1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2020 Xillybus Ltd, http://xillybus.com
4 *
5 * Driver for the XillyUSB FPGA/host framework.
6 *
7 * This driver interfaces with a special IP core in an FPGA, setting up
8 * a pipe between a hardware FIFO in the programmable logic and a device
9 * file in the host. The number of such pipes and their attributes are
10 * set up on the logic. This driver detects these automatically and
11 * creates the device files accordingly.
12 */
13
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <asm/byteorder.h>
20 #include <linux/io.h>
21 #include <linux/interrupt.h>
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/spinlock.h>
25 #include <linux/mutex.h>
26 #include <linux/workqueue.h>
27 #include <linux/crc32.h>
28 #include <linux/poll.h>
29 #include <linux/delay.h>
30 #include <linux/usb.h>
31
32 #include "xillybus_class.h"
33
34 MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36 MODULE_ALIAS("xillyusb");
37 MODULE_LICENSE("GPL v2");
38
39 #define XILLY_RX_TIMEOUT (10 * HZ / 1000)
40 #define XILLY_RESPONSE_TIMEOUT (500 * HZ / 1000)
41
42 #define BUF_SIZE_ORDER 4
43 #define BUFNUM 8
44 #define LOG2_IDT_FIFO_SIZE 16
45 #define LOG2_INITIAL_FIFO_BUF_SIZE 16
46
47 #define MSG_EP_NUM 1
48 #define IN_EP_NUM 1
49
50 static const char xillyname[] = "xillyusb";
51
52 static unsigned int fifo_buf_order;
53
54 #define USB_VENDOR_ID_XILINX 0x03fd
55 #define USB_VENDOR_ID_ALTERA 0x09fb
56
57 #define USB_PRODUCT_ID_XILLYUSB 0xebbe
58
59 static const struct usb_device_id xillyusb_table[] = {
60 { USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
61 { USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
62 { }
63 };
64
65 MODULE_DEVICE_TABLE(usb, xillyusb_table);
66
67 struct xillyusb_dev;
68
69 struct xillyfifo {
70 unsigned int bufsize; /* In bytes, always a power of 2 */
71 unsigned int bufnum;
72 unsigned int size; /* Lazy: Equals bufsize * bufnum */
73 unsigned int buf_order;
74
75 int fill; /* Number of bytes in the FIFO */
76 spinlock_t lock;
77 wait_queue_head_t waitq;
78
79 unsigned int readpos;
80 unsigned int readbuf;
81 unsigned int writepos;
82 unsigned int writebuf;
83 char **mem;
84 };
85
86 struct xillyusb_channel;
87
88 struct xillyusb_endpoint {
89 struct xillyusb_dev *xdev;
90
91 struct mutex ep_mutex; /* serialize operations on endpoint */
92
93 struct list_head buffers;
94 struct list_head filled_buffers;
95 spinlock_t buffers_lock; /* protect these two lists */
96
97 unsigned int order;
98 unsigned int buffer_size;
99
100 unsigned int fill_mask;
101
102 int outstanding_urbs;
103
104 struct usb_anchor anchor;
105
106 struct xillyfifo fifo;
107
108 struct work_struct workitem;
109
110 bool shutting_down;
111 bool drained;
112 bool wake_on_drain;
113
114 u8 ep_num;
115 };
116
117 struct xillyusb_channel {
118 struct xillyusb_dev *xdev;
119
120 struct xillyfifo *in_fifo;
121 struct xillyusb_endpoint *out_ep;
122 struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */
123
124 struct mutex in_mutex; /* serialize fops on FPGA to host stream */
125 struct mutex out_mutex; /* serialize fops on host to FPGA stream */
126 wait_queue_head_t flushq;
127
128 int chan_idx;
129
130 u32 in_consumed_bytes;
131 u32 in_current_checkpoint;
132 u32 out_bytes;
133
134 unsigned int in_log2_element_size;
135 unsigned int out_log2_element_size;
136 unsigned int in_log2_fifo_size;
137 unsigned int out_log2_fifo_size;
138
139 unsigned int read_data_ok; /* EOF not arrived (yet) */
140 unsigned int poll_used;
141 unsigned int flushing;
142 unsigned int flushed;
143 unsigned int canceled;
144
145 /* Bit fields protected by @lock except for initialization */
146 unsigned readable:1;
147 unsigned writable:1;
148 unsigned open_for_read:1;
149 unsigned open_for_write:1;
150 unsigned in_synchronous:1;
151 unsigned out_synchronous:1;
152 unsigned in_seekable:1;
153 unsigned out_seekable:1;
154 };
155
156 struct xillybuffer {
157 struct list_head entry;
158 struct xillyusb_endpoint *ep;
159 void *buf;
160 unsigned int len;
161 };
162
163 struct xillyusb_dev {
164 struct xillyusb_channel *channels;
165
166 struct usb_device *udev;
167 struct device *dev; /* For dev_err() and such */
168 struct kref kref;
169 struct workqueue_struct *workq;
170
171 int error;
172 spinlock_t error_lock; /* protect @error */
173 struct work_struct wakeup_workitem;
174
175 int num_channels;
176
177 struct xillyusb_endpoint *msg_ep;
178 struct xillyusb_endpoint *in_ep;
179
180 struct mutex msg_mutex; /* serialize opcode transmission */
181 int in_bytes_left;
182 int leftover_chan_num;
183 unsigned int in_counter;
184 struct mutex process_in_mutex; /* synchronize wakeup_all() */
185 };
186
187 /* FPGA to host opcodes */
188 enum {
189 OPCODE_DATA = 0,
190 OPCODE_QUIESCE_ACK = 1,
191 OPCODE_EOF = 2,
192 OPCODE_REACHED_CHECKPOINT = 3,
193 OPCODE_CANCELED_CHECKPOINT = 4,
194 };
195
196 /* Host to FPGA opcodes */
197 enum {
198 OPCODE_QUIESCE = 0,
199 OPCODE_REQ_IDT = 1,
200 OPCODE_SET_CHECKPOINT = 2,
201 OPCODE_CLOSE = 3,
202 OPCODE_SET_PUSH = 4,
203 OPCODE_UPDATE_PUSH = 5,
204 OPCODE_CANCEL_CHECKPOINT = 6,
205 OPCODE_SET_ADDR = 7,
206 };
207
208 /*
209 * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
210 * calls to each on the same FIFO is not allowed) however it's OK to have
211 * threads calling each of the two functions once on the same FIFO, and
212 * at the same time.
213 */
214
fifo_write(struct xillyfifo * fifo,const void * data,unsigned int len,int (* copier)(void *,const void *,int))215 static int fifo_write(struct xillyfifo *fifo,
216 const void *data, unsigned int len,
217 int (*copier)(void *, const void *, int))
218 {
219 unsigned int done = 0;
220 unsigned int todo = len;
221 unsigned int nmax;
222 unsigned int writepos = fifo->writepos;
223 unsigned int writebuf = fifo->writebuf;
224 unsigned long flags;
225 int rc;
226
227 nmax = fifo->size - READ_ONCE(fifo->fill);
228
229 while (1) {
230 unsigned int nrail = fifo->bufsize - writepos;
231 unsigned int n = min(todo, nmax);
232
233 if (n == 0) {
234 spin_lock_irqsave(&fifo->lock, flags);
235 fifo->fill += done;
236 spin_unlock_irqrestore(&fifo->lock, flags);
237
238 fifo->writepos = writepos;
239 fifo->writebuf = writebuf;
240
241 return done;
242 }
243
244 if (n > nrail)
245 n = nrail;
246
247 rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n);
248
249 if (rc)
250 return rc;
251
252 done += n;
253 todo -= n;
254
255 writepos += n;
256 nmax -= n;
257
258 if (writepos == fifo->bufsize) {
259 writepos = 0;
260 writebuf++;
261
262 if (writebuf == fifo->bufnum)
263 writebuf = 0;
264 }
265 }
266 }
267
fifo_read(struct xillyfifo * fifo,void * data,unsigned int len,int (* copier)(void *,const void *,int))268 static int fifo_read(struct xillyfifo *fifo,
269 void *data, unsigned int len,
270 int (*copier)(void *, const void *, int))
271 {
272 unsigned int done = 0;
273 unsigned int todo = len;
274 unsigned int fill;
275 unsigned int readpos = fifo->readpos;
276 unsigned int readbuf = fifo->readbuf;
277 unsigned long flags;
278 int rc;
279
280 /*
281 * The spinlock here is necessary, because otherwise fifo->fill
282 * could have been increased by fifo_write() after writing data
283 * to the buffer, but this data would potentially not have been
284 * visible on this thread at the time the updated fifo->fill was.
285 * That could lead to reading invalid data.
