• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40 
41 #include "core.h"
42 #include "ohci.h"
43 
44 #define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
47 
48 #define DESCRIPTOR_OUTPUT_MORE		0
49 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
50 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
51 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
52 #define DESCRIPTOR_STATUS		(1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
54 #define DESCRIPTOR_PING			(1 << 7)
55 #define DESCRIPTOR_YY			(1 << 6)
56 #define DESCRIPTOR_NO_IRQ		(0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
60 #define DESCRIPTOR_WAIT			(3 << 0)
61 
62 #define DESCRIPTOR_CMD			(0xf << 12)
63 
64 struct descriptor {
65 	__le16 req_count;
66 	__le16 control;
67 	__le32 data_address;
68 	__le32 branch_address;
69 	__le16 res_count;
70 	__le16 transfer_status;
71 } __attribute__((aligned(16)));
72 
73 #define CONTROL_SET(regs)	(regs)
74 #define CONTROL_CLEAR(regs)	((regs) + 4)
75 #define COMMAND_PTR(regs)	((regs) + 12)
76 #define CONTEXT_MATCH(regs)	((regs) + 16)
77 
78 #define AR_BUFFER_SIZE	(32*1024)
79 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82 
83 #define MAX_ASYNC_PAYLOAD	4096
84 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86 
87 struct ar_context {
88 	struct fw_ohci *ohci;
89 	struct page *pages[AR_BUFFERS];
90 	void *buffer;
91 	struct descriptor *descriptors;
92 	dma_addr_t descriptors_bus;
93 	void *pointer;
94 	unsigned int last_buffer_index;
95 	u32 regs;
96 	struct tasklet_struct tasklet;
97 };
98 
99 struct context;
100 
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102 				     struct descriptor *d,
103 				     struct descriptor *last);
104 
105 /*
106  * A buffer that contains a block of DMA-able coherent memory used for
107  * storing a portion of a DMA descriptor program.
108  */
109 struct descriptor_buffer {
110 	struct list_head list;
111 	dma_addr_t buffer_bus;
112 	size_t buffer_size;
113 	size_t used;
114 	struct descriptor buffer[];
115 };
116 
117 struct context {
118 	struct fw_ohci *ohci;
119 	u32 regs;
120 	int total_allocation;
121 	u32 current_bus;
122 	bool running;
123 	bool flushing;
124 
125 	/*
126 	 * List of page-sized buffers for storing DMA descriptors.
127 	 * Head of list contains buffers in use and tail of list contains
128 	 * free buffers.
129 	 */
130 	struct list_head buffer_list;
131 
132 	/*
133 	 * Pointer to a buffer inside buffer_list that contains the tail
134 	 * end of the current DMA program.
135 	 */
136 	struct descriptor_buffer *buffer_tail;
137 
138 	/*
139 	 * The descriptor containing the branch address of the first
140 	 * descriptor that has not yet been filled by the device.
141 	 */
142 	struct descriptor *last;
143 
144 	/*
145 	 * The last descriptor block in the DMA program. It contains the branch
146 	 * address that must be updated upon appending a new descriptor.
147 	 */
148 	struct descriptor *prev;
149 	int prev_z;
150 
151 	descriptor_callback_t callback;
152 
153 	struct tasklet_struct tasklet;
154 };
155 
156 #define IT_HEADER_SY(v)          ((v) <<  0)
157 #define IT_HEADER_TCODE(v)       ((v) <<  4)
158 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159 #define IT_HEADER_TAG(v)         ((v) << 14)
160 #define IT_HEADER_SPEED(v)       ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162 
163 struct iso_context {
164 	struct fw_iso_context base;
165 	struct context context;
166 	void *header;
167 	size_t header_length;
168 	unsigned long flushing_completions;
169 	u32 mc_buffer_bus;
170 	u16 mc_completed;
171 	u16 last_timestamp;
172 	u8 sync;
173 	u8 tags;
174 };
175 
176 #define CONFIG_ROM_SIZE 1024
177 
178 struct fw_ohci {
179 	struct fw_card card;
180 
181 	__iomem char *registers;
182 	int node_id;
183 	int generation;
184 	int request_generation;	/* for timestamping incoming requests */
185 	unsigned quirks;
186 	unsigned int pri_req_max;
187 	u32 bus_time;
188 	bool bus_time_running;
189 	bool is_root;
190 	bool csr_state_setclear_abdicate;
191 	int n_ir;
192 	int n_it;
193 	/*
194 	 * Spinlock for accessing fw_ohci data.  Never call out of
195 	 * this driver with this lock held.
196 	 */
197 	spinlock_t lock;
198 
199 	struct mutex phy_reg_mutex;
200 
201 	void *misc_buffer;
202 	dma_addr_t misc_buffer_bus;
203 
204 	struct ar_context ar_request_ctx;
205 	struct ar_context ar_response_ctx;
206 	struct context at_request_ctx;
207 	struct context at_response_ctx;
208 
209 	u32 it_context_support;
210 	u32 it_context_mask;     /* unoccupied IT contexts */
211 	struct iso_context *it_context_list;
212 	u64 ir_context_channels; /* unoccupied channels */
213 	u32 ir_context_support;
214 	u32 ir_context_mask;     /* unoccupied IR contexts */
215 	struct iso_context *ir_context_list;
216 	u64 mc_channels; /* channels in use by the multichannel IR context */
217 	bool mc_allocated;
218 
219 	__be32    *config_rom;
220 	dma_addr_t config_rom_bus;
221 	__be32    *next_config_rom;
222 	dma_addr_t next_config_rom_bus;
223 	__be32     next_header;
224 
225 	__le32    *self_id;
226 	dma_addr_t self_id_bus;
227 	struct work_struct bus_reset_work;
228 
229 	u32 self_id_buffer[512];
230 };
231 
232 static struct workqueue_struct *selfid_workqueue;
233 
fw_ohci(struct fw_card * card)234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236 	return container_of(card, struct fw_ohci, card);
237 }
238 
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
240 #define IR_CONTEXT_BUFFER_FILL		0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 
246 #define CONTEXT_RUN	0x8000
247 #define CONTEXT_WAKE	0x1000
248 #define CONTEXT_DEAD	0x0800
249 #define CONTEXT_ACTIVE	0x0400
250 
251 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
254 
255 #define OHCI1394_REGISTER_SIZE		0x800
256 #define OHCI1394_PCI_HCI_Control	0x40
257 #define SELF_ID_BUF_SIZE		0x800
258 #define OHCI_TCODE_PHY_PACKET		0x0e
259 #define OHCI_VERSION_1_1		0x010010
260 
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262 
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X	0x3044
271 #define PCI_REV_ID_VIA_VT6306		0x46
272 #define PCI_DEVICE_ID_VIA_VT6315	0x3403
273 
274 #define QUIRK_CYCLE_TIMER		0x1
275 #define QUIRK_RESET_PACKET		0x2
276 #define QUIRK_BE_HEADERS		0x4
277 #define QUIRK_NO_1394A			0x8
278 #define QUIRK_NO_MSI			0x10
279 #define QUIRK_TI_SLLZ059		0x20
280 #define QUIRK_IR_WAKE			0x40
281 
282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286 // while it is probable due to detection of any type of PCIe error.
