1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * IPv4 over IEEE 1394, per RFC 2734
4 * IPv6 over IEEE 1394, per RFC 3146
5 *
6 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
7 *
8 * based on eth1394 by Ben Collins et al
9 */
10
11 #include <linux/bug.h>
12 #include <linux/compiler.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/ethtool.h>
16 #include <linux/firewire.h>
17 #include <linux/firewire-constants.h>
18 #include <linux/highmem.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/jiffies.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/mutex.h>
26 #include <linux/netdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30
31 #include <asm/unaligned.h>
32 #include <net/arp.h>
33 #include <net/firewire.h>
34
35 /* rx limits */
36 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
37 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
38
39 /* tx limits */
40 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
41 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
42 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
43
44 #define IEEE1394_BROADCAST_CHANNEL 31
45 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
46 #define IEEE1394_MAX_PAYLOAD_S100 512
47 #define FWNET_NO_FIFO_ADDR (~0ULL)
48
49 #define IANA_SPECIFIER_ID 0x00005eU
50 #define RFC2734_SW_VERSION 0x000001U
51 #define RFC3146_SW_VERSION 0x000002U
52
53 #define IEEE1394_GASP_HDR_SIZE 8
54
55 #define RFC2374_UNFRAG_HDR_SIZE 4
56 #define RFC2374_FRAG_HDR_SIZE 8
57 #define RFC2374_FRAG_OVERHEAD 4
58
59 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
60 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
61 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
62 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
63
fwnet_hwaddr_is_multicast(u8 * ha)64 static bool fwnet_hwaddr_is_multicast(u8 *ha)
65 {
66 return !!(*ha & 1);
67 }
68
69 /* IPv4 and IPv6 encapsulation header */
70 struct rfc2734_header {
71 u32 w0;
72 u32 w1;
73 };
74
75 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
76 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
77 #define fwnet_get_hdr_dg_size(h) ((((h)->w0 & 0x0fff0000) >> 16) + 1)
78 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
79 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
80
81 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
82 #define fwnet_set_hdr_ether_type(et) (et)
83 #define fwnet_set_hdr_dg_size(dgs) (((dgs) - 1) << 16)
84 #define fwnet_set_hdr_fg_off(fgo) (fgo)
85
86 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
87
fwnet_make_uf_hdr(struct rfc2734_header * hdr,unsigned ether_type)88 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
89 unsigned ether_type)
90 {
91 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
92 | fwnet_set_hdr_ether_type(ether_type);
93 }
94
fwnet_make_ff_hdr(struct rfc2734_header * hdr,unsigned ether_type,unsigned dg_size,unsigned dgl)95 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
96 unsigned ether_type, unsigned dg_size, unsigned dgl)
97 {
98 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
99 | fwnet_set_hdr_dg_size(dg_size)
100 | fwnet_set_hdr_ether_type(ether_type);
101 hdr->w1 = fwnet_set_hdr_dgl(dgl);
102 }
103
fwnet_make_sf_hdr(struct rfc2734_header * hdr,unsigned lf,unsigned dg_size,unsigned fg_off,unsigned dgl)104 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
105 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
106 {
107 hdr->w0 = fwnet_set_hdr_lf(lf)
108 | fwnet_set_hdr_dg_size(dg_size)
109 | fwnet_set_hdr_fg_off(fg_off);
110 hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112
113 /* This list keeps track of what parts of the datagram have been filled in */
114 struct fwnet_fragment_info {
115 struct list_head fi_link;
116 u16 offset;
117 u16 len;
118 };
119
120 struct fwnet_partial_datagram {
121 struct list_head pd_link;
122 struct list_head fi_list;
123 struct sk_buff *skb;
124 /* FIXME Why not use skb->data? */
125 char *pbuf;
126 u16 datagram_label;
127 u16 ether_type;
128 u16 datagram_size;
129 };
130
131 static DEFINE_MUTEX(fwnet_device_mutex);
132 static LIST_HEAD(fwnet_device_list);
133
134 struct fwnet_device {
135 struct list_head dev_link;
136 spinlock_t lock;
137 enum {
138 FWNET_BROADCAST_ERROR,
139 FWNET_BROADCAST_RUNNING,
140 FWNET_BROADCAST_STOPPED,
141 } broadcast_state;
142 struct fw_iso_context *broadcast_rcv_context;
143 struct fw_iso_buffer broadcast_rcv_buffer;
144 void **broadcast_rcv_buffer_ptrs;
145 unsigned broadcast_rcv_next_ptr;
146 unsigned num_broadcast_rcv_ptrs;
147 unsigned rcv_buffer_size;
148 /*
149 * This value is the maximum unfragmented datagram size that can be
150 * sent by the hardware. It already has the GASP overhead and the
151 * unfragmented datagram header overhead calculated into it.
152 */
153 unsigned broadcast_xmt_max_payload;
154 u16 broadcast_xmt_datagramlabel;
155
156 /*
157 * The CSR address that remote nodes must send datagrams to for us to
158 * receive them.
159 */
160 struct fw_address_handler handler;
161 u64 local_fifo;
162
163 /* Number of tx datagrams that have been queued but not yet acked */
164 int queued_datagrams;
165
166 int peer_count;
167 struct list_head peer_list;
168 struct fw_card *card;
169 struct net_device *netdev;
170 };
171
172 struct fwnet_peer {
173 struct list_head peer_link;
174 struct fwnet_device *dev;
175 u64 guid;
176
177 /* guarded by dev->lock */
178 struct list_head pd_list; /* received partial datagrams */
179 unsigned pdg_size; /* pd_list size */
180
181 u16 datagram_label; /* outgoing datagram label */
182 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
183 int node_id;
184 int generation;
185 unsigned speed;
186 };
187
188 /* This is our task struct. It's used for the packet complete callback. */
189 struct fwnet_packet_task {
190 struct fw_transaction transaction;
191 struct rfc2734_header hdr;
192 struct sk_buff *skb;
193 struct fwnet_device *dev;
194
195 int outstanding_pkts;
196 u64 fifo_addr;
197 u16 dest_node;
198 u16 max_payload;
199 u8 generation;
200 u8 speed;
201 u8 enqueued;
202 };
203
204 /*
205 * Get fifo address embedded in hwaddr
206 */
fwnet_hwaddr_fifo(union fwnet_hwaddr * ha)207 static __u64 fwnet_hwaddr_fifo(union fwnet_hwaddr *ha)
208 {
209 return (u64)get_unaligned_be16(&ha->uc.fifo_hi) << 32
210 | get_unaligned_be32(&ha->uc.fifo_lo);
211 }
212
213 /*
214 * saddr == NULL means use device source address.
215 * daddr == NULL means leave destination address (eg unresolved arp).