286 */
287
288 spin_lock_irqsave(&fifo->lock, flags);
289 fill = fifo->fill;
290 spin_unlock_irqrestore(&fifo->lock, flags);
291
292 while (1) {
293 unsigned int nrail = fifo->bufsize - readpos;
294 unsigned int n = min(todo, fill);
295
296 if (n == 0) {
297 spin_lock_irqsave(&fifo->lock, flags);
298 fifo->fill -= done;
299 spin_unlock_irqrestore(&fifo->lock, flags);
300
301 fifo->readpos = readpos;
302 fifo->readbuf = readbuf;
303
304 return done;
305 }
306
307 if (n > nrail)
308 n = nrail;
309
310 rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n);
311
312 if (rc)
313 return rc;
314
315 done += n;
316 todo -= n;
317
318 readpos += n;
319 fill -= n;
320
321 if (readpos == fifo->bufsize) {
322 readpos = 0;
323 readbuf++;
324
325 if (readbuf == fifo->bufnum)
326 readbuf = 0;
327 }
328 }
329 }
330
331 /*
332 * These three wrapper functions are used as the @copier argument to
333 * fifo_write() and fifo_read(), so that they can work directly with
334 * user memory as well.
335 */
336
xilly_copy_from_user(void * dst,const void * src,int n)337 static int xilly_copy_from_user(void *dst, const void *src, int n)
338 {
339 if (copy_from_user(dst, (const void __user *)src, n))
340 return -EFAULT;
341
342 return 0;
343 }
344
xilly_copy_to_user(void * dst,const void * src,int n)345 static int xilly_copy_to_user(void *dst, const void *src, int n)
346 {
347 if (copy_to_user((void __user *)dst, src, n))
348 return -EFAULT;
349
350 return 0;
351 }
352
xilly_memcpy(void * dst,const void * src,int n)353 static int xilly_memcpy(void *dst, const void *src, int n)
354 {
355 memcpy(dst, src, n);
356
357 return 0;
358 }
359
fifo_init(struct xillyfifo * fifo,unsigned int log2_size)360 static int fifo_init(struct xillyfifo *fifo,
361 unsigned int log2_size)
362 {
363 unsigned int log2_bufnum;
364 unsigned int buf_order;
365 int i;
366
367 unsigned int log2_fifo_buf_size;
368
369 retry:
370 log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
371
372 if (log2_size > log2_fifo_buf_size) {
373 log2_bufnum = log2_size - log2_fifo_buf_size;
374 buf_order = fifo_buf_order;
375 fifo->bufsize = 1 << log2_fifo_buf_size;
376 } else {
377 log2_bufnum = 0;
378 buf_order = (log2_size > PAGE_SHIFT) ?
379 log2_size - PAGE_SHIFT : 0;
380 fifo->bufsize = 1 << log2_size;
381 }
382
383 fifo->bufnum = 1 << log2_bufnum;
384 fifo->size = fifo->bufnum * fifo->bufsize;
385 fifo->buf_order = buf_order;
386
387 fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL);
388
389 if (!fifo->mem)
390 return -ENOMEM;
391
392 for (i = 0; i < fifo->bufnum; i++) {
393 fifo->mem[i] = (void *)
394 __get_free_pages(GFP_KERNEL, buf_order);
395
396 if (!fifo->mem[i])
397 goto memfail;
398 }
399
400 fifo->fill = 0;
401 fifo->readpos = 0;
402 fifo->readbuf = 0;
403 fifo->writepos = 0;
404 fifo->writebuf = 0;
405 spin_lock_init(&fifo->lock);
406 init_waitqueue_head(&fifo->waitq);
407 return 0;
408
409 memfail:
410 for (i--; i >= 0; i--)
411 free_pages((unsigned long)fifo->mem[i], buf_order);
412
413 kfree(fifo->mem);
414 fifo->mem = NULL;
415
416 if (fifo_buf_order) {
417 fifo_buf_order--;
418 goto retry;
419 } else {
420 return -ENOMEM;
421 }
422 }
423
fifo_mem_release(struct xillyfifo * fifo)424 static void fifo_mem_release(struct xillyfifo *fifo)
425 {
426 int i;
427
428 if (!fifo->mem)
429 return;
430
431 for (i = 0; i < fifo->bufnum; i++)
432 free_pages((unsigned long)fifo->mem[i], fifo->buf_order);
433
434 kfree(fifo->mem);
435 }
436
437 /*
438 * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
439 * won't accept any new URB submissions, and its related work item doesn't
440 * and won't run anymore.
441 */
442
endpoint_quiesce(struct xillyusb_endpoint * ep)443 static void endpoint_quiesce(struct xillyusb_endpoint *ep)
444 {
445 mutex_lock(&ep->ep_mutex);
446 ep->shutting_down = true;
447 mutex_unlock(&ep->ep_mutex);
448
449 usb_kill_anchored_urbs(&ep->anchor);
450 cancel_work_sync(&ep->workitem);
451 }
452
453 /*
454 * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
455 * though endpoint_alloc doesn't allocate that memory.
456 */
457
endpoint_dealloc(struct xillyusb_endpoint * ep)458 static void endpoint_dealloc(struct xillyusb_endpoint *ep)
459 {
460 struct list_head *this, *next;
461
462 fifo_mem_release(&ep->fifo);
463
464 /* Join @filled_buffers with @buffers to free these entries too */
465 list_splice(&ep->filled_buffers, &ep->buffers);
466
467 list_for_each_safe(this, next, &ep->buffers) {
468 struct xillybuffer *xb =
469 list_entry(this, struct xillybuffer, entry);
470
471 free_pages((unsigned long)xb->buf, ep->order);
472 kfree(xb);
473 }
474
475 kfree(ep);
476 }
477
478 static struct xillyusb_endpoint
endpoint_alloc(struct xillyusb_dev * xdev,u8 ep_num,void (* work)(struct work_struct *),unsigned int order,int bufnum)479 *endpoint_alloc(struct xillyusb_dev *xdev,
480 u8 ep_num,
481 void (*work)(struct work_struct *),
482 unsigned int order,
483 int bufnum)
484 {
485 int i;
486
487 struct xillyusb_endpoint *ep;
488
489 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
490
491 if (!ep)
492 return NULL;
493
494 INIT_LIST_HEAD(&ep->buffers);
495 INIT_LIST_HEAD(&ep->filled_buffers);
496
497 spin_lock_init(&ep->buffers_lock);
498 mutex_init(&ep->ep_mutex);
499
500 init_usb_anchor(&ep->anchor);
501 INIT_WORK(&ep->workitem, work);
502
503 ep->order = order;
504 ep->buffer_size = 1 << (PAGE_SHIFT + order);
505 ep->outstanding_urbs = 0;
506 ep->drained = true;
507 ep->wake_on_drain = false;
508 ep->xdev = xdev;
509 ep->ep_num = ep_num;
510 ep->shutting_down = false;
511
512 for (i = 0; i < bufnum; i++) {
513 struct xillybuffer *xb;
514 unsigned long addr;
515
516 xb = kzalloc(sizeof(*xb), GFP_KERNEL);
517
518 if (!xb) {
519 endpoint_dealloc(ep);
520 return NULL;
521 }
522
523 addr = __get_free_pages(GFP_KERNEL, order);
524
525 if (!addr) {
526 kfree(xb);
527 endpoint_dealloc(ep);
528 return NULL;
529 }
530
531 xb->buf = (void *)addr;
532 xb->ep = ep;
533 list_add_tail(&xb->entry, &ep->buffers);
534 }
535 return ep;
536 }
537
cleanup_dev(struct kref * kref)538 static void cleanup_dev(struct kref *kref)
539 {
540 struct xillyusb_dev *xdev =
541 container_of(kref, struct xillyusb_dev, kref);
542
543 if (xdev->in_ep)
544 endpoint_dealloc(xdev->in_ep);
545
546 if (xdev->msg_ep)
547 endpoint_dealloc(xdev->msg_ep);
548
549 if (xdev->workq)
550 destroy_workqueue(xdev->workq);
551
552 usb_put_dev(xdev->udev);
553 kfree(xdev->channels); /* Argument may be NULL, and that's fine */
554 kfree(xdev);
555 }
556
557 /*
558 * @process_in_mutex is taken to ensure that bulk_in_work() won't call
559 * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
560 * @read_data_ok entries, which will make process_bulk_in() report false
561 * errors if executed. The mechanism relies on that xdev->error is assigned
562 * a non-zero value by report_io_error() prior to queueing wakeup_all(),
563 * which prevents bulk_in_work() from calling process_bulk_in().
564 *
565 * The fact that wakeup_all() and bulk_in_work() are queued on the same
566 * workqueue makes their concurrent execution very unlikely, however the
567 * kernel's API doesn't seem to ensure this strictly.
568 */
569
wakeup_all(struct work_struct * work)570 static void wakeup_all(struct work_struct *work)
571 {
572 int i;
573 struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
574 wakeup_workitem);
575
576 mutex_lock(&xdev->process_in_mutex);
577
578 for (i = 0; i < xdev->num_channels; i++) {
579 struct xillyusb_channel *chan = &xdev->channels[i];
580
581 mutex_lock(&chan->lock);
582
583 if (chan->in_fifo) {
584 /*
585 * Fake an EOF: Even if such arrives, it won't be
586 * processed.
