to_d0_delay(pdata);
1050
1051 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1052 acpi_lpss_restore_ctx(dev, pdata);
1053
1054 return 0;
1055 }
1056
1057 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1058 static int acpi_lpss_do_suspend_late(struct device *dev)
1059 {
1060 int ret;
1061
1062 if (dev_pm_skip_suspend(dev))
1063 return 0;
1064
1065 ret = pm_generic_suspend_late(dev);
1066 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1067 }
1068
acpi_lpss_suspend_late(struct device * dev)1069 static int acpi_lpss_suspend_late(struct device *dev)
1070 {
1071 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1072
1073 if (pdata->dev_desc->resume_from_noirq)
1074 return 0;
1075
1076 return acpi_lpss_do_suspend_late(dev);
1077 }
1078
acpi_lpss_suspend_noirq(struct device * dev)1079 static int acpi_lpss_suspend_noirq(struct device *dev)
1080 {
1081 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1082 int ret;
1083
1084 if (pdata->dev_desc->resume_from_noirq) {
1085 /*
1086 * The driver's ->suspend_late callback will be invoked by
1087 * acpi_lpss_do_suspend_late(), with the assumption that the
1088 * driver really wanted to run that code in ->suspend_noirq, but
1089 * it could not run after acpi_dev_suspend() and the driver
1090 * expected the latter to be called in the "late" phase.
1091 */
1092 ret = acpi_lpss_do_suspend_late(dev);
1093 if (ret)
1094 return ret;
1095 }
1096
1097 return acpi_subsys_suspend_noirq(dev);
1098 }
1099
acpi_lpss_do_resume_early(struct device * dev)1100 static int acpi_lpss_do_resume_early(struct device *dev)
1101 {
1102 int ret = acpi_lpss_resume(dev);
1103
1104 return ret ? ret : pm_generic_resume_early(dev);
1105 }
1106
acpi_lpss_resume_early(struct device * dev)1107 static int acpi_lpss_resume_early(struct device *dev)
1108 {
1109 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1110
1111 if (pdata->dev_desc->resume_from_noirq)
1112 return 0;
1113
1114 if (dev_pm_skip_resume(dev))
1115 return 0;
1116
1117 return acpi_lpss_do_resume_early(dev);
1118 }
1119
acpi_lpss_resume_noirq(struct device * dev)1120 static int acpi_lpss_resume_noirq(struct device *dev)
1121 {
1122 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1123 int ret;
1124
1125 /* Follow acpi_subsys_resume_noirq(). */
1126 if (dev_pm_skip_resume(dev))
1127 return 0;
1128
1129 ret = pm_generic_resume_noirq(dev);
1130 if (ret)
1131 return ret;
1132
1133 if (!pdata->dev_desc->resume_from_noirq)
1134 return 0;
1135
1136 /*
1137 * The driver's ->resume_early callback will be invoked by
1138 * acpi_lpss_do_resume_early(), with the assumption that the driver
1139 * really wanted to run that code in ->resume_noirq, but it could not
1140 * run before acpi_dev_resume() and the driver expected the latter to be
1141 * called in the "early" phase.
1142 */
1143 return acpi_lpss_do_resume_early(dev);
1144 }
1145
acpi_lpss_do_restore_early(struct device * dev)1146 static int acpi_lpss_do_restore_early(struct device *dev)
1147 {
1148 int ret = acpi_lpss_resume(dev);
1149
1150 return ret ? ret : pm_generic_restore_early(dev);
1151 }
1152
acpi_lpss_restore_early(struct device * dev)1153 static int acpi_lpss_restore_early(struct device *dev)
1154 {
1155 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1156
1157 if (pdata->dev_desc->resume_from_noirq)
1158 return 0;
1159
1160 return acpi_lpss_do_restore_early(dev);
1161 }
1162
acpi_lpss_restore_noirq(struct device * dev)1163 static int acpi_lpss_restore_noirq(struct device *dev)
1164 {
1165 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1166 int ret;
1167
1168 ret = pm_generic_restore_noirq(dev);
1169 if (ret)
1170 return ret;
1171
1172 if (!pdata->dev_desc->resume_from_noirq)
1173 return 0;
1174
1175 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1176 return acpi_lpss_do_restore_early(dev);
1177 }
1178
acpi_lpss_do_poweroff_late(struct device * dev)1179 static int acpi_lpss_do_poweroff_late(struct device *dev)
1180 {
1181 int ret = pm_generic_poweroff_late(dev);
1182
1183 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1184 }
1185
acpi_lpss_poweroff_late(struct device * dev)1186 static int acpi_lpss_poweroff_late(struct device *dev)
1187 {
1188 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1189
1190 if (dev_pm_skip_suspend(dev))
1191 return 0;
1192
1193 if (pdata->dev_desc->resume_from_noirq)
1194 return 0;
1195
1196 return acpi_lpss_do_poweroff_late(dev);
1197 }
1198
acpi_lpss_poweroff_noirq(struct device * dev)1199 static int acpi_lpss_poweroff_noirq(struct device *dev)
1200 {
1201 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1202
1203 if (dev_pm_skip_suspend(dev))
1204 return 0;
1205
1206 if (pdata->dev_desc->resume_from_noirq) {