216 */
fwnet_header_create(struct sk_buff * skb,struct net_device * net,unsigned short type,const void * daddr,const void * saddr,unsigned len)217 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
218 unsigned short type, const void *daddr,
219 const void *saddr, unsigned len)
220 {
221 struct fwnet_header *h;
222
223 h = skb_push(skb, sizeof(*h));
224 put_unaligned_be16(type, &h->h_proto);
225
226 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
227 memset(h->h_dest, 0, net->addr_len);
228
229 return net->hard_header_len;
230 }
231
232 if (daddr) {
233 memcpy(h->h_dest, daddr, net->addr_len);
234
235 return net->hard_header_len;
236 }
237
238 return -net->hard_header_len;
239 }
240
fwnet_header_cache(const struct neighbour * neigh,struct hh_cache * hh,__be16 type)241 static int fwnet_header_cache(const struct neighbour *neigh,
242 struct hh_cache *hh, __be16 type)
243 {
244 struct net_device *net;
245 struct fwnet_header *h;
246
247 if (type == cpu_to_be16(ETH_P_802_3))
248 return -1;
249 net = neigh->dev;
250 h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
251 h->h_proto = type;
252 memcpy(h->h_dest, neigh->ha, net->addr_len);
253
254 /* Pairs with the READ_ONCE() in neigh_resolve_output(),
255 * neigh_hh_output() and neigh_update_hhs().
256 */
257 smp_store_release(&hh->hh_len, FWNET_HLEN);
258
259 return 0;
260 }
261
262 /* Called by Address Resolution module to notify changes in address. */
fwnet_header_cache_update(struct hh_cache * hh,const struct net_device * net,const unsigned char * haddr)263 static void fwnet_header_cache_update(struct hh_cache *hh,
264 const struct net_device *net, const unsigned char *haddr)
265 {
266 memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
267 }
268
fwnet_header_parse(const struct sk_buff * skb,unsigned char * haddr)269 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
270 {
271 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
272
273 return FWNET_ALEN;
274 }
275
276 static const struct header_ops fwnet_header_ops = {
277 .create = fwnet_header_create,
278 .cache = fwnet_header_cache,
279 .cache_update = fwnet_header_cache_update,
280 .parse = fwnet_header_parse,
281 };
282
283 /* FIXME: is this correct for all cases? */
fwnet_frag_overlap(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)284 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
285 unsigned offset, unsigned len)
286 {
287 struct fwnet_fragment_info *fi;
288 unsigned end = offset + len;
289
290 list_for_each_entry(fi, &pd->fi_list, fi_link)
291 if (offset < fi->offset + fi->len && end > fi->offset)
292 return true;
293
294 return false;
295 }
296
297 /* Assumes that new fragment does not overlap any existing fragments */
fwnet_frag_new(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)298 static struct fwnet_fragment_info *fwnet_frag_new(
299 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
300 {
301 struct fwnet_fragment_info *fi, *fi2, *new;
302 struct list_head *list;
303
304 list = &pd->fi_list;
305 list_for_each_entry(fi, &pd->fi_list, fi_link) {
306 if (fi->offset + fi->len == offset) {
307 /* The new fragment can be tacked on to the end */
308 /* Did the new fragment plug a hole? */
309 fi2 = list_entry(fi->fi_link.next,
310 struct fwnet_fragment_info, fi_link);
311 if (fi->offset + fi->len == fi2->offset) {
312 /* glue fragments together */
313 fi->len += len + fi2->len;
314 list_del(&fi2->fi_link);
315 kfree(fi2);
316 } else {
317 fi->len += len;
318 }
319
320 return fi;
321 }
322 if (offset + len == fi->offset) {
323 /* The new fragment can be tacked on to the beginning */
324 /* Did the new fragment plug a hole? */
325 fi2 = list_entry(fi->fi_link.prev,
326 struct fwnet_fragment_info, fi_link);
327 if (fi2->offset + fi2->len == fi->offset) {
328 /* glue fragments together */
329 fi2->len += fi->len + len;
330 list_del(&fi->fi_link);
331 kfree(fi);
332
333 return fi2;
334 }
335 fi->offset = offset;
336 fi->len += len;
337
338 return fi;
339 }
340 if (offset > fi->offset + fi->len) {
341 list = &fi->fi_link;
342 break;
343 }
344 if (offset + len < fi->offset) {
345 list = fi->fi_link.prev;
346 break;
347 }
348 }
349
350 new = kmalloc(sizeof(*new), GFP_ATOMIC);
351 if (!new)
352 return NULL;
353
354 new->offset = offset;
355 new->len = len;
356 list_add(&new->fi_link, list);
357
358 return new;
359 }
360
fwnet_pd_new(struct net_device * net,struct fwnet_peer * peer,u16 datagram_label,unsigned dg_size,void * frag_buf,unsigned frag_off,unsigned frag_len)361 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
362 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
363 void *frag_buf, unsigned frag_off, unsigned frag_len)
364 {
365 struct fwnet_partial_datagram *new;
366 struct fwnet_fragment_info *fi;
367
368 new = kmalloc(sizeof(*new), GFP_ATOMIC);
369 if (!new)
370 goto fail;
371
372 INIT_LIST_HEAD(&new->fi_list);
373 fi = fwnet_frag_new(new, frag_off, frag_len);
374 if (fi == NULL)
375 goto fail_w_new;
376
377 new->datagram_label = datagram_label;
378 new->datagram_size = dg_size;
379 new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
380 if (new->skb == NULL)
381 goto fail_w_fi;
382
383 skb_reserve(new->skb, LL_RESERVED_SPACE(net));
384 new->pbuf = skb_put(new->skb, dg_size);
385 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
386 list_add_tail(&new->pd_link, &peer->pd_list);
387
388 return new;
389
390 fail_w_fi:
391 kfree(fi);
392 fail_w_new:
393 kfree(new);
394 fail:
395 return NULL;
396 }
397
fwnet_pd_find(struct fwnet_peer * peer,u16 datagram_label)398 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
399 u16 datagram_label)
400 {
401 struct fwnet_partial_datagram *pd;
402
403 list_for_each_entry(pd, &peer->pd_list, pd_link)
404 if (pd->datagram_label == datagram_label)
405 return pd;
406
407 return NULL;
408 }
409
410
fwnet_pd_delete(struct fwnet_partial_datagram * old)411 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
412 {
413 struct fwnet_fragment_info *fi, *n;
414
415 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
416 kfree(fi);
417
418 list_del(&old->pd_link);
419 dev_kfree_skb_any(old->skb);
420 kfree(old);
421 }
422
fwnet_pd_update(struct fwnet_peer * peer,struct fwnet_partial_datagram * pd,void * frag_buf,unsigned frag_off,unsigned frag_len)423 static bool fwnet_pd_update(struct fwnet_peer *peer,
424 struct fwnet_partial_datagram *pd, void *frag_buf,
425 unsigned frag_off, unsigned frag_len)
426 {
