1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sata_mv.c - Marvell SATA support
4 *
5 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6 * Copyright 2005: EMC Corporation, all rights reserved.
7 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 *
9 * Originally written by Brett Russ.
10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 *
12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 */
14
15 /*
16 * sata_mv TODO list:
17 *
18 * --> Develop a low-power-consumption strategy, and implement it.
19 *
20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21 *
22 * --> [Experiment, Marvell value added] Is it possible to use target
23 * mode to cross-connect two Linux boxes with Marvell cards? If so,
24 * creating LibATA target mode support would be very interesting.
25 *
26 * Target mode, for those without docs, is the ability to directly
27 * connect two SATA ports.
28 */
29
30 /*
31 * 80x1-B2 errata PCI#11:
32 *
33 * Users of the 6041/6081 Rev.B2 chips (current is C0)
34 * should be careful to insert those cards only onto PCI-X bus #0,
35 * and only in device slots 0..7, not higher. The chips may not
36 * work correctly otherwise (note: this is a pretty rare condition).
37 */
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62
63 #define DRV_NAME "sata_mv"
64 #define DRV_VERSION "1.28"
65
66 /*
67 * module options
68 */
69
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 "IRQ coalescing I/O count threshold (0..255)");
80
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 "IRQ coalescing time threshold in usecs");
85
86 enum {
87 /* BAR's are enumerated in terms of pci_resource_start() terms */
88 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
89 MV_IO_BAR = 2, /* offset 0x18: IO space */
90 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
91
92 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
93 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
94
95 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
97 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
98 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
99
100 MV_PCI_REG_BASE = 0,
101
102 /*
103 * Per-chip ("all ports") interrupt coalescing feature.
104 * This is only for GEN_II / GEN_IIE hardware.
105 *
106 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 */
109 COAL_REG_BASE = 0x18000,
110 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
111 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
112
113 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
114 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115
116 /*
117 * Registers for the (unused here) transaction coalescing feature:
118 */
119 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
120 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
121
122 SATAHC0_REG_BASE = 0x20000,
123 FLASH_CTL = 0x1046c,
124 GPIO_PORT_CTL = 0x104f0,
125 RESET_CFG = 0x180d8,
126
127 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
128 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
129 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
130 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
131
132 MV_MAX_Q_DEPTH = 32,
133 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
134
135 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 * CRPB needs alignment on a 256B boundary. Size == 256B
137 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 */
139 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
140 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
141 MV_MAX_SG_CT = 256,
142 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
143
144 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 MV_PORT_HC_SHIFT = 2,
146 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
147 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
149
150 /* Host Flags */
151 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
152
153 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154
155 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156
157 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159
160 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
161
162 CRQB_FLAG_READ = (1 << 0),
163 CRQB_TAG_SHIFT = 1,
164 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
165 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
166 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
167 CRQB_CMD_ADDR_SHIFT = 8,
168 CRQB_CMD_CS = (0x2 << 11),
169 CRQB_CMD_LAST = (1 << 15),
170
171 CRPB_FLAG_STATUS_SHIFT = 8,
172 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
173 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
174
175 EPRD_FLAG_END_OF_TBL = (1 << 31),
176
177 /* PCI interface registers */
178
179 MV_PCI_COMMAND = 0xc00,
180 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
181 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
182
183 PCI_MAIN_CMD_STS = 0xd30,
184 STOP_PCI_MASTER = (1 << 2),
185 PCI_MASTER_EMPTY = (1 << 3),
186 GLOB_SFT_RST = (1 << 4),
187
188 MV_PCI_MODE = 0xd00,
189 MV_PCI_MODE_MASK = 0x30,
190
191 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
192 MV_PCI_DISC_TIMER = 0xd04,
193 MV_PCI_MSI_TRIGGER = 0xc38,
194 MV_PCI_SERR_MASK = 0xc28,
195 MV_PCI_XBAR_TMOUT = 0x1d04,
196 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
197 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
198 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
199 MV_PCI_ERR_COMMAND = 0x1d50,
200
201 PCI_IRQ_CAUSE = 0x1d58,
202 PCI_IRQ_MASK = 0x1d5c,
203 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
204
205 PCIE_IRQ_CAUSE = 0x1900,
206 PCIE_IRQ_MASK = 0x1910,
207 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
208
209 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
211 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
212 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
213 SOC_HC_MAIN_IRQ_MASK = 0x20024,
214 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
215 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
216 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
217 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
218 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
219 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
220 PCI_ERR = (1 << 18),
221 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
222 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
223 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
224 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
225 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
226 GPIO_INT = (1 << 22),
227 SELF_INT = (1 << 23),
228 TWSI_INT = (1 << 24),
229 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
230 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
231 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
232
233 /* SATAHC registers */
234 HC_CFG = 0x00,
235
236 HC_IRQ_CAUSE = 0x14,
237 DMA_IRQ = (1 << 0), /* shift by port # */
238 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
239 DEV_IRQ = (1 << 8), /* shift by port # */
240
241 /*
242 * Per-HC (Host-Controller) interrupt coalescing feature.
243 * This is present on all chip generations.
244 *
245 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 */
248 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
249 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
250
251 SOC_LED_CTRL = 0x2c,
252 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
253 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
254 /* with dev activity LED */
255
256 /* Shadow block registers */
257 SHD_BLK = 0x100,
258 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
259
260 /* SATA registers */
261 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
262 SATA_ACTIVE = 0x350,
263 FIS_IRQ_CAUSE = 0x364,
264 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
265
266 LTMODE = 0x30c, /* requires read-after-write */
267 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
268
269 PHY_MODE2 = 0x330,
270 PHY_MODE3 = 0x310,
271
272 PHY_MODE4 = 0x314, /* requires read-after-write */
273 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
274 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
275 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
276 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
277
278 SATA_IFCTL = 0x344,
279 SATA_TESTCTL = 0x348,
280 SATA_IFSTAT = 0x34c,
281 VENDOR_UNIQUE_FIS = 0x35c,
282
283 FISCFG = 0x360,
284 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
285 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
286
287 PHY_MODE9_GEN2 = 0x398,
288 PHY_MODE9_GEN1 = 0x39c,
289 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
290
291 MV5_PHY_MODE = 0x74,
292 MV5_LTMODE = 0x30,
293 MV5_PHY_CTL = 0x0C,
294 SATA_IFCFG = 0x050,
295 LP_PHY_CTL = 0x058,
296 LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
297 LP_PHY_CTL_PIN_PU_RX = (1 << 1),
298 LP_PHY_CTL_PIN_PU_TX = (1 << 2),
299 LP_PHY_CTL_GEN_TX_3G = (1 << 5),
300 LP_PHY_CTL_GEN_RX_3G = (1 << 9),
301
302 MV_M2_PREAMP_MASK = 0x7e0,
303
304 /* Port registers */
305 EDMA_CFG = 0,
306 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
307 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
308 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
309 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
310 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
311 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
312 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
313
314 EDMA_ERR_IRQ_CAUSE = 0x8,
315 EDMA_ERR_IRQ_MASK = 0xc,
316 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
317 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
318 EDMA_ERR_DEV = (1 << 2), /* device error */
319 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
320 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
321 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
322 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
323 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
324 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
325 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
326 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
327 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
328 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
329 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
330
331 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
332 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
333 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
334 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
335 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
336
337 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
338
339 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
340 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
341 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
342 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
343 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
344 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
345
346 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
347
348 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
349 EDMA_ERR_OVERRUN_5 = (1 << 5),
350 EDMA_ERR_UNDERRUN_5 = (1 << 6),
351
352 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
353 EDMA_ERR_LNK_CTRL_RX_1 |
354 EDMA_ERR_LNK_CTRL_RX_3 |
355 EDMA_ERR_LNK_CTRL_TX,
356
357 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
358 EDMA_ERR_PRD_PAR |
359 EDMA_ERR_DEV_DCON |
360 EDMA_ERR_DEV_CON |
361 EDMA_ERR_SERR |
362 EDMA_ERR_SELF_DIS |
363 EDMA_ERR_CRQB_PAR |
364 EDMA_ERR_CRPB_PAR |
365 EDMA_ERR_INTRL_PAR |
366 EDMA_ERR_IORDY |
367 EDMA_ERR_LNK_CTRL_RX_2 |
368 EDMA_ERR_LNK_DATA_RX |
369 EDMA_ERR_LNK_DATA_TX |
370 EDMA_ERR_TRANS_PROTO,
371
372 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
373 EDMA_ERR_PRD_PAR |
374 EDMA_ERR_DEV_DCON |
375 EDMA_ERR_DEV_CON |
376 EDMA_ERR_OVERRUN_5 |
377 EDMA_ERR_UNDERRUN_5 |
378 EDMA_ERR_SELF_DIS_5 |
379 EDMA_ERR_CRQB_PAR |
380 EDMA_ERR_CRPB_PAR |
381 EDMA_ERR_INTRL_PAR |
382 EDMA_ERR_IORDY,
383
384 EDMA_REQ_Q_BASE_HI = 0x10,
385 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
386
387 EDMA_REQ_Q_OUT_PTR = 0x18,
388 EDMA_REQ_Q_PTR_SHIFT = 5,
389
390 EDMA_RSP_Q_BASE_HI = 0x1c,
391 EDMA_RSP_Q_IN_PTR = 0x20,
392 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
393 EDMA_RSP_Q_PTR_SHIFT = 3,
394
395 EDMA_CMD = 0x28, /* EDMA command register */
396 EDMA_EN = (1 << 0), /* enable EDMA */
397 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
398 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
399
400 EDMA_STATUS = 0x30, /* EDMA engine status */
401 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
402 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
403
404 EDMA_IORDY_TMOUT = 0x34,
405 EDMA_ARB_CFG = 0x38,
406
407 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
408 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
409
410 BMDMA_CMD = 0x224, /* bmdma command register */
411 BMDMA_STATUS = 0x228, /* bmdma status register */
412 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
413 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
414
415 /* Host private flags (hp_flags) */
416 MV_HP_FLAG_MSI = (1 << 0),
417 MV_HP_ERRATA_50XXB0 = (1 << 1),
418 MV_HP_ERRATA_50XXB2 = (1 << 2),
419 MV_HP_ERRATA_60X1B2 = (1 << 3),
420 MV_HP_ERRATA_60X1C0 = (1 << 4),
421 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
422 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
423 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
424 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
425 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
426 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
427 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
428 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
429
430 /* Port private flags (pp_flags) */
431 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
432 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
433 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
434 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
435 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
436 };
437
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443
444 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
446
447 enum {
448 /* DMA boundary 0xffff is required by the s/g splitting
449 * we need on /length/ in mv_fill-sg().
450 */
451 MV_DMA_BOUNDARY = 0xffffU,
452
453 /* mask of register bits containing lower 32 bits
454 * of EDMA request queue DMA address
455 */
456 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
457
458 /* ditto, for response queue */
459 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
460 };
461
462 enum chip_type {
463 chip_504x,
464 chip_508x,
465 chip_5080,
466 chip_604x,
467 chip_608x,
468 chip_6042,
469 chip_7042,
470 chip_soc,
471 };
472
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 __le32 sg_addr;
476 __le32 sg_addr_hi;
477 __le16 ctrl_flags;
478 __le16 ata_cmd[11];
479 };
480
481 struct mv_crqb_iie {
482 __le32 addr;
483 __le32 addr_hi;
484 __le32 flags;
485 __le32 len;
486 __le32 ata_cmd[4];
487 };
488
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 __le16 id;
492 __le16 flags;
493 __le32 tmstmp;
494 };
495
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 __le32 addr;
499 __le32 flags_size;
500 __le32 addr_hi;
501 __le32 reserved;
502 };
503
504 /*
505 * We keep a local cache of a few frequently accessed port
506 * registers here, to avoid having to read them (very slow)
507 * when switching between EDMA and non-EDMA modes.
508 */
509 struct mv_cached_regs {
510 u32 fiscfg;
511 u32 ltmode;
512 u32 haltcond;
513 u32 unknown_rsvd;
514 };
515
516 struct mv_port_priv {
517 struct mv_crqb *crqb;
518 dma_addr_t crqb_dma;
519 struct mv_crpb *crpb;
520 dma_addr_t crpb_dma;
521 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
522 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
523
524 unsigned int req_idx;
525 unsigned int resp_idx;
526
527 u32 pp_flags;
528 struct mv_cached_regs cached;
529 unsigned int delayed_eh_pmp_map;
530 };
531
532 struct mv_port_signal {
533 u32 amps;
534 u32 pre;
535 };
536
537 struct mv_host_priv {
538 u32 hp_flags;
539 unsigned int board_idx;
540 u32 main_irq_mask;
541 struct mv_port_signal signal[8];
542 const struct mv_hw_ops *ops;
543 int n_ports;
544 void __iomem *base;
545 void __iomem *main_irq_cause_addr;
546 void __iomem *main_irq_mask_addr;
547 u32 irq_cause_offset;
548 u32 irq_mask_offset;
549 u32 unmask_all_irqs;
550
551 /*
552 * Needed on some devices that require their clocks to be enabled.
553 * These are optional: if the platform device does not have any
554 * clocks, they won't be used. Also, if the underlying hardware
555 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 * all the clock operations become no-ops (see clk.h).
557 */
558 struct clk *clk;
559 struct clk **port_clks;
560 /*
561 * Some devices have a SATA PHY which can be enabled/disabled
562 * in order to save power. These are optional: if the platform
563 * devices does not have any phy, they won't be used.
564 */
565 struct phy **port_phys;
566 /*
567 * These consistent DMA memory pools give us guaranteed
568 * alignment for hardware-accessed data structures,
569 * and less memory waste in accomplishing the alignment.
570 */
571 struct dma_pool *crqb_pool;
572 struct dma_pool *crpb_pool;
573 struct dma_pool *sg_tbl_pool;
574 };
575
576 struct mv_hw_ops {
577 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 unsigned int port);
579 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 void __iomem *mmio);
582 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
583 unsigned int n_hc);
584 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 void __iomem *mmio);
609 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
610 unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 void __iomem *mmio);
619 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
620 unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 void __iomem *mmio);
626 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
627 void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 unsigned long deadline);
643 static int mv_softreset(struct ata_link *link, unsigned int *class,
644 unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 struct mv_port_priv *pp);
648
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8 mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658 * because we have to allow room for worst case splitting of
659 * PRDs for 64K boundaries in mv_fill_sg().