287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
288 
289 #if IS_ENABLED(CONFIG_X86)
290 
has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci * ohci)291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292 {
293 	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294 }
295 
296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
297 
detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev * pdev)298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299 {
300 	const struct pci_dev *pcie_to_pci_bridge;
301 
302 	// Detect any type of AMD Ryzen machine.
303 	if (!static_cpu_has(X86_FEATURE_ZEN))
304 		return false;
305 
306 	// Detect VIA VT6306/6307/6308.
307 	if (pdev->vendor != PCI_VENDOR_ID_VIA)
308 		return false;
309 	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310 		return false;
311 
312 	// Detect Asmedia ASM1083/1085.
313 	pcie_to_pci_bridge = pdev->bus->self;
314 	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315 		return false;
316 	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317 		return false;
318 
319 	return true;
320 }
321 
322 #else
323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
325 #endif
326 
327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328 static const struct {
329 	unsigned short vendor, device, revision, flags;
330 } ohci_quirks[] = {
331 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332 		QUIRK_CYCLE_TIMER},
333 
334 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335 		QUIRK_BE_HEADERS},
336 
337 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338 		QUIRK_NO_MSI},
339 
340 	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341 		QUIRK_RESET_PACKET},
342 
343 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344 		QUIRK_NO_MSI},
345 
346 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347 		QUIRK_CYCLE_TIMER},
348 
349 	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350 		QUIRK_NO_MSI},
351 
352 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354 
355 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357 
358 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360 
361 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363 
364 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365 		QUIRK_RESET_PACKET},
366 
367 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368 		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369 
370 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371 		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372 
373 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374 		QUIRK_NO_MSI},
375 
376 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378 };
379 
380 /* This overrides anything that was found in ohci_quirks[]. */
381 static int param_quirks;
382 module_param_named(quirks, param_quirks, int, 0644);
383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
385 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
386 	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
387 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
388 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
389 	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
390 	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
391 	")");
392 
393 #define OHCI_PARAM_DEBUG_AT_AR		1
394 #define OHCI_PARAM_DEBUG_SELFIDS	2
395 #define OHCI_PARAM_DEBUG_IRQS		4
396 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
397 
398 static int param_debug;
399 module_param_named(debug, param_debug, int, 0644);
400 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
402 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
403 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
404 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
405 	", or a combination, or all = -1)");
406 
407 static bool param_remote_dma;
408 module_param_named(remote_dma, param_remote_dma, bool, 0444);
409 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
410 
log_irqs(struct fw_ohci * ohci,u32 evt)411 static void log_irqs(struct fw_ohci *ohci, u32 evt)
412 {
413 	if (likely(!(param_debug &
414 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
415 		return;
416 
417 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
418 	    !(evt & OHCI1394_busReset))
419 		return;
420 
421 	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
422 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
423 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
424 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
425 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
426 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
427 	    evt & OHCI1394_isochRx		? " IR"			: "",
428 	    evt & OHCI1394_isochTx		? " IT"			: "",
429 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
430 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
431 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
432 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
433 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
434 	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
435 	    evt & OHCI1394_busReset		? " busReset"		: "",
436 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
437 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
438 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
439 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
440 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
441 		    OHCI1394_cycleInconsistent |
442 		    OHCI1394_regAccessFail | OHCI1394_busReset)
443 						? " ?"			: "");
444 }
445 
446 static const char *speed[] = {
447 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
448 };
449 static const char *power[] = {
450 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
451 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
452 };
453 static const char port[] = { '.', '-', 'p', 'c', };
454 
_p(u32 * s,int shift)455 static char _p(u32 *s, int shift)
456 {
457 	return port[*s >> shift & 3];
458 }
459 
log_selfids(struct fw_ohci * ohci,int generation,int self_id_count)460 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
461 {
462 	u32 *s;
463 
464 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
465 		return;
466 
467 	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
468 		    self_id_count, generation, ohci->node_id);
469 
470 	for (s = ohci->self_id_buffer; self_id_count--; ++s)
471 		if ((*s & 1 << 23) == 0)