427 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
428 return false;
429
430 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
431
432 /*
433 * Move list entry to beginning of list so that oldest partial
434 * datagrams percolate to the end of the list
435 */
436 list_move_tail(&pd->pd_link, &peer->pd_list);
437
438 return true;
439 }
440
fwnet_pd_is_complete(struct fwnet_partial_datagram * pd)441 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
442 {
443 struct fwnet_fragment_info *fi;
444
445 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
446
447 return fi->len == pd->datagram_size;
448 }
449
450 /* caller must hold dev->lock */
fwnet_peer_find_by_guid(struct fwnet_device * dev,u64 guid)451 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
452 u64 guid)
453 {
454 struct fwnet_peer *peer;
455
456 list_for_each_entry(peer, &dev->peer_list, peer_link)
457 if (peer->guid == guid)
458 return peer;
459
460 return NULL;
461 }
462
463 /* caller must hold dev->lock */
fwnet_peer_find_by_node_id(struct fwnet_device * dev,int node_id,int generation)464 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
465 int node_id, int generation)
466 {
467 struct fwnet_peer *peer;
468
469 list_for_each_entry(peer, &dev->peer_list, peer_link)
470 if (peer->node_id == node_id &&
471 peer->generation == generation)
472 return peer;
473
474 return NULL;
475 }
476
477 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
fwnet_max_payload(unsigned max_rec,unsigned speed)478 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
479 {
480 max_rec = min(max_rec, speed + 8);
481 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
482
483 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
484 }
485
486
fwnet_finish_incoming_packet(struct net_device * net,struct sk_buff * skb,u16 source_node_id,bool is_broadcast,u16 ether_type)487 static int fwnet_finish_incoming_packet(struct net_device *net,
488 struct sk_buff *skb, u16 source_node_id,
489 bool is_broadcast, u16 ether_type)
490 {
491 int status, len;
492
493 switch (ether_type) {
494 case ETH_P_ARP:
495 case ETH_P_IP:
496 #if IS_ENABLED(CONFIG_IPV6)
497 case ETH_P_IPV6:
498 #endif
499 break;
500 default:
501 goto err;
502 }
503
504 /* Write metadata, and then pass to the receive level */
505 skb->dev = net;
506 skb->ip_summed = CHECKSUM_NONE;
507
508 /*
509 * Parse the encapsulation header. This actually does the job of
510 * converting to an ethernet-like pseudo frame header.
511 */
512 if (dev_hard_header(skb, net, ether_type,
513 is_broadcast ? net->broadcast : net->dev_addr,
514 NULL, skb->len) >= 0) {
515 struct fwnet_header *eth;
516 u16 *rawp;
517 __be16 protocol;
518
519 skb_reset_mac_header(skb);
520 skb_pull(skb, sizeof(*eth));
521 eth = (struct fwnet_header *)skb_mac_header(skb);
522 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
523 if (memcmp(eth->h_dest, net->broadcast,
524 net->addr_len) == 0)
525 skb->pkt_type = PACKET_BROADCAST;
526 #if 0
527 else
528 skb->pkt_type = PACKET_MULTICAST;
529 #endif
530 } else {
531 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
532 skb->pkt_type = PACKET_OTHERHOST;
533 }
534 if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
535 protocol = eth->h_proto;
536 } else {
537 rawp = (u16 *)skb->data;
538 if (*rawp == 0xffff)
539 protocol = htons(ETH_P_802_3);
540 else
541 protocol = htons(ETH_P_802_2);
542 }
543 skb->protocol = protocol;
544 }
545
546 len = skb->len;
547 status = netif_rx(skb);
548 if (status == NET_RX_DROP) {
549 net->stats.rx_errors++;
550 net->stats.rx_dropped++;
551 } else {
552 net->stats.rx_packets++;
553 net->stats.rx_bytes += len;
554 }
555
556 return 0;
557
558 err:
559 net->stats.rx_errors++;
560 net->stats.rx_dropped++;
561
562 dev_kfree_skb_any(skb);
563
564 return -ENOENT;
565 }
566
fwnet_incoming_packet(struct fwnet_device * dev,__be32 * buf,int len,int source_node_id,int generation,bool is_broadcast)567 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
568 int source_node_id, int generation,
569 bool is_broadcast)
570 {
571 struct sk_buff *skb;
572 struct net_device *net = dev->netdev;
573 struct rfc2734_header hdr;
574 unsigned lf;
575 unsigned long flags;
576 struct fwnet_peer *peer;
577 struct fwnet_partial_datagram *pd;
578 int fg_off;
579 int dg_size;
580 u16 datagram_label;
581 int retval;
582 u16 ether_type;
583
584 if (len <= RFC2374_UNFRAG_HDR_SIZE)
585 return 0;
586
587 hdr.w0 = be32_to_cpu(buf[0]);
588 lf = fwnet_get_hdr_lf(&hdr);
589 if (lf == RFC2374_HDR_UNFRAG) {
590 /*
591 * An unfragmented datagram has been received by the ieee1394
592 * bus. Build an skbuff around it so we can pass it to the
593 * high level network layer.
594 */
595 ether_type = fwnet_get_hdr_ether_type(&hdr);
596 buf++;
597 len -= RFC2374_UNFRAG_HDR_SIZE;
598
599 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
600 if (unlikely(!skb)) {
601 net->stats.rx_dropped++;
602
603 return -ENOMEM;
604 }
605 skb_reserve(skb, LL_RESERVED_SPACE(net));
606 skb_put_data(skb, buf, len);
607
608 return fwnet_finish_incoming_packet(net, skb, source_node_id,
609 is_broadcast, ether_type);
610 }
611
612 /* A datagram fragment has been received, now the fun begins. */
613
614 if (len <= RFC2374_FRAG_HDR_SIZE)
615 return 0;
616
617 hdr.w1 = ntohl(buf[1]);
618 buf += 2;
619 len -= RFC2374_FRAG_HDR_SIZE;
620 if (lf == RFC2374_HDR_FIRSTFRAG) {
621 ether_type = fwnet_get_hdr_ether_type(&hdr);
622 fg_off = 0;
623 } else {
624 ether_type = 0;
625 fg_off = fwnet_get_hdr_fg_off(&hdr);
626 }
627 datagram_label = fwnet_get_hdr_dgl(&hdr);
628 dg_size = fwnet_get_hdr_dg_size(&hdr);
629
630 if (fg_off + len > dg_size)
631 return 0;
632
633 spin_lock_irqsave(&dev->lock, flags);
634
635 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
636 if (!peer) {
637 retval = -ENOENT;
638 goto fail;
639 }
640
641 pd = fwnet_pd_find(peer, datagram_label);
642 if (pd == NULL) {
643 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
644 /* remove the oldest */
645 fwnet_pd_delete(list_first_entry(&peer->pd_list,
646 struct fwnet_partial_datagram, pd_link));
647 peer->pdg_size--;
648 }
649 pd = fwnet_pd_new(net, peer, datagram_label,
650 dg_size, buf, fg_off, len);
651 if (pd == NULL) {
652 retval = -ENOMEM;
653 goto fail;
654 }
655 peer->pdg_size++;
656 } else {
657 if (fwnet_frag_overlap(pd, fg_off, len) ||
658 pd->datagram_size != dg_size) {
659 /*
660 * Differing datagram sizes or overlapping fragments,
661 * discard old datagram and start a new one.