587 */
588 chan->read_data_ok = 0;
589 wake_up_interruptible(&chan->in_fifo->waitq);
590 }
591
592 if (chan->out_ep)
593 wake_up_interruptible(&chan->out_ep->fifo.waitq);
594
595 mutex_unlock(&chan->lock);
596
597 wake_up_interruptible(&chan->flushq);
598 }
599
600 mutex_unlock(&xdev->process_in_mutex);
601
602 wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
603
604 kref_put(&xdev->kref, cleanup_dev);
605 }
606
report_io_error(struct xillyusb_dev * xdev,int errcode)607 static void report_io_error(struct xillyusb_dev *xdev,
608 int errcode)
609 {
610 unsigned long flags;
611 bool do_once = false;
612
613 spin_lock_irqsave(&xdev->error_lock, flags);
614 if (!xdev->error) {
615 xdev->error = errcode;
616 do_once = true;
617 }
618 spin_unlock_irqrestore(&xdev->error_lock, flags);
619
620 if (do_once) {
621 kref_get(&xdev->kref); /* xdev is used by work item */
622 queue_work(xdev->workq, &xdev->wakeup_workitem);
623 }
624 }
625
626 /*
627 * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
628 * the previous pointer is never used after its return.
629 */
630
safely_assign_in_fifo(struct xillyusb_channel * chan,struct xillyfifo * fifo)631 static void safely_assign_in_fifo(struct xillyusb_channel *chan,
632 struct xillyfifo *fifo)
633 {
634 mutex_lock(&chan->lock);
635 chan->in_fifo = fifo;
636 mutex_unlock(&chan->lock);
637
638 flush_work(&chan->xdev->in_ep->workitem);
639 }
640
bulk_in_completer(struct urb * urb)641 static void bulk_in_completer(struct urb *urb)
642 {
643 struct xillybuffer *xb = urb->context;
644 struct xillyusb_endpoint *ep = xb->ep;
645 unsigned long flags;
646
647 if (urb->status) {
648 if (!(urb->status == -ENOENT ||
649 urb->status == -ECONNRESET ||
650 urb->status == -ESHUTDOWN))
651 report_io_error(ep->xdev, -EIO);
652
653 spin_lock_irqsave(&ep->buffers_lock, flags);
654 list_add_tail(&xb->entry, &ep->buffers);
655 ep->outstanding_urbs--;
656 spin_unlock_irqrestore(&ep->buffers_lock, flags);
657
658 return;
659 }
660
661 xb->len = urb->actual_length;
662
663 spin_lock_irqsave(&ep->buffers_lock, flags);
664 list_add_tail(&xb->entry, &ep->filled_buffers);
665 spin_unlock_irqrestore(&ep->buffers_lock, flags);
666
667 if (!ep->shutting_down)
668 queue_work(ep->xdev->workq, &ep->workitem);
669 }
670
bulk_out_completer(struct urb * urb)671 static void bulk_out_completer(struct urb *urb)
672 {
673 struct xillybuffer *xb = urb->context;
674 struct xillyusb_endpoint *ep = xb->ep;
675 unsigned long flags;
676
677 if (urb->status &&
678 (!(urb->status == -ENOENT ||
679 urb->status == -ECONNRESET ||
680 urb->status == -ESHUTDOWN)))
681 report_io_error(ep->xdev, -EIO);
682
683 spin_lock_irqsave(&ep->buffers_lock, flags);
684 list_add_tail(&xb->entry, &ep->buffers);
685 ep->outstanding_urbs--;
686 spin_unlock_irqrestore(&ep->buffers_lock, flags);
687
688 if (!ep->shutting_down)
689 queue_work(ep->xdev->workq, &ep->workitem);
690 }
691
try_queue_bulk_in(struct xillyusb_endpoint * ep)692 static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
693 {
694 struct xillyusb_dev *xdev = ep->xdev;
695 struct xillybuffer *xb;
696 struct urb *urb;
697
698 int rc;
699 unsigned long flags;
700 unsigned int bufsize = ep->buffer_size;
701
702 mutex_lock(&ep->ep_mutex);
703
704 if (ep->shutting_down || xdev->error)
705 goto done;
706
707 while (1) {
708 spin_lock_irqsave(&ep->buffers_lock, flags);
709
710 if (list_empty(&ep->buffers)) {
711 spin_unlock_irqrestore(&ep->buffers_lock, flags);
712 goto done;
713 }
714
715 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
716 list_del(&xb->entry);
717 ep->outstanding_urbs++;
718
719 spin_unlock_irqrestore(&ep->buffers_lock, flags);
720
721 urb = usb_alloc_urb(0, GFP_KERNEL);
722 if (!urb) {
723 report_io_error(xdev, -ENOMEM);
724 goto relist;
725 }
726
727 usb_fill_bulk_urb(urb, xdev->udev,
728 usb_rcvbulkpipe(xdev->udev, ep->ep_num),
729 xb->buf, bufsize, bulk_in_completer, xb);
730
731 usb_anchor_urb(urb, &ep->anchor);
732
733 rc = usb_submit_urb(urb, GFP_KERNEL);
734
735 if (rc) {
736 report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
737 -EIO);
738 goto unanchor;
739 }
740
741 usb_free_urb(urb); /* This just decrements reference count */
742 }
743
744 unanchor:
745 usb_unanchor_urb(urb);
746 usb_free_urb(urb);
747
748 relist:
749 spin_lock_irqsave(&ep->buffers_lock, flags);
750 list_add_tail(&xb->entry, &ep->buffers);
751 ep->outstanding_urbs--;
752 spin_unlock_irqrestore(&ep->buffers_lock, flags);
753
754 done:
755 mutex_unlock(&ep->ep_mutex);
756 }
757
try_queue_bulk_out(struct xillyusb_endpoint * ep)758 static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
759 {
760 struct xillyfifo *fifo = &ep->fifo;
761 struct xillyusb_dev *xdev = ep->xdev;
762 struct xillybuffer *xb;
763 struct urb *urb;
764
765 int rc;
766 unsigned int fill;
767 unsigned long flags;
768 bool do_wake = false;
769
770 mutex_lock(&ep->ep_mutex);
771
772 if (ep->shutting_down || xdev->error)
773 goto done;
774
775 fill = READ_ONCE(fifo->fill) & ep->fill_mask;
776
777 while (1) {
778 int count;
779 unsigned int max_read;
780
781 spin_lock_irqsave(&ep->buffers_lock, flags);
782
783 /*
784 * Race conditions might have the FIFO filled while the
785 * endpoint is marked as drained here. That doesn't matter,
786 * because the sole purpose of @drained is to ensure that
787 * certain data has been sent on the USB channel before
788 * shutting it down. Hence knowing that the FIFO appears
789 * to be empty with no outstanding URBs at some moment
790 * is good enough.
791 */
792
793 if (!fill) {
794 ep->drained = !ep->outstanding_urbs;
795 if (ep->drained && ep->wake_on_drain)
796 do_wake = true;
797
798 spin_unlock_irqrestore(&ep->buffers_lock, flags);
799 goto done;
800 }
801
802 ep->drained = false;
803
804 if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
805 list_empty(&ep->buffers)) {
806 spin_unlock_irqrestore(&ep->buffers_lock, flags);
807 goto done;
808 }
809
810 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
811 list_del(&xb->entry);
812 ep->outstanding_urbs++;
813
814 spin_unlock_irqrestore(&ep->buffers_lock, flags);
815
816 max_read = min(fill, ep->buffer_size);
817
818 count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy);
819
820 /*
821 * xilly_memcpy always returns 0 => fifo_read can't fail =>
822 * count > 0
823 */
824
825 urb = usb_alloc_urb(0, GFP_KERNEL);
826 if (!urb) {
827 report_io_error(xdev, -ENOMEM);
828 goto relist;
829 }
830
831 usb_fill_bulk_urb(urb, xdev->udev,
832 usb_sndbulkpipe(xdev->udev, ep->ep_num),
833 xb->buf, count, bulk_out_completer, xb);
834
835 usb_anchor_urb(urb, &ep->anchor);
836
837 rc = usb_submit_urb(urb, GFP_KERNEL);
838
839 if (rc) {
840 report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
841 -EIO);
842 goto unanchor;
843 }
844
845 usb_free_urb(urb); /* This just decrements reference count */
846
847 fill -= count;
848 do_wake = true;
849 }
850
851 unanchor:
852 usb_unanchor_urb(urb);
853 usb_free_urb(urb);
854
855 relist:
856 spin_lock_irqsave(&ep->buffers_lock, flags);
857 list_add_tail(&xb->entry, &ep->buffers);
858 ep->outstanding_urbs--;
859 spin_unlock_irqrestore(&ep->buffers_lock, flags);
860
861 done:
862 mutex_unlock(&ep->ep_mutex);
863
864 if (do_wake)
865 wake_up_interruptible(&fifo->waitq);
866 }
867
bulk_out_work(struct work_struct * work)868 static void bulk_out_work(struct work_struct *work)
869 {
870 struct xillyusb_endpoint *ep = container_of(work,
871 struct xillyusb_endpoint,
872 workitem);
873 try_queue_bulk_out(ep);
874 }
875
process_in_opcode(struct xillyusb_dev * xdev,int opcode,int chan_num)876 static int process_in_opcode(struct xillyusb_dev *xdev,
877 int opcode,
878 int chan_num)
879 {
880 struct xillyusb_channel *chan;
881 struct device *dev = xdev->dev;
882 int chan_idx = chan_num >> 1;
883
884 if (chan_idx >= xdev->num_channels) {
885 dev_err(dev, "Received illegal channel ID %d from FPGA\n",
886 chan_num);
887 return -EIO;
888 }
889
890 chan = &xdev->channels[chan_idx];
891
892 switch (opcode) {
893 case OPCODE_EOF:
894 if (!chan->read_data_ok) {
895 dev_err(dev, "Received unexpected EOF for channel %d\n",
896 chan_num);
897 return -EIO;
898 }
899
900 /*
901 * A write memory barrier ensures that the FIFO's fill level
902 * is visible before read_data_ok turns zero, so the data in
903 * the FIFO isn't missed by the consumer.