472 			ohci_notice(ohci,
473 			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
474 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
475 			    speed[*s >> 14 & 3], *s >> 16 & 63,
476 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
477 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
478 		else
479 			ohci_notice(ohci,
480 			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
481 			    *s, *s >> 24 & 63,
482 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
483 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
484 }
485 
486 static const char *evts[] = {
487 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
488 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
489 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
490 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
491 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
492 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
493 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
494 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
495 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
496 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
497 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
498 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
499 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
500 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
501 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
502 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
503 	[0x20] = "pending/cancelled",
504 };
505 static const char *tcodes[] = {
506 	[0x0] = "QW req",		[0x1] = "BW req",
507 	[0x2] = "W resp",		[0x3] = "-reserved-",
508 	[0x4] = "QR req",		[0x5] = "BR req",
509 	[0x6] = "QR resp",		[0x7] = "BR resp",
510 	[0x8] = "cycle start",		[0x9] = "Lk req",
511 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
512 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
513 	[0xe] = "link internal",	[0xf] = "-reserved-",
514 };
515 
log_ar_at_event(struct fw_ohci * ohci,char dir,int speed,u32 * header,int evt)516 static void log_ar_at_event(struct fw_ohci *ohci,
517 			    char dir, int speed, u32 *header, int evt)
518 {
519 	int tcode = header[0] >> 4 & 0xf;
520 	char specific[12];
521 
522 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
523 		return;
524 
525 	if (unlikely(evt >= ARRAY_SIZE(evts)))
526 			evt = 0x1f;
527 
528 	if (evt == OHCI1394_evt_bus_reset) {
529 		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
530 			    dir, (header[2] >> 16) & 0xff);
531 		return;
532 	}
533 
534 	switch (tcode) {
535 	case 0x0: case 0x6: case 0x8:
536 		snprintf(specific, sizeof(specific), " = %08x",
537 			 be32_to_cpu((__force __be32)header[3]));
538 		break;
539 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
540 		snprintf(specific, sizeof(specific), " %x,%x",
541 			 header[3] >> 16, header[3] & 0xffff);
542 		break;
543 	default:
544 		specific[0] = '\0';
545 	}
546 
547 	switch (tcode) {
548 	case 0xa:
549 		ohci_notice(ohci, "A%c %s, %s\n",
550 			    dir, evts[evt], tcodes[tcode]);
551 		break;
552 	case 0xe:
553 		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
554 			    dir, evts[evt], header[1], header[2]);
555 		break;
556 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
557 		ohci_notice(ohci,
558 			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
559 			    dir, speed, header[0] >> 10 & 0x3f,
560 			    header[1] >> 16, header[0] >> 16, evts[evt],
561 			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
562 		break;
563 	default:
564 		ohci_notice(ohci,
565 			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
566 			    dir, speed, header[0] >> 10 & 0x3f,
567 			    header[1] >> 16, header[0] >> 16, evts[evt],
568 			    tcodes[tcode], specific);
569 	}
570 }
571 
reg_write(const struct fw_ohci * ohci,int offset,u32 data)572 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
573 {
574 	writel(data, ohci->registers + offset);
575 }
576 
reg_read(const struct fw_ohci * ohci,int offset)577 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
578 {
579 	return readl(ohci->registers + offset);
580 }
581 
flush_writes(const struct fw_ohci * ohci)582 static inline void flush_writes(const struct fw_ohci *ohci)
583 {
584 	/* Do a dummy read to flush writes. */
585 	reg_read(ohci, OHCI1394_Version);
586 }
587 
588 /*
589  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
590  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
591  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
592  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
593  */
read_phy_reg(struct fw_ohci * ohci,int addr)594 static int read_phy_reg(struct fw_ohci *ohci, int addr)
595 {
596 	u32 val;
597 	int i;
598 
599 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
600 	for (i = 0; i < 3 + 100; i++) {
601 		val = reg_read(ohci, OHCI1394_PhyControl);
602 		if (!~val)
603 			return -ENODEV; /* Card was ejected. */
604 
605 		if (val & OHCI1394_PhyControl_ReadDone)
606 			return OHCI1394_PhyControl_ReadData(val);
607 
608 		/*
609 		 * Try a few times without waiting.  Sleeping is necessary
610 		 * only when the link/PHY interface is busy.
611 		 */
612 		if (i >= 3)
613 			msleep(1);
614 	}
615 	ohci_err(ohci, "failed to read phy reg %d\n", addr);
616 	dump_stack();
617 
618 	return -EBUSY;
619 }
620 
write_phy_reg(const struct fw_ohci * ohci,int addr,u32 val)621 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
622 {
623 	int i;
624 
625 	reg_write(ohci, OHCI1394_PhyControl,
626 		  OHCI1394_PhyControl_Write(addr, val));
627 	for (i = 0; i < 3 + 100; i++) {
628 		val = reg_read(ohci, OHCI1394_PhyControl);
629 		if (!~val)
630 			return -ENODEV; /* Card was ejected. */
631 
632 		if (!(val & OHCI1394_PhyControl_WritePending))
633 			return 0;
634 
635 		if (i >= 3)
636 			msleep(1);
637 	}
638 	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
639 	dump_stack();
640 
641 	return -EBUSY;
642 }
643 
update_phy_reg(struct fw_ohci * ohci,int addr,int clear_bits,int set_bits)644 static int update_phy_reg(struct fw_ohci *ohci, int addr,
645 			  int clear_bits, int set_bits)
646 {
647 	int ret = read_phy_reg(ohci, addr);
648 	if (ret < 0)
649 		return ret;
650 
651 	/*
652 	 * The interrupt status bits are cleared by writing a one bit.
653 	 * Avoid clearing them unless explicitly requested in set_bits.