662 */
663 fwnet_pd_delete(pd);
664 pd = fwnet_pd_new(net, peer, datagram_label,
665 dg_size, buf, fg_off, len);
666 if (pd == NULL) {
667 peer->pdg_size--;
668 retval = -ENOMEM;
669 goto fail;
670 }
671 } else {
672 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
673 /*
674 * Couldn't save off fragment anyway
675 * so might as well obliterate the
676 * datagram now.
677 */
678 fwnet_pd_delete(pd);
679 peer->pdg_size--;
680 retval = -ENOMEM;
681 goto fail;
682 }
683 }
684 } /* new datagram or add to existing one */
685
686 if (lf == RFC2374_HDR_FIRSTFRAG)
687 pd->ether_type = ether_type;
688
689 if (fwnet_pd_is_complete(pd)) {
690 ether_type = pd->ether_type;
691 peer->pdg_size--;
692 skb = skb_get(pd->skb);
693 fwnet_pd_delete(pd);
694
695 spin_unlock_irqrestore(&dev->lock, flags);
696
697 return fwnet_finish_incoming_packet(net, skb, source_node_id,
698 false, ether_type);
699 }
700 /*
701 * Datagram is not complete, we're done for the
702 * moment.
703 */
704 retval = 0;
705 fail:
706 spin_unlock_irqrestore(&dev->lock, flags);
707
708 return retval;
709 }
710
fwnet_receive_packet(struct fw_card * card,struct fw_request * r,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)711 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
712 int tcode, int destination, int source, int generation,
713 unsigned long long offset, void *payload, size_t length,
714 void *callback_data)
715 {
716 struct fwnet_device *dev = callback_data;
717 int rcode;
718
719 if (destination == IEEE1394_ALL_NODES) {
720 kfree(r);
721
722 return;
723 }
724
725 if (offset != dev->handler.offset)
726 rcode = RCODE_ADDRESS_ERROR;
727 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
728 rcode = RCODE_TYPE_ERROR;
729 else if (fwnet_incoming_packet(dev, payload, length,
730 source, generation, false) != 0) {
731 dev_err(&dev->netdev->dev, "incoming packet failure\n");
732 rcode = RCODE_CONFLICT_ERROR;
733 } else
734 rcode = RCODE_COMPLETE;
735
736 fw_send_response(card, r, rcode);
737 }
738
gasp_source_id(__be32 * p)739 static int gasp_source_id(__be32 *p)
740 {
741 return be32_to_cpu(p[0]) >> 16;
742 }
743
gasp_specifier_id(__be32 * p)744 static u32 gasp_specifier_id(__be32 *p)
745 {
746 return (be32_to_cpu(p[0]) & 0xffff) << 8 |
747 (be32_to_cpu(p[1]) & 0xff000000) >> 24;
748 }
749
gasp_version(__be32 * p)750 static u32 gasp_version(__be32 *p)
751 {
752 return be32_to_cpu(p[1]) & 0xffffff;
753 }
754
fwnet_receive_broadcast(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * data)755 static void fwnet_receive_broadcast(struct fw_iso_context *context,
756 u32 cycle, size_t header_length, void *header, void *data)
757 {
758 struct fwnet_device *dev;
759 struct fw_iso_packet packet;
760 __be16 *hdr_ptr;
761 __be32 *buf_ptr;
762 int retval;
763 u32 length;
764 unsigned long offset;
765 unsigned long flags;
766
767 dev = data;
768 hdr_ptr = header;
769 length = be16_to_cpup(hdr_ptr);
770
771 spin_lock_irqsave(&dev->lock, flags);
772
773 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
774 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
775 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
776 dev->broadcast_rcv_next_ptr = 0;
777
778 spin_unlock_irqrestore(&dev->lock, flags);
779
780 if (length > IEEE1394_GASP_HDR_SIZE &&
781 gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID &&
782 (gasp_version(buf_ptr) == RFC2734_SW_VERSION
783 #if IS_ENABLED(CONFIG_IPV6)
784 || gasp_version(buf_ptr) == RFC3146_SW_VERSION
785 #endif
786 ))
787 fwnet_incoming_packet(dev, buf_ptr + 2,
788 length - IEEE1394_GASP_HDR_SIZE,
789 gasp_source_id(buf_ptr),
790 context->card->generation, true);
791
792 packet.payload_length = dev->rcv_buffer_size;
793 packet.interrupt = 1;
794 packet.skip = 0;
795 packet.tag = 3;
796 packet.sy = 0;
797 packet.header_length = IEEE1394_GASP_HDR_SIZE;
798
799 spin_lock_irqsave(&dev->lock, flags);
800
801 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
802 &dev->broadcast_rcv_buffer, offset);
803
804 spin_unlock_irqrestore(&dev->lock, flags);
805
806 if (retval >= 0)
807 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
808 else
809 dev_err(&dev->netdev->dev, "requeue failed\n");
810 }
811
812 static struct kmem_cache *fwnet_packet_task_cache;
813
fwnet_free_ptask(struct fwnet_packet_task * ptask)814 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
815 {
816 dev_kfree_skb_any(ptask->skb);
817 kmem_cache_free(fwnet_packet_task_cache, ptask);
818 }
819
820 /* Caller must hold dev->lock. */
dec_queued_datagrams(struct fwnet_device * dev)821 static void dec_queued_datagrams(struct fwnet_device *dev)
822 {
823 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
824 netif_wake_queue(dev->netdev);
825 }
826
827 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
828
fwnet_transmit_packet_done(struct fwnet_packet_task * ptask)829 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
830 {
831 struct fwnet_device *dev = ptask->dev;
832 struct sk_buff *skb = ptask->skb;
833 unsigned long flags;
834 bool free;
835
836 spin_lock_irqsave(&dev->lock, flags);
837
838 ptask->outstanding_pkts--;
839
840 /* Check whether we or the networking TX soft-IRQ is last user. */
841 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
842 if (free)
843 dec_queued_datagrams(dev);
844
845 if (ptask->outstanding_pkts == 0) {
846 dev->netdev->stats.tx_packets++;
847 dev->netdev->stats.tx_bytes += skb->len;
848 }
849
850 spin_unlock_irqrestore(&dev->lock, flags);
851
852 if (ptask->outstanding_pkts > 0) {
853 u16 dg_size;
854 u16 fg_off;
855 u16 datagram_label;
856 u16 lf;
857
858 /* Update the ptask to point to the next fragment and send it */
859 lf = fwnet_get_hdr_lf(&ptask->hdr);
860 switch (lf) {
861 case RFC2374_HDR_LASTFRAG:
862 case RFC2374_HDR_UNFRAG:
863 default:
864 dev_err(&dev->netdev->dev,
865 "outstanding packet %x lf %x, header %x,%x\n",
866 ptask->outstanding_pkts, lf, ptask->hdr.w0,
867 ptask->hdr.w1);
868 BUG();
869
870 case RFC2374_HDR_FIRSTFRAG:
871 /* Set frag type here for future interior fragments */