660 */
661 #ifdef CONFIG_PCI
662 static struct scsi_host_template mv5_sht = {
663 ATA_BASE_SHT(DRV_NAME),
664 .sg_tablesize = MV_MAX_SG_CT / 2,
665 .dma_boundary = MV_DMA_BOUNDARY,
666 };
667 #endif
668 static struct scsi_host_template mv6_sht = {
669 __ATA_BASE_SHT(DRV_NAME),
670 .can_queue = MV_MAX_Q_DEPTH - 1,
671 .sg_tablesize = MV_MAX_SG_CT / 2,
672 .dma_boundary = MV_DMA_BOUNDARY,
673 .sdev_attrs = ata_ncq_sdev_attrs,
674 .change_queue_depth = ata_scsi_change_queue_depth,
675 .tag_alloc_policy = BLK_TAG_ALLOC_RR,
676 .slave_configure = ata_scsi_slave_config
677 };
678
679 static struct ata_port_operations mv5_ops = {
680 .inherits = &ata_sff_port_ops,
681
682 .lost_interrupt = ATA_OP_NULL,
683
684 .qc_defer = mv_qc_defer,
685 .qc_prep = mv_qc_prep,
686 .qc_issue = mv_qc_issue,
687
688 .freeze = mv_eh_freeze,
689 .thaw = mv_eh_thaw,
690 .hardreset = mv_hardreset,
691
692 .scr_read = mv5_scr_read,
693 .scr_write = mv5_scr_write,
694
695 .port_start = mv_port_start,
696 .port_stop = mv_port_stop,
697 };
698
699 static struct ata_port_operations mv6_ops = {
700 .inherits = &ata_bmdma_port_ops,
701
702 .lost_interrupt = ATA_OP_NULL,
703
704 .qc_defer = mv_qc_defer,
705 .qc_prep = mv_qc_prep,
706 .qc_issue = mv_qc_issue,
707
708 .dev_config = mv6_dev_config,
709
710 .freeze = mv_eh_freeze,
711 .thaw = mv_eh_thaw,
712 .hardreset = mv_hardreset,
713 .softreset = mv_softreset,
714 .pmp_hardreset = mv_pmp_hardreset,
715 .pmp_softreset = mv_softreset,
716 .error_handler = mv_pmp_error_handler,
717
718 .scr_read = mv_scr_read,
719 .scr_write = mv_scr_write,
720
721 .sff_check_status = mv_sff_check_status,
722 .sff_irq_clear = mv_sff_irq_clear,
723 .check_atapi_dma = mv_check_atapi_dma,
724 .bmdma_setup = mv_bmdma_setup,
725 .bmdma_start = mv_bmdma_start,
726 .bmdma_stop = mv_bmdma_stop,
727 .bmdma_status = mv_bmdma_status,
728
729 .port_start = mv_port_start,
730 .port_stop = mv_port_stop,
731 };
732
733 static struct ata_port_operations mv_iie_ops = {
734 .inherits = &mv6_ops,
735 .dev_config = ATA_OP_NULL,
736 .qc_prep = mv_qc_prep_iie,
737 };
738
739 static const struct ata_port_info mv_port_info[] = {
740 { /* chip_504x */
741 .flags = MV_GEN_I_FLAGS,
742 .pio_mask = ATA_PIO4,
743 .udma_mask = ATA_UDMA6,
744 .port_ops = &mv5_ops,
745 },
746 { /* chip_508x */
747 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
748 .pio_mask = ATA_PIO4,
749 .udma_mask = ATA_UDMA6,
750 .port_ops = &mv5_ops,
751 },
752 { /* chip_5080 */
753 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
754 .pio_mask = ATA_PIO4,
755 .udma_mask = ATA_UDMA6,
756 .port_ops = &mv5_ops,
757 },
758 { /* chip_604x */
759 .flags = MV_GEN_II_FLAGS,
760 .pio_mask = ATA_PIO4,
761 .udma_mask = ATA_UDMA6,
762 .port_ops = &mv6_ops,
763 },
764 { /* chip_608x */
765 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
766 .pio_mask = ATA_PIO4,
767 .udma_mask = ATA_UDMA6,
768 .port_ops = &mv6_ops,
769 },
770 { /* chip_6042 */
771 .flags = MV_GEN_IIE_FLAGS,
772 .pio_mask = ATA_PIO4,
773 .udma_mask = ATA_UDMA6,
774 .port_ops = &mv_iie_ops,
775 },
776 { /* chip_7042 */
777 .flags = MV_GEN_IIE_FLAGS,
778 .pio_mask = ATA_PIO4,
779 .udma_mask = ATA_UDMA6,
780 .port_ops = &mv_iie_ops,
781 },
782 { /* chip_soc */
783 .flags = MV_GEN_IIE_FLAGS,
784 .pio_mask = ATA_PIO4,
785 .udma_mask = ATA_UDMA6,
786 .port_ops = &mv_iie_ops,
787 },
788 };
789
790 static const struct pci_device_id mv_pci_tbl[] = {
791 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
792 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
793 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
794 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
795 /* RocketRAID 1720/174x have different identifiers */
796 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
797 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
798 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
799
800 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
801 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
802 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
803 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
804 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
805
806 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
807
808 /* Adaptec 1430SA */
809 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
810
811 /* Marvell 7042 support */
812 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
813
814 /* Highpoint RocketRAID PCIe series */
815 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
816 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
817
818 { } /* terminate list */
819 };
820
821 static const struct mv_hw_ops mv5xxx_ops = {
822 .phy_errata = mv5_phy_errata,
823 .enable_leds = mv5_enable_leds,
824 .read_preamp = mv5_read_preamp,
825 .reset_hc = mv5_reset_hc,
826 .reset_flash = mv5_reset_flash,
827 .reset_bus = mv5_reset_bus,
828 };
829
830 static const struct mv_hw_ops mv6xxx_ops = {
831 .phy_errata = mv6_phy_errata,
832 .enable_leds = mv6_enable_leds,
833 .read_preamp = mv6_read_preamp,
834 .reset_hc = mv6_reset_hc,
835 .reset_flash = mv6_reset_flash,
836 .reset_bus = mv_reset_pci_bus,
837 };
838
839 static const struct mv_hw_ops mv_soc_ops = {
840 .phy_errata = mv6_phy_errata,
841 .enable_leds = mv_soc_enable_leds,
842 .read_preamp = mv_soc_read_preamp,
843 .reset_hc = mv_soc_reset_hc,
844 .reset_flash = mv_soc_reset_flash,
845 .reset_bus = mv_soc_reset_bus,
846 };
847
848 static const struct mv_hw_ops mv_soc_65n_ops = {
849 .phy_errata = mv_soc_65n_phy_errata,
850 .enable_leds = mv_soc_enable_leds,
851 .reset_hc = mv_soc_reset_hc,
852 .reset_flash = mv_soc_reset_flash,
853 .reset_bus = mv_soc_reset_bus,
854 };
855
856 /*
857 * Functions
858 */
859
writelfl(unsigned long data,void __iomem * addr)860 static inline void writelfl(unsigned long data, void __iomem *addr)
861 {
862 writel(data, addr);
863 (void) readl(addr); /* flush to avoid PCI posted write */
864 }
865
mv_hc_from_port(unsigned int port)866 static inline unsigned int mv_hc_from_port(unsigned int port)
867 {
868 return port >> MV_PORT_HC_SHIFT;
869 }
870
mv_hardport_from_port(unsigned int port)871 static inline unsigned int mv_hardport_from_port(unsigned int port)
872 {
873 return port & MV_PORT_MASK;
874 }
875
876 /*
877 * Consolidate some rather tricky bit shift calculations.
878 * This is hot-path stuff, so not a function.
879 * Simple code, with two return values, so macro rather than inline.
880 *
881 * port is the sole input, in range 0..7.
882 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
883 * hardport is the other output, in range 0..3.
884 *
885 * Note that port and hardport may be the same variable in some cases.
886 */
887 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
888 { \
889 shift = mv_hc_from_port(port) * HC_SHIFT; \
890 hardport = mv_hardport_from_port(port); \
891 shift += hardport * 2; \
892 }
893
mv_hc_base(void __iomem * base,unsigned int hc)894 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
895 {
896 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
897 }
898
mv_hc_base_from_port(void __iomem * base,unsigned int port)899 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
900 unsigned int port)
901 {
902 return mv_hc_base(base, mv_hc_from_port(port));
903 }
904
mv_port_base(void __iomem * base,unsigned int port)905 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
906 {
907 return mv_hc_base_from_port(base, port) +
908 MV_SATAHC_ARBTR_REG_SZ +
909 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
910 }
911
mv5_phy_base(void __iomem * mmio,unsigned int port)912 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
913 {
914 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
915 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
916
917 return hc_mmio + ofs;
918 }
919
mv_host_base(struct ata_host * host)920 static inline void __iomem *mv_host_base(struct ata_host *host)
921 {
922 struct mv_host_priv *hpriv = host->private_data;
923 return hpriv->base;
924 }
925
mv_ap_base(struct ata_port * ap)926 static inline void __iomem *mv_ap_base(struct ata_port *ap)
927 {
928 return mv_port_base(mv_host_base(ap->host), ap->port_no);
929 }
930
mv_get_hc_count(unsigned long port_flags)931 static inline int mv_get_hc_count(unsigned long port_flags)
932 {
933 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
934 }
935
936 /**
937 * mv_save_cached_regs - (re-)initialize cached port registers
938 * @ap: the port whose registers we are caching
939 *
940 * Initialize the local cache of port registers,
941 * so that reading them over and over again can
942 * be avoided on the hotter paths of this driver.
943 * This saves a few microseconds each time we switch
944 * to/from EDMA mode to perform (eg.) a drive cache flush.
945 */
mv_save_cached_regs(struct ata_port * ap)946 static void mv_save_cached_regs(struct ata_port *ap)
947 {
948 void __iomem *port_mmio = mv_ap_base(ap);
949 struct mv_port_priv *pp = ap->private_data;
950
951 pp->cached.fiscfg = readl(port_mmio + FISCFG);
952 pp->cached.ltmode = readl(port_mmio + LTMODE);
953 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
954 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
955 }
956
957 /**
958 * mv_write_cached_reg - write to a cached port register
959 * @addr: hardware address of the register
960 * @old: pointer to cached value of the register
961 * @new: new value for the register
962 *
963 * Write a new value to a cached register,
964 * but only if the value is different from before.
965 */
mv_write_cached_reg(void __iomem * addr,u32 * old,u32 new)966 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
967 {
968 if (new != *old) {
969 unsigned long laddr;
970 *old = new;
971 /*
972 * Workaround for 88SX60x1-B2 FEr SATA#13:
973 * Read-after-write is needed to prevent generating 64-bit
974 * write cycles on the PCI bus for SATA interface registers
975 * at offsets ending in 0x4 or 0xc.
976 *
977 * Looks like a lot of fuss, but it avoids an unnecessary
978 * +1 usec read-after-write delay for unaffected registers.
979 */
980 laddr = (unsigned long)addr & 0xffff;
981 if (laddr >= 0x300 && laddr <= 0x33c) {
982 laddr &= 0x000f;
983 if (laddr == 0x4 || laddr == 0xc) {
984 writelfl(new, addr); /* read after write */
985 return;
986 }
987 }
988 writel(new, addr); /* unaffected by the errata */
989 }
990 }
991
mv_set_edma_ptrs(void __iomem * port_mmio,struct mv_host_priv * hpriv,struct mv_port_priv * pp)992 static void mv_set_edma_ptrs(void __iomem *port_mmio,
993 struct mv_host_priv *hpriv,
994 struct mv_port_priv *pp)
995 {
996 u32 index;
997
998 /*
999 * initialize request queue
1000 */
1001 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1002 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1003
1004 WARN_ON(pp->crqb_dma & 0x3ff);
1005 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1006 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1007 port_mmio + EDMA_REQ_Q_IN_PTR);
1008 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1009
1010 /*
1011 * initialize response queue
1012 */
1013 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1014 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1015
1016 WARN_ON(pp->crpb_dma & 0xff);
1017 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1018 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1019 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1020 port_mmio + EDMA_RSP_Q_OUT_PTR);
1021 }
1022
mv_write_main_irq_mask(u32 mask,struct mv_host_priv * hpriv)1023 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1024 {
1025 /*
1026 * When writing to the main_irq_mask in hardware,
1027 * we must ensure exclusivity between the interrupt coalescing bits
1028 * and the corresponding individual port DONE_IRQ bits.
1029 *
1030 * Note that this register is really an "IRQ enable" register,
1031 * not an "IRQ mask" register as Marvell's naming might suggest.
1032 */
1033 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1034 mask &= ~DONE_IRQ_0_3;
1035 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1036 mask &= ~DONE_IRQ_4_7;
1037 writelfl(mask, hpriv->main_irq_mask_addr);
1038 }
1039
mv_set_main_irq_mask(struct ata_host * host,u32 disable_bits,u32 enable_bits)1040 static void mv_set_main_irq_mask(struct ata_host *host,
1041 u32 disable_bits, u32 enable_bits)
1042 {
1043 struct mv_host_priv *hpriv = host->private_data;
1044 u32 old_mask, new_mask;
1045
1046 old_mask = hpriv->main_irq_mask;
1047 new_mask = (old_mask & ~disable_bits) | enable_bits;
1048 if (new_mask != old_mask) {
1049 hpriv->main_irq_mask = new_mask;
1050 mv_write_main_irq_mask(new_mask, hpriv);
1051 }
1052 }
1053
mv_enable_port_irqs(struct ata_port * ap,unsigned int port_bits)1054 static void mv_enable_port_irqs(struct ata_port *ap,
1055 unsigned int port_bits)
1056 {
1057 unsigned int shift, hardport, port = ap->port_no;
1058 u32 disable_bits, enable_bits;
1059
1060 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1061
1062 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1063 enable_bits = port_bits << shift;
1064 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1065 }
1066
mv_clear_and_enable_port_irqs(struct ata_port * ap,void __iomem * port_mmio,unsigned int port_irqs)1067 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1068 void __iomem *port_mmio,
1069 unsigned int port_irqs)
1070 {
1071 struct mv_host_priv *hpriv = ap->host->private_data;
1072 int hardport = mv_hardport_from_port(ap->port_no);
1073 void __iomem *hc_mmio = mv_hc_base_from_port(
1074 mv_host_base(ap->host), ap->port_no);
1075 u32 hc_irq_cause;
1076
1077 /* clear EDMA event indicators, if any */
1078 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1079
1080 /* clear pending irq events */
1081 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1082 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1083
1084 /* clear FIS IRQ Cause */
1085 if (IS_GEN_IIE(hpriv))
1086 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1087
1088 mv_enable_port_irqs(ap, port_irqs);
1089 }
1090
mv_set_irq_coalescing(struct ata_host * host,unsigned int count,unsigned int usecs)1091 static void mv_set_irq_coalescing(struct ata_host *host,
1092 unsigned int count, unsigned int usecs)
1093 {
1094 struct mv_host_priv *hpriv = host->private_data;
1095 void __iomem *mmio = hpriv->base, *hc_mmio;
1096 u32 coal_enable = 0;
1097 unsigned long flags;
1098 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1099 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1100 ALL_PORTS_COAL_DONE;
1101
1102 /* Disable IRQ coalescing if either threshold is zero */
1103 if (!usecs || !count) {
1104 clks = count = 0;
1105 } else {
1106 /* Respect maximum limits of the hardware */
1107 clks = usecs * COAL_CLOCKS_PER_USEC;
1108 if (clks > MAX_COAL_TIME_THRESHOLD)
1109 clks = MAX_COAL_TIME_THRESHOLD;
1110 if (count > MAX_COAL_IO_COUNT)
1111 count = MAX_COAL_IO_COUNT;
1112 }
1113
1114 spin_lock_irqsave(&host->lock, flags);
1115 mv_set_main_irq_mask(host, coal_disable, 0);
1116
1117 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1118 /*
1119 * GEN_II/GEN_IIE with dual host controllers:
1120 * one set of global thresholds for the entire chip.
1121 */
1122 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1123 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1124 /* clear leftover coal IRQ bit */
1125 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1126 if (count)
1127 coal_enable = ALL_PORTS_COAL_DONE;
1128 clks = count = 0; /* force clearing of regular regs below */
1129 }
1130
1131 /*
1132 * All chips: independent thresholds for each HC on the chip.
1133 */
1134 hc_mmio = mv_hc_base_from_port(mmio, 0);
1135 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1136 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1137 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1138 if (count)
1139 coal_enable |= PORTS_0_3_COAL_DONE;
1140 if (is_dual_hc) {
1141 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1142 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1143 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1144 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1145 if (count)
1146 coal_enable |= PORTS_4_7_COAL_DONE;
1147 }
1148
1149 mv_set_main_irq_mask(host, 0, coal_enable);
1150 spin_unlock_irqrestore(&host->lock, flags);
1151 }
1152
1153 /*
1154 * mv_start_edma - Enable eDMA engine
1155 * @pp: port private data
1156 *
1157 * Verify the local cache of the eDMA state is accurate with a
1158 * WARN_ON.
1159 *
1160 * LOCKING:
1161 * Inherited from caller.
1162 */
mv_start_edma(struct ata_port * ap,void __iomem * port_mmio,struct mv_port_priv * pp,u8 protocol)1163 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1164 struct mv_port_priv *pp, u8 protocol)
1165 {
1166 int want_ncq = (protocol == ATA_PROT_NCQ);
1167
1168 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1169 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1170 if (want_ncq != using_ncq)
1171 mv_stop_edma(ap);
1172 }
1173 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1174 struct mv_host_priv *hpriv = ap->host->private_data;
1175
1176 mv_edma_cfg(ap, want_ncq, 1);
1177
1178 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1179 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1180
1181 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1182 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1183 }
1184 }
1185
mv_wait_for_edma_empty_idle(struct ata_port * ap)1186 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1187 {
1188 void __iomem *port_mmio = mv_ap_base(ap);
1189 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1190 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1191 int i;
1192
1193 /*
1194 * Wait for the EDMA engine to finish transactions in progress.
1195 * No idea what a good "timeout" value might be, but measurements
1196 * indicate that it often requires hundreds of microseconds
1197 * with two drives in-use. So we use the 15msec value above
1198 * as a rough guess at what even more drives might require.
1199 */
1200 for (i = 0; i < timeout; ++i) {
1201 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1202 if ((edma_stat & empty_idle) == empty_idle)
1203 break;
1204 udelay(per_loop);
1205 }
1206 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1207 }
1208
1209 /**
1210 * mv_stop_edma_engine - Disable eDMA engine
1211 * @port_mmio: io base address
1212 *
1213 * LOCKING:
1214 * Inherited from caller.