654 	 */
655 	if (addr == 5)
656 		clear_bits |= PHY_INT_STATUS_BITS;
657 
658 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
659 }
660 
read_paged_phy_reg(struct fw_ohci * ohci,int page,int addr)661 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
662 {
663 	int ret;
664 
665 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
666 	if (ret < 0)
667 		return ret;
668 
669 	return read_phy_reg(ohci, addr);
670 }
671 
ohci_read_phy_reg(struct fw_card * card,int addr)672 static int ohci_read_phy_reg(struct fw_card *card, int addr)
673 {
674 	struct fw_ohci *ohci = fw_ohci(card);
675 	int ret;
676 
677 	mutex_lock(&ohci->phy_reg_mutex);
678 	ret = read_phy_reg(ohci, addr);
679 	mutex_unlock(&ohci->phy_reg_mutex);
680 
681 	return ret;
682 }
683 
ohci_update_phy_reg(struct fw_card * card,int addr,int clear_bits,int set_bits)684 static int ohci_update_phy_reg(struct fw_card *card, int addr,
685 			       int clear_bits, int set_bits)
686 {
687 	struct fw_ohci *ohci = fw_ohci(card);
688 	int ret;
689 
690 	mutex_lock(&ohci->phy_reg_mutex);
691 	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
692 	mutex_unlock(&ohci->phy_reg_mutex);
693 
694 	return ret;
695 }
696 
ar_buffer_bus(struct ar_context * ctx,unsigned int i)697 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
698 {
699 	return page_private(ctx->pages[i]);
700 }
701 
ar_context_link_page(struct ar_context * ctx,unsigned int index)702 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
703 {
704 	struct descriptor *d;
705 
706 	d = &ctx->descriptors[index];
707 	d->branch_address  &= cpu_to_le32(~0xf);
708 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
709 	d->transfer_status =  0;
710 
711 	wmb(); /* finish init of new descriptors before branch_address update */
712 	d = &ctx->descriptors[ctx->last_buffer_index];
713 	d->branch_address  |= cpu_to_le32(1);
714 
715 	ctx->last_buffer_index = index;
716 
717 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
718 }
719 
ar_context_release(struct ar_context * ctx)720 static void ar_context_release(struct ar_context *ctx)
721 {
722 	struct device *dev = ctx->ohci->card.device;
723 	unsigned int i;
724 
725 	vunmap(ctx->buffer);
726 
727 	for (i = 0; i < AR_BUFFERS; i++) {
728 		if (ctx->pages[i])
729 			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
730 				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
731 	}
732 }
733 
ar_context_abort(struct ar_context * ctx,const char * error_msg)734 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
735 {
736 	struct fw_ohci *ohci = ctx->ohci;
737 
738 	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
739 		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
740 		flush_writes(ohci);
741 
742 		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
743 	}
744 	/* FIXME: restart? */
745 }
746 
ar_next_buffer_index(unsigned int index)747 static inline unsigned int ar_next_buffer_index(unsigned int index)
748 {
749 	return (index + 1) % AR_BUFFERS;
750 }
751 
ar_first_buffer_index(struct ar_context * ctx)752 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
753 {
754 	return ar_next_buffer_index(ctx->last_buffer_index);
755 }
756 
757 /*
758  * We search for the buffer that contains the last AR packet DMA data written
759  * by the controller.
760  */
ar_search_last_active_buffer(struct ar_context * ctx,unsigned int * buffer_offset)761 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
762 						 unsigned int *buffer_offset)
763 {
764 	unsigned int i, next_i, last = ctx->last_buffer_index;
765 	__le16 res_count, next_res_count;
766 
767 	i = ar_first_buffer_index(ctx);
768 	res_count = READ_ONCE(ctx->descriptors[i].res_count);
769 
770 	/* A buffer that is not yet completely filled must be the last one. */
771 	while (i != last && res_count == 0) {
772 
773 		/* Peek at the next descriptor. */
774 		next_i = ar_next_buffer_index(i);
775 		rmb(); /* read descriptors in order */
776 		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
777 		/*
778 		 * If the next descriptor is still empty, we must stop at this
779 		 * descriptor.
780 		 */
781 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
782 			/*
783 			 * The exception is when the DMA data for one packet is
784 			 * split over three buffers; in this case, the middle
785 			 * buffer's descriptor might be never updated by the
786 			 * controller and look still empty, and we have to peek
787 			 * at the third one.
788 			 */
789 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
790 				next_i = ar_next_buffer_index(next_i);
791 				rmb();
792 				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
793 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
794 					goto next_buffer_is_active;
795 			}
796 
797 			break;
798 		}
799 
800 next_buffer_is_active:
801 		i = next_i;
802 		res_count = next_res_count;
803 	}
804 
805 	rmb(); /* read res_count before the DMA data */
806 
807 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
808 	if (*buffer_offset > PAGE_SIZE) {
809 		*buffer_offset = 0;
810 		ar_context_abort(ctx, "corrupted descriptor");
811 	}
812 
813 	return i;
814 }
815 
ar_sync_buffers_for_cpu(struct ar_context * ctx,unsigned int end_buffer_index,unsigned int end_buffer_offset)816 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
817 				    unsigned int end_buffer_index,
818 				    unsigned int end_buffer_offset)
819 {
820 	unsigned int i;
821 
822 	i = ar_first_buffer_index(ctx);
823 	while (i != end_buffer_index) {
824 		dma_sync_single_for_cpu(ctx->ohci->card.device,
825 					ar_buffer_bus(ctx, i),
826 					PAGE_SIZE, DMA_FROM_DEVICE);
827 		i = ar_next_buffer_index(i);
828 	}
829 	if (end_buffer_offset > 0)
830 		dma_sync_single_for_cpu(ctx->ohci->card.device,
831 					ar_buffer_bus(ctx, i),
832 					end_buffer_offset, DMA_FROM_DEVICE);
833 }
834 
835 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
836 #define cond_le32_to_cpu(v) \
837 	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
838 #else
839 #define cond_le32_to_cpu(v) le32_to_cpu(v)
840 #endif
841 
handle_ar_packet(struct ar_context * ctx,__le32 * buffer)842 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
843 {
844 	struct fw_ohci *ohci = ctx->ohci;
845 	struct fw_packet p;
846 	u32 status, length, tcode;
847 	int evt;
848 
849 	p.header[0] = cond_le32_to_cpu(buffer[0]);
850 	p.header[1] = cond_le32_to_cpu(buffer[1]);
851 	p.header[2] = cond_le32_to_cpu(buffer[2]);
852 
853 	tcode = (p.header[0] >> 4) & 0x0f;
854 	switch (tcode) {
855 	case TCODE_WRITE_QUADLET_REQUEST:
856 	case TCODE_READ_QUADLET_RESPONSE:
857 		p.header[3] = (__force __u32) buffer[3];
858 		p.header_length = 16;
859 		p.payload_length = 0;
860 		break;
861 
862 	case TCODE_READ_BLOCK_REQUEST :
863 		p.header[3] = cond_le32_to_cpu(buffer[3]);
864 		p.header_length = 16;
865 		p.payload_length = 0;
866 		break;
867 
868 	case TCODE_WRITE_BLOCK_REQUEST:
869 	case TCODE_READ_BLOCK_RESPONSE:
870 	case TCODE_LOCK_REQUEST:
871 	case TCODE_LOCK_RESPONSE:
872 		p.header[3] = cond_le32_to_cpu(buffer[3]);
873 		p.header_length = 16;
874 		p.payload_length = p.header[3] >> 16;
875 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
876 			ar_context_abort(ctx, "invalid packet length");
877 			return NULL;
878 		}
879 		break;
880 
881 	case TCODE_WRITE_RESPONSE:
882 	case TCODE_READ_QUADLET_REQUEST:
883 	case OHCI_TCODE_PHY_PACKET:
884 		p.header_length = 12;
885 		p.payload_length = 0;
886 		break;
887 
888 	default:
889 		ar_context_abort(ctx, "invalid tcode");
890 		return NULL;
891 	}
892 
893 	p.payload = (void *) buffer + p.header_length;
894 
895 	/* FIXME: What to do about evt_* errors? */
896 	length = (p.header_length + p.payload_length + 3) / 4;
897 	status = cond_le32_to_cpu(buffer[length]);
898 	evt    = (status >> 16) & 0x1f;
899 
900 	p.ack        = evt - 16;
901 	p.speed      = (status >> 21) & 0x7;
902 	p.timestamp  = status & 0xffff;
903 	p.generation = ohci->request_generation;
904 
905 	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
906 
907 	/*
908 	 * Several controllers, notably from NEC and VIA, forget to
909 	 * write ack_complete status at PHY packet reception.