1207 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1208 int ret = acpi_lpss_do_poweroff_late(dev);
1209
1210 if (ret)
1211 return ret;
1212 }
1213
1214 return pm_generic_poweroff_noirq(dev);
1215 }
1216 #endif /* CONFIG_PM_SLEEP */
1217
acpi_lpss_runtime_suspend(struct device * dev)1218 static int acpi_lpss_runtime_suspend(struct device *dev)
1219 {
1220 int ret = pm_generic_runtime_suspend(dev);
1221
1222 return ret ? ret : acpi_lpss_suspend(dev, true);
1223 }
1224
acpi_lpss_runtime_resume(struct device * dev)1225 static int acpi_lpss_runtime_resume(struct device *dev)
1226 {
1227 int ret = acpi_lpss_resume(dev);
1228
1229 return ret ? ret : pm_generic_runtime_resume(dev);
1230 }
1231 #endif /* CONFIG_PM */
1232
1233 static struct dev_pm_domain acpi_lpss_pm_domain = {
1234 #ifdef CONFIG_PM
1235 .activate = acpi_lpss_activate,
1236 .dismiss = acpi_lpss_dismiss,
1237 #endif
1238 .ops = {
1239 #ifdef CONFIG_PM
1240 #ifdef CONFIG_PM_SLEEP
1241 .prepare = acpi_subsys_prepare,
1242 .complete = acpi_subsys_complete,
1243 .suspend = acpi_subsys_suspend,
1244 .suspend_late = acpi_lpss_suspend_late,
1245 .suspend_noirq = acpi_lpss_suspend_noirq,
1246 .resume_noirq = acpi_lpss_resume_noirq,
1247 .resume_early = acpi_lpss_resume_early,
1248 .freeze = acpi_subsys_freeze,
1249 .poweroff = acpi_subsys_poweroff,
1250 .poweroff_late = acpi_lpss_poweroff_late,
1251 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1252 .restore_noirq = acpi_lpss_restore_noirq,
1253 .restore_early = acpi_lpss_restore_early,
1254 #endif
1255 .runtime_suspend = acpi_lpss_runtime_suspend,
1256 .runtime_resume = acpi_lpss_runtime_resume,
1257 #endif
1258 },
1259 };
1260
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1261 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1262 unsigned long action, void *data)
1263 {
1264 struct platform_device *pdev = to_platform_device(data);
1265 struct lpss_private_data *pdata;
1266 struct acpi_device *adev;
1267 const struct acpi_device_id *id;
1268
1269 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1270 if (!id || !id->driver_data)
1271 return 0;
1272
1273 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1274 return 0;
1275
1276 pdata = acpi_driver_data(adev);
1277 if (!pdata)
1278 return 0;
1279
1280 if (pdata->mmio_base &&
1281 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1282 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1283 return 0;
1284 }
1285
1286 switch (action) {
1287 case BUS_NOTIFY_BIND_DRIVER:
1288 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1289 break;
1290 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1291 case BUS_NOTIFY_UNBOUND_DRIVER:
1292 dev_pm_domain_set(&pdev->dev, NULL);
1293 break;
1294 case BUS_NOTIFY_ADD_DEVICE:
1295 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1296 if (pdata->dev_desc->flags & LPSS_LTR)
1297 return sysfs_create_group(&pdev->dev.kobj,
1298 &lpss_attr_group);
1299 break;
1300 case BUS_NOTIFY_DEL_DEVICE:
1301 if (pdata->dev_desc->flags & LPSS_LTR)
1302 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1303 dev_pm_domain_set(&pdev->dev, NULL);
1304 break;
1305 default:
1306 break;
1307 }
1308
1309 return 0;
1310 }
1311
1312 static struct notifier_block acpi_lpss_nb = {
1313 .notifier_call = acpi_lpss_platform_notify,
1314 };
1315
acpi_lpss_bind(struct device * dev)1316 static void acpi_lpss_bind(struct device *dev)
1317 {
1318 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1319
1320 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1321 return;
1322
1323 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1324 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1325 else
1326 dev_err(dev, "MMIO size insufficient to access LTR\n");
1327 }
1328
acpi_lpss_unbind(struct device * dev)1329 static void acpi_lpss_unbind(struct device *dev)
1330 {
1331 dev->power.set_latency_tolerance = NULL;
1332 }
1333
1334 static struct acpi_scan_handler lpss_handler = {
1335 .ids = acpi_lpss_device_ids,
1336 .attach = acpi_lpss_create_device,
1337 .bind = acpi_lpss_bind,
1338 .unbind = acpi_lpss_unbind,
1339 };
1340
acpi_lpss_init(void)1341 void __init acpi_lpss_init(void)
1342 {
1343 const struct x86_cpu_id *id;
1344 int ret;
1345
1346 ret = lpss_atom_clk_init();
1347 if (ret)
1348 return;
1349
1350 id = x86_match_cpu(lpss_cpu_ids);
1351 if (id)
1352 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1353
1354 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1355 acpi_scan_add_handler(&lpss_handler);
1356 }
1357
1358 #else
1359
1360 static struct acpi_scan_handler lpss_handler = {
1361 .ids = acpi_lpss_device_ids,
1362 };
1363
acpi_lpss_init(void)1364 void __init acpi_lpss_init(void)
1365 {
1366 acpi_scan_add_handler(&lpss_handler);
1367 }
1368
1369 #endif /* CONFIG_X86_INTEL_LPSS */
1370