1215 */
mv_stop_edma_engine(void __iomem * port_mmio)1216 static int mv_stop_edma_engine(void __iomem *port_mmio)
1217 {
1218 int i;
1219
1220 /* Disable eDMA. The disable bit auto clears. */
1221 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1222
1223 /* Wait for the chip to confirm eDMA is off. */
1224 for (i = 10000; i > 0; i--) {
1225 u32 reg = readl(port_mmio + EDMA_CMD);
1226 if (!(reg & EDMA_EN))
1227 return 0;
1228 udelay(10);
1229 }
1230 return -EIO;
1231 }
1232
mv_stop_edma(struct ata_port * ap)1233 static int mv_stop_edma(struct ata_port *ap)
1234 {
1235 void __iomem *port_mmio = mv_ap_base(ap);
1236 struct mv_port_priv *pp = ap->private_data;
1237 int err = 0;
1238
1239 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1240 return 0;
1241 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1242 mv_wait_for_edma_empty_idle(ap);
1243 if (mv_stop_edma_engine(port_mmio)) {
1244 ata_port_err(ap, "Unable to stop eDMA\n");
1245 err = -EIO;
1246 }
1247 mv_edma_cfg(ap, 0, 0);
1248 return err;
1249 }
1250
1251 #ifdef ATA_DEBUG
mv_dump_mem(void __iomem * start,unsigned bytes)1252 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1253 {
1254 int b, w;
1255 for (b = 0; b < bytes; ) {
1256 DPRINTK("%p: ", start + b);
1257 for (w = 0; b < bytes && w < 4; w++) {
1258 printk("%08x ", readl(start + b));
1259 b += sizeof(u32);
1260 }
1261 printk("\n");
1262 }
1263 }
1264 #endif
1265 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
mv_dump_pci_cfg(struct pci_dev * pdev,unsigned bytes)1266 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1267 {
1268 #ifdef ATA_DEBUG
1269 int b, w;
1270 u32 dw;
1271 for (b = 0; b < bytes; ) {
1272 DPRINTK("%02x: ", b);
1273 for (w = 0; b < bytes && w < 4; w++) {
1274 (void) pci_read_config_dword(pdev, b, &dw);
1275 printk("%08x ", dw);
1276 b += sizeof(u32);
1277 }
1278 printk("\n");
1279 }
1280 #endif
1281 }
1282 #endif
mv_dump_all_regs(void __iomem * mmio_base,int port,struct pci_dev * pdev)1283 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1284 struct pci_dev *pdev)
1285 {
1286 #ifdef ATA_DEBUG
1287 void __iomem *hc_base = mv_hc_base(mmio_base,
1288 port >> MV_PORT_HC_SHIFT);
1289 void __iomem *port_base;
1290 int start_port, num_ports, p, start_hc, num_hcs, hc;
1291
1292 if (0 > port) {
1293 start_hc = start_port = 0;
1294 num_ports = 8; /* shld be benign for 4 port devs */
1295 num_hcs = 2;
1296 } else {
1297 start_hc = port >> MV_PORT_HC_SHIFT;
1298 start_port = port;
1299 num_ports = num_hcs = 1;
1300 }
1301 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1302 num_ports > 1 ? num_ports - 1 : start_port);
1303
1304 if (NULL != pdev) {
1305 DPRINTK("PCI config space regs:\n");
1306 mv_dump_pci_cfg(pdev, 0x68);
1307 }
1308 DPRINTK("PCI regs:\n");
1309 mv_dump_mem(mmio_base+0xc00, 0x3c);
1310 mv_dump_mem(mmio_base+0xd00, 0x34);
1311 mv_dump_mem(mmio_base+0xf00, 0x4);
1312 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1313 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1314 hc_base = mv_hc_base(mmio_base, hc);
1315 DPRINTK("HC regs (HC %i):\n", hc);
1316 mv_dump_mem(hc_base, 0x1c);
1317 }
1318 for (p = start_port; p < start_port + num_ports; p++) {
1319 port_base = mv_port_base(mmio_base, p);
1320 DPRINTK("EDMA regs (port %i):\n", p);
1321 mv_dump_mem(port_base, 0x54);
1322 DPRINTK("SATA regs (port %i):\n", p);
1323 mv_dump_mem(port_base+0x300, 0x60);
1324 }
1325 #endif
1326 }
1327
mv_scr_offset(unsigned int sc_reg_in)1328 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1329 {
1330 unsigned int ofs;
1331
1332 switch (sc_reg_in) {
1333 case SCR_STATUS:
1334 case SCR_CONTROL:
1335 case SCR_ERROR:
1336 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1337 break;
1338 case SCR_ACTIVE:
1339 ofs = SATA_ACTIVE; /* active is not with the others */
1340 break;
1341 default:
1342 ofs = 0xffffffffU;
1343 break;
1344 }
1345 return ofs;
1346 }
1347
mv_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)1348 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1349 {
1350 unsigned int ofs = mv_scr_offset(sc_reg_in);
1351
1352 if (ofs != 0xffffffffU) {
1353 *val = readl(mv_ap_base(link->ap) + ofs);
1354 return 0;
1355 } else
1356 return -EINVAL;
1357 }
1358
mv_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)1359 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1360 {
1361 unsigned int ofs = mv_scr_offset(sc_reg_in);
1362
1363 if (ofs != 0xffffffffU) {
1364 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1365 struct mv_host_priv *hpriv = link->ap->host->private_data;
1366 if (sc_reg_in == SCR_CONTROL) {
1367 /*
1368 * Workaround for 88SX60x1 FEr SATA#26:
1369 *
1370 * COMRESETs have to take care not to accidentally
1371 * put the drive to sleep when writing SCR_CONTROL.
1372 * Setting bits 12..15 prevents this problem.
1373 *
1374 * So if we see an outbound COMMRESET, set those bits.
1375 * Ditto for the followup write that clears the reset.
1376 *
1377 * The proprietary driver does this for
1378 * all chip versions, and so do we.
1379 */
1380 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1381 val |= 0xf000;
1382
1383 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1384 void __iomem *lp_phy_addr =
1385 mv_ap_base(link->ap) + LP_PHY_CTL;
1386 /*
1387 * Set PHY speed according to SControl speed.
1388 */
1389 u32 lp_phy_val =
1390 LP_PHY_CTL_PIN_PU_PLL |
1391 LP_PHY_CTL_PIN_PU_RX |
1392 LP_PHY_CTL_PIN_PU_TX;
1393
1394 if ((val & 0xf0) != 0x10)
1395 lp_phy_val |=
1396 LP_PHY_CTL_GEN_TX_3G |
1397 LP_PHY_CTL_GEN_RX_3G;
1398
1399 writelfl(lp_phy_val, lp_phy_addr);
1400 }
1401 }
1402 writelfl(val, addr);
1403 return 0;
1404 } else
1405 return -EINVAL;
1406 }
1407
mv6_dev_config(struct ata_device * adev)1408 static void mv6_dev_config(struct ata_device *adev)
1409 {
1410 /*
1411 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1412 *
1413 * Gen-II does not support NCQ over a port multiplier
1414 * (no FIS-based switching).
1415 */
1416 if (adev->flags & ATA_DFLAG_NCQ) {
1417 if (sata_pmp_attached(adev->link->ap)) {
1418 adev->flags &= ~ATA_DFLAG_NCQ;
1419 ata_dev_info(adev,
1420 "NCQ disabled for command-based switching\n");
1421 }
1422 }
1423 }
1424
mv_qc_defer(struct ata_queued_cmd * qc)1425 static int mv_qc_defer(struct ata_queued_cmd *qc)
1426 {
1427 struct ata_link *link = qc->dev->link;
1428 struct ata_port *ap = link->ap;
1429 struct mv_port_priv *pp = ap->private_data;
1430
1431 /*
1432 * Don't allow new commands if we're in a delayed EH state
1433 * for NCQ and/or FIS-based switching.
1434 */
1435 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1436 return ATA_DEFER_PORT;
1437
1438 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1439 * can run concurrently.
1440 * set excl_link when we want to send a PIO command in DMA mode
1441 * or a non-NCQ command in NCQ mode.
1442 * When we receive a command from that link, and there are no
1443 * outstanding commands, mark a flag to clear excl_link and let
1444 * the command go through.
1445 */
1446 if (unlikely(ap->excl_link)) {
1447 if (link == ap->excl_link) {
1448 if (ap->nr_active_links)
1449 return ATA_DEFER_PORT;
1450 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1451 return 0;
1452 } else
1453 return ATA_DEFER_PORT;
1454 }
1455
1456 /*
1457 * If the port is completely idle, then allow the new qc.
1458 */
1459 if (ap->nr_active_links == 0)
1460 return 0;
1461
1462 /*
1463 * The port is operating in host queuing mode (EDMA) with NCQ
1464 * enabled, allow multiple NCQ commands. EDMA also allows
1465 * queueing multiple DMA commands but libata core currently
1466 * doesn't allow it.
1467 */
1468 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1469 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1470 if (ata_is_ncq(qc->tf.protocol))
1471 return 0;
1472 else {
1473 ap->excl_link = link;
1474 return ATA_DEFER_PORT;
1475 }
1476 }
1477
1478 return ATA_DEFER_PORT;
1479 }
1480
mv_config_fbs(struct ata_port * ap,int want_ncq,int want_fbs)1481 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1482 {
1483 struct mv_port_priv *pp = ap->private_data;
1484 void __iomem *port_mmio;
1485
1486 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1487 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1488 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1489
1490 ltmode = *old_ltmode & ~LTMODE_BIT8;
1491 haltcond = *old_haltcond | EDMA_ERR_DEV;
1492
1493 if (want_fbs) {
1494 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1495 ltmode = *old_ltmode | LTMODE_BIT8;
1496 if (want_ncq)
1497 haltcond &= ~EDMA_ERR_DEV;
1498 else
1499 fiscfg |= FISCFG_WAIT_DEV_ERR;
1500 } else {
1501 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1502 }
1503
1504 port_mmio = mv_ap_base(ap);
1505 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1506 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1507 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1508 }
1509
mv_60x1_errata_sata25(struct ata_port * ap,int want_ncq)1510 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1511 {
1512 struct mv_host_priv *hpriv = ap->host->private_data;
1513 u32 old, new;
1514
1515 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1516 old = readl(hpriv->base + GPIO_PORT_CTL);
1517 if (want_ncq)
1518 new = old | (1 << 22);
1519 else
1520 new = old & ~(1 << 22);
1521 if (new != old)
1522 writel(new, hpriv->base + GPIO_PORT_CTL);
1523 }
1524
1525 /*
1526 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1527 * @ap: Port being initialized
1528 *
1529 * There are two DMA modes on these chips: basic DMA, and EDMA.
1530 *
1531 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1532 * of basic DMA on the GEN_IIE versions of the chips.
1533 *
1534 * This bit survives EDMA resets, and must be set for basic DMA
1535 * to function, and should be cleared when EDMA is active.
1536 */
mv_bmdma_enable_iie(struct ata_port * ap,int enable_bmdma)1537 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1538 {
1539 struct mv_port_priv *pp = ap->private_data;
1540 u32 new, *old = &pp->cached.unknown_rsvd;
1541
1542 if (enable_bmdma)
1543 new = *old | 1;
1544 else
1545 new = *old & ~1;
1546 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1547 }
1548
1549 /*
1550 * SOC chips have an issue whereby the HDD LEDs don't always blink
1551 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1552 * of the SOC takes care of it, generating a steady blink rate when
1553 * any drive on the chip is active.
1554 *
1555 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1556 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1557 *
1558 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1559 * LED operation works then, and provides better (more accurate) feedback.
1560 *
1561 * Note that this code assumes that an SOC never has more than one HC onboard.
1562 */
mv_soc_led_blink_enable(struct ata_port * ap)1563 static void mv_soc_led_blink_enable(struct ata_port *ap)
1564 {
1565 struct ata_host *host = ap->host;
1566 struct mv_host_priv *hpriv = host->private_data;
1567 void __iomem *hc_mmio;
1568 u32 led_ctrl;
1569
1570 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1571 return;
1572 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1573 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1574 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1575 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1576 }
1577
mv_soc_led_blink_disable(struct ata_port * ap)1578 static void mv_soc_led_blink_disable(struct ata_port *ap)
1579 {
1580 struct ata_host *host = ap->host;
1581 struct mv_host_priv *hpriv = host->private_data;
1582 void __iomem *hc_mmio;
1583 u32 led_ctrl;
1584 unsigned int port;
1585
1586 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1587 return;
1588
1589 /* disable led-blink only if no ports are using NCQ */
1590 for (port = 0; port < hpriv->n_ports; port++) {
1591 struct ata_port *this_ap = host->ports[port];
1592 struct mv_port_priv *pp = this_ap->private_data;
1593
1594 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1595 return;
1596 }
1597
1598 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1599 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1600 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1601 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1602 }
1603
mv_edma_cfg(struct ata_port * ap,int want_ncq,int want_edma)1604 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1605 {
1606 u32 cfg;
1607 struct mv_port_priv *pp = ap->private_data;
1608 struct mv_host_priv *hpriv = ap->host->private_data;
1609 void __iomem *port_mmio = mv_ap_base(ap);
1610
1611 /* set up non-NCQ EDMA configuration */
1612 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1613 pp->pp_flags &=
1614 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1615
1616 if (IS_GEN_I(hpriv))
1617 cfg |= (1 << 8); /* enab config burst size mask */
1618
1619 else if (IS_GEN_II(hpriv)) {
1620 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1621 mv_60x1_errata_sata25(ap, want_ncq);
1622
1623 } else if (IS_GEN_IIE(hpriv)) {
1624 int want_fbs = sata_pmp_attached(ap);
1625 /*
1626 * Possible future enhancement:
1627 *
1628 * The chip can use FBS with non-NCQ, if we allow it,
1629 * But first we need to have the error handling in place
1630 * for this mode (datasheet section 7.3.15.4.2.3).
1631 * So disallow non-NCQ FBS for now.
1632 */
1633 want_fbs &= want_ncq;
1634
1635 mv_config_fbs(ap, want_ncq, want_fbs);
1636
1637 if (want_fbs) {
1638 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1639 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1640 }
1641
1642 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1643 if (want_edma) {
1644 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1645 if (!IS_SOC(hpriv))
1646 cfg |= (1 << 18); /* enab early completion */
1647 }
1648 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1649 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1650 mv_bmdma_enable_iie(ap, !want_edma);
1651
1652 if (IS_SOC(hpriv)) {
1653 if (want_ncq)
1654 mv_soc_led_blink_enable(ap);
1655 else
1656 mv_soc_led_blink_disable(ap);
1657 }
1658 }
1659
1660 if (want_ncq) {
1661 cfg |= EDMA_CFG_NCQ;
1662 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1663 }
1664
1665 writelfl(cfg, port_mmio + EDMA_CFG);
1666 }
1667
mv_port_free_dma_mem(struct ata_port * ap)1668 static void mv_port_free_dma_mem(struct ata_port *ap)
1669 {
1670 struct mv_host_priv *hpriv = ap->host->private_data;
1671 struct mv_port_priv *pp = ap->private_data;
1672 int tag;
1673
1674 if (pp->crqb) {
1675 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1676 pp->crqb = NULL;
1677 }
1678 if (pp->crpb) {
1679 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1680 pp->crpb = NULL;
1681 }
1682 /*
1683 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1684 * For later hardware, we have one unique sg_tbl per NCQ tag.
1685 */
1686 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1687 if (pp->sg_tbl[tag]) {
1688 if (tag == 0 || !IS_GEN_I(hpriv))
1689 dma_pool_free(hpriv->sg_tbl_pool,
1690 pp->sg_tbl[tag],
1691 pp->sg_tbl_dma[tag]);
1692 pp->sg_tbl[tag] = NULL;
1693 }
1694 }
1695 }
1696
1697 /**
1698 * mv_port_start - Port specific init/start routine.
1699 * @ap: ATA channel to manipulate
1700 *
1701 * Allocate and point to DMA memory, init port private memory,
1702 * zero indices.
1703 *
1704 * LOCKING:
1705 * Inherited from caller.
1706 */
mv_port_start(struct ata_port * ap)1707 static int mv_port_start(struct ata_port *ap)
1708 {
1709 struct device *dev = ap->host->dev;
1710 struct mv_host_priv *hpriv = ap->host->private_data;
1711 struct mv_port_priv *pp;
1712 unsigned long flags;
1713 int tag;
1714
1715 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1716 if (!pp)
1717 return -ENOMEM;
1718 ap->private_data = pp;
1719
1720 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1721 if (!pp->crqb)
1722 return -ENOMEM;
1723
1724 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1725 if (!pp->crpb)
1726 goto out_port_free_dma_mem;
1727
1728 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1729 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1730 ap->flags |= ATA_FLAG_AN;
1731 /*
1732 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1733 * For later hardware, we need one unique sg_tbl per NCQ tag.
1734 */
1735 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1736 if (tag == 0 || !IS_GEN_I(hpriv)) {
1737 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1738 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1739 if (!pp->sg_tbl[tag])
1740 goto out_port_free_dma_mem;
1741 } else {
1742 pp->sg_tbl[tag] = pp->sg_tbl[0];
1743 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1744 }
1745 }
1746
1747 spin_lock_irqsave(ap->lock, flags);
1748 mv_save_cached_regs(ap);
1749 mv_edma_cfg(ap, 0, 0);
1750 spin_unlock_irqrestore(ap->lock, flags);
1751
1752 return 0;
1753
1754 out_port_free_dma_mem:
1755 mv_port_free_dma_mem(ap);
1756 return -ENOMEM;
1757 }
1758
1759 /**
1760 * mv_port_stop - Port specific cleanup/stop routine.
1761 * @ap: ATA channel to manipulate
1762 *
1763 * Stop DMA, cleanup port memory.
1764 *
1765 * LOCKING:
1766 * This routine uses the host lock to protect the DMA stop.
1767 */
mv_port_stop(struct ata_port * ap)1768 static void mv_port_stop(struct ata_port *ap)
1769 {
1770 unsigned long flags;
1771
1772 spin_lock_irqsave(ap->lock, flags);
1773 mv_stop_edma(ap);
1774 mv_enable_port_irqs(ap, 0);
1775 spin_unlock_irqrestore(ap->lock, flags);
1776 mv_port_free_dma_mem(ap);
1777 }
1778
1779 /**
1780 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1781 * @qc: queued command whose SG list to source from
1782 *
1783 * Populate the SG list and mark the last entry.
1784 *
1785 * LOCKING:
1786 * Inherited from caller.