910 	 */
911 	if (evt == OHCI1394_evt_no_status &&
912 	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
913 		p.ack = ACK_COMPLETE;
914 
915 	/*
916 	 * The OHCI bus reset handler synthesizes a PHY packet with
917 	 * the new generation number when a bus reset happens (see
918 	 * section 8.4.2.3).  This helps us determine when a request
919 	 * was received and make sure we send the response in the same
920 	 * generation.  We only need this for requests; for responses
921 	 * we use the unique tlabel for finding the matching
922 	 * request.
923 	 *
924 	 * Alas some chips sometimes emit bus reset packets with a
925 	 * wrong generation.  We set the correct generation for these
926 	 * at a slightly incorrect time (in bus_reset_work).
927 	 */
928 	if (evt == OHCI1394_evt_bus_reset) {
929 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
930 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
931 	} else if (ctx == &ohci->ar_request_ctx) {
932 		fw_core_handle_request(&ohci->card, &p);
933 	} else {
934 		fw_core_handle_response(&ohci->card, &p);
935 	}
936 
937 	return buffer + length + 1;
938 }
939 
handle_ar_packets(struct ar_context * ctx,void * p,void * end)940 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
941 {
942 	void *next;
943 
944 	while (p < end) {
945 		next = handle_ar_packet(ctx, p);
946 		if (!next)
947 			return p;
948 		p = next;
949 	}
950 
951 	return p;
952 }
953 
ar_recycle_buffers(struct ar_context * ctx,unsigned int end_buffer)954 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
955 {
956 	unsigned int i;
957 
958 	i = ar_first_buffer_index(ctx);
959 	while (i != end_buffer) {
960 		dma_sync_single_for_device(ctx->ohci->card.device,
961 					   ar_buffer_bus(ctx, i),
962 					   PAGE_SIZE, DMA_FROM_DEVICE);
963 		ar_context_link_page(ctx, i);
964 		i = ar_next_buffer_index(i);
965 	}
966 }
967 
ar_context_tasklet(unsigned long data)968 static void ar_context_tasklet(unsigned long data)
969 {
970 	struct ar_context *ctx = (struct ar_context *)data;
971 	unsigned int end_buffer_index, end_buffer_offset;
972 	void *p, *end;
973 
974 	p = ctx->pointer;
975 	if (!p)
976 		return;
977 
978 	end_buffer_index = ar_search_last_active_buffer(ctx,
979 							&end_buffer_offset);
980 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
981 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
982 
983 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
984 		/*
985 		 * The filled part of the overall buffer wraps around; handle
986 		 * all packets up to the buffer end here.  If the last packet
987 		 * wraps around, its tail will be visible after the buffer end
988 		 * because the buffer start pages are mapped there again.