872 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
873 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
874 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
875 break;
876
877 case RFC2374_HDR_INTFRAG:
878 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
879 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
880 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
881 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
882 break;
883 }
884
885 if (ptask->dest_node == IEEE1394_ALL_NODES) {
886 skb_pull(skb,
887 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
888 } else {
889 skb_pull(skb, ptask->max_payload);
890 }
891 if (ptask->outstanding_pkts > 1) {
892 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
893 dg_size, fg_off, datagram_label);
894 } else {
895 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
896 dg_size, fg_off, datagram_label);
897 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
898 }
899 fwnet_send_packet(ptask);
900 }
901
902 if (free)
903 fwnet_free_ptask(ptask);
904 }
905
fwnet_transmit_packet_failed(struct fwnet_packet_task * ptask)906 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
907 {
908 struct fwnet_device *dev = ptask->dev;
909 unsigned long flags;
910 bool free;
911
912 spin_lock_irqsave(&dev->lock, flags);
913
914 /* One fragment failed; don't try to send remaining fragments. */
915 ptask->outstanding_pkts = 0;
916
917 /* Check whether we or the networking TX soft-IRQ is last user. */
918 free = ptask->enqueued;
919 if (free)
920 dec_queued_datagrams(dev);
921
922 dev->netdev->stats.tx_dropped++;
923 dev->netdev->stats.tx_errors++;
924
925 spin_unlock_irqrestore(&dev->lock, flags);
926
927 if (free)
928 fwnet_free_ptask(ptask);
929 }
930
fwnet_write_complete(struct fw_card * card,int rcode,void * payload,size_t length,void * data)931 static void fwnet_write_complete(struct fw_card *card, int rcode,
932 void *payload, size_t length, void *data)
933 {
934 struct fwnet_packet_task *ptask = data;
935 static unsigned long j;
936 static int last_rcode, errors_skipped;
937
938 if (rcode == RCODE_COMPLETE) {
939 fwnet_transmit_packet_done(ptask);
940 } else {
941 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
942 dev_err(&ptask->dev->netdev->dev,
943 "fwnet_write_complete failed: %x (skipped %d)\n",
944 rcode, errors_skipped);
945
946 errors_skipped = 0;
947 last_rcode = rcode;
948 } else {
949 errors_skipped++;
950 }
951 fwnet_transmit_packet_failed(ptask);
952 }
953 }
954
fwnet_send_packet(struct fwnet_packet_task * ptask)955 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
956 {
957 struct fwnet_device *dev;
958 unsigned tx_len;
959 struct rfc2734_header *bufhdr;
960 unsigned long flags;
961 bool free;
962
963 dev = ptask->dev;
964 tx_len = ptask->max_payload;
965 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
966 case RFC2374_HDR_UNFRAG:
967 bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
968 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
969 break;
970
971 case RFC2374_HDR_FIRSTFRAG:
972 case RFC2374_HDR_INTFRAG:
973 case RFC2374_HDR_LASTFRAG:
974 bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
975 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
976 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
977 break;
978
979 default:
980 BUG();
981 }
982 if (ptask->dest_node == IEEE1394_ALL_NODES) {
983 u8 *p;
984 int generation;
985 int node_id;
986 unsigned int sw_version;
987
988 /* ptask->generation may not have been set yet */
989 generation = dev->card->generation;
990 smp_rmb();
991 node_id = dev->card->node_id;
992
993 switch (ptask->skb->protocol) {
994 default:
995 sw_version = RFC2734_SW_VERSION;
996 break;
997 #if IS_ENABLED(CONFIG_IPV6)
998 case htons(ETH_P_IPV6):
999 sw_version = RFC3146_SW_VERSION;
1000 #endif
1001 }
1002
1003 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1004 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1005 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1006 | sw_version, &p[4]);
1007
1008 /* We should not transmit if broadcast_channel.valid == 0. */
1009 fw_send_request(dev->card, &ptask->transaction,
1010 TCODE_STREAM_DATA,
1011 fw_stream_packet_destination_id(3,
1012 IEEE1394_BROADCAST_CHANNEL, 0),
1013 generation, SCODE_100, 0ULL, ptask->skb->data,
1014 tx_len + 8, fwnet_write_complete, ptask);
1015
1016 spin_lock_irqsave(&dev->lock, flags);
1017
1018 /* If the AT tasklet already ran, we may be last user. */
1019 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1020 if (!free)
1021 ptask->enqueued = true;
1022 else
1023 dec_queued_datagrams(dev);
1024
1025 spin_unlock_irqrestore(&dev->lock, flags);
1026
1027 goto out;
1028 }
1029
1030 fw_send_request(dev->card, &ptask->transaction,
1031 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1032 ptask->generation, ptask->speed, ptask->fifo_addr,
1033 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1034
1035 spin_lock_irqsave(&dev->lock, flags);
1036
1037 /* If the AT tasklet already ran, we may be last user. */
1038 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1039 if (!free)
1040 ptask->enqueued = true;
1041 else
1042 dec_queued_datagrams(dev);
1043
1044 spin_unlock_irqrestore(&dev->lock, flags);
1045
1046 netif_trans_update(dev->netdev);
1047 out:
1048 if (free)
1049 fwnet_free_ptask(ptask);
1050
1051 return 0;
1052 }
1053
fwnet_fifo_stop(struct fwnet_device * dev)1054 static void fwnet_fifo_stop(struct fwnet_device *dev)
1055 {
1056 if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1057 return;
1058
1059 fw_core_remove_address_handler(&dev->handler);
1060 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1061 }
1062
fwnet_fifo_start(struct fwnet_device * dev)1063 static int fwnet_fifo_start(struct fwnet_device *dev)
1064 {
1065 int retval;
1066
1067 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1068 return 0;
1069
1070 dev->handler.length = 4096;
1071 dev->handler.address_callback = fwnet_receive_packet;
1072 dev->handler.callback_data = dev;
1073
1074 retval = fw_core_add_address_handler(&dev->handler,