1787 */
mv_fill_sg(struct ata_queued_cmd * qc)1788 static void mv_fill_sg(struct ata_queued_cmd *qc)
1789 {
1790 struct mv_port_priv *pp = qc->ap->private_data;
1791 struct scatterlist *sg;
1792 struct mv_sg *mv_sg, *last_sg = NULL;
1793 unsigned int si;
1794
1795 mv_sg = pp->sg_tbl[qc->hw_tag];
1796 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1797 dma_addr_t addr = sg_dma_address(sg);
1798 u32 sg_len = sg_dma_len(sg);
1799
1800 while (sg_len) {
1801 u32 offset = addr & 0xffff;
1802 u32 len = sg_len;
1803
1804 if (offset + len > 0x10000)
1805 len = 0x10000 - offset;
1806
1807 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1808 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1809 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1810 mv_sg->reserved = 0;
1811
1812 sg_len -= len;
1813 addr += len;
1814
1815 last_sg = mv_sg;
1816 mv_sg++;
1817 }
1818 }
1819
1820 if (likely(last_sg))
1821 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1822 mb(); /* ensure data structure is visible to the chipset */
1823 }
1824
mv_crqb_pack_cmd(__le16 * cmdw,u8 data,u8 addr,unsigned last)1825 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1826 {
1827 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1828 (last ? CRQB_CMD_LAST : 0);
1829 *cmdw = cpu_to_le16(tmp);
1830 }
1831
1832 /**
1833 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1834 * @ap: Port associated with this ATA transaction.
1835 *
1836 * We need this only for ATAPI bmdma transactions,
1837 * as otherwise we experience spurious interrupts
1838 * after libata-sff handles the bmdma interrupts.
1839 */
mv_sff_irq_clear(struct ata_port * ap)1840 static void mv_sff_irq_clear(struct ata_port *ap)
1841 {
1842 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1843 }
1844
1845 /**
1846 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1847 * @qc: queued command to check for chipset/DMA compatibility.
1848 *
1849 * The bmdma engines cannot handle speculative data sizes
1850 * (bytecount under/over flow). So only allow DMA for
1851 * data transfer commands with known data sizes.
1852 *
1853 * LOCKING:
1854 * Inherited from caller.
1855 */
mv_check_atapi_dma(struct ata_queued_cmd * qc)1856 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1857 {
1858 struct scsi_cmnd *scmd = qc->scsicmd;
1859
1860 if (scmd) {
1861 switch (scmd->cmnd[0]) {
1862 case READ_6:
1863 case READ_10:
1864 case READ_12:
1865 case WRITE_6:
1866 case WRITE_10:
1867 case WRITE_12:
1868 case GPCMD_READ_CD:
1869 case GPCMD_SEND_DVD_STRUCTURE:
1870 case GPCMD_SEND_CUE_SHEET:
1871 return 0; /* DMA is safe */
1872 }
1873 }
1874 return -EOPNOTSUPP; /* use PIO instead */
1875 }
1876
1877 /**
1878 * mv_bmdma_setup - Set up BMDMA transaction
1879 * @qc: queued command to prepare DMA for.
1880 *
1881 * LOCKING:
1882 * Inherited from caller.
1883 */
mv_bmdma_setup(struct ata_queued_cmd * qc)1884 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1885 {
1886 struct ata_port *ap = qc->ap;
1887 void __iomem *port_mmio = mv_ap_base(ap);
1888 struct mv_port_priv *pp = ap->private_data;
1889
1890 mv_fill_sg(qc);
1891
1892 /* clear all DMA cmd bits */
1893 writel(0, port_mmio + BMDMA_CMD);
1894
1895 /* load PRD table addr. */
1896 writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1897 port_mmio + BMDMA_PRD_HIGH);
1898 writelfl(pp->sg_tbl_dma[qc->hw_tag],
1899 port_mmio + BMDMA_PRD_LOW);
1900
1901 /* issue r/w command */
1902 ap->ops->sff_exec_command(ap, &qc->tf);
1903 }
1904
1905 /**
1906 * mv_bmdma_start - Start a BMDMA transaction
1907 * @qc: queued command to start DMA on.
1908 *
1909 * LOCKING:
1910 * Inherited from caller.
1911 */
mv_bmdma_start(struct ata_queued_cmd * qc)1912 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1913 {
1914 struct ata_port *ap = qc->ap;
1915 void __iomem *port_mmio = mv_ap_base(ap);
1916 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1917 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1918
1919 /* start host DMA transaction */
1920 writelfl(cmd, port_mmio + BMDMA_CMD);
1921 }
1922
1923 /**
1924 * mv_bmdma_stop_ap - Stop BMDMA transfer
1925 * @ap: port to stop
1926 *
1927 * Clears the ATA_DMA_START flag in the bmdma control register
1928 *
1929 * LOCKING:
1930 * Inherited from caller.
1931 */
mv_bmdma_stop_ap(struct ata_port * ap)1932 static void mv_bmdma_stop_ap(struct ata_port *ap)
1933 {
1934 void __iomem *port_mmio = mv_ap_base(ap);
1935 u32 cmd;
1936
1937 /* clear start/stop bit */
1938 cmd = readl(port_mmio + BMDMA_CMD);
1939 if (cmd & ATA_DMA_START) {
1940 cmd &= ~ATA_DMA_START;
1941 writelfl(cmd, port_mmio + BMDMA_CMD);
1942
1943 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1944 ata_sff_dma_pause(ap);
1945 }
1946 }
1947
mv_bmdma_stop(struct ata_queued_cmd * qc)1948 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1949 {
1950 mv_bmdma_stop_ap(qc->ap);
1951 }
1952
1953 /**
1954 * mv_bmdma_status - Read BMDMA status
1955 * @ap: port for which to retrieve DMA status.
1956 *
1957 * Read and return equivalent of the sff BMDMA status register.
1958 *
1959 * LOCKING:
1960 * Inherited from caller.
1961 */
mv_bmdma_status(struct ata_port * ap)1962 static u8 mv_bmdma_status(struct ata_port *ap)
1963 {
1964 void __iomem *port_mmio = mv_ap_base(ap);
1965 u32 reg, status;
1966
1967 /*
1968 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1969 * and the ATA_DMA_INTR bit doesn't exist.
1970 */
1971 reg = readl(port_mmio + BMDMA_STATUS);
1972 if (reg & ATA_DMA_ACTIVE)
1973 status = ATA_DMA_ACTIVE;
1974 else if (reg & ATA_DMA_ERR)
1975 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1976 else {
1977 /*
1978 * Just because DMA_ACTIVE is 0 (DMA completed),
1979 * this does _not_ mean the device is "done".
1980 * So we should not yet be signalling ATA_DMA_INTR
1981 * in some cases. Eg. DSM/TRIM, and perhaps others.
1982 */
1983 mv_bmdma_stop_ap(ap);
1984 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1985 status = 0;
1986 else
1987 status = ATA_DMA_INTR;
1988 }
1989 return status;
1990 }
1991
mv_rw_multi_errata_sata24(struct ata_queued_cmd * qc)1992 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1993 {
1994 struct ata_taskfile *tf = &qc->tf;
1995 /*
1996 * Workaround for 88SX60x1 FEr SATA#24.
1997 *
1998 * Chip may corrupt WRITEs if multi_count >= 4kB.
1999 * Note that READs are unaffected.
2000 *
2001 * It's not clear if this errata really means "4K bytes",
2002 * or if it always happens for multi_count > 7
2003 * regardless of device sector_size.
2004 *
2005 * So, for safety, any write with multi_count > 7
2006 * gets converted here into a regular PIO write instead:
2007 */
2008 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2009 if (qc->dev->multi_count > 7) {
2010 switch (tf->command) {
2011 case ATA_CMD_WRITE_MULTI:
2012 tf->command = ATA_CMD_PIO_WRITE;
2013 break;
2014 case ATA_CMD_WRITE_MULTI_FUA_EXT:
2015 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2016 fallthrough;
2017 case ATA_CMD_WRITE_MULTI_EXT:
2018 tf->command = ATA_CMD_PIO_WRITE_EXT;
2019 break;
2020 }
2021 }
2022 }
2023 }
2024
2025 /**
2026 * mv_qc_prep - Host specific command preparation.
2027 * @qc: queued command to prepare
2028 *
2029 * This routine simply redirects to the general purpose routine
2030 * if command is not DMA. Else, it handles prep of the CRQB
2031 * (command request block), does some sanity checking, and calls
2032 * the SG load routine.
2033 *
2034 * LOCKING:
2035 * Inherited from caller.
2036 */
mv_qc_prep(struct ata_queued_cmd * qc)2037 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2038 {
2039 struct ata_port *ap = qc->ap;
2040 struct mv_port_priv *pp = ap->private_data;
2041 __le16 *cw;
2042 struct ata_taskfile *tf = &qc->tf;
2043 u16 flags = 0;
2044 unsigned in_index;
2045
2046 switch (tf->protocol) {
2047 case ATA_PROT_DMA:
2048 if (tf->command == ATA_CMD_DSM)
2049 return AC_ERR_OK;
2050 fallthrough;
2051 case ATA_PROT_NCQ:
2052 break; /* continue below */
2053 case ATA_PROT_PIO:
2054 mv_rw_multi_errata_sata24(qc);
2055 return AC_ERR_OK;
2056 default:
2057 return AC_ERR_OK;
2058 }
2059
2060 /* Fill in command request block
2061 */
2062 if (!(tf->flags & ATA_TFLAG_WRITE))
2063 flags |= CRQB_FLAG_READ;
2064 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2065 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2066 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2067
2068 /* get current queue index from software */
2069 in_index = pp->req_idx;
2070
2071 pp->crqb[in_index].sg_addr =
2072 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2073 pp->crqb[in_index].sg_addr_hi =
2074 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2075 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2076
2077 cw = &pp->crqb[in_index].ata_cmd[0];
2078
2079 /* Sadly, the CRQB cannot accommodate all registers--there are
2080 * only 11 bytes...so we must pick and choose required
2081 * registers based on the command. So, we drop feature and
2082 * hob_feature for [RW] DMA commands, but they are needed for
2083 * NCQ. NCQ will drop hob_nsect, which is not needed there
2084 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2085 */
2086 switch (tf->command) {
2087 case ATA_CMD_READ:
2088 case ATA_CMD_READ_EXT:
2089 case ATA_CMD_WRITE:
2090 case ATA_CMD_WRITE_EXT:
2091 case ATA_CMD_WRITE_FUA_EXT:
2092 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2093 break;
2094 case ATA_CMD_FPDMA_READ:
2095 case ATA_CMD_FPDMA_WRITE:
2096 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2097 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2098 break;
2099 default:
2100 /* The only other commands EDMA supports in non-queued and
2101 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2102 * of which are defined/used by Linux. If we get here, this
2103 * driver needs work.
2104 */
2105 ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2106 tf->command);
2107 return AC_ERR_INVALID;
2108 }
2109 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2110 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2111 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2112 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2113 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2114 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2115 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2116 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2117 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2118
2119 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2120 return AC_ERR_OK;
2121 mv_fill_sg(qc);
2122
2123 return AC_ERR_OK;
2124 }
2125
2126 /**
2127 * mv_qc_prep_iie - Host specific command preparation.
2128 * @qc: queued command to prepare
2129 *
2130 * This routine simply redirects to the general purpose routine
2131 * if command is not DMA. Else, it handles prep of the CRQB
2132 * (command request block), does some sanity checking, and calls
2133 * the SG load routine.
2134 *
2135 * LOCKING:
2136 * Inherited from caller.
2137 */
mv_qc_prep_iie(struct ata_queued_cmd * qc)2138 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2139 {
2140 struct ata_port *ap = qc->ap;
2141 struct mv_port_priv *pp = ap->private_data;
2142 struct mv_crqb_iie *crqb;
2143 struct ata_taskfile *tf = &qc->tf;
2144 unsigned in_index;
2145 u32 flags = 0;
2146
2147 if ((tf->protocol != ATA_PROT_DMA) &&
2148 (tf->protocol != ATA_PROT_NCQ))
2149 return AC_ERR_OK;
2150 if (tf->command == ATA_CMD_DSM)
2151 return AC_ERR_OK; /* use bmdma for this */
2152
2153 /* Fill in Gen IIE command request block */
2154 if (!(tf->flags & ATA_TFLAG_WRITE))
2155 flags |= CRQB_FLAG_READ;
2156
2157 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2158 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2159 flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2160 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2161
2162 /* get current queue index from software */
2163 in_index = pp->req_idx;
2164
2165 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2166 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2167 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2168 crqb->flags = cpu_to_le32(flags);
2169
2170 crqb->ata_cmd[0] = cpu_to_le32(
2171 (tf->command << 16) |
2172 (tf->feature << 24)
2173 );
2174 crqb->ata_cmd[1] = cpu_to_le32(
2175 (tf->lbal << 0) |
2176 (tf->lbam << 8) |
2177 (tf->lbah << 16) |
2178 (tf->device << 24)
2179 );
2180 crqb->ata_cmd[2] = cpu_to_le32(
2181 (tf->hob_lbal << 0) |
2182 (tf->hob_lbam << 8) |
2183 (tf->hob_lbah << 16) |
2184 (tf->hob_feature << 24)
2185 );
2186 crqb->ata_cmd[3] = cpu_to_le32(
2187 (tf->nsect << 0) |
2188 (tf->hob_nsect << 8)
2189 );
2190
2191 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2192 return AC_ERR_OK;
2193 mv_fill_sg(qc);
2194
2195 return AC_ERR_OK;
2196 }
2197
2198 /**
2199 * mv_sff_check_status - fetch device status, if valid
2200 * @ap: ATA port to fetch status from
2201 *
2202 * When using command issue via mv_qc_issue_fis(),
2203 * the initial ATA_BUSY state does not show up in the
2204 * ATA status (shadow) register. This can confuse libata!
2205 *
2206 * So we have a hook here to fake ATA_BUSY for that situation,
2207 * until the first time a BUSY, DRQ, or ERR bit is seen.
2208 *
2209 * The rest of the time, it simply returns the ATA status register.
2210 */
mv_sff_check_status(struct ata_port * ap)2211 static u8 mv_sff_check_status(struct ata_port *ap)
2212 {
2213 u8 stat = ioread8(ap->ioaddr.status_addr);
2214 struct mv_port_priv *pp = ap->private_data;
2215
2216 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2217 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2218 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2219 else
2220 stat = ATA_BUSY;
2221 }
2222 return stat;
2223 }
2224
2225 /**
2226 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2227 * @ap: ATA port to send a FIS
2228 * @fis: fis to be sent
2229 * @nwords: number of 32-bit words in the fis
2230 */
mv_send_fis(struct ata_port * ap,u32 * fis,int nwords)2231 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2232 {
2233 void __iomem *port_mmio = mv_ap_base(ap);
2234 u32 ifctl, old_ifctl, ifstat;
2235 int i, timeout = 200, final_word = nwords - 1;
2236
2237 /* Initiate FIS transmission mode */
2238 old_ifctl = readl(port_mmio + SATA_IFCTL);
2239 ifctl = 0x100 | (old_ifctl & 0xf);
2240 writelfl(ifctl, port_mmio + SATA_IFCTL);
2241
2242 /* Send all words of the FIS except for the final word */
2243 for (i = 0; i < final_word; ++i)
2244 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2245
2246 /* Flag end-of-transmission, and then send the final word */
2247 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2248 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2249
2250 /*
2251 * Wait for FIS transmission to complete.
2252 * This typically takes just a single iteration.
2253 */
2254 do {
2255 ifstat = readl(port_mmio + SATA_IFSTAT);
2256 } while (!(ifstat & 0x1000) && --timeout);
2257
2258 /* Restore original port configuration */
2259 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2260
2261 /* See if it worked */
2262 if ((ifstat & 0x3000) != 0x1000) {
2263 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2264 __func__, ifstat);
2265 return AC_ERR_OTHER;
2266 }
2267 return 0;
2268 }
2269
2270 /**
2271 * mv_qc_issue_fis - Issue a command directly as a FIS
2272 * @qc: queued command to start
2273 *
2274 * Note that the ATA shadow registers are not updated
2275 * after command issue, so the device will appear "READY"
2276 * if polled, even while it is BUSY processing the command.
2277 *
2278 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2279 *
2280 * Note: we don't get updated shadow regs on *completion*
2281 * of non-data commands. So avoid sending them via this function,
2282 * as they will appear to have completed immediately.
2283 *
2284 * GEN_IIE has special registers that we could get the result tf from,
2285 * but earlier chipsets do not. For now, we ignore those registers.