989 		 */
990 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
991 		p = handle_ar_packets(ctx, p, buffer_end);
992 		if (p < buffer_end)
993 			goto error;
994 		/* adjust p to point back into the actual buffer */
995 		p -= AR_BUFFERS * PAGE_SIZE;
996 	}
997 
998 	p = handle_ar_packets(ctx, p, end);
999 	if (p != end) {
1000 		if (p > end)
1001 			ar_context_abort(ctx, "inconsistent descriptor");
1002 		goto error;
1003 	}
1004 
1005 	ctx->pointer = p;
1006 	ar_recycle_buffers(ctx, end_buffer_index);
1007 
1008 	return;
1009 
1010 error:
1011 	ctx->pointer = NULL;
1012 }
1013 
ar_context_init(struct ar_context * ctx,struct fw_ohci * ohci,unsigned int descriptors_offset,u32 regs)1014 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1015 			   unsigned int descriptors_offset, u32 regs)
1016 {
1017 	struct device *dev = ohci->card.device;
1018 	unsigned int i;
1019 	dma_addr_t dma_addr;
1020 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1021 	struct descriptor *d;
1022 
1023 	ctx->regs        = regs;
1024 	ctx->ohci        = ohci;
1025 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1026 
1027 	for (i = 0; i < AR_BUFFERS; i++) {
1028 		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1029 						DMA_FROM_DEVICE, GFP_KERNEL);
1030 		if (!ctx->pages[i])
1031 			goto out_of_memory;
1032 		set_page_private(ctx->pages[i], dma_addr);
1033 		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1034 					   DMA_FROM_DEVICE);
1035 	}
1036 
1037 	for (i = 0; i < AR_BUFFERS; i++)
1038 		pages[i]              = ctx->pages[i];
1039 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1040 		pages[AR_BUFFERS + i] = ctx->pages[i];
1041 	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1042 	if (!ctx->buffer)
1043 		goto out_of_memory;
1044 
1045 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1046 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1047 
1048 	for (i = 0; i < AR_BUFFERS; i++) {
1049 		d = &ctx->descriptors[i];
1050 		d->req_count      = cpu_to_le16(PAGE_SIZE);
1051 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1052 						DESCRIPTOR_STATUS |
1053 						DESCRIPTOR_BRANCH_ALWAYS);
1054 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1055 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1056 			ar_next_buffer_index(i) * sizeof(struct descriptor));
1057 	}
1058 
1059 	return 0;
1060 
1061 out_of_memory:
1062 	ar_context_release(ctx);
1063 
1064 	return -ENOMEM;
1065 }
1066 
ar_context_run(struct ar_context * ctx)1067 static void ar_context_run(struct ar_context *ctx)
1068 {
1069 	unsigned int i;
1070 
1071 	for (i = 0; i < AR_BUFFERS; i++)
1072 		ar_context_link_page(ctx, i);
1073 
1074 	ctx->pointer = ctx->buffer;
1075 
1076 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1077 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1078 }
1079 
find_branch_descriptor(struct descriptor * d,int z)1080 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1081 {
1082 	__le16 branch;
1083 
1084 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1085 
1086 	/* figure out which descriptor the branch address goes in */
1087 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1088 		return d;
1089 	else
1090 		return d + z - 1;
1091 }
1092 
context_tasklet(unsigned long data)1093 static void context_tasklet(unsigned long data)
1094 {
1095 	struct context *ctx = (struct context *) data;
1096 	struct descriptor *d, *last;
1097 	u32 address;
1098 	int z;
1099 	struct descriptor_buffer *desc;
1100 
1101 	desc = list_entry(ctx->buffer_list.next,
1102 			struct descriptor_buffer, list);
1103 	last = ctx->last;
1104 	while (last->branch_address != 0) {
1105 		struct descriptor_buffer *old_desc = desc;
1106 		address = le32_to_cpu(last->branch_address);
1107 		z = address & 0xf;
1108 		address &= ~0xf;
1109 		ctx->current_bus = address;
1110 
1111 		/* If the branch address points to a buffer outside of the
1112 		 * current buffer, advance to the next buffer. */
1113 		if (address < desc->buffer_bus ||
1114 				address >= desc->buffer_bus + desc->used)
1115 			desc = list_entry(desc->list.next,
1116 					struct descriptor_buffer, list);
1117 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1118 		last = find_branch_descriptor(d, z);
1119 
1120 		if (!ctx->callback(ctx, d, last))
1121 			break;
1122 
1123 		if (old_desc != desc) {
1124 			/* If we've advanced to the next buffer, move the
1125 			 * previous buffer to the free list. */
1126 			unsigned long flags;
1127 			old_desc->used = 0;
1128 			spin_lock_irqsave(&ctx->ohci->lock, flags);
1129 			list_move_tail(&old_desc->list, &ctx->buffer_list);
1130 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1131 		}
1132 		ctx->last = last;
1133 	}
1134 }
1135 
1136 /*
1137  * Allocate a new buffer and add it to the list of free buffers for this
1138  * context.  Must be called with ohci->lock held.
1139  */
context_add_buffer(struct context * ctx)1140 static int context_add_buffer(struct context *ctx)
1141 {
1142 	struct descriptor_buffer *desc;
1143 	dma_addr_t bus_addr;
1144 	int offset;
1145 
1146 	/*
1147 	 * 16MB of descriptors should be far more than enough for any DMA
1148 	 * program.  This will catch run-away userspace or DoS attacks.
1149 	 */
1150 	if (ctx->total_allocation >= 16*1024*1024)
1151 		return -ENOMEM;
1152 
1153 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1154 			&bus_addr, GFP_ATOMIC);
1155 	if (!desc)
1156 		return -ENOMEM;
1157 
1158 	offset = (void *)&desc->buffer - (void *)desc;
1159 	/*
1160 	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1161 	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1162 	 * an IOMMU is in use and the oversized read crosses a page boundary.
1163 	 * Work around this by always leaving at least 0x10 bytes of padding.
1164 	 */
1165 	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1166 	desc->buffer_bus = bus_addr + offset;
1167 	desc->used = 0;
1168 
1169 	list_add_tail(&desc->list, &ctx->buffer_list);
1170 	ctx->total_allocation += PAGE_SIZE;
1171 
1172 	return 0;
1173 }
1174 
context_init(struct context * ctx,struct fw_ohci * ohci,u32 regs,descriptor_callback_t callback)1175 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1176 			u32 regs, descriptor_callback_t callback)
1177 {
1178 	ctx->ohci = ohci;
1179 	ctx->regs = regs;
1180 	ctx->total_allocation = 0;
1181 
1182 	INIT_LIST_HEAD(&ctx->buffer_list);
1183 	if (context_add_buffer(ctx) < 0)
1184 		return -ENOMEM;
1185 
1186 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1187 			struct descriptor_buffer, list);
1188 
1189 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1190 	ctx->callback = callback;
1191 
1192 	/*
1193 	 * We put a dummy descriptor in the buffer that has a NULL
1194 	 * branch address and looks like it's been sent.  That way we
1195 	 * have a descriptor to append DMA programs to.