904 */
905 smp_wmb();
906 WRITE_ONCE(chan->read_data_ok, 0);
907 wake_up_interruptible(&chan->in_fifo->waitq);
908 break;
909
910 case OPCODE_REACHED_CHECKPOINT:
911 chan->flushing = 0;
912 wake_up_interruptible(&chan->flushq);
913 break;
914
915 case OPCODE_CANCELED_CHECKPOINT:
916 chan->canceled = 1;
917 wake_up_interruptible(&chan->flushq);
918 break;
919
920 default:
921 dev_err(dev, "Received illegal opcode %d from FPGA\n",
922 opcode);
923 return -EIO;
924 }
925
926 return 0;
927 }
928
process_bulk_in(struct xillybuffer * xb)929 static int process_bulk_in(struct xillybuffer *xb)
930 {
931 struct xillyusb_endpoint *ep = xb->ep;
932 struct xillyusb_dev *xdev = ep->xdev;
933 struct device *dev = xdev->dev;
934 int dws = xb->len >> 2;
935 __le32 *p = xb->buf;
936 u32 ctrlword;
937 struct xillyusb_channel *chan;
938 struct xillyfifo *fifo;
939 int chan_num = 0, opcode;
940 int chan_idx;
941 int bytes, count, dwconsume;
942 int in_bytes_left = 0;
943 int rc;
944
945 if ((dws << 2) != xb->len) {
946 dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
947 xb->len);
948 return -EIO;
949 }
950
951 if (xdev->in_bytes_left) {
952 bytes = min(xdev->in_bytes_left, dws << 2);
953 in_bytes_left = xdev->in_bytes_left - bytes;
954 chan_num = xdev->leftover_chan_num;
955 goto resume_leftovers;
956 }
957
958 while (dws) {
959 ctrlword = le32_to_cpu(*p++);
960 dws--;
961
962 chan_num = ctrlword & 0xfff;
963 count = (ctrlword >> 12) & 0x3ff;
964 opcode = (ctrlword >> 24) & 0xf;
965
966 if (opcode != OPCODE_DATA) {
967 unsigned int in_counter = xdev->in_counter++ & 0x3ff;
968
969 if (count != in_counter) {
970 dev_err(dev, "Expected opcode counter %d, got %d\n",
971 in_counter, count);
972 return -EIO;
973 }
974
975 rc = process_in_opcode(xdev, opcode, chan_num);
976
977 if (rc)
978 return rc;
979
980 continue;
981 }
982
983 bytes = min(count + 1, dws << 2);
984 in_bytes_left = count + 1 - bytes;
985
986 resume_leftovers:
987 chan_idx = chan_num >> 1;
988
989 if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
990 !xdev->channels[chan_idx].read_data_ok) {
991 dev_err(dev, "Received illegal channel ID %d from FPGA\n",
992 chan_num);
993 return -EIO;
994 }
995 chan = &xdev->channels[chan_idx];
996
997 fifo = chan->in_fifo;
998
999 if (unlikely(!fifo))
1000 return -EIO; /* We got really unexpected data */
1001
1002 if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) {
1003 dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1004 return -EIO;
1005 }
1006
1007 wake_up_interruptible(&fifo->waitq);
1008
1009 dwconsume = (bytes + 3) >> 2;
1010 dws -= dwconsume;
1011 p += dwconsume;
1012 }
1013
1014 xdev->in_bytes_left = in_bytes_left;
1015 xdev->leftover_chan_num = chan_num;
1016 return 0;
1017 }
1018
bulk_in_work(struct work_struct * work)1019 static void bulk_in_work(struct work_struct *work)
1020 {
1021 struct xillyusb_endpoint *ep =
1022 container_of(work, struct xillyusb_endpoint, workitem);
1023 struct xillyusb_dev *xdev = ep->xdev;
1024 unsigned long flags;
1025 struct xillybuffer *xb;
1026 bool consumed = false;
1027 int rc = 0;
1028
1029 mutex_lock(&xdev->process_in_mutex);
1030
1031 spin_lock_irqsave(&ep->buffers_lock, flags);
1032
1033 while (1) {
1034 if (rc || list_empty(&ep->filled_buffers)) {
1035 spin_unlock_irqrestore(&ep->buffers_lock, flags);
1036 mutex_unlock(&xdev->process_in_mutex);
1037
1038 if (rc)
1039 report_io_error(xdev, rc);
1040 else if (consumed)
1041 try_queue_bulk_in(ep);
1042
1043 return;
1044 }
1045
1046 xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
1047 entry);
1048 list_del(&xb->entry);
1049
1050 spin_unlock_irqrestore(&ep->buffers_lock, flags);
1051
1052 consumed = true;
1053
1054 if (!xdev->error)
1055 rc = process_bulk_in(xb);
1056
1057 spin_lock_irqsave(&ep->buffers_lock, flags);
1058 list_add_tail(&xb->entry, &ep->buffers);
1059 ep->outstanding_urbs--;
1060 }
1061 }
1062
xillyusb_send_opcode(struct xillyusb_dev * xdev,int chan_num,char opcode,u32 data)1063 static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
1064 int chan_num, char opcode, u32 data)
1065 {
1066 struct xillyusb_endpoint *ep = xdev->msg_ep;
1067 struct xillyfifo *fifo = &ep->fifo;
1068 __le32 msg[2];
1069
1070 int rc = 0;
1071
1072 msg[0] = cpu_to_le32((chan_num & 0xfff) |
1073 ((opcode & 0xf) << 24));
1074 msg[1] = cpu_to_le32(data);
1075
1076 mutex_lock(&xdev->msg_mutex);
1077
1078 /*
1079 * The wait queue is woken with the interruptible variant, so the
1080 * wait function matches, however returning because of an interrupt
1081 * will mess things up considerably, in particular when the caller is
1082 * the release method. And the xdev->error part prevents being stuck
1083 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1084 */
1085
1086 while (wait_event_interruptible(fifo->waitq,
1087 fifo->fill <= (fifo->size - 8) ||
1088 xdev->error))
1089 ; /* Empty loop */
1090
1091 if (xdev->error) {
1092 rc = xdev->error;
1093 goto unlock_done;
1094 }
1095
1096 fifo_write(fifo, (void *)msg, 8, xilly_memcpy);
1097
1098 try_queue_bulk_out(ep);
1099
1100 unlock_done:
1101 mutex_unlock(&xdev->msg_mutex);
1102
1103 return rc;
1104 }
1105
1106 /*
1107 * Note that flush_downstream() merely waits for the data to arrive to
1108 * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1109 * it does nothing to make it happen (and neither is it necessary).
1110 *
1111 * This function is not reentrant for the same @chan, but this is covered
1112 * by the fact that for any given @chan, it's called either by the open,
1113 * write, llseek and flush fops methods, which can't run in parallel (and the
1114 * write + flush and llseek method handlers are protected with out_mutex).
1115 *
1116 * chan->flushed is there to avoid multiple flushes at the same position,
1117 * in particular as a result of programs that close the file descriptor
1118 * e.g. after a dup2() for redirection.