1075 &fw_high_memory_region);
1076 if (retval < 0)
1077 return retval;
1078
1079 dev->local_fifo = dev->handler.offset;
1080
1081 return 0;
1082 }
1083
__fwnet_broadcast_stop(struct fwnet_device * dev)1084 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1085 {
1086 unsigned u;
1087
1088 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1089 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1090 kunmap(dev->broadcast_rcv_buffer.pages[u]);
1091 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1092 }
1093 if (dev->broadcast_rcv_context) {
1094 fw_iso_context_destroy(dev->broadcast_rcv_context);
1095 dev->broadcast_rcv_context = NULL;
1096 }
1097 kfree(dev->broadcast_rcv_buffer_ptrs);
1098 dev->broadcast_rcv_buffer_ptrs = NULL;
1099 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1100 }
1101
fwnet_broadcast_stop(struct fwnet_device * dev)1102 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1103 {
1104 if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1105 return;
1106 fw_iso_context_stop(dev->broadcast_rcv_context);
1107 __fwnet_broadcast_stop(dev);
1108 }
1109
fwnet_broadcast_start(struct fwnet_device * dev)1110 static int fwnet_broadcast_start(struct fwnet_device *dev)
1111 {
1112 struct fw_iso_context *context;
1113 int retval;
1114 unsigned num_packets;
1115 unsigned max_receive;
1116 struct fw_iso_packet packet;
1117 unsigned long offset;
1118 void **ptrptr;
1119 unsigned u;
1120
1121 if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1122 return 0;
1123
1124 max_receive = 1U << (dev->card->max_receive + 1);
1125 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1126
1127 ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL);
1128 if (!ptrptr) {
1129 retval = -ENOMEM;
1130 goto failed;
1131 }
1132 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1133
1134 context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1135 IEEE1394_BROADCAST_CHANNEL,
1136 dev->card->link_speed, 8,
1137 fwnet_receive_broadcast, dev);
1138 if (IS_ERR(context)) {
1139 retval = PTR_ERR(context);
1140 goto failed;
1141 }
1142
1143 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1144 FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1145 if (retval < 0)
1146 goto failed;
1147
1148 dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1149
1150 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1151 void *ptr;
1152 unsigned v;
1153
1154 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1155 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1156 *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1157 }
1158 dev->broadcast_rcv_context = context;
1159
1160 packet.payload_length = max_receive;
1161 packet.interrupt = 1;
1162 packet.skip = 0;
1163 packet.tag = 3;
1164 packet.sy = 0;
1165 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1166 offset = 0;
1167
1168 for (u = 0; u < num_packets; u++) {
1169 retval = fw_iso_context_queue(context, &packet,
1170 &dev->broadcast_rcv_buffer, offset);
1171 if (retval < 0)
1172 goto failed;
1173
1174 offset += max_receive;
1175 }
1176 dev->num_broadcast_rcv_ptrs = num_packets;
1177 dev->rcv_buffer_size = max_receive;
1178 dev->broadcast_rcv_next_ptr = 0U;
1179 retval = fw_iso_context_start(context, -1, 0,
1180 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1181 if (retval < 0)
1182 goto failed;
1183
1184 /* FIXME: adjust it according to the min. speed of all known peers? */
1185 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1186 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1187 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1188
1189 return 0;
1190
1191 failed:
1192 __fwnet_broadcast_stop(dev);
1193 return retval;
1194 }
1195
set_carrier_state(struct fwnet_device * dev)1196 static void set_carrier_state(struct fwnet_device *dev)
1197 {
1198 if (dev->peer_count > 1)
1199 netif_carrier_on(dev->netdev);
1200 else
1201 netif_carrier_off(dev->netdev);
1202 }
1203
1204 /* ifup */
fwnet_open(struct net_device * net)1205 static int fwnet_open(struct net_device *net)
1206 {
1207 struct fwnet_device *dev = netdev_priv(net);
1208 int ret;
1209
1210 ret = fwnet_broadcast_start(dev);
1211 if (ret)
1212 return ret;
1213
1214 netif_start_queue(net);
1215
1216 spin_lock_irq(&dev->lock);
1217 set_carrier_state(dev);
1218 spin_unlock_irq(&dev->lock);
1219
1220 return 0;
1221 }
1222
1223 /* ifdown */
fwnet_stop(struct net_device * net)1224 static int fwnet_stop(struct net_device *net)
1225 {
1226 struct fwnet_device *dev = netdev_priv(net);
1227
1228 netif_stop_queue(net);
1229 fwnet_broadcast_stop(dev);
1230
1231 return 0;
1232 }
1233
fwnet_tx(struct sk_buff * skb,struct net_device * net)1234 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1235 {
1236 struct fwnet_header hdr_buf;
1237 struct fwnet_device *dev = netdev_priv(net);
1238 __be16 proto;
1239 u16 dest_node;
1240 unsigned max_payload;
1241 u16 dg_size;
1242 u16 *datagram_label_ptr;
1243 struct fwnet_packet_task *ptask;
1244 struct fwnet_peer *peer;
1245 unsigned long flags;
1246
1247 spin_lock_irqsave(&dev->lock, flags);
1248
1249 /* Can this happen? */
1250 if (netif_queue_stopped(dev->netdev)) {
1251 spin_unlock_irqrestore(&dev->lock, flags);
1252
1253 return NETDEV_TX_BUSY;
1254 }
1255
1256 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1257 if (ptask == NULL)
1258 goto fail;
1259
1260 skb = skb_share_check(skb, GFP_ATOMIC);
1261 if (!skb)
1262 goto fail;
1263
1264 /*
1265 * Make a copy of the driver-specific header.
1266 * We might need to rebuild the header on tx failure.
1267 */
1268 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1269 proto = hdr_buf.h_proto;
1270
1271 switch (proto) {
1272 case htons(ETH_P_ARP):
1273 case htons(ETH_P_IP):
1274 #if IS_ENABLED(CONFIG_IPV6)
1275 case htons(ETH_P_IPV6):
1276 #endif
1277 break;
1278 default:
1279 goto fail;
1280 }
1281
1282 skb_pull(skb, sizeof(hdr_buf));
1283 dg_size = skb->len;
1284
1285 /*
1286 * Set the transmission type for the packet. ARP packets and IP
1287 * broadcast packets are sent via GASP.