2286 */
mv_qc_issue_fis(struct ata_queued_cmd * qc)2287 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2288 {
2289 struct ata_port *ap = qc->ap;
2290 struct mv_port_priv *pp = ap->private_data;
2291 struct ata_link *link = qc->dev->link;
2292 u32 fis[5];
2293 int err = 0;
2294
2295 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2296 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2297 if (err)
2298 return err;
2299
2300 switch (qc->tf.protocol) {
2301 case ATAPI_PROT_PIO:
2302 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2303 fallthrough;
2304 case ATAPI_PROT_NODATA:
2305 ap->hsm_task_state = HSM_ST_FIRST;
2306 break;
2307 case ATA_PROT_PIO:
2308 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2309 if (qc->tf.flags & ATA_TFLAG_WRITE)
2310 ap->hsm_task_state = HSM_ST_FIRST;
2311 else
2312 ap->hsm_task_state = HSM_ST;
2313 break;
2314 default:
2315 ap->hsm_task_state = HSM_ST_LAST;
2316 break;
2317 }
2318
2319 if (qc->tf.flags & ATA_TFLAG_POLLING)
2320 ata_sff_queue_pio_task(link, 0);
2321 return 0;
2322 }
2323
2324 /**
2325 * mv_qc_issue - Initiate a command to the host
2326 * @qc: queued command to start
2327 *
2328 * This routine simply redirects to the general purpose routine
2329 * if command is not DMA. Else, it sanity checks our local
2330 * caches of the request producer/consumer indices then enables
2331 * DMA and bumps the request producer index.
2332 *
2333 * LOCKING:
2334 * Inherited from caller.
2335 */
mv_qc_issue(struct ata_queued_cmd * qc)2336 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2337 {
2338 static int limit_warnings = 10;
2339 struct ata_port *ap = qc->ap;
2340 void __iomem *port_mmio = mv_ap_base(ap);
2341 struct mv_port_priv *pp = ap->private_data;
2342 u32 in_index;
2343 unsigned int port_irqs;
2344
2345 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2346
2347 switch (qc->tf.protocol) {
2348 case ATA_PROT_DMA:
2349 if (qc->tf.command == ATA_CMD_DSM) {
2350 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2351 return AC_ERR_OTHER;
2352 break; /* use bmdma for this */
2353 }
2354 fallthrough;
2355 case ATA_PROT_NCQ:
2356 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2357 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2358 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2359
2360 /* Write the request in pointer to kick the EDMA to life */
2361 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2362 port_mmio + EDMA_REQ_Q_IN_PTR);
2363 return 0;
2364
2365 case ATA_PROT_PIO:
2366 /*
2367 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2368 *
2369 * Someday, we might implement special polling workarounds
2370 * for these, but it all seems rather unnecessary since we
2371 * normally use only DMA for commands which transfer more
2372 * than a single block of data.
2373 *
2374 * Much of the time, this could just work regardless.
2375 * So for now, just log the incident, and allow the attempt.
2376 */
2377 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2378 --limit_warnings;
2379 ata_link_warn(qc->dev->link, DRV_NAME
2380 ": attempting PIO w/multiple DRQ: "
2381 "this may fail due to h/w errata\n");
2382 }
2383 fallthrough;
2384 case ATA_PROT_NODATA:
2385 case ATAPI_PROT_PIO:
2386 case ATAPI_PROT_NODATA:
2387 if (ap->flags & ATA_FLAG_PIO_POLLING)
2388 qc->tf.flags |= ATA_TFLAG_POLLING;
2389 break;
2390 }
2391
2392 if (qc->tf.flags & ATA_TFLAG_POLLING)
2393 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2394 else
2395 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2396
2397 /*
2398 * We're about to send a non-EDMA capable command to the
2399 * port. Turn off EDMA so there won't be problems accessing
2400 * shadow block, etc registers.
2401 */
2402 mv_stop_edma(ap);
2403 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2404 mv_pmp_select(ap, qc->dev->link->pmp);
2405
2406 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2407 struct mv_host_priv *hpriv = ap->host->private_data;
2408 /*
2409 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2410 *
2411 * After any NCQ error, the READ_LOG_EXT command
2412 * from libata-eh *must* use mv_qc_issue_fis().
2413 * Otherwise it might fail, due to chip errata.
2414 *
2415 * Rather than special-case it, we'll just *always*
2416 * use this method here for READ_LOG_EXT, making for
2417 * easier testing.
2418 */
2419 if (IS_GEN_II(hpriv))
2420 return mv_qc_issue_fis(qc);
2421 }
2422 return ata_bmdma_qc_issue(qc);
2423 }
2424
mv_get_active_qc(struct ata_port * ap)2425 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2426 {
2427 struct mv_port_priv *pp = ap->private_data;
2428 struct ata_queued_cmd *qc;
2429
2430 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2431 return NULL;
2432 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2433 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2434 return qc;
2435 return NULL;
2436 }
2437
mv_pmp_error_handler(struct ata_port * ap)2438 static void mv_pmp_error_handler(struct ata_port *ap)
2439 {
2440 unsigned int pmp, pmp_map;
2441 struct mv_port_priv *pp = ap->private_data;
2442
2443 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2444 /*
2445 * Perform NCQ error analysis on failed PMPs
2446 * before we freeze the port entirely.
2447 *
2448 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2449 */
2450 pmp_map = pp->delayed_eh_pmp_map;
2451 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2452 for (pmp = 0; pmp_map != 0; pmp++) {
2453 unsigned int this_pmp = (1 << pmp);
2454 if (pmp_map & this_pmp) {
2455 struct ata_link *link = &ap->pmp_link[pmp];
2456 pmp_map &= ~this_pmp;
2457 ata_eh_analyze_ncq_error(link);
2458 }
2459 }
2460 ata_port_freeze(ap);
2461 }
2462 sata_pmp_error_handler(ap);
2463 }
2464
mv_get_err_pmp_map(struct ata_port * ap)2465 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2466 {
2467 void __iomem *port_mmio = mv_ap_base(ap);
2468
2469 return readl(port_mmio + SATA_TESTCTL) >> 16;
2470 }
2471
mv_pmp_eh_prep(struct ata_port * ap,unsigned int pmp_map)2472 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2473 {
2474 unsigned int pmp;
2475
2476 /*
2477 * Initialize EH info for PMPs which saw device errors
2478 */
2479 for (pmp = 0; pmp_map != 0; pmp++) {
2480 unsigned int this_pmp = (1 << pmp);
2481 if (pmp_map & this_pmp) {
2482 struct ata_link *link = &ap->pmp_link[pmp];
2483 struct ata_eh_info *ehi = &link->eh_info;
2484
2485 pmp_map &= ~this_pmp;
2486 ata_ehi_clear_desc(ehi);
2487 ata_ehi_push_desc(ehi, "dev err");
2488 ehi->err_mask |= AC_ERR_DEV;
2489 ehi->action |= ATA_EH_RESET;
2490 ata_link_abort(link);
2491 }
2492 }
2493 }
2494
mv_req_q_empty(struct ata_port * ap)2495 static int mv_req_q_empty(struct ata_port *ap)
2496 {
2497 void __iomem *port_mmio = mv_ap_base(ap);
2498 u32 in_ptr, out_ptr;
2499
2500 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2501 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2502 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2503 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2504 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2505 }
2506
mv_handle_fbs_ncq_dev_err(struct ata_port * ap)2507 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2508 {
2509 struct mv_port_priv *pp = ap->private_data;
2510 int failed_links;
2511 unsigned int old_map, new_map;
2512
2513 /*
2514 * Device error during FBS+NCQ operation:
2515 *
2516 * Set a port flag to prevent further I/O being enqueued.
2517 * Leave the EDMA running to drain outstanding commands from this port.
2518 * Perform the post-mortem/EH only when all responses are complete.
2519 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2520 */
2521 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2522 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2523 pp->delayed_eh_pmp_map = 0;
2524 }
2525 old_map = pp->delayed_eh_pmp_map;
2526 new_map = old_map | mv_get_err_pmp_map(ap);
2527
2528 if (old_map != new_map) {
2529 pp->delayed_eh_pmp_map = new_map;
2530 mv_pmp_eh_prep(ap, new_map & ~old_map);
2531 }
2532 failed_links = hweight16(new_map);
2533
2534 ata_port_info(ap,
2535 "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2536 __func__, pp->delayed_eh_pmp_map,
2537 ap->qc_active, failed_links,
2538 ap->nr_active_links);
2539
2540 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2541 mv_process_crpb_entries(ap, pp);
2542 mv_stop_edma(ap);
2543 mv_eh_freeze(ap);
2544 ata_port_info(ap, "%s: done\n", __func__);
2545 return 1; /* handled */
2546 }
2547 ata_port_info(ap, "%s: waiting\n", __func__);
2548 return 1; /* handled */
2549 }
2550
mv_handle_fbs_non_ncq_dev_err(struct ata_port * ap)2551 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2552 {
2553 /*
2554 * Possible future enhancement:
2555 *
2556 * FBS+non-NCQ operation is not yet implemented.
2557 * See related notes in mv_edma_cfg().
2558 *
2559 * Device error during FBS+non-NCQ operation:
2560 *
2561 * We need to snapshot the shadow registers for each failed command.
2562 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2563 */
2564 return 0; /* not handled */
2565 }
2566
mv_handle_dev_err(struct ata_port * ap,u32 edma_err_cause)2567 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2568 {
2569 struct mv_port_priv *pp = ap->private_data;
2570
2571 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2572 return 0; /* EDMA was not active: not handled */
2573 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2574 return 0; /* FBS was not active: not handled */
2575
2576 if (!(edma_err_cause & EDMA_ERR_DEV))
2577 return 0; /* non DEV error: not handled */
2578 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2579 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2580 return 0; /* other problems: not handled */
2581
2582 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2583 /*
2584 * EDMA should NOT have self-disabled for this case.
2585 * If it did, then something is wrong elsewhere,
2586 * and we cannot handle it here.
2587 */
2588 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2589 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2590 __func__, edma_err_cause, pp->pp_flags);
2591 return 0; /* not handled */
2592 }
2593 return mv_handle_fbs_ncq_dev_err(ap);
2594 } else {
2595 /*
2596 * EDMA should have self-disabled for this case.
2597 * If it did not, then something is wrong elsewhere,
2598 * and we cannot handle it here.
2599 */
2600 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2601 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2602 __func__, edma_err_cause, pp->pp_flags);
2603 return 0; /* not handled */
2604 }
2605 return mv_handle_fbs_non_ncq_dev_err(ap);
2606 }
2607 return 0; /* not handled */
2608 }
2609
mv_unexpected_intr(struct ata_port * ap,int edma_was_enabled)2610 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2611 {
2612 struct ata_eh_info *ehi = &ap->link.eh_info;
2613 char *when = "idle";
2614
2615 ata_ehi_clear_desc(ehi);
2616 if (edma_was_enabled) {
2617 when = "EDMA enabled";
2618 } else {
2619 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2620 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2621 when = "polling";
2622 }
2623 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2624 ehi->err_mask |= AC_ERR_OTHER;
2625 ehi->action |= ATA_EH_RESET;
2626 ata_port_freeze(ap);
2627 }
2628
2629 /**
2630 * mv_err_intr - Handle error interrupts on the port
2631 * @ap: ATA channel to manipulate
2632 *
2633 * Most cases require a full reset of the chip's state machine,
2634 * which also performs a COMRESET.
2635 * Also, if the port disabled DMA, update our cached copy to match.
2636 *
2637 * LOCKING:
2638 * Inherited from caller.
2639 */
mv_err_intr(struct ata_port * ap)2640 static void mv_err_intr(struct ata_port *ap)
2641 {
2642 void __iomem *port_mmio = mv_ap_base(ap);
2643 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2644 u32 fis_cause = 0;
2645 struct mv_port_priv *pp = ap->private_data;
2646 struct mv_host_priv *hpriv = ap->host->private_data;
2647 unsigned int action = 0, err_mask = 0;
2648 struct ata_eh_info *ehi = &ap->link.eh_info;
2649 struct ata_queued_cmd *qc;
2650 int abort = 0;
2651
2652 /*
2653 * Read and clear the SError and err_cause bits.
2654 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2655 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2656 */
2657 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2658 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2659
2660 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2661 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2662 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2663 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2664 }
2665 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2666
2667 if (edma_err_cause & EDMA_ERR_DEV) {
2668 /*
2669 * Device errors during FIS-based switching operation
2670 * require special handling.
2671 */
2672 if (mv_handle_dev_err(ap, edma_err_cause))
2673 return;
2674 }
2675
2676 qc = mv_get_active_qc(ap);
2677 ata_ehi_clear_desc(ehi);
2678 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2679 edma_err_cause, pp->pp_flags);
2680
2681 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2682 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2683 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2684 u32 ec = edma_err_cause &
2685 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2686 sata_async_notification(ap);
2687 if (!ec)
2688 return; /* Just an AN; no need for the nukes */
2689 ata_ehi_push_desc(ehi, "SDB notify");
2690 }
2691 }
2692 /*
2693 * All generations share these EDMA error cause bits:
2694 */
2695 if (edma_err_cause & EDMA_ERR_DEV) {
2696 err_mask |= AC_ERR_DEV;
2697 action |= ATA_EH_RESET;
2698 ata_ehi_push_desc(ehi, "dev error");
2699 }
2700 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2701 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2702 EDMA_ERR_INTRL_PAR)) {
2703 err_mask |= AC_ERR_ATA_BUS;
2704 action |= ATA_EH_RESET;
2705 ata_ehi_push_desc(ehi, "parity error");
2706 }
2707 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2708 ata_ehi_hotplugged(ehi);
2709 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2710 "dev disconnect" : "dev connect");
2711 action |= ATA_EH_RESET;
2712 }
2713
2714 /*
2715 * Gen-I has a different SELF_DIS bit,
2716 * different FREEZE bits, and no SERR bit:
2717 */
2718 if (IS_GEN_I(hpriv)) {
2719 eh_freeze_mask = EDMA_EH_FREEZE_5;
2720 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2721 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2722 ata_ehi_push_desc(ehi, "EDMA self-disable");
2723 }
2724 } else {
2725 eh_freeze_mask = EDMA_EH_FREEZE;
2726 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2727 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2728 ata_ehi_push_desc(ehi, "EDMA self-disable");
2729 }
2730 if (edma_err_cause & EDMA_ERR_SERR) {
2731 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2732 err_mask |= AC_ERR_ATA_BUS;
2733 action |= ATA_EH_RESET;
2734 }
2735 }
2736
2737 if (!err_mask) {
2738 err_mask = AC_ERR_OTHER;
2739 action |= ATA_EH_RESET;
2740 }
2741
2742 ehi->serror |= serr;
2743 ehi->action |= action;
2744
2745 if (qc)
2746 qc->err_mask |= err_mask;
2747 else
2748 ehi->err_mask |= err_mask;
2749
2750 if (err_mask == AC_ERR_DEV) {
2751 /*
2752 * Cannot do ata_port_freeze() here,
2753 * because it would kill PIO access,
2754 * which is needed for further diagnosis.
2755 */
2756 mv_eh_freeze(ap);
2757 abort = 1;
2758 } else if (edma_err_cause & eh_freeze_mask) {
2759 /*
2760 * Note to self: ata_port_freeze() calls ata_port_abort()
2761 */
2762 ata_port_freeze(ap);
2763 } else {
2764 abort = 1;
2765 }
2766
2767 if (abort) {
2768 if (qc)
2769 ata_link_abort(qc->dev->link);
2770 else
2771 ata_port_abort(ap);
2772 }
2773 }
2774
mv_process_crpb_response(struct ata_port * ap,struct mv_crpb * response,unsigned int tag,int ncq_enabled)2775 static bool mv_process_crpb_response(struct ata_port *ap,
2776 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2777 {
2778 u8 ata_status;
2779 u16 edma_status = le16_to_cpu(response->flags);
2780
2781 /*
2782 * edma_status from a response queue entry:
2783 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2784 * MSB is saved ATA status from command completion.
2785 */
2786 if (!ncq_enabled) {
2787 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2788 if (err_cause) {
2789 /*
2790 * Error will be seen/handled by
2791 * mv_err_intr(). So do nothing at all here.
2792 */
2793 return false;
2794 }
2795 }
2796 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2797 if (!ac_err_mask(ata_status))
2798 return true;
2799 /* else: leave it for mv_err_intr() */
2800 return false;
2801 }
2802
mv_process_crpb_entries(struct ata_port * ap,struct mv_port_priv * pp)2803 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2804 {
2805 void __iomem *port_mmio = mv_ap_base(ap);
2806 struct mv_host_priv *hpriv = ap->host->private_data;
2807 u32 in_index;
2808 bool work_done = false;
2809 u32 done_mask = 0;
2810 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2811
2812 /* Get the hardware queue position index */
2813 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2814 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2815
2816 /* Process new responses from since the last time we looked */
2817 while (in_index != pp->resp_idx) {
2818 unsigned int tag;
2819 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2820
2821 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2822
2823 if (IS_GEN_I(hpriv)) {
2824 /* 50xx: no NCQ, only one command active at a time */
2825 tag = ap->link.active_tag;
2826 } else {
2827 /* Gen II/IIE: get command tag from CRPB entry */
2828 tag = le16_to_cpu(response->id) & 0x1f;
2829 }
2830 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2831 done_mask |= 1 << tag;
2832 work_done = true;
2833 }
2834
2835 if (work_done) {
2836 ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2837
2838 /* Update the software queue position index in hardware */
2839 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2840 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2841 port_mmio + EDMA_RSP_Q_OUT_PTR);
2842 }
2843 }
2844
mv_port_intr(struct ata_port * ap,u32 port_cause)2845 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2846 {
2847 struct mv_port_priv *pp;
2848 int edma_was_enabled;
2849
2850 /*
2851 * Grab a snapshot of the EDMA_EN flag setting,
2852 * so that we have a consistent view for this port,
2853 * even if something we call of our routines changes it.