1119 */
1120
flush_downstream(struct xillyusb_channel * chan,long timeout,bool interruptible)1121 static int flush_downstream(struct xillyusb_channel *chan,
1122 long timeout,
1123 bool interruptible)
1124 {
1125 struct xillyusb_dev *xdev = chan->xdev;
1126 int chan_num = chan->chan_idx << 1;
1127 long deadline, left_to_sleep;
1128 int rc;
1129
1130 if (chan->flushed)
1131 return 0;
1132
1133 deadline = jiffies + 1 + timeout;
1134
1135 if (chan->flushing) {
1136 long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
1137
1138 chan->canceled = 0;
1139 rc = xillyusb_send_opcode(xdev, chan_num,
1140 OPCODE_CANCEL_CHECKPOINT, 0);
1141
1142 if (rc)
1143 return rc; /* Only real error, never -EINTR */
1144
1145 /* Ignoring interrupts. Cancellation must be handled */
1146 while (!chan->canceled) {
1147 left_to_sleep = cancel_deadline - ((long)jiffies);
1148
1149 if (left_to_sleep <= 0) {
1150 report_io_error(xdev, -EIO);
1151 return -EIO;
1152 }
1153
1154 rc = wait_event_interruptible_timeout(chan->flushq,
1155 chan->canceled ||
1156 xdev->error,
1157 left_to_sleep);
1158
1159 if (xdev->error)
1160 return xdev->error;
1161 }
1162 }
1163
1164 chan->flushing = 1;
1165
1166 /*
1167 * The checkpoint is given in terms of data elements, not bytes. As
1168 * a result, if less than an element's worth of data is stored in the
1169 * FIFO, it's not flushed, including the flush before closing, which
1170 * means that such data is lost. This is consistent with PCIe Xillybus.
1171 */
1172
1173 rc = xillyusb_send_opcode(xdev, chan_num,
1174 OPCODE_SET_CHECKPOINT,
1175 chan->out_bytes >>
1176 chan->out_log2_element_size);
1177
1178 if (rc)
1179 return rc; /* Only real error, never -EINTR */
1180
1181 if (!timeout) {
1182 while (chan->flushing) {
1183 rc = wait_event_interruptible(chan->flushq,
1184 !chan->flushing ||
1185 xdev->error);
1186 if (xdev->error)
1187 return xdev->error;
1188
1189 if (interruptible && rc)
1190 return -EINTR;
1191 }
1192
1193 goto done;
1194 }
1195
1196 while (chan->flushing) {
1197 left_to_sleep = deadline - ((long)jiffies);
1198
1199 if (left_to_sleep <= 0)
1200 return -ETIMEDOUT;
1201
1202 rc = wait_event_interruptible_timeout(chan->flushq,
1203 !chan->flushing ||
1204 xdev->error,
1205 left_to_sleep);
1206
1207 if (xdev->error)
1208 return xdev->error;
1209
1210 if (interruptible && rc < 0)
1211 return -EINTR;
1212 }
1213
1214 done:
1215 chan->flushed = 1;
1216 return 0;
1217 }
1218
1219 /* request_read_anything(): Ask the FPGA for any little amount of data */
request_read_anything(struct xillyusb_channel * chan,char opcode)1220 static int request_read_anything(struct xillyusb_channel *chan,
1221 char opcode)
1222 {
1223 struct xillyusb_dev *xdev = chan->xdev;
1224 unsigned int sh = chan->in_log2_element_size;
1225 int chan_num = (chan->chan_idx << 1) | 1;
1226 u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
1227
1228 return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh);
1229 }
1230
xillyusb_open(struct inode * inode,struct file * filp)1231 static int xillyusb_open(struct inode *inode, struct file *filp)
1232 {
1233 struct xillyusb_dev *xdev;
1234 struct xillyusb_channel *chan;
1235 struct xillyfifo *in_fifo = NULL;
1236 struct xillyusb_endpoint *out_ep = NULL;
1237 int rc;
1238 int index;
1239
1240 rc = xillybus_find_inode(inode, (void **)&xdev, &index);
1241 if (rc)
1242 return rc;
1243
1244 chan = &xdev->channels[index];
1245 filp->private_data = chan;
1246
1247 mutex_lock(&chan->lock);
1248
1249 rc = -ENODEV;
1250
1251 if (xdev->error)
1252 goto unmutex_fail;
1253
1254 if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
1255 ((filp->f_mode & FMODE_WRITE) && !chan->writable))
1256 goto unmutex_fail;
1257
1258 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
1259 chan->in_synchronous) {
1260 dev_err(xdev->dev,
1261 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1262 goto unmutex_fail;
1263 }
1264
1265 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
1266 chan->out_synchronous) {
1267 dev_err(xdev->dev,
1268 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1269 goto unmutex_fail;
1270 }
1271
1272 rc = -EBUSY;
1273
1274 if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
1275 ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
1276 goto unmutex_fail;
1277
1278 kref_get(&xdev->kref);
1279
1280 if (filp->f_mode & FMODE_READ)
1281 chan->open_for_read = 1;
1282
1283 if (filp->f_mode & FMODE_WRITE)
1284 chan->open_for_write = 1;
1285
1286 mutex_unlock(&chan->lock);
1287
1288 if (filp->f_mode & FMODE_WRITE) {
1289 out_ep = endpoint_alloc(xdev,
1290 (chan->chan_idx + 2) | USB_DIR_OUT,
1291 bulk_out_work, BUF_SIZE_ORDER, BUFNUM);
1292
1293 if (!out_ep) {
1294 rc = -ENOMEM;
1295 goto unopen;
1296 }
1297
1298 rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size);
1299
1300 if (rc)
1301 goto late_unopen;
1302
1303 out_ep->fill_mask = -(1 << chan->out_log2_element_size);
1304 chan->out_bytes = 0;
1305 chan->flushed = 0;
1306
1307 /*
1308 * Sending a flush request to a previously closed stream
1309 * effectively opens it, and also waits until the command is
1310 * confirmed by the FPGA. The latter is necessary because the
1311 * data is sent through a separate BULK OUT endpoint, and the
1312 * xHCI controller is free to reorder transmissions.
1313 *
1314 * This can't go wrong unless there's a serious hardware error
1315 * (or the computer is stuck for 500 ms?)
1316 */
1317 rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false);
1318
1319 if (rc == -ETIMEDOUT) {
1320 rc = -EIO;
1321 report_io_error(xdev, rc);
1322 }
1323
1324 if (rc)
1325 goto late_unopen;
1326 }
1327
1328 if (filp->f_mode & FMODE_READ) {
1329 in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL);
1330
1331 if (!in_fifo) {
1332 rc = -ENOMEM;
1333 goto late_unopen;
1334 }
1335
1336 rc = fifo_init(in_fifo, chan->in_log2_fifo_size);
1337
1338 if (rc) {
1339 kfree(in_fifo);
1340 goto late_unopen;
1341 }
1342 }
1343
1344 mutex_lock(&chan->lock);
1345 if (in_fifo) {
1346 chan->in_fifo = in_fifo;
1347 chan->read_data_ok = 1;
1348 }
1349 if (out_ep)
1350 chan->out_ep = out_ep;
1351 mutex_unlock(&chan->lock);
1352
1353 if (in_fifo) {
1354 u32 in_checkpoint = 0;
1355
1356 if (!chan->in_synchronous)
1357 in_checkpoint = in_fifo->size >>
1358 chan->in_log2_element_size;
1359
1360 chan->in_consumed_bytes = 0;
1361 chan->poll_used = 0;
1362 chan->in_current_checkpoint = in_checkpoint;
1363 rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1364 OPCODE_SET_CHECKPOINT,
1365 in_checkpoint);
1366
1367 if (rc) /* Failure guarantees that opcode wasn't sent */
1368 goto unfifo;
1369
1370 /*
1371 * In non-blocking mode, request the FPGA to send any data it
1372 * has right away. Otherwise, the first read() will always
1373 * return -EAGAIN, which is OK strictly speaking, but ugly.
1374 * Checking and unrolling if this fails isn't worth the
1375 * effort -- the error is propagated to the first read()
1376 * anyhow.
1377 */
1378 if (filp->f_flags & O_NONBLOCK)
1379 request_read_anything(chan, OPCODE_SET_PUSH);
1380 }
1381
1382 return 0;
1383
1384 unfifo:
1385 chan->read_data_ok = 0;
1386 safely_assign_in_fifo(chan, NULL);
1387 fifo_mem_release(in_fifo);
1388 kfree(in_fifo);
1389
1390 if (out_ep) {
1391 mutex_lock(&chan->lock);
1392 chan->out_ep = NULL;
1393 mutex_unlock(&chan->lock);
1394 }
1395
1396 late_unopen:
1397 if (out_ep)
1398 endpoint_dealloc(out_ep);
1399
1400 unopen:
1401 mutex_lock(&chan->lock);
1402
1403 if (filp->f_mode & FMODE_READ)
1404 chan->open_for_read = 0;
1405
1406 if (filp->f_mode & FMODE_WRITE)
1407 chan->open_for_write = 0;
1408
1409 mutex_unlock(&chan->lock);
1410
1411 kref_put(&xdev->kref, cleanup_dev);
1412
1413 return rc;
1414
1415 unmutex_fail:
1416 mutex_unlock(&chan->lock);
1417 return rc;
1418 }
1419
xillyusb_read(struct file * filp,char __user * userbuf,size_t count,loff_t * f_pos)1420 static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
1421 size_t count, loff_t *f_pos)
1422 {
1423 struct xillyusb_channel *chan = filp->private_data;
1424 struct xillyusb_dev *xdev = chan->xdev;
1425 struct xillyfifo *fifo = chan->in_fifo;
1426 int chan_num = (chan->chan_idx << 1) | 1;
1427
1428 long deadline, left_to_sleep;
1429 int bytes_done = 0;
1430 bool sent_set_push = false;
1431 int rc;
1432
1433 deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
1434
1435 rc = mutex_lock_interruptible(&chan->in_mutex);
1436
1437 if (rc)
1438 return rc;
1439
1440 while (1) {
1441 u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
1442 u32 complete_checkpoint, fifo_checkpoint;
1443 u32 checkpoint;
1444 s32 diff, leap;
1445 unsigned int sh = chan->in_log2_element_size;
1446 bool checkpoint_for_complete;
1447
1448 rc = fifo_read(fifo, (__force void *)userbuf + bytes_done,
1449 count - bytes_done, xilly_copy_to_user);
1450
1451 if (rc < 0)
1452 break;
1453
1454 bytes_done += rc;
1455 chan->in_consumed_bytes += rc;
1456
1457 left_to_sleep = deadline - ((long)jiffies);
1458
1459 /*
1460 * Some 32-bit arithmetic that may wrap. Note that
1461 * complete_checkpoint is rounded up to the closest element
1462 * boundary, because the read() can't be completed otherwise.