1196 	 */
1197 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1198 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1199 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1200 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1201 	ctx->last = ctx->buffer_tail->buffer;
1202 	ctx->prev = ctx->buffer_tail->buffer;
1203 	ctx->prev_z = 1;
1204 
1205 	return 0;
1206 }
1207 
context_release(struct context * ctx)1208 static void context_release(struct context *ctx)
1209 {
1210 	struct fw_card *card = &ctx->ohci->card;
1211 	struct descriptor_buffer *desc, *tmp;
1212 
1213 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1214 		dma_free_coherent(card->device, PAGE_SIZE, desc,
1215 			desc->buffer_bus -
1216 			((void *)&desc->buffer - (void *)desc));
1217 }
1218 
1219 /* Must be called with ohci->lock held */
context_get_descriptors(struct context * ctx,int z,dma_addr_t * d_bus)1220 static struct descriptor *context_get_descriptors(struct context *ctx,
1221 						  int z, dma_addr_t *d_bus)
1222 {
1223 	struct descriptor *d = NULL;
1224 	struct descriptor_buffer *desc = ctx->buffer_tail;
1225 
1226 	if (z * sizeof(*d) > desc->buffer_size)
1227 		return NULL;
1228 
1229 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1230 		/* No room for the descriptor in this buffer, so advance to the
1231 		 * next one. */
1232 
1233 		if (desc->list.next == &ctx->buffer_list) {
1234 			/* If there is no free buffer next in the list,
1235 			 * allocate one. */
1236 			if (context_add_buffer(ctx) < 0)
1237 				return NULL;
1238 		}
1239 		desc = list_entry(desc->list.next,
1240 				struct descriptor_buffer, list);
1241 		ctx->buffer_tail = desc;
1242 	}
1243 
1244 	d = desc->buffer + desc->used / sizeof(*d);
1245 	memset(d, 0, z * sizeof(*d));
1246 	*d_bus = desc->buffer_bus + desc->used;
1247 
1248 	return d;
1249 }
1250 
context_run(struct context * ctx,u32 extra)1251 static void context_run(struct context *ctx, u32 extra)
1252 {
1253 	struct fw_ohci *ohci = ctx->ohci;
1254 
1255 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1256 		  le32_to_cpu(ctx->last->branch_address));
1257 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1258 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1259 	ctx->running = true;
1260 	flush_writes(ohci);
1261 }
1262 
context_append(struct context * ctx,struct descriptor * d,int z,int extra)1263 static void context_append(struct context *ctx,
1264 			   struct descriptor *d, int z, int extra)
1265 {
1266 	dma_addr_t d_bus;
1267 	struct descriptor_buffer *desc = ctx->buffer_tail;
1268 	struct descriptor *d_branch;
1269 
1270 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1271 
1272 	desc->used += (z + extra) * sizeof(*d);
1273 
1274 	wmb(); /* finish init of new descriptors before branch_address update */
1275 
1276 	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1277 	d_branch->branch_address = cpu_to_le32(d_bus | z);
1278 
1279 	/*
1280 	 * VT6306 incorrectly checks only the single descriptor at the
1281 	 * CommandPtr when the wake bit is written, so if it's a
1282 	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1283 	 * the branch address in the first descriptor.
1284 	 *
1285 	 * Not doing this for transmit contexts since not sure how it interacts
1286 	 * with skip addresses.
1287 	 */
1288 	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1289 	    d_branch != ctx->prev &&
1290 	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1291 	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1292 		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1293 	}
1294 
1295 	ctx->prev = d;
1296 	ctx->prev_z = z;
1297 }
1298 
context_stop(struct context * ctx)1299 static void context_stop(struct context *ctx)
1300 {
1301 	struct fw_ohci *ohci = ctx->ohci;
1302 	u32 reg;
1303 	int i;
1304 
1305 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1306 	ctx->running = false;
1307 
1308 	for (i = 0; i < 1000; i++) {
1309 		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1310 		if ((reg & CONTEXT_ACTIVE) == 0)
1311 			return;
1312 
1313 		if (i)
1314 			udelay(10);
1315 	}
1316 	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1317 }
1318 
1319 struct driver_data {
1320 	u8 inline_data[8];
1321 	struct fw_packet *packet;
1322 };
1323 
1324 /*
1325  * This function apppends a packet to the DMA queue for transmission.
1326  * Must always be called with the ochi->lock held to ensure proper
1327  * generation handling and locking around packet queue manipulation.
1328  */
at_context_queue_packet(struct context * ctx,struct fw_packet * packet)1329 static int at_context_queue_packet(struct context *ctx,
1330 				   struct fw_packet *packet)
1331 {
1332 	struct fw_ohci *ohci = ctx->ohci;
1333 	dma_addr_t d_bus, payload_bus;
1334 	struct driver_data *driver_data;
1335 	struct descriptor *d, *last;
1336 	__le32 *header;
1337 	int z, tcode;
1338 
1339 	d = context_get_descriptors(ctx, 4, &d_bus);
1340 	if (d == NULL) {
1341 		packet->ack = RCODE_SEND_ERROR;
1342 		return -1;
1343 	}
1344 
1345 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1346 	d[0].res_count = cpu_to_le16(packet->timestamp);
1347 
1348 	/*
1349 	 * The DMA format for asynchronous link packets is different
1350 	 * from the IEEE1394 layout, so shift the fields around
1351 	 * accordingly.