2854 */
2855 pp = ap->private_data;
2856 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2857 /*
2858 * Process completed CRPB response(s) before other events.
2859 */
2860 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2861 mv_process_crpb_entries(ap, pp);
2862 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2863 mv_handle_fbs_ncq_dev_err(ap);
2864 }
2865 /*
2866 * Handle chip-reported errors, or continue on to handle PIO.
2867 */
2868 if (unlikely(port_cause & ERR_IRQ)) {
2869 mv_err_intr(ap);
2870 } else if (!edma_was_enabled) {
2871 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2872 if (qc)
2873 ata_bmdma_port_intr(ap, qc);
2874 else
2875 mv_unexpected_intr(ap, edma_was_enabled);
2876 }
2877 }
2878
2879 /**
2880 * mv_host_intr - Handle all interrupts on the given host controller
2881 * @host: host specific structure
2882 * @main_irq_cause: Main interrupt cause register for the chip.
2883 *
2884 * LOCKING:
2885 * Inherited from caller.
2886 */
mv_host_intr(struct ata_host * host,u32 main_irq_cause)2887 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2888 {
2889 struct mv_host_priv *hpriv = host->private_data;
2890 void __iomem *mmio = hpriv->base, *hc_mmio;
2891 unsigned int handled = 0, port;
2892
2893 /* If asserted, clear the "all ports" IRQ coalescing bit */
2894 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2895 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2896
2897 for (port = 0; port < hpriv->n_ports; port++) {
2898 struct ata_port *ap = host->ports[port];
2899 unsigned int p, shift, hardport, port_cause;
2900
2901 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2902 /*
2903 * Each hc within the host has its own hc_irq_cause register,
2904 * where the interrupting ports bits get ack'd.
2905 */
2906 if (hardport == 0) { /* first port on this hc ? */
2907 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2908 u32 port_mask, ack_irqs;
2909 /*
2910 * Skip this entire hc if nothing pending for any ports
2911 */
2912 if (!hc_cause) {
2913 port += MV_PORTS_PER_HC - 1;
2914 continue;
2915 }
2916 /*
2917 * We don't need/want to read the hc_irq_cause register,
2918 * because doing so hurts performance, and
2919 * main_irq_cause already gives us everything we need.
2920 *
2921 * But we do have to *write* to the hc_irq_cause to ack
2922 * the ports that we are handling this time through.
2923 *
2924 * This requires that we create a bitmap for those
2925 * ports which interrupted us, and use that bitmap
2926 * to ack (only) those ports via hc_irq_cause.
2927 */
2928 ack_irqs = 0;
2929 if (hc_cause & PORTS_0_3_COAL_DONE)
2930 ack_irqs = HC_COAL_IRQ;
2931 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2932 if ((port + p) >= hpriv->n_ports)
2933 break;
2934 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2935 if (hc_cause & port_mask)
2936 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2937 }
2938 hc_mmio = mv_hc_base_from_port(mmio, port);
2939 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2940 handled = 1;
2941 }
2942 /*
2943 * Handle interrupts signalled for this port:
2944 */
2945 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2946 if (port_cause)
2947 mv_port_intr(ap, port_cause);
2948 }
2949 return handled;
2950 }
2951
mv_pci_error(struct ata_host * host,void __iomem * mmio)2952 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2953 {
2954 struct mv_host_priv *hpriv = host->private_data;
2955 struct ata_port *ap;
2956 struct ata_queued_cmd *qc;
2957 struct ata_eh_info *ehi;
2958 unsigned int i, err_mask, printed = 0;
2959 u32 err_cause;
2960
2961 err_cause = readl(mmio + hpriv->irq_cause_offset);
2962
2963 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2964
2965 DPRINTK("All regs @ PCI error\n");
2966 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2967
2968 writelfl(0, mmio + hpriv->irq_cause_offset);
2969
2970 for (i = 0; i < host->n_ports; i++) {
2971 ap = host->ports[i];
2972 if (!ata_link_offline(&ap->link)) {
2973 ehi = &ap->link.eh_info;
2974 ata_ehi_clear_desc(ehi);
2975 if (!printed++)
2976 ata_ehi_push_desc(ehi,
2977 "PCI err cause 0x%08x", err_cause);
2978 err_mask = AC_ERR_HOST_BUS;
2979 ehi->action = ATA_EH_RESET;
2980 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2981 if (qc)
2982 qc->err_mask |= err_mask;
2983 else
2984 ehi->err_mask |= err_mask;
2985
2986 ata_port_freeze(ap);
2987 }
2988 }
2989 return 1; /* handled */
2990 }
2991
2992 /**
2993 * mv_interrupt - Main interrupt event handler
2994 * @irq: unused
2995 * @dev_instance: private data; in this case the host structure
2996 *
2997 * Read the read only register to determine if any host
2998 * controllers have pending interrupts. If so, call lower level
2999 * routine to handle. Also check for PCI errors which are only
3000 * reported here.
3001 *
3002 * LOCKING:
3003 * This routine holds the host lock while processing pending
3004 * interrupts.
3005 */
mv_interrupt(int irq,void * dev_instance)3006 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3007 {
3008 struct ata_host *host = dev_instance;
3009 struct mv_host_priv *hpriv = host->private_data;
3010 unsigned int handled = 0;
3011 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3012 u32 main_irq_cause, pending_irqs;
3013
3014 spin_lock(&host->lock);
3015
3016 /* for MSI: block new interrupts while in here */
3017 if (using_msi)
3018 mv_write_main_irq_mask(0, hpriv);
3019
3020 main_irq_cause = readl(hpriv->main_irq_cause_addr);
3021 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
3022 /*
3023 * Deal with cases where we either have nothing pending, or have read
3024 * a bogus register value which can indicate HW removal or PCI fault.
3025 */
3026 if (pending_irqs && main_irq_cause != 0xffffffffU) {
3027 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3028 handled = mv_pci_error(host, hpriv->base);
3029 else
3030 handled = mv_host_intr(host, pending_irqs);
3031 }
3032
3033 /* for MSI: unmask; interrupt cause bits will retrigger now */
3034 if (using_msi)
3035 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3036
3037 spin_unlock(&host->lock);
3038
3039 return IRQ_RETVAL(handled);
3040 }
3041
mv5_scr_offset(unsigned int sc_reg_in)3042 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3043 {
3044 unsigned int ofs;
3045
3046 switch (sc_reg_in) {
3047 case SCR_STATUS:
3048 case SCR_ERROR:
3049 case SCR_CONTROL:
3050 ofs = sc_reg_in * sizeof(u32);
3051 break;
3052 default:
3053 ofs = 0xffffffffU;
3054 break;
3055 }
3056 return ofs;
3057 }
3058
mv5_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)3059 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3060 {
3061 struct mv_host_priv *hpriv = link->ap->host->private_data;
3062 void __iomem *mmio = hpriv->base;
3063 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3064 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3065
3066 if (ofs != 0xffffffffU) {
3067 *val = readl(addr + ofs);
3068 return 0;
3069 } else
3070 return -EINVAL;
3071 }
3072
mv5_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)3073 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3074 {
3075 struct mv_host_priv *hpriv = link->ap->host->private_data;
3076 void __iomem *mmio = hpriv->base;
3077 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3078 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3079
3080 if (ofs != 0xffffffffU) {
3081 writelfl(val, addr + ofs);
3082 return 0;
3083 } else
3084 return -EINVAL;
3085 }
3086
mv5_reset_bus(struct ata_host * host,void __iomem * mmio)3087 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3088 {
3089 struct pci_dev *pdev = to_pci_dev(host->dev);
3090 int early_5080;
3091
3092 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3093
3094 if (!early_5080) {
3095 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3096 tmp |= (1 << 0);
3097 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3098 }
3099
3100 mv_reset_pci_bus(host, mmio);
3101 }
3102
mv5_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3103 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3104 {
3105 writel(0x0fcfffff, mmio + FLASH_CTL);
3106 }
3107
mv5_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3108 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3109 void __iomem *mmio)
3110 {
3111 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3112 u32 tmp;
3113
3114 tmp = readl(phy_mmio + MV5_PHY_MODE);
3115
3116 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3117 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3118 }
3119
mv5_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3120 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3121 {
3122 u32 tmp;
3123
3124 writel(0, mmio + GPIO_PORT_CTL);
3125
3126 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3127
3128 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3129 tmp |= ~(1 << 0);
3130 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3131 }
3132
mv5_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3133 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3134 unsigned int port)
3135 {
3136 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3137 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3138 u32 tmp;
3139 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3140
3141 if (fix_apm_sq) {
3142 tmp = readl(phy_mmio + MV5_LTMODE);
3143 tmp |= (1 << 19);
3144 writel(tmp, phy_mmio + MV5_LTMODE);
3145
3146 tmp = readl(phy_mmio + MV5_PHY_CTL);
3147 tmp &= ~0x3;
3148 tmp |= 0x1;
3149 writel(tmp, phy_mmio + MV5_PHY_CTL);
3150 }
3151
3152 tmp = readl(phy_mmio + MV5_PHY_MODE);
3153 tmp &= ~mask;
3154 tmp |= hpriv->signal[port].pre;
3155 tmp |= hpriv->signal[port].amps;
3156 writel(tmp, phy_mmio + MV5_PHY_MODE);
3157 }
3158
3159
3160 #undef ZERO
3161 #define ZERO(reg) writel(0, port_mmio + (reg))
mv5_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3162 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3163 unsigned int port)
3164 {
3165 void __iomem *port_mmio = mv_port_base(mmio, port);
3166
3167 mv_reset_channel(hpriv, mmio, port);
3168
3169 ZERO(0x028); /* command */
3170 writel(0x11f, port_mmio + EDMA_CFG);
3171 ZERO(0x004); /* timer */
3172 ZERO(0x008); /* irq err cause */
3173 ZERO(0x00c); /* irq err mask */
3174 ZERO(0x010); /* rq bah */
3175 ZERO(0x014); /* rq inp */
3176 ZERO(0x018); /* rq outp */
3177 ZERO(0x01c); /* respq bah */
3178 ZERO(0x024); /* respq outp */
3179 ZERO(0x020); /* respq inp */
3180 ZERO(0x02c); /* test control */
3181 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3182 }
3183 #undef ZERO
3184
3185 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv5_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int hc)3186 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3187 unsigned int hc)
3188 {
3189 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3190 u32 tmp;
3191
3192 ZERO(0x00c);
3193 ZERO(0x010);
3194 ZERO(0x014);
3195 ZERO(0x018);
3196
3197 tmp = readl(hc_mmio + 0x20);
3198 tmp &= 0x1c1c1c1c;
3199 tmp |= 0x03030303;
3200 writel(tmp, hc_mmio + 0x20);
3201 }
3202 #undef ZERO
3203
mv5_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3204 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3205 unsigned int n_hc)
3206 {
3207 unsigned int hc, port;
3208
3209 for (hc = 0; hc < n_hc; hc++) {
3210 for (port = 0; port < MV_PORTS_PER_HC; port++)
3211 mv5_reset_hc_port(hpriv, mmio,
3212 (hc * MV_PORTS_PER_HC) + port);
3213
3214 mv5_reset_one_hc(hpriv, mmio, hc);
3215 }
3216
3217 return 0;
3218 }
3219
3220 #undef ZERO
3221 #define ZERO(reg) writel(0, mmio + (reg))
mv_reset_pci_bus(struct ata_host * host,void __iomem * mmio)3222 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3223 {
3224 struct mv_host_priv *hpriv = host->private_data;
3225 u32 tmp;
3226
3227 tmp = readl(mmio + MV_PCI_MODE);
3228 tmp &= 0xff00ffff;
3229 writel(tmp, mmio + MV_PCI_MODE);
3230
3231 ZERO(MV_PCI_DISC_TIMER);
3232 ZERO(MV_PCI_MSI_TRIGGER);
3233 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3234 ZERO(MV_PCI_SERR_MASK);
3235 ZERO(hpriv->irq_cause_offset);
3236 ZERO(hpriv->irq_mask_offset);
3237 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3238 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3239 ZERO(MV_PCI_ERR_ATTRIBUTE);
3240 ZERO(MV_PCI_ERR_COMMAND);
3241 }
3242 #undef ZERO
3243
mv6_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3244 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3245 {
3246 u32 tmp;
3247
3248 mv5_reset_flash(hpriv, mmio);
3249
3250 tmp = readl(mmio + GPIO_PORT_CTL);
3251 tmp &= 0x3;
3252 tmp |= (1 << 5) | (1 << 6);
3253 writel(tmp, mmio + GPIO_PORT_CTL);
3254 }
3255
3256 /*
3257 * mv6_reset_hc - Perform the 6xxx global soft reset
3258 * @mmio: base address of the HBA
3259 *
3260 * This routine only applies to 6xxx parts.
3261 *
3262 * LOCKING:
3263 * Inherited from caller.
3264 */
mv6_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3265 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3266 unsigned int n_hc)
3267 {
3268 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3269 int i, rc = 0;
3270 u32 t;
3271
3272 /* Following procedure defined in PCI "main command and status
3273 * register" table.
3274 */
3275 t = readl(reg);
3276 writel(t | STOP_PCI_MASTER, reg);
3277
3278 for (i = 0; i < 1000; i++) {
3279 udelay(1);
3280 t = readl(reg);
3281 if (PCI_MASTER_EMPTY & t)
3282 break;
3283 }
3284 if (!(PCI_MASTER_EMPTY & t)) {
3285 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3286 rc = 1;
3287 goto done;
3288 }
3289
3290 /* set reset */
3291 i = 5;
3292 do {
3293 writel(t | GLOB_SFT_RST, reg);
3294 t = readl(reg);
3295 udelay(1);
3296 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3297
3298 if (!(GLOB_SFT_RST & t)) {
3299 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3300 rc = 1;
3301 goto done;
3302 }
3303
3304 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3305 i = 5;
3306 do {
3307 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3308 t = readl(reg);
3309 udelay(1);
3310 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3311
3312 if (GLOB_SFT_RST & t) {
3313 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3314 rc = 1;
3315 }
3316 done:
3317 return rc;
3318 }
3319
mv6_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3320 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3321 void __iomem *mmio)
3322 {
3323 void __iomem *port_mmio;
3324 u32 tmp;
3325
3326 tmp = readl(mmio + RESET_CFG);
3327 if ((tmp & (1 << 0)) == 0) {
3328 hpriv->signal[idx].amps = 0x7 << 8;
3329 hpriv->signal[idx].pre = 0x1 << 5;
3330 return;
3331 }
3332
3333 port_mmio = mv_port_base(mmio, idx);
3334 tmp = readl(port_mmio + PHY_MODE2);
3335
3336 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3337 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3338 }
3339
mv6_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3340 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3341 {
3342 writel(0x00000060, mmio + GPIO_PORT_CTL);
3343 }
3344
mv6_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3345 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3346 unsigned int port)
3347 {
3348 void __iomem *port_mmio = mv_port_base(mmio, port);
3349
3350 u32 hp_flags = hpriv->hp_flags;
3351 int fix_phy_mode2 =
3352 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3353 int fix_phy_mode4 =
3354 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3355 u32 m2, m3;
3356
3357 if (fix_phy_mode2) {
3358 m2 = readl(port_mmio + PHY_MODE2);
3359 m2 &= ~(1 << 16);
3360 m2 |= (1 << 31);
3361 writel(m2, port_mmio + PHY_MODE2);
3362
3363 udelay(200);
3364
3365 m2 = readl(port_mmio + PHY_MODE2);
3366 m2 &= ~((1 << 16) | (1 << 31));
3367 writel(m2, port_mmio + PHY_MODE2);
3368
3369 udelay(200);
3370 }
3371
3372 /*
3373 * Gen-II/IIe PHY_MODE3 errata RM#2:
3374 * Achieves better receiver noise performance than the h/w default:
3375 */
3376 m3 = readl(port_mmio + PHY_MODE3);
3377 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3378
3379 /* Guideline 88F5182 (GL# SATA-S11) */
3380 if (IS_SOC(hpriv))
3381 m3 &= ~0x1c;
3382
3383 if (fix_phy_mode4) {
3384 u32 m4 = readl(port_mmio + PHY_MODE4);
3385 /*
3386 * Enforce reserved-bit restrictions on GenIIe devices only.
3387 * For earlier chipsets, force only the internal config field
3388 * (workaround for errata FEr SATA#10 part 1).
3389 */
3390 if (IS_GEN_IIE(hpriv))
3391 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3392 else
3393 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3394 writel(m4, port_mmio + PHY_MODE4);
3395 }
3396 /*
3397 * Workaround for 60x1-B2 errata SATA#13:
3398 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3399 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3400 * Or ensure we use writelfl() when writing PHY_MODE4.