1463 * fifo_checkpoint_bytes is rounded down, because it protects
1464 * in_fifo from overflowing.
1465 */
1466
1467 fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
1468 complete_checkpoint_bytes =
1469 chan->in_consumed_bytes + count - bytes_done;
1470
1471 fifo_checkpoint = fifo_checkpoint_bytes >> sh;
1472 complete_checkpoint =
1473 (complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
1474
1475 diff = (fifo_checkpoint - complete_checkpoint) << sh;
1476
1477 if (chan->in_synchronous && diff >= 0) {
1478 checkpoint = complete_checkpoint;
1479 checkpoint_for_complete = true;
1480 } else {
1481 checkpoint = fifo_checkpoint;
1482 checkpoint_for_complete = false;
1483 }
1484
1485 leap = (checkpoint - chan->in_current_checkpoint) << sh;
1486
1487 /*
1488 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1489 * data is consumed, it's issued only if it moves the
1490 * checkpoint by at least an 8th of the FIFO's size, or if
1491 * it's necessary to complete the number of bytes requested by
1492 * the read() call.
1493 *
1494 * chan->read_data_ok is checked to spare an unnecessary
1495 * submission after receiving EOF, however it's harmless if
1496 * such slips away.
1497 */
1498
1499 if (chan->read_data_ok &&
1500 (leap > (fifo->size >> 3) ||
1501 (checkpoint_for_complete && leap > 0))) {
1502 chan->in_current_checkpoint = checkpoint;
1503 rc = xillyusb_send_opcode(xdev, chan_num,
1504 OPCODE_SET_CHECKPOINT,
1505 checkpoint);
1506
1507 if (rc)
1508 break;
1509 }
1510
1511 if (bytes_done == count ||
1512 (left_to_sleep <= 0 && bytes_done))
1513 break;
1514
1515 /*
1516 * Reaching here means that the FIFO was empty when
1517 * fifo_read() returned, but not necessarily right now. Error
1518 * and EOF are checked and reported only now, so that no data
1519 * that managed its way to the FIFO is lost.
1520 */
1521
1522 if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
1523 /* Has data slipped into the FIFO since fifo_read()? */
1524 smp_rmb();
1525 if (READ_ONCE(fifo->fill))
1526 continue;
1527
1528 rc = 0;
1529 break;
1530 }
1531
1532 if (xdev->error) {
1533 rc = xdev->error;
1534 break;
1535 }
1536
1537 if (filp->f_flags & O_NONBLOCK) {
1538 rc = -EAGAIN;
1539 break;
1540 }
1541
1542 if (!sent_set_push) {
1543 rc = xillyusb_send_opcode(xdev, chan_num,
1544 OPCODE_SET_PUSH,
1545 complete_checkpoint);
1546
1547 if (rc)
1548 break;
1549
1550 sent_set_push = true;
1551 }
1552
1553 if (left_to_sleep > 0) {
1554 /*
1555 * Note that when xdev->error is set (e.g. when the
1556 * device is unplugged), read_data_ok turns zero and
1557 * fifo->waitq is awaken.
1558 * Therefore no special attention to xdev->error.
1559 */
1560
1561 rc = wait_event_interruptible_timeout
1562 (fifo->waitq,
1563 fifo->fill || !chan->read_data_ok,
1564 left_to_sleep);
1565 } else { /* bytes_done == 0 */
1566 /* Tell FPGA to send anything it has */
1567 rc = request_read_anything(chan, OPCODE_UPDATE_PUSH);
1568
1569 if (rc)
1570 break;
1571
1572 rc = wait_event_interruptible
1573 (fifo->waitq,
1574 fifo->fill || !chan->read_data_ok);
1575 }
1576
1577 if (rc < 0) {
1578 rc = -EINTR;
1579 break;
1580 }
1581 }
1582
1583 if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
1584 !READ_ONCE(fifo->fill))
1585 request_read_anything(chan, OPCODE_SET_PUSH);
1586
1587 mutex_unlock(&chan->in_mutex);
1588
1589 if (bytes_done)
1590 return bytes_done;
1591
1592 return rc;
1593 }
1594
xillyusb_flush(struct file * filp,fl_owner_t id)1595 static int xillyusb_flush(struct file *filp, fl_owner_t id)
1596 {
1597 struct xillyusb_channel *chan = filp->private_data;
1598 int rc;
1599
1600 if (!(filp->f_mode & FMODE_WRITE))
1601 return 0;
1602
1603 rc = mutex_lock_interruptible(&chan->out_mutex);
1604
1605 if (rc)
1606 return rc;
1607
1608 /*
1609 * One second's timeout on flushing. Interrupts are ignored, because if
1610 * the user pressed CTRL-C, that interrupt will still be in flight by
1611 * the time we reach here, and the opportunity to flush is lost.
1612 */
1613 rc = flush_downstream(chan, HZ, false);
1614
1615 mutex_unlock(&chan->out_mutex);
1616
1617 if (rc == -ETIMEDOUT) {
1618 /* The things you do to use dev_warn() and not pr_warn() */
1619 struct xillyusb_dev *xdev = chan->xdev;
1620
1621 mutex_lock(&chan->lock);
1622 if (!xdev->error)
1623 dev_warn(xdev->dev,
1624 "Timed out while flushing. Output data may be lost.\n");
1625 mutex_unlock(&chan->lock);
1626 }
1627
1628 return rc;
1629 }
1630
xillyusb_write(struct file * filp,const char __user * userbuf,size_t count,loff_t * f_pos)1631 static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
1632 size_t count, loff_t *f_pos)
1633 {
1634 struct xillyusb_channel *chan = filp->private_data;
1635 struct xillyusb_dev *xdev = chan->xdev;
1636 struct xillyfifo *fifo = &chan->out_ep->fifo;
1637 int rc;
1638
1639 rc = mutex_lock_interruptible(&chan->out_mutex);
1640
1641 if (rc)
1642 return rc;
1643
1644 while (1) {
1645 if (xdev->error) {
1646 rc = xdev->error;
1647 break;
1648 }
1649
1650 if (count == 0)
1651 break;
1652
1653 rc = fifo_write(fifo, (__force void *)userbuf, count,
1654 xilly_copy_from_user);
1655
1656 if (rc != 0)
1657 break;
1658
1659 if (filp->f_flags & O_NONBLOCK) {
1660 rc = -EAGAIN;
1661 break;
1662 }
1663
1664 if (wait_event_interruptible
1665 (fifo->waitq,
1666 fifo->fill != fifo->size || xdev->error)) {
1667 rc = -EINTR;
1668 break;
1669 }
1670 }
1671
1672 if (rc < 0)
1673 goto done;
1674
1675 chan->out_bytes += rc;
1676
1677 if (rc) {
1678 try_queue_bulk_out(chan->out_ep);
1679 chan->flushed = 0;
1680 }
1681
1682 if (chan->out_synchronous) {
1683 int flush_rc = flush_downstream(chan, 0, true);
1684
1685 if (flush_rc && !rc)
1686 rc = flush_rc;
1687 }
1688
1689 done:
1690 mutex_unlock(&chan->out_mutex);
1691
1692 return rc;
1693 }
1694
xillyusb_release(struct inode * inode,struct file * filp)1695 static int xillyusb_release(struct inode *inode, struct file *filp)
1696 {
1697 struct xillyusb_channel *chan = filp->private_data;
1698 struct xillyusb_dev *xdev = chan->xdev;
1699 int rc_read = 0, rc_write = 0;
1700
1701 if (filp->f_mode & FMODE_READ) {
1702 struct xillyfifo *in_fifo = chan->in_fifo;
1703
1704 rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1705 OPCODE_CLOSE, 0);
1706 /*
1707 * If rc_read is nonzero, xdev->error indicates a global
1708 * device error. The error is reported later, so that
1709 * resources are freed.
1710 *
1711 * Looping on wait_event_interruptible() kinda breaks the idea
1712 * of being interruptible, and this should have been
1713 * wait_event(). Only it's being waken with
1714 * wake_up_interruptible() for the sake of other uses. If
1715 * there's a global device error, chan->read_data_ok is
1716 * deasserted and the wait queue is awaken, so this is covered.