1352 	 */
1353 
1354 	tcode = (packet->header[0] >> 4) & 0x0f;
1355 	header = (__le32 *) &d[1];
1356 	switch (tcode) {
1357 	case TCODE_WRITE_QUADLET_REQUEST:
1358 	case TCODE_WRITE_BLOCK_REQUEST:
1359 	case TCODE_WRITE_RESPONSE:
1360 	case TCODE_READ_QUADLET_REQUEST:
1361 	case TCODE_READ_BLOCK_REQUEST:
1362 	case TCODE_READ_QUADLET_RESPONSE:
1363 	case TCODE_READ_BLOCK_RESPONSE:
1364 	case TCODE_LOCK_REQUEST:
1365 	case TCODE_LOCK_RESPONSE:
1366 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1367 					(packet->speed << 16));
1368 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1369 					(packet->header[0] & 0xffff0000));
1370 		header[2] = cpu_to_le32(packet->header[2]);
1371 
1372 		if (TCODE_IS_BLOCK_PACKET(tcode))
1373 			header[3] = cpu_to_le32(packet->header[3]);
1374 		else
1375 			header[3] = (__force __le32) packet->header[3];
1376 
1377 		d[0].req_count = cpu_to_le16(packet->header_length);
1378 		break;
1379 
1380 	case TCODE_LINK_INTERNAL:
1381 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1382 					(packet->speed << 16));
1383 		header[1] = cpu_to_le32(packet->header[1]);
1384 		header[2] = cpu_to_le32(packet->header[2]);
1385 		d[0].req_count = cpu_to_le16(12);
1386 
1387 		if (is_ping_packet(&packet->header[1]))
1388 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1389 		break;
1390 
1391 	case TCODE_STREAM_DATA:
1392 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1393 					(packet->speed << 16));
1394 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1395 		d[0].req_count = cpu_to_le16(8);
1396 		break;
1397 
1398 	default:
1399 		/* BUG(); */
1400 		packet->ack = RCODE_SEND_ERROR;
1401 		return -1;
1402 	}
1403 
1404 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1405 	driver_data = (struct driver_data *) &d[3];
1406 	driver_data->packet = packet;
1407 	packet->driver_data = driver_data;
1408 
1409 	if (packet->payload_length > 0) {
1410 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1411 			payload_bus = dma_map_single(ohci->card.device,
1412 						     packet->payload,
1413 						     packet->payload_length,
1414 						     DMA_TO_DEVICE);
1415 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1416 				packet->ack = RCODE_SEND_ERROR;
1417 				return -1;
1418 			}
1419 			packet->payload_bus	= payload_bus;
1420 			packet->payload_mapped	= true;
1421 		} else {
1422 			memcpy(driver_data->inline_data, packet->payload,
1423 			       packet->payload_length);
1424 			payload_bus = d_bus + 3 * sizeof(*d);
1425 		}
1426 
1427 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1428 		d[2].data_address = cpu_to_le32(payload_bus);
1429 		last = &d[2];
1430 		z = 3;
1431 	} else {
1432 		last = &d[0];
1433 		z = 2;
1434 	}
1435 
1436 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1437 				     DESCRIPTOR_IRQ_ALWAYS |
1438 				     DESCRIPTOR_BRANCH_ALWAYS);
1439 
1440 	/* FIXME: Document how the locking works. */
1441 	if (ohci->generation != packet->generation) {
1442 		if (packet->payload_mapped)
1443 			dma_unmap_single(ohci->card.device, payload_bus,
1444 					 packet->payload_length, DMA_TO_DEVICE);
1445 		packet->ack = RCODE_GENERATION;
1446 		return -1;
1447 	}
1448 
1449 	context_append(ctx, d, z, 4 - z);
1450 
1451 	if (ctx->running)
1452 		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1453 	else
1454 		context_run(ctx, 0);
1455 
1456 	return 0;
1457 }
1458 
at_context_flush(struct context * ctx)1459 static void at_context_flush(struct context *ctx)
1460 {
1461 	tasklet_disable(&ctx->tasklet);
1462 
1463 	ctx->flushing = true;
1464 	context_tasklet((unsigned long)ctx);
1465 	ctx->flushing = false;
1466 
1467 	tasklet_enable(&ctx->tasklet);
1468 }
1469 
handle_at_packet(struct context * context,struct descriptor * d,struct descriptor * last)1470 static int handle_at_packet(struct context *context,
1471 			    struct descriptor *d,
1472 			    struct descriptor *last)
1473 {
1474 	struct driver_data *driver_data;
1475 	struct fw_packet *packet;
1476 	struct fw_ohci *ohci = context->ohci;
1477 	int evt;
1478 
1479 	if (last->transfer_status == 0 && !context->flushing)
1480 		/* This descriptor isn't done yet, stop iteration. */
1481 		return 0;
1482 
1483 	driver_data = (struct driver_data *) &d[3];
1484 	packet = driver_data->packet;
1485 	if (packet == NULL)
1486 		/* This packet was cancelled, just continue. */
1487 		return 1;
1488 
1489 	if (packet->payload_mapped)
1490 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1491 				 packet->payload_length, DMA_TO_DEVICE);
1492 
1493 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1494 	packet->timestamp = le16_to_cpu(last->res_count);
1495 
1496 	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1497 
1498 	switch (evt) {
1499 	case OHCI1394_evt_timeout:
1500 		/* Async response transmit timed out. */
1501 		packet->ack = RCODE_CANCELLED;
1502 		break;
1503 
1504 	case OHCI1394_evt_flushed:
1505 		/*
1506 		 * The packet was flushed should give same error as
1507 		 * when we try to use a stale generation count.
1508 		 */
1509 		packet->ack = RCODE_GENERATION;
1510 		break;
1511 
1512 	case OHCI1394_evt_missing_ack:
1513 		if (context->flushing)
1514 			packet->ack = RCODE_GENERATION;
1515 		else {
1516 			/*
1517 			 * Using a valid (current) generation count, but the
1518 			 * node is not on the bus or not sending acks.
1519 			 */
1520 			packet->ack = RCODE_NO_ACK;
1521 		}
1522 		break;
1523 
1524 	case ACK_COMPLETE + 0x10:
1525 	case ACK_PENDING + 0x10:
1526 	case ACK_BUSY_X + 0x10:
1527 	case ACK_BUSY_A + 0x10:
1528 	case ACK_BUSY_B + 0x10:
1529 	case ACK_DATA_ERROR + 0x10:
1530 	case ACK_TYPE_ERROR + 0x10:
1531 		packet->ack = evt - 0x10;
1532 		break;
1533 
1534 	case OHCI1394_evt_no_status:
1535 		if (context->flushing) {
1536 			packet->ack = RCODE_GENERATION;
1537 			break;
1538 		}
1539 		fallthrough;
1540 
1541 	default:
1542 		packet->ack = RCODE_SEND_ERROR;
1543 		break;
1544 	}
1545 
1546 	packet->callback(packet, &ohci->card, packet->ack);
1547 
1548 	return 1;
1549 }
1550 
1551 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1552 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1553 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1554 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1555 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1556 
handle_local_rom(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1557 static void handle_local_rom(struct fw_ohci *ohci,