3401 */
3402 writel(m3, port_mmio + PHY_MODE3);
3403
3404 /* Revert values of pre-emphasis and signal amps to the saved ones */
3405 m2 = readl(port_mmio + PHY_MODE2);
3406
3407 m2 &= ~MV_M2_PREAMP_MASK;
3408 m2 |= hpriv->signal[port].amps;
3409 m2 |= hpriv->signal[port].pre;
3410 m2 &= ~(1 << 16);
3411
3412 /* according to mvSata 3.6.1, some IIE values are fixed */
3413 if (IS_GEN_IIE(hpriv)) {
3414 m2 &= ~0xC30FF01F;
3415 m2 |= 0x0000900F;
3416 }
3417
3418 writel(m2, port_mmio + PHY_MODE2);
3419 }
3420
3421 /* TODO: use the generic LED interface to configure the SATA Presence */
3422 /* & Acitivy LEDs on the board */
mv_soc_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3423 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3424 void __iomem *mmio)
3425 {
3426 return;
3427 }
3428
mv_soc_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3429 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3430 void __iomem *mmio)
3431 {
3432 void __iomem *port_mmio;
3433 u32 tmp;
3434
3435 port_mmio = mv_port_base(mmio, idx);
3436 tmp = readl(port_mmio + PHY_MODE2);
3437
3438 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3439 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3440 }
3441
3442 #undef ZERO
3443 #define ZERO(reg) writel(0, port_mmio + (reg))
mv_soc_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3444 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3445 void __iomem *mmio, unsigned int port)
3446 {
3447 void __iomem *port_mmio = mv_port_base(mmio, port);
3448
3449 mv_reset_channel(hpriv, mmio, port);
3450
3451 ZERO(0x028); /* command */
3452 writel(0x101f, port_mmio + EDMA_CFG);
3453 ZERO(0x004); /* timer */
3454 ZERO(0x008); /* irq err cause */
3455 ZERO(0x00c); /* irq err mask */
3456 ZERO(0x010); /* rq bah */
3457 ZERO(0x014); /* rq inp */
3458 ZERO(0x018); /* rq outp */
3459 ZERO(0x01c); /* respq bah */
3460 ZERO(0x024); /* respq outp */
3461 ZERO(0x020); /* respq inp */
3462 ZERO(0x02c); /* test control */
3463 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3464 }
3465
3466 #undef ZERO
3467
3468 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv_soc_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio)3469 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3470 void __iomem *mmio)
3471 {
3472 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3473
3474 ZERO(0x00c);
3475 ZERO(0x010);
3476 ZERO(0x014);
3477
3478 }
3479
3480 #undef ZERO
3481
mv_soc_reset_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int n_hc)3482 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3483 void __iomem *mmio, unsigned int n_hc)
3484 {
3485 unsigned int port;
3486
3487 for (port = 0; port < hpriv->n_ports; port++)
3488 mv_soc_reset_hc_port(hpriv, mmio, port);
3489
3490 mv_soc_reset_one_hc(hpriv, mmio);
3491
3492 return 0;
3493 }
3494
mv_soc_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3495 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3496 void __iomem *mmio)
3497 {
3498 return;
3499 }
3500
mv_soc_reset_bus(struct ata_host * host,void __iomem * mmio)3501 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3502 {
3503 return;
3504 }
3505
mv_soc_65n_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3506 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3507 void __iomem *mmio, unsigned int port)
3508 {
3509 void __iomem *port_mmio = mv_port_base(mmio, port);
3510 u32 reg;
3511
3512 reg = readl(port_mmio + PHY_MODE3);
3513 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3514 reg |= (0x1 << 27);
3515 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3516 reg |= (0x1 << 29);
3517 writel(reg, port_mmio + PHY_MODE3);
3518
3519 reg = readl(port_mmio + PHY_MODE4);
3520 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3521 reg |= (0x1 << 16);
3522 writel(reg, port_mmio + PHY_MODE4);
3523
3524 reg = readl(port_mmio + PHY_MODE9_GEN2);
3525 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3526 reg |= 0x8;
3527 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3528 writel(reg, port_mmio + PHY_MODE9_GEN2);
3529
3530 reg = readl(port_mmio + PHY_MODE9_GEN1);
3531 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3532 reg |= 0x8;
3533 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3534 writel(reg, port_mmio + PHY_MODE9_GEN1);
3535 }
3536
3537 /*
3538 * soc_is_65 - check if the soc is 65 nano device
3539 *
3540 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3541 * register, this register should contain non-zero value and it exists only
3542 * in the 65 nano devices, when reading it from older devices we get 0.
3543 */
soc_is_65n(struct mv_host_priv * hpriv)3544 static bool soc_is_65n(struct mv_host_priv *hpriv)
3545 {
3546 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3547
3548 if (readl(port0_mmio + PHYCFG_OFS))
3549 return true;
3550 return false;
3551 }
3552
mv_setup_ifcfg(void __iomem * port_mmio,int want_gen2i)3553 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3554 {
3555 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3556
3557 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3558 if (want_gen2i)
3559 ifcfg |= (1 << 7); /* enable gen2i speed */
3560 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3561 }
3562
mv_reset_channel(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port_no)3563 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3564 unsigned int port_no)
3565 {
3566 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3567
3568 /*
3569 * The datasheet warns against setting EDMA_RESET when EDMA is active
3570 * (but doesn't say what the problem might be). So we first try
3571 * to disable the EDMA engine before doing the EDMA_RESET operation.
3572 */
3573 mv_stop_edma_engine(port_mmio);
3574 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3575
3576 if (!IS_GEN_I(hpriv)) {
3577 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3578 mv_setup_ifcfg(port_mmio, 1);
3579 }
3580 /*
3581 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3582 * link, and physical layers. It resets all SATA interface registers
3583 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3584 */
3585 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3586 udelay(25); /* allow reset propagation */
3587 writelfl(0, port_mmio + EDMA_CMD);
3588
3589 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3590
3591 if (IS_GEN_I(hpriv))
3592 usleep_range(500, 1000);
3593 }
3594
mv_pmp_select(struct ata_port * ap,int pmp)3595 static void mv_pmp_select(struct ata_port *ap, int pmp)
3596 {
3597 if (sata_pmp_supported(ap)) {
3598 void __iomem *port_mmio = mv_ap_base(ap);
3599 u32 reg = readl(port_mmio + SATA_IFCTL);
3600 int old = reg & 0xf;
3601
3602 if (old != pmp) {
3603 reg = (reg & ~0xf) | pmp;
3604 writelfl(reg, port_mmio + SATA_IFCTL);
3605 }
3606 }
3607 }
3608
mv_pmp_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3609 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3610 unsigned long deadline)
3611 {
3612 mv_pmp_select(link->ap, sata_srst_pmp(link));
3613 return sata_std_hardreset(link, class, deadline);
3614 }
3615
mv_softreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3616 static int mv_softreset(struct ata_link *link, unsigned int *class,
3617 unsigned long deadline)
3618 {
3619 mv_pmp_select(link->ap, sata_srst_pmp(link));
3620 return ata_sff_softreset(link, class, deadline);
3621 }
3622
mv_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3623 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3624 unsigned long deadline)
3625 {
3626 struct ata_port *ap = link->ap;
3627 struct mv_host_priv *hpriv = ap->host->private_data;
3628 struct mv_port_priv *pp = ap->private_data;
3629 void __iomem *mmio = hpriv->base;
3630 int rc, attempts = 0, extra = 0;
3631 u32 sstatus;
3632 bool online;
3633
3634 mv_reset_channel(hpriv, mmio, ap->port_no);
3635 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3636 pp->pp_flags &=
3637 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3638
3639 /* Workaround for errata FEr SATA#10 (part 2) */
3640 do {
3641 const unsigned long *timing =
3642 sata_ehc_deb_timing(&link->eh_context);
3643
3644 rc = sata_link_hardreset(link, timing, deadline + extra,
3645 &online, NULL);
3646 rc = online ? -EAGAIN : rc;
3647 if (rc)
3648 return rc;
3649 sata_scr_read(link, SCR_STATUS, &sstatus);
3650 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3651 /* Force 1.5gb/s link speed and try again */
3652 mv_setup_ifcfg(mv_ap_base(ap), 0);
3653 if (time_after(jiffies + HZ, deadline))
3654 extra = HZ; /* only extend it once, max */
3655 }
3656 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3657 mv_save_cached_regs(ap);
3658 mv_edma_cfg(ap, 0, 0);
3659
3660 return rc;
3661 }
3662
mv_eh_freeze(struct ata_port * ap)3663 static void mv_eh_freeze(struct ata_port *ap)
3664 {
3665 mv_stop_edma(ap);
3666 mv_enable_port_irqs(ap, 0);
3667 }
3668
mv_eh_thaw(struct ata_port * ap)3669 static void mv_eh_thaw(struct ata_port *ap)
3670 {
3671 struct mv_host_priv *hpriv = ap->host->private_data;
3672 unsigned int port = ap->port_no;
3673 unsigned int hardport = mv_hardport_from_port(port);
3674 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3675 void __iomem *port_mmio = mv_ap_base(ap);
3676 u32 hc_irq_cause;
3677
3678 /* clear EDMA errors on this port */
3679 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3680
3681 /* clear pending irq events */
3682 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3683 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3684
3685 mv_enable_port_irqs(ap, ERR_IRQ);
3686 }
3687
3688 /**
3689 * mv_port_init - Perform some early initialization on a single port.
3690 * @port: libata data structure storing shadow register addresses
3691 * @port_mmio: base address of the port
3692 *
3693 * Initialize shadow register mmio addresses, clear outstanding
3694 * interrupts on the port, and unmask interrupts for the future
3695 * start of the port.
3696 *
3697 * LOCKING:
3698 * Inherited from caller.
3699 */
mv_port_init(struct ata_ioports * port,void __iomem * port_mmio)3700 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3701 {
3702 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3703
3704 /* PIO related setup
3705 */
3706 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3707 port->error_addr =
3708 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3709 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3710 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3711 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3712 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3713 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3714 port->status_addr =
3715 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3716 /* special case: control/altstatus doesn't have ATA_REG_ address */
3717 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3718
3719 /* Clear any currently outstanding port interrupt conditions */
3720 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3721 writelfl(readl(serr), serr);
3722 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3723
3724 /* unmask all non-transient EDMA error interrupts */
3725 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3726
3727 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3728 readl(port_mmio + EDMA_CFG),
3729 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3730 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3731 }
3732
mv_in_pcix_mode(struct ata_host * host)3733 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3734 {
3735 struct mv_host_priv *hpriv = host->private_data;
3736 void __iomem *mmio = hpriv->base;
3737 u32 reg;
3738
3739 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3740 return 0; /* not PCI-X capable */
3741 reg = readl(mmio + MV_PCI_MODE);
3742 if ((reg & MV_PCI_MODE_MASK) == 0)
3743 return 0; /* conventional PCI mode */
3744 return 1; /* chip is in PCI-X mode */
3745 }
3746
mv_pci_cut_through_okay(struct ata_host * host)3747 static int mv_pci_cut_through_okay(struct ata_host *host)
3748 {
3749 struct mv_host_priv *hpriv = host->private_data;
3750 void __iomem *mmio = hpriv->base;
3751 u32 reg;
3752
3753 if (!mv_in_pcix_mode(host)) {
3754 reg = readl(mmio + MV_PCI_COMMAND);
3755 if (reg & MV_PCI_COMMAND_MRDTRIG)
3756 return 0; /* not okay */
3757 }
3758 return 1; /* okay */
3759 }
3760
mv_60x1b2_errata_pci7(struct ata_host * host)3761 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3762 {
3763 struct mv_host_priv *hpriv = host->private_data;
3764 void __iomem *mmio = hpriv->base;
3765
3766 /* workaround for 60x1-B2 errata PCI#7 */
3767 if (mv_in_pcix_mode(host)) {
3768 u32 reg = readl(mmio + MV_PCI_COMMAND);
3769 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3770 }
3771 }
3772
mv_chip_id(struct ata_host * host,unsigned int board_idx)3773 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3774 {
3775 struct pci_dev *pdev = to_pci_dev(host->dev);
3776 struct mv_host_priv *hpriv = host->private_data;
3777 u32 hp_flags = hpriv->hp_flags;
3778
3779 switch (board_idx) {
3780 case chip_5080:
3781 hpriv->ops = &mv5xxx_ops;
3782 hp_flags |= MV_HP_GEN_I;
3783
3784 switch (pdev->revision) {
3785 case 0x1:
3786 hp_flags |= MV_HP_ERRATA_50XXB0;
3787 break;
3788 case 0x3:
3789 hp_flags |= MV_HP_ERRATA_50XXB2;
3790 break;
3791 default:
3792 dev_warn(&pdev->dev,
3793 "Applying 50XXB2 workarounds to unknown rev\n");
3794 hp_flags |= MV_HP_ERRATA_50XXB2;
3795 break;
3796 }
3797 break;
3798
3799 case chip_504x:
3800 case chip_508x:
3801 hpriv->ops = &mv5xxx_ops;
3802 hp_flags |= MV_HP_GEN_I;
3803
3804 switch (pdev->revision) {
3805 case 0x0:
3806 hp_flags |= MV_HP_ERRATA_50XXB0;
3807 break;
3808 case 0x3:
3809 hp_flags |= MV_HP_ERRATA_50XXB2;
3810 break;
3811 default:
3812 dev_warn(&pdev->dev,
3813 "Applying B2 workarounds to unknown rev\n");
3814 hp_flags |= MV_HP_ERRATA_50XXB2;
3815 break;
3816 }
3817 break;
3818
3819 case chip_604x:
3820 case chip_608x:
3821 hpriv->ops = &mv6xxx_ops;
3822 hp_flags |= MV_HP_GEN_II;
3823
3824 switch (pdev->revision) {
3825 case 0x7:
3826 mv_60x1b2_errata_pci7(host);
3827 hp_flags |= MV_HP_ERRATA_60X1B2;
3828 break;
3829 case 0x9:
3830 hp_flags |= MV_HP_ERRATA_60X1C0;
3831 break;
3832 default:
3833 dev_warn(&pdev->dev,
3834 "Applying B2 workarounds to unknown rev\n");
3835 hp_flags |= MV_HP_ERRATA_60X1B2;
3836 break;
3837 }
3838 break;
3839
3840 case chip_7042:
3841 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3842 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3843 (pdev->device == 0x2300 || pdev->device == 0x2310))
3844 {
3845 /*
3846 * Highpoint RocketRAID PCIe 23xx series cards:
3847 *
3848 * Unconfigured drives are treated as "Legacy"
3849 * by the BIOS, and it overwrites sector 8 with
3850 * a "Lgcy" metadata block prior to Linux boot.
3851 *
3852 * Configured drives (RAID or JBOD) leave sector 8
3853 * alone, but instead overwrite a high numbered
3854 * sector for the RAID metadata. This sector can
3855 * be determined exactly, by truncating the physical
3856 * drive capacity to a nice even GB value.
3857 *
3858 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3859 *
3860 * Warn the user, lest they think we're just buggy.
3861 */
3862 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3863 " BIOS CORRUPTS DATA on all attached drives,"
3864 " regardless of if/how they are configured."
3865 " BEWARE!\n");
3866 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3867 " use sectors 8-9 on \"Legacy\" drives,"
3868 " and avoid the final two gigabytes on"
3869 " all RocketRAID BIOS initialized drives.\n");
3870 }
3871 fallthrough;
3872 case chip_6042:
3873 hpriv->ops = &mv6xxx_ops;
3874 hp_flags |= MV_HP_GEN_IIE;
3875 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3876 hp_flags |= MV_HP_CUT_THROUGH;
3877
3878 switch (pdev->revision) {
3879 case 0x2: /* Rev.B0: the first/only public release */
3880 hp_flags |= MV_HP_ERRATA_60X1C0;
3881 break;
3882 default:
3883 dev_warn(&pdev->dev,
3884 "Applying 60X1C0 workarounds to unknown rev\n");
3885 hp_flags |= MV_HP_ERRATA_60X1C0;
3886 break;
3887 }
3888 break;
3889 case chip_soc:
3890 if (soc_is_65n(hpriv))
3891 hpriv->ops = &mv_soc_65n_ops;
3892 else
3893 hpriv->ops = &mv_soc_ops;
3894 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3895 MV_HP_ERRATA_60X1C0;
3896 break;
3897
3898 default:
3899 dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3900 return -EINVAL;
3901 }
3902
3903 hpriv->hp_flags = hp_flags;
3904 if (hp_flags & MV_HP_PCIE) {
3905 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3906 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3907 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3908 } else {
3909 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3910 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3911 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3912 }
3913
3914 return 0;
3915 }
3916
3917 /**
3918 * mv_init_host - Perform some early initialization of the host.
3919 * @host: ATA host to initialize
3920 *
3921 * If possible, do an early global reset of the host. Then do
3922 * our port init and clear/unmask all/relevant host interrupts.
3923 *
3924 * LOCKING:
3925 * Inherited from caller.