1717 */
1718
1719 while (wait_event_interruptible(in_fifo->waitq,
1720 !chan->read_data_ok))
1721 ; /* Empty loop */
1722
1723 safely_assign_in_fifo(chan, NULL);
1724 fifo_mem_release(in_fifo);
1725 kfree(in_fifo);
1726
1727 mutex_lock(&chan->lock);
1728 chan->open_for_read = 0;
1729 mutex_unlock(&chan->lock);
1730 }
1731
1732 if (filp->f_mode & FMODE_WRITE) {
1733 struct xillyusb_endpoint *ep = chan->out_ep;
1734 /*
1735 * chan->flushing isn't zeroed. If the pre-release flush timed
1736 * out, a cancel request will be sent before the next
1737 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1738 * This is despite that the FPGA forgets about the checkpoint
1739 * request as the file closes. Still, in an exceptional race
1740 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1741 * just before closing that would reach the host after the
1742 * file has re-opened.
1743 */
1744
1745 mutex_lock(&chan->lock);
1746 chan->out_ep = NULL;
1747 mutex_unlock(&chan->lock);
1748
1749 endpoint_quiesce(ep);
1750 endpoint_dealloc(ep);
1751
1752 /* See comments on rc_read above */
1753 rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1754 OPCODE_CLOSE, 0);
1755
1756 mutex_lock(&chan->lock);
1757 chan->open_for_write = 0;
1758 mutex_unlock(&chan->lock);
1759 }
1760
1761 kref_put(&xdev->kref, cleanup_dev);
1762
1763 return rc_read ? rc_read : rc_write;
1764 }
1765
1766 /*
1767 * Xillybus' API allows device nodes to be seekable, giving the user
1768 * application access to a RAM array on the FPGA (or logic emulating it).
1769 */
1770
xillyusb_llseek(struct file * filp,loff_t offset,int whence)1771 static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)
1772 {
1773 struct xillyusb_channel *chan = filp->private_data;
1774 struct xillyusb_dev *xdev = chan->xdev;
1775 loff_t pos = filp->f_pos;
1776 int rc = 0;
1777 unsigned int log2_element_size = chan->readable ?
1778 chan->in_log2_element_size : chan->out_log2_element_size;
1779
1780 /*
1781 * Take both mutexes not allowing interrupts, since it seems like
1782 * common applications don't expect an -EINTR here. Besides, multiple
1783 * access to a single file descriptor on seekable devices is a mess
1784 * anyhow.
1785 */
1786
1787 mutex_lock(&chan->out_mutex);
1788 mutex_lock(&chan->in_mutex);
1789
1790 switch (whence) {
1791 case SEEK_SET:
1792 pos = offset;
1793 break;
1794 case SEEK_CUR:
1795 pos += offset;
1796 break;
1797 case SEEK_END:
1798 pos = offset; /* Going to the end => to the beginning */
1799 break;
1800 default:
1801 rc = -EINVAL;
1802 goto end;
1803 }
1804
1805 /* In any case, we must finish on an element boundary */
1806 if (pos & ((1 << log2_element_size) - 1)) {
1807 rc = -EINVAL;
1808 goto end;
1809 }
1810
1811 rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1812 OPCODE_SET_ADDR,
1813 pos >> log2_element_size);
1814
1815 if (rc)
1816 goto end;
1817
1818 if (chan->writable) {
1819 chan->flushed = 0;
1820 rc = flush_downstream(chan, HZ, false);
1821 }
1822
1823 end:
1824 mutex_unlock(&chan->out_mutex);
1825 mutex_unlock(&chan->in_mutex);
1826
1827 if (rc) /* Return error after releasing mutexes */
1828 return rc;
1829
1830 filp->f_pos = pos;
1831
1832 return pos;
1833 }
1834
xillyusb_poll(struct file * filp,poll_table * wait)1835 static __poll_t xillyusb_poll(struct file *filp, poll_table *wait)
1836 {
1837 struct xillyusb_channel *chan = filp->private_data;
1838 __poll_t mask = 0;
1839
1840 if (chan->in_fifo)
1841 poll_wait(filp, &chan->in_fifo->waitq, wait);
1842
1843 if (chan->out_ep)
1844 poll_wait(filp, &chan->out_ep->fifo.waitq, wait);
1845
1846 /*
1847 * If this is the first time poll() is called, and the file is
1848 * readable, set the relevant flag. Also tell the FPGA to send all it
1849 * has, to kickstart the mechanism that ensures there's always some
1850 * data in in_fifo unless the stream is dry end-to-end. Note that the
1851 * first poll() may not return a EPOLLIN, even if there's data on the
1852 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1853 * wait queue.
1854 */
1855
1856 if (!chan->poll_used && chan->in_fifo) {
1857 chan->poll_used = 1;
1858 request_read_anything(chan, OPCODE_SET_PUSH);
1859 }
1860
1861 /*
1862 * poll() won't play ball regarding read() channels which
1863 * are synchronous. Allowing that will create situations where data has
1864 * been delivered at the FPGA, and users expecting select() to wake up,
1865 * which it may not. So make it never work.
1866 */
1867
1868 if (chan->in_fifo && !chan->in_synchronous &&
1869 (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok))
1870 mask |= EPOLLIN | EPOLLRDNORM;
1871
1872 if (chan->out_ep &&
1873 (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size))
1874 mask |= EPOLLOUT | EPOLLWRNORM;
1875
1876 if (chan->xdev->error)
1877 mask |= EPOLLERR;
1878
1879 return mask;
1880 }
1881
1882 static const struct file_operations xillyusb_fops = {
1883 .owner = THIS_MODULE,
1884 .read = xillyusb_read,
1885 .write = xillyusb_write,
1886 .open = xillyusb_open,
1887 .flush = xillyusb_flush,
1888 .release = xillyusb_release,
1889 .llseek = xillyusb_llseek,
1890 .poll = xillyusb_poll,
1891 };
1892
xillyusb_setup_base_eps(struct xillyusb_dev * xdev)1893 static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev)
1894 {
1895 xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT,
1896 bulk_out_work, 1, 2);
1897 if (!xdev->msg_ep)
1898 return -ENOMEM;
1899
1900 if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */
1901 goto dealloc;
1902
1903 xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */
1904
1905 xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN,
1906 bulk_in_work, BUF_SIZE_ORDER, BUFNUM);
1907 if (!xdev->in_ep)
1908 goto dealloc;
1909
1910 try_queue_bulk_in(xdev->in_ep);
1911
1912 return 0;
1913
1914 dealloc:
1915 endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */
1916 xdev->msg_ep = NULL;
1917 return -ENOMEM;
1918 }
1919
setup_channels(struct xillyusb_dev * xdev,__le16 * chandesc,int num_channels)1920 static int setup_channels(struct xillyusb_dev *xdev,
1921 __le16 *chandesc,
1922 int num_channels)
1923 {
1924 struct xillyusb_channel *chan;
1925 int i;
1926
1927 chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL);
1928 if (!chan)
1929 return -ENOMEM;
1930
1931 xdev->channels = chan;
1932
1933 for (i = 0; i < num_channels; i++, chan++) {
1934 unsigned int in_desc = le16_to_cpu(*chandesc++);
1935 unsigned int out_desc = le16_to_cpu(*chandesc++);
1936
1937 chan->xdev = xdev;
1938 mutex_init(&chan->in_mutex);
1939 mutex_init(&chan->out_mutex);
1940 mutex_init(&chan->lock);
1941 init_waitqueue_head(&chan->flushq);
1942
1943 chan->chan_idx = i;
1944
1945 if (in_desc & 0x80) { /* Entry is valid */
1946 chan->readable = 1;
1947 chan->in_synchronous = !!(in_desc & 0x40);
1948 chan->in_seekable = !!(in_desc & 0x20);
1949 chan->in_log2_element_size = in_desc & 0x0f;
1950 chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16;
1951 }
1952
1953 /*
1954 * A downstream channel should never exist above index 13,
1955 * as it would request a nonexistent BULK endpoint > 15.
1956 * In the peculiar case that it does, it's ignored silently.