1288 */
1289 if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1290 max_payload = dev->broadcast_xmt_max_payload;
1291 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1292
1293 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1294 ptask->generation = 0;
1295 ptask->dest_node = IEEE1394_ALL_NODES;
1296 ptask->speed = SCODE_100;
1297 } else {
1298 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1299 __be64 guid = get_unaligned(&ha->uc.uniq_id);
1300 u8 generation;
1301
1302 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1303 if (!peer)
1304 goto fail;
1305
1306 generation = peer->generation;
1307 dest_node = peer->node_id;
1308 max_payload = peer->max_payload;
1309 datagram_label_ptr = &peer->datagram_label;
1310
1311 ptask->fifo_addr = fwnet_hwaddr_fifo(ha);
1312 ptask->generation = generation;
1313 ptask->dest_node = dest_node;
1314 ptask->speed = peer->speed;
1315 }
1316
1317 ptask->hdr.w0 = 0;
1318 ptask->hdr.w1 = 0;
1319 ptask->skb = skb;
1320 ptask->dev = dev;
1321
1322 /* Does it all fit in one packet? */
1323 if (dg_size <= max_payload) {
1324 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1325 ptask->outstanding_pkts = 1;
1326 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1327 } else {
1328 u16 datagram_label;
1329
1330 max_payload -= RFC2374_FRAG_OVERHEAD;
1331 datagram_label = (*datagram_label_ptr)++;
1332 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1333 datagram_label);
1334 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1335 max_payload += RFC2374_FRAG_HDR_SIZE;
1336 }
1337
1338 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1339 netif_stop_queue(dev->netdev);
1340
1341 spin_unlock_irqrestore(&dev->lock, flags);
1342
1343 ptask->max_payload = max_payload;
1344 ptask->enqueued = 0;
1345
1346 fwnet_send_packet(ptask);
1347
1348 return NETDEV_TX_OK;
1349
1350 fail:
1351 spin_unlock_irqrestore(&dev->lock, flags);
1352
1353 if (ptask)
1354 kmem_cache_free(fwnet_packet_task_cache, ptask);
1355
1356 if (skb != NULL)
1357 dev_kfree_skb(skb);
1358
1359 net->stats.tx_dropped++;
1360 net->stats.tx_errors++;
1361
1362 /*
1363 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1364 * causes serious problems" here, allegedly. Before that patch,
1365 * -ERRNO was returned which is not appropriate under Linux 2.6.
1366 * Perhaps more needs to be done? Stop the queue in serious
1367 * conditions and restart it elsewhere?
1368 */
1369 return NETDEV_TX_OK;
1370 }
1371
1372 static const struct ethtool_ops fwnet_ethtool_ops = {
1373 .get_link = ethtool_op_get_link,
1374 };
1375
1376 static const struct net_device_ops fwnet_netdev_ops = {
1377 .ndo_open = fwnet_open,
1378 .ndo_stop = fwnet_stop,
1379 .ndo_start_xmit = fwnet_tx,
1380 };
1381
fwnet_init_dev(struct net_device * net)1382 static void fwnet_init_dev(struct net_device *net)
1383 {
1384 net->header_ops = &fwnet_header_ops;
1385 net->netdev_ops = &fwnet_netdev_ops;
1386 net->watchdog_timeo = 2 * HZ;
1387 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1388 net->features = NETIF_F_HIGHDMA;
1389 net->addr_len = FWNET_ALEN;
1390 net->hard_header_len = FWNET_HLEN;
1391 net->type = ARPHRD_IEEE1394;
1392 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1393 net->ethtool_ops = &fwnet_ethtool_ops;
1394 }
1395
1396 /* caller must hold fwnet_device_mutex */
fwnet_dev_find(struct fw_card * card)1397 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1398 {
1399 struct fwnet_device *dev;
1400
1401 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1402 if (dev->card == card)
1403 return dev;
1404
1405 return NULL;
1406 }
1407
fwnet_add_peer(struct fwnet_device * dev,struct fw_unit * unit,struct fw_device * device)1408 static int fwnet_add_peer(struct fwnet_device *dev,
1409 struct fw_unit *unit, struct fw_device *device)
1410 {
1411 struct fwnet_peer *peer;
1412
1413 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1414 if (!peer)
1415 return -ENOMEM;
1416
1417 dev_set_drvdata(&unit->device, peer);
1418
1419 peer->dev = dev;
1420 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1421 INIT_LIST_HEAD(&peer->pd_list);
1422 peer->pdg_size = 0;
1423 peer->datagram_label = 0;
1424 peer->speed = device->max_speed;
1425 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1426
1427 peer->generation = device->generation;
1428 smp_rmb();
1429 peer->node_id = device->node_id;
1430
1431 spin_lock_irq(&dev->lock);
1432 list_add_tail(&peer->peer_link, &dev->peer_list);
1433 dev->peer_count++;
1434 set_carrier_state(dev);
1435 spin_unlock_irq(&dev->lock);
1436
1437 return 0;
1438 }
1439
fwnet_probe(struct fw_unit * unit,const struct ieee1394_device_id * id)1440 static int fwnet_probe(struct fw_unit *unit,
1441 const struct ieee1394_device_id *id)
1442 {
1443 struct fw_device *device = fw_parent_device(unit);
1444 struct fw_card *card = device->card;
1445 struct net_device *net;
1446 bool allocated_netdev = false;
1447 struct fwnet_device *dev;
1448 int ret;
1449 union fwnet_hwaddr *ha;
1450
1451 mutex_lock(&fwnet_device_mutex);
1452
1453 dev = fwnet_dev_find(card);
1454 if (dev) {
1455 net = dev->netdev;
1456 goto have_dev;
1457 }
1458
1459 net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN,
1460 fwnet_init_dev);
1461 if (net == NULL) {
1462 mutex_unlock(&fwnet_device_mutex);
1463 return -ENOMEM;
1464 }
1465
1466 allocated_netdev = true;
1467 SET_NETDEV_DEV(net, card->device);
1468 dev = netdev_priv(net);
1469
1470 spin_lock_init(&dev->lock);
1471 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1472 dev->broadcast_rcv_context = NULL;
1473 dev->broadcast_xmt_max_payload = 0;
1474 dev->broadcast_xmt_datagramlabel = 0;
1475 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1476 dev->queued_datagrams = 0;
1477 INIT_LIST_HEAD(&dev->peer_list);
1478 dev->card = card;
1479 dev->netdev = net;
1480
1481 ret = fwnet_fifo_start(dev);
1482 if (ret < 0)
1483 goto out;
1484 dev->local_fifo = dev->handler.offset;
1485
1486 /*
1487 * default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4
1488 * maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's
1489 * maximum possible datagram_size + 1 = 0xfff + 1
1490 */
1491 net->mtu = 1500U;
1492 net->min_mtu = ETH_MIN_MTU;
1493 net->max_mtu = 4096U;
1494
1495 /* Set our hardware address while we're at it */
1496 ha = (union fwnet_hwaddr *)net->dev_addr;
1497 put_unaligned_be64(card->guid, &ha->uc.uniq_id);
1498 ha->uc.max_rec = dev->card->max_receive;