3926 */
mv_init_host(struct ata_host * host)3927 static int mv_init_host(struct ata_host *host)
3928 {
3929 int rc = 0, n_hc, port, hc;
3930 struct mv_host_priv *hpriv = host->private_data;
3931 void __iomem *mmio = hpriv->base;
3932
3933 rc = mv_chip_id(host, hpriv->board_idx);
3934 if (rc)
3935 goto done;
3936
3937 if (IS_SOC(hpriv)) {
3938 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3939 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3940 } else {
3941 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3942 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3943 }
3944
3945 /* initialize shadow irq mask with register's value */
3946 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3947
3948 /* global interrupt mask: 0 == mask everything */
3949 mv_set_main_irq_mask(host, ~0, 0);
3950
3951 n_hc = mv_get_hc_count(host->ports[0]->flags);
3952
3953 for (port = 0; port < host->n_ports; port++)
3954 if (hpriv->ops->read_preamp)
3955 hpriv->ops->read_preamp(hpriv, port, mmio);
3956
3957 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3958 if (rc)
3959 goto done;
3960
3961 hpriv->ops->reset_flash(hpriv, mmio);
3962 hpriv->ops->reset_bus(host, mmio);
3963 hpriv->ops->enable_leds(hpriv, mmio);
3964
3965 for (port = 0; port < host->n_ports; port++) {
3966 struct ata_port *ap = host->ports[port];
3967 void __iomem *port_mmio = mv_port_base(mmio, port);
3968
3969 mv_port_init(&ap->ioaddr, port_mmio);
3970 }
3971
3972 for (hc = 0; hc < n_hc; hc++) {
3973 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3974
3975 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3976 "(before clear)=0x%08x\n", hc,
3977 readl(hc_mmio + HC_CFG),
3978 readl(hc_mmio + HC_IRQ_CAUSE));
3979
3980 /* Clear any currently outstanding hc interrupt conditions */
3981 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3982 }
3983
3984 if (!IS_SOC(hpriv)) {
3985 /* Clear any currently outstanding host interrupt conditions */
3986 writelfl(0, mmio + hpriv->irq_cause_offset);
3987
3988 /* and unmask interrupt generation for host regs */
3989 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3990 }
3991
3992 /*
3993 * enable only global host interrupts for now.
3994 * The per-port interrupts get done later as ports are set up.
3995 */
3996 mv_set_main_irq_mask(host, 0, PCI_ERR);
3997 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3998 irq_coalescing_usecs);
3999 done:
4000 return rc;
4001 }
4002
mv_create_dma_pools(struct mv_host_priv * hpriv,struct device * dev)4003 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4004 {
4005 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4006 MV_CRQB_Q_SZ, 0);
4007 if (!hpriv->crqb_pool)
4008 return -ENOMEM;
4009
4010 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4011 MV_CRPB_Q_SZ, 0);
4012 if (!hpriv->crpb_pool)
4013 return -ENOMEM;
4014
4015 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4016 MV_SG_TBL_SZ, 0);
4017 if (!hpriv->sg_tbl_pool)
4018 return -ENOMEM;
4019
4020 return 0;
4021 }
4022
mv_conf_mbus_windows(struct mv_host_priv * hpriv,const struct mbus_dram_target_info * dram)4023 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4024 const struct mbus_dram_target_info *dram)
4025 {
4026 int i;
4027
4028 for (i = 0; i < 4; i++) {
4029 writel(0, hpriv->base + WINDOW_CTRL(i));
4030 writel(0, hpriv->base + WINDOW_BASE(i));
4031 }
4032
4033 for (i = 0; i < dram->num_cs; i++) {
4034 const struct mbus_dram_window *cs = dram->cs + i;
4035
4036 writel(((cs->size - 1) & 0xffff0000) |
4037 (cs->mbus_attr << 8) |
4038 (dram->mbus_dram_target_id << 4) | 1,
4039 hpriv->base + WINDOW_CTRL(i));
4040 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4041 }
4042 }
4043
4044 /**
4045 * mv_platform_probe - handle a positive probe of an soc Marvell
4046 * host
4047 * @pdev: platform device found
4048 *
4049 * LOCKING:
4050 * Inherited from caller.
4051 */
mv_platform_probe(struct platform_device * pdev)4052 static int mv_platform_probe(struct platform_device *pdev)
4053 {
4054 const struct mv_sata_platform_data *mv_platform_data;
4055 const struct mbus_dram_target_info *dram;
4056 const struct ata_port_info *ppi[] =
4057 { &mv_port_info[chip_soc], NULL };
4058 struct ata_host *host;
4059 struct mv_host_priv *hpriv;
4060 struct resource *res;
4061 int n_ports = 0, irq = 0;
4062 int rc;
4063 int port;
4064
4065 ata_print_version_once(&pdev->dev, DRV_VERSION);
4066
4067 /*
4068 * Simple resource validation ..
4069 */
4070 if (unlikely(pdev->num_resources != 2)) {
4071 dev_err(&pdev->dev, "invalid number of resources\n");
4072 return -EINVAL;
4073 }
4074
4075 /*
4076 * Get the register base first
4077 */
4078 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4079 if (res == NULL)
4080 return -EINVAL;
4081
4082 /* allocate host */
4083 if (pdev->dev.of_node) {
4084 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4085 &n_ports);
4086 if (rc) {
4087 dev_err(&pdev->dev,
4088 "error parsing nr-ports property: %d\n", rc);
4089 return rc;
4090 }
4091
4092 if (n_ports <= 0) {
4093 dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4094 n_ports);
4095 return -EINVAL;
4096 }
4097
4098 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4099 } else {
4100 mv_platform_data = dev_get_platdata(&pdev->dev);
4101 n_ports = mv_platform_data->n_ports;
4102 irq = platform_get_irq(pdev, 0);
4103 }
4104 if (irq < 0)
4105 return irq;
4106 if (!irq)
4107 return -EINVAL;
4108
4109 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4110 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4111
4112 if (!host || !hpriv)
4113 return -ENOMEM;
4114 hpriv->port_clks = devm_kcalloc(&pdev->dev,
4115 n_ports, sizeof(struct clk *),
4116 GFP_KERNEL);
4117 if (!hpriv->port_clks)
4118 return -ENOMEM;
4119 hpriv->port_phys = devm_kcalloc(&pdev->dev,
4120 n_ports, sizeof(struct phy *),
4121 GFP_KERNEL);
4122 if (!hpriv->port_phys)
4123 return -ENOMEM;
4124 host->private_data = hpriv;
4125 hpriv->board_idx = chip_soc;
4126
4127 host->iomap = NULL;
4128 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4129 resource_size(res));
4130 if (!hpriv->base)
4131 return -ENOMEM;
4132
4133 hpriv->base -= SATAHC0_REG_BASE;
4134
4135 hpriv->clk = clk_get(&pdev->dev, NULL);
4136 if (IS_ERR(hpriv->clk))
4137 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4138 else
4139 clk_prepare_enable(hpriv->clk);
4140
4141 for (port = 0; port < n_ports; port++) {
4142 char port_number[16];
4143 sprintf(port_number, "%d", port);
4144 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4145 if (!IS_ERR(hpriv->port_clks[port]))
4146 clk_prepare_enable(hpriv->port_clks[port]);
4147
4148 sprintf(port_number, "port%d", port);
4149 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4150 port_number);
4151 if (IS_ERR(hpriv->port_phys[port])) {
4152 rc = PTR_ERR(hpriv->port_phys[port]);
4153 hpriv->port_phys[port] = NULL;
4154 if (rc != -EPROBE_DEFER)
4155 dev_warn(&pdev->dev, "error getting phy %d", rc);
4156
4157 /* Cleanup only the initialized ports */
4158 hpriv->n_ports = port;
4159 goto err;
4160 } else
4161 phy_power_on(hpriv->port_phys[port]);
4162 }
4163
4164 /* All the ports have been initialized */
4165 hpriv->n_ports = n_ports;
4166
4167 /*
4168 * (Re-)program MBUS remapping windows if we are asked to.
4169 */
4170 dram = mv_mbus_dram_info();
4171 if (dram)
4172 mv_conf_mbus_windows(hpriv, dram);
4173
4174 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4175 if (rc)
4176 goto err;
4177
4178 /*
4179 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4180 * updated in the LP_PHY_CTL register.
4181 */
4182 if (pdev->dev.of_node &&
4183 of_device_is_compatible(pdev->dev.of_node,
4184 "marvell,armada-370-sata"))
4185 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4186
4187 /* initialize adapter */
4188 rc = mv_init_host(host);
4189 if (rc)
4190 goto err;
4191
4192 dev_info(&pdev->dev, "slots %u ports %d\n",
4193 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4194
4195 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4196 if (!rc)
4197 return 0;
4198
4199 err:
4200 if (!IS_ERR(hpriv->clk)) {
4201 clk_disable_unprepare(hpriv->clk);
4202 clk_put(hpriv->clk);
4203 }
4204 for (port = 0; port < hpriv->n_ports; port++) {
4205 if (!IS_ERR(hpriv->port_clks[port])) {
4206 clk_disable_unprepare(hpriv->port_clks[port]);
4207 clk_put(hpriv->port_clks[port]);
4208 }
4209 phy_power_off(hpriv->port_phys[port]);
4210 }
4211
4212 return rc;
4213 }
4214
4215 /*
4216 *
4217 * mv_platform_remove - unplug a platform interface
4218 * @pdev: platform device
4219 *
4220 * A platform bus SATA device has been unplugged. Perform the needed
4221 * cleanup. Also called on module unload for any active devices.
4222 */
mv_platform_remove(struct platform_device * pdev)4223 static int mv_platform_remove(struct platform_device *pdev)
4224 {
4225 struct ata_host *host = platform_get_drvdata(pdev);
4226 struct mv_host_priv *hpriv = host->private_data;
4227 int port;
4228 ata_host_detach(host);
4229
4230 if (!IS_ERR(hpriv->clk)) {
4231 clk_disable_unprepare(hpriv->clk);
4232 clk_put(hpriv->clk);
4233 }
4234 for (port = 0; port < host->n_ports; port++) {
4235 if (!IS_ERR(hpriv->port_clks[port])) {
4236 clk_disable_unprepare(hpriv->port_clks[port]);
4237 clk_put(hpriv->port_clks[port]);
4238 }
4239 phy_power_off(hpriv->port_phys[port]);
4240 }
4241 return 0;
4242 }
4243
4244 #ifdef CONFIG_PM_SLEEP
mv_platform_suspend(struct platform_device * pdev,pm_message_t state)4245 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4246 {
4247 struct ata_host *host = platform_get_drvdata(pdev);
4248 if (host)
4249 return ata_host_suspend(host, state);
4250 else
4251 return 0;
4252 }
4253
mv_platform_resume(struct platform_device * pdev)4254 static int mv_platform_resume(struct platform_device *pdev)
4255 {
4256 struct ata_host *host = platform_get_drvdata(pdev);
4257 const struct mbus_dram_target_info *dram;
4258 int ret;
4259
4260 if (host) {
4261 struct mv_host_priv *hpriv = host->private_data;
4262
4263 /*
4264 * (Re-)program MBUS remapping windows if we are asked to.
4265 */
4266 dram = mv_mbus_dram_info();
4267 if (dram)
4268 mv_conf_mbus_windows(hpriv, dram);
4269
4270 /* initialize adapter */
4271 ret = mv_init_host(host);
4272 if (ret) {
4273 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4274 return ret;
4275 }
4276 ata_host_resume(host);
4277 }
4278
4279 return 0;
4280 }
4281 #else
4282 #define mv_platform_suspend NULL
4283 #define mv_platform_resume NULL
4284 #endif
4285
4286 #ifdef CONFIG_OF
4287 static const struct of_device_id mv_sata_dt_ids[] = {
4288 { .compatible = "marvell,armada-370-sata", },
4289 { .compatible = "marvell,orion-sata", },
4290 {},
4291 };
4292 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4293 #endif
4294
4295 static struct platform_driver mv_platform_driver = {
4296 .probe = mv_platform_probe,
4297 .remove = mv_platform_remove,
4298 .suspend = mv_platform_suspend,
4299 .resume = mv_platform_resume,
4300 .driver = {
4301 .name = DRV_NAME,
4302 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4303 },
4304 };
4305
4306
4307 #ifdef CONFIG_PCI
4308 static int mv_pci_init_one(struct pci_dev *pdev,
4309 const struct pci_device_id *ent);
4310 #ifdef CONFIG_PM_SLEEP
4311 static int mv_pci_device_resume(struct pci_dev *pdev);
4312 #endif
4313
4314
4315 static struct pci_driver mv_pci_driver = {
4316 .name = DRV_NAME,
4317 .id_table = mv_pci_tbl,
4318 .probe = mv_pci_init_one,
4319 .remove = ata_pci_remove_one,
4320 #ifdef CONFIG_PM_SLEEP
4321 .suspend = ata_pci_device_suspend,
4322 .resume = mv_pci_device_resume,
4323 #endif
4324
4325 };
4326
4327 /**
4328 * mv_print_info - Dump key info to kernel log for perusal.
4329 * @host: ATA host to print info about
4330 *
4331 * FIXME: complete this.
4332 *
4333 * LOCKING:
4334 * Inherited from caller.
4335 */
mv_print_info(struct ata_host * host)4336 static void mv_print_info(struct ata_host *host)
4337 {
4338 struct pci_dev *pdev = to_pci_dev(host->dev);
4339 struct mv_host_priv *hpriv = host->private_data;
4340 u8 scc;
4341 const char *scc_s, *gen;
4342
4343 /* Use this to determine the HW stepping of the chip so we know
4344 * what errata to workaround
4345 */
4346 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4347 if (scc == 0)
4348 scc_s = "SCSI";
4349 else if (scc == 0x01)
4350 scc_s = "RAID";
4351 else
4352 scc_s = "?";
4353
4354 if (IS_GEN_I(hpriv))
4355 gen = "I";
4356 else if (IS_GEN_II(hpriv))
4357 gen = "II";
4358 else if (IS_GEN_IIE(hpriv))
4359 gen = "IIE";
4360 else
4361 gen = "?";
4362
4363 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4364 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4365 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4366 }
4367
4368 /**
4369 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4370 * @pdev: PCI device found
4371 * @ent: PCI device ID entry for the matched host
4372 *
4373 * LOCKING:
4374 * Inherited from caller.
4375 */
mv_pci_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4376 static int mv_pci_init_one(struct pci_dev *pdev,
4377 const struct pci_device_id *ent)
4378 {
4379 unsigned int board_idx = (unsigned int)ent->driver_data;
4380 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4381 struct ata_host *host;
4382 struct mv_host_priv *hpriv;
4383 int n_ports, port, rc;
4384
4385 ata_print_version_once(&pdev->dev, DRV_VERSION);
4386
4387 /* allocate host */
4388 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4389
4390 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4391 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4392 if (!host || !hpriv)
4393 return -ENOMEM;
4394 host->private_data = hpriv;
4395 hpriv->n_ports = n_ports;
4396 hpriv->board_idx = board_idx;
4397
4398 /* acquire resources */
4399 rc = pcim_enable_device(pdev);
4400 if (rc)
4401 return rc;
4402
4403 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4404 if (rc == -EBUSY)
4405 pcim_pin_device(pdev);
4406 if (rc)
4407 return rc;
4408 host->iomap = pcim_iomap_table(pdev);
4409 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4410
4411 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4412 if (rc) {
4413 dev_err(&pdev->dev, "DMA enable failed\n");
4414 return rc;
4415 }
4416
4417 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4418 if (rc)
4419 return rc;
4420
4421 for (port = 0; port < host->n_ports; port++) {
4422 struct ata_port *ap = host->ports[port];
4423 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4424 unsigned int offset = port_mmio - hpriv->base;
4425
4426 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4427 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4428 }
4429
4430 /* initialize adapter */
4431 rc = mv_init_host(host);
4432 if (rc)
4433 return rc;
4434
4435 /* Enable message-switched interrupts, if requested */
4436 if (msi && pci_enable_msi(pdev) == 0)
4437 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4438
4439 mv_dump_pci_cfg(pdev, 0x68);
4440 mv_print_info(host);
4441
4442 pci_set_master(pdev);
4443 pci_try_set_mwi(pdev);
4444 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4445 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4446 }
4447
4448 #ifdef CONFIG_PM_SLEEP
mv_pci_device_resume(struct pci_dev * pdev)4449 static int mv_pci_device_resume(struct pci_dev *pdev)
4450 {
4451 struct ata_host *host = pci_get_drvdata(pdev);
4452 int rc;
4453
4454 rc = ata_pci_device_do_resume(pdev);
4455 if (rc)
4456 return rc;
4457
4458 /* initialize adapter */
4459 rc = mv_init_host(host);
4460 if (rc)
4461 return rc;
4462
4463 ata_host_resume(host);
4464
4465 return 0;
4466 }
4467 #endif
4468 #endif
4469
mv_init(void)4470 static int __init mv_init(void)
4471 {
4472 int rc = -ENODEV;
4473 #ifdef CONFIG_PCI
4474 rc = pci_register_driver(&mv_pci_driver);
4475 if (rc < 0)
4476 return rc;
4477 #endif
4478 rc = platform_driver_register(&mv_platform_driver);
4479
4480 #ifdef CONFIG_PCI
4481 if (rc < 0)
4482 pci_unregister_driver(&mv_pci_driver);
4483 #endif
4484 return rc;
4485 }
4486
mv_exit(void)4487 static void __exit mv_exit(void)
4488 {
4489 #ifdef CONFIG_PCI
4490 pci_unregister_driver(&mv_pci_driver);
4491 #endif
4492 platform_driver_unregister(&mv_platform_driver);
4493 }
4494
4495 MODULE_AUTHOR("Brett Russ");
4496 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4497 MODULE_LICENSE("GPL v2");
4498 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4499 MODULE_VERSION(DRV_VERSION);
4500 MODULE_ALIAS("platform:" DRV_NAME);
4501
4502 module_init(mv_init);
4503 module_exit(mv_exit);
4504