1957 */
1958
1959 if ((out_desc & 0x80) && i < 14) { /* Entry is valid */
1960 chan->writable = 1;
1961 chan->out_synchronous = !!(out_desc & 0x40);
1962 chan->out_seekable = !!(out_desc & 0x20);
1963 chan->out_log2_element_size = out_desc & 0x0f;
1964 chan->out_log2_fifo_size =
1965 ((out_desc >> 8) & 0x1f) + 16;
1966 }
1967 }
1968
1969 return 0;
1970 }
1971
xillyusb_discovery(struct usb_interface * interface)1972 static int xillyusb_discovery(struct usb_interface *interface)
1973 {
1974 int rc;
1975 struct xillyusb_dev *xdev = usb_get_intfdata(interface);
1976 __le16 bogus_chandesc[2];
1977 struct xillyfifo idt_fifo;
1978 struct xillyusb_channel *chan;
1979 unsigned int idt_len, names_offset;
1980 unsigned char *idt;
1981 int num_channels;
1982
1983 rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
1984
1985 if (rc) {
1986 dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n");
1987 return rc;
1988 }
1989
1990 /* Phase I: Set up one fake upstream channel and obtain IDT */
1991
1992 /* Set up a fake IDT with one async IN stream */
1993 bogus_chandesc[0] = cpu_to_le16(0x80);
1994 bogus_chandesc[1] = cpu_to_le16(0);
1995
1996 rc = setup_channels(xdev, bogus_chandesc, 1);
1997
1998 if (rc)
1999 return rc;
2000
2001 rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE);
2002
2003 if (rc)
2004 return rc;
2005
2006 chan = xdev->channels;
2007
2008 chan->in_fifo = &idt_fifo;
2009 chan->read_data_ok = 1;
2010
2011 xdev->num_channels = 1;
2012
2013 rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0);
2014
2015 if (rc) {
2016 dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n");
2017 goto unfifo;
2018 }
2019
2020 rc = wait_event_interruptible_timeout(idt_fifo.waitq,
2021 !chan->read_data_ok,
2022 XILLY_RESPONSE_TIMEOUT);
2023
2024 if (xdev->error) {
2025 rc = xdev->error;
2026 goto unfifo;
2027 }
2028
2029 if (rc < 0) {
2030 rc = -EINTR; /* Interrupt on probe method? Interesting. */
2031 goto unfifo;
2032 }
2033
2034 if (chan->read_data_ok) {
2035 rc = -ETIMEDOUT;
2036 dev_err(&interface->dev, "No response from FPGA. Aborting.\n");
2037 goto unfifo;
2038 }
2039
2040 idt_len = READ_ONCE(idt_fifo.fill);
2041 idt = kmalloc(idt_len, GFP_KERNEL);
2042
2043 if (!idt) {
2044 rc = -ENOMEM;
2045 goto unfifo;
2046 }
2047
2048 fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy);
2049
2050 if (crc32_le(~0, idt, idt_len) != 0) {
2051 dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n");
2052 rc = -ENODEV;
2053 goto unidt;
2054 }
2055
2056 if (*idt > 0x90) {
2057 dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2058 (int)*idt);
2059 rc = -ENODEV;
2060 goto unidt;
2061 }
2062
2063 /* Phase II: Set up the streams as defined in IDT */
2064
2065 num_channels = le16_to_cpu(*((__le16 *)(idt + 1)));
2066 names_offset = 3 + num_channels * 4;
2067 idt_len -= 4; /* Exclude CRC */
2068
2069 if (idt_len < names_offset) {
2070 dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2071 rc = -ENODEV;
2072 goto unidt;
2073 }
2074
2075 rc = setup_channels(xdev, (void *)idt + 3, num_channels);
2076
2077 if (rc)
2078 goto unidt;
2079
2080 /*
2081 * Except for wildly misbehaving hardware, or if it was disconnected
2082 * just after responding with the IDT, there is no reason for any
2083 * work item to be running now. To be sure that xdev->channels
2084 * is updated on anything that might run in parallel, flush the
2085 * workqueue, which rarely does anything.
2086 */
2087 flush_workqueue(xdev->workq);
2088
2089 xdev->num_channels = num_channels;
2090
2091 fifo_mem_release(&idt_fifo);
2092 kfree(chan);
2093
2094 rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops,
2095 THIS_MODULE, xdev,
2096 idt + names_offset,
2097 idt_len - names_offset,
2098 num_channels,
2099 xillyname, true);
2100
2101 kfree(idt);
2102
2103 return rc;
2104
2105 unidt:
2106 kfree(idt);
2107
2108 unfifo:
2109 safely_assign_in_fifo(chan, NULL);
2110 fifo_mem_release(&idt_fifo);
2111
2112 return rc;
2113 }
2114
xillyusb_probe(struct usb_interface * interface,const struct usb_device_id * id)2115 static int xillyusb_probe(struct usb_interface *interface,
2116 const struct usb_device_id *id)
2117 {
2118 struct xillyusb_dev *xdev;
2119 int rc;
2120
2121 xdev = kzalloc(sizeof(*xdev), GFP_KERNEL);
2122 if (!xdev)
2123 return -ENOMEM;
2124
2125 kref_init(&xdev->kref);
2126 mutex_init(&xdev->process_in_mutex);
2127 mutex_init(&xdev->msg_mutex);
2128
2129 xdev->udev = usb_get_dev(interface_to_usbdev(interface));
2130 xdev->dev = &interface->dev;
2131 xdev->error = 0;
2132 spin_lock_init(&xdev->error_lock);
2133 xdev->in_counter = 0;
2134 xdev->in_bytes_left = 0;
2135 xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0);
2136
2137 if (!xdev->workq) {
2138 dev_err(&interface->dev, "Failed to allocate work queue\n");
2139 rc = -ENOMEM;
2140 goto fail;
2141 }
2142
2143 INIT_WORK(&xdev->wakeup_workitem, wakeup_all);
2144
2145 usb_set_intfdata(interface, xdev);
2146
2147 rc = xillyusb_setup_base_eps(xdev);
2148 if (rc)
2149 goto fail;
2150
2151 rc = xillyusb_discovery(interface);
2152 if (rc)
2153 goto latefail;
2154
2155 return 0;
2156
2157 latefail:
2158 endpoint_quiesce(xdev->in_ep);
2159 endpoint_quiesce(xdev->msg_ep);
2160
2161 fail:
2162 usb_set_intfdata(interface, NULL);
2163 kref_put(&xdev->kref, cleanup_dev);
2164 return rc;
2165 }
2166
xillyusb_disconnect(struct usb_interface * interface)2167 static void xillyusb_disconnect(struct usb_interface *interface)
2168 {
2169 struct xillyusb_dev *xdev = usb_get_intfdata(interface);
2170 struct xillyusb_endpoint *msg_ep = xdev->msg_ep;
2171 struct xillyfifo *fifo = &msg_ep->fifo;
2172 int rc;
2173 int i;
2174
2175 xillybus_cleanup_chrdev(xdev, &interface->dev);
2176
2177 /*
2178 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2179 * was disconnected, but makes sense on module unload.
2180 */
2181
2182 msg_ep->wake_on_drain = true;
2183 xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
2184
2185 /*
2186 * If the device has been disconnected, sending the opcode causes
2187 * a global device error with xdev->error, if such error didn't
2188 * occur earlier. Hence timing out means that the USB link is fine,
2189 * but somehow the message wasn't sent. Should never happen.
2190 */
2191
2192 rc = wait_event_interruptible_timeout(fifo->waitq,
2193 msg_ep->drained || xdev->error,
2194 XILLY_RESPONSE_TIMEOUT);
2195
2196 if (!rc)
2197 dev_err(&interface->dev,
2198 "Weird timeout condition on sending quiesce request.\n");
2199
2200 report_io_error(xdev, -ENODEV); /* Discourage further activity */
2201
2202 /*
2203 * This device driver is declared with soft_unbind set, or else
2204 * sending OPCODE_QUIESCE above would always fail. The price is
2205 * that the USB framework didn't kill outstanding URBs, so it has
2206 * to be done explicitly before returning from this call.
2207 */
2208
2209 for (i = 0; i < xdev->num_channels; i++) {
2210 struct xillyusb_channel *chan = &xdev->channels[i];
2211
2212 /*
2213 * Lock taken to prevent chan->out_ep from changing. It also
2214 * ensures xillyusb_open() and xillyusb_flush() don't access
2215 * xdev->dev after being nullified below.
2216 */
2217 mutex_lock(&chan->lock);
2218 if (chan->out_ep)
2219 endpoint_quiesce(chan->out_ep);
2220 mutex_unlock(&chan->lock);
2221 }
2222
2223 endpoint_quiesce(xdev->in_ep);
2224 endpoint_quiesce(xdev->msg_ep);
2225
2226 usb_set_intfdata(interface, NULL);
2227
2228 xdev->dev = NULL;
2229
2230 kref_put(&xdev->kref, cleanup_dev);
2231 }
2232
2233 static struct usb_driver xillyusb_driver = {
2234 .name = xillyname,
2235 .id_table = xillyusb_table,
2236 .probe = xillyusb_probe,
2237 .disconnect = xillyusb_disconnect,
2238 .soft_unbind = 1,
2239 };
2240
xillyusb_init(void)2241 static int __init xillyusb_init(void)
2242 {
2243 int rc = 0;
2244
2245 if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT)
2246 fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT;
2247 else
2248 fifo_buf_order = 0;
2249
2250 rc = usb_register(&xillyusb_driver);
2251
2252 return rc;
2253 }
2254
xillyusb_exit(void)2255 static void __exit xillyusb_exit(void)
2256 {
2257 usb_deregister(&xillyusb_driver);
2258 }
2259
2260 module_init(xillyusb_init);
2261 module_exit(xillyusb_exit);
2262