1499 ha->uc.sspd = dev->card->link_speed;
1500 put_unaligned_be16(dev->local_fifo >> 32, &ha->uc.fifo_hi);
1501 put_unaligned_be32(dev->local_fifo & 0xffffffff, &ha->uc.fifo_lo);
1502
1503 memset(net->broadcast, -1, net->addr_len);
1504
1505 ret = register_netdev(net);
1506 if (ret)
1507 goto out;
1508
1509 list_add_tail(&dev->dev_link, &fwnet_device_list);
1510 dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1511 dev_name(card->device));
1512 have_dev:
1513 ret = fwnet_add_peer(dev, unit, device);
1514 if (ret && allocated_netdev) {
1515 unregister_netdev(net);
1516 list_del(&dev->dev_link);
1517 out:
1518 fwnet_fifo_stop(dev);
1519 free_netdev(net);
1520 }
1521
1522 mutex_unlock(&fwnet_device_mutex);
1523
1524 return ret;
1525 }
1526
1527 /*
1528 * FIXME abort partially sent fragmented datagrams,
1529 * discard partially received fragmented datagrams
1530 */
fwnet_update(struct fw_unit * unit)1531 static void fwnet_update(struct fw_unit *unit)
1532 {
1533 struct fw_device *device = fw_parent_device(unit);
1534 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1535 int generation;
1536
1537 generation = device->generation;
1538
1539 spin_lock_irq(&peer->dev->lock);
1540 peer->node_id = device->node_id;
1541 peer->generation = generation;
1542 spin_unlock_irq(&peer->dev->lock);
1543 }
1544
fwnet_remove_peer(struct fwnet_peer * peer,struct fwnet_device * dev)1545 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1546 {
1547 struct fwnet_partial_datagram *pd, *pd_next;
1548
1549 spin_lock_irq(&dev->lock);
1550 list_del(&peer->peer_link);
1551 dev->peer_count--;
1552 set_carrier_state(dev);
1553 spin_unlock_irq(&dev->lock);
1554
1555 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1556 fwnet_pd_delete(pd);
1557
1558 kfree(peer);
1559 }
1560
fwnet_remove(struct fw_unit * unit)1561 static void fwnet_remove(struct fw_unit *unit)
1562 {
1563 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1564 struct fwnet_device *dev = peer->dev;
1565 struct net_device *net;
1566 int i;
1567
1568 mutex_lock(&fwnet_device_mutex);
1569
1570 net = dev->netdev;
1571
1572 fwnet_remove_peer(peer, dev);
1573
1574 if (list_empty(&dev->peer_list)) {
1575 unregister_netdev(net);
1576
1577 fwnet_fifo_stop(dev);
1578
1579 for (i = 0; dev->queued_datagrams && i < 5; i++)
1580 ssleep(1);
1581 WARN_ON(dev->queued_datagrams);
1582 list_del(&dev->dev_link);
1583
1584 free_netdev(net);
1585 }
1586
1587 mutex_unlock(&fwnet_device_mutex);
1588 }
1589
1590 static const struct ieee1394_device_id fwnet_id_table[] = {
1591 {
1592 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1593 IEEE1394_MATCH_VERSION,
1594 .specifier_id = IANA_SPECIFIER_ID,
1595 .version = RFC2734_SW_VERSION,
1596 },
1597 #if IS_ENABLED(CONFIG_IPV6)
1598 {
1599 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1600 IEEE1394_MATCH_VERSION,
1601 .specifier_id = IANA_SPECIFIER_ID,
1602 .version = RFC3146_SW_VERSION,
1603 },
1604 #endif
1605 { }
1606 };
1607
1608 static struct fw_driver fwnet_driver = {
1609 .driver = {
1610 .owner = THIS_MODULE,
1611 .name = KBUILD_MODNAME,
1612 .bus = &fw_bus_type,
1613 },
1614 .probe = fwnet_probe,
1615 .update = fwnet_update,
1616 .remove = fwnet_remove,
1617 .id_table = fwnet_id_table,
1618 };
1619
1620 static const u32 rfc2374_unit_directory_data[] = {
1621 0x00040000, /* directory_length */
1622 0x1200005e, /* unit_specifier_id: IANA */
1623 0x81000003, /* textual descriptor offset */
1624 0x13000001, /* unit_sw_version: RFC 2734 */
1625 0x81000005, /* textual descriptor offset */
1626 0x00030000, /* descriptor_length */
1627 0x00000000, /* text */
1628 0x00000000, /* minimal ASCII, en */
1629 0x49414e41, /* I A N A */
1630 0x00030000, /* descriptor_length */
1631 0x00000000, /* text */
1632 0x00000000, /* minimal ASCII, en */
1633 0x49507634, /* I P v 4 */
1634 };
1635
1636 static struct fw_descriptor rfc2374_unit_directory = {
1637 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1638 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1639 .data = rfc2374_unit_directory_data
1640 };
1641
1642 #if IS_ENABLED(CONFIG_IPV6)
1643 static const u32 rfc3146_unit_directory_data[] = {
1644 0x00040000, /* directory_length */
1645 0x1200005e, /* unit_specifier_id: IANA */
1646 0x81000003, /* textual descriptor offset */
1647 0x13000002, /* unit_sw_version: RFC 3146 */
1648 0x81000005, /* textual descriptor offset */
1649 0x00030000, /* descriptor_length */
1650 0x00000000, /* text */
1651 0x00000000, /* minimal ASCII, en */
1652 0x49414e41, /* I A N A */
1653 0x00030000, /* descriptor_length */
1654 0x00000000, /* text */
1655 0x00000000, /* minimal ASCII, en */
1656 0x49507636, /* I P v 6 */
1657 };
1658
1659 static struct fw_descriptor rfc3146_unit_directory = {
1660 .length = ARRAY_SIZE(rfc3146_unit_directory_data),
1661 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1662 .data = rfc3146_unit_directory_data
1663 };
1664 #endif
1665
fwnet_init(void)1666 static int __init fwnet_init(void)
1667 {
1668 int err;
1669
1670 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1671 if (err)
1672 return err;
1673
1674 #if IS_ENABLED(CONFIG_IPV6)
1675 err = fw_core_add_descriptor(&rfc3146_unit_directory);
1676 if (err)
1677 goto out;
1678 #endif
1679
1680 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1681 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1682 if (!fwnet_packet_task_cache) {
1683 err = -ENOMEM;
1684 goto out2;
1685 }
1686
1687 err = driver_register(&fwnet_driver.driver);
1688 if (!err)
1689 return 0;
1690
1691 kmem_cache_destroy(fwnet_packet_task_cache);
1692 out2:
1693 #if IS_ENABLED(CONFIG_IPV6)
1694 fw_core_remove_descriptor(&rfc3146_unit_directory);
1695 out:
1696 #endif
1697 fw_core_remove_descriptor(&rfc2374_unit_directory);
1698
1699 return err;
1700 }
1701 module_init(fwnet_init);
1702
fwnet_cleanup(void)1703 static void __exit fwnet_cleanup(void)
1704 {
1705 driver_unregister(&fwnet_driver.driver);
1706 kmem_cache_destroy(fwnet_packet_task_cache);
1707 #if IS_ENABLED(CONFIG_IPV6)
1708 fw_core_remove_descriptor(&rfc3146_unit_directory);
1709 #endif
1710 fw_core_remove_descriptor(&rfc2374_unit_directory);
1711 }
1712 module_exit(fwnet_cleanup);
1713
1714 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1715 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1716 MODULE_LICENSE("GPL");
1717 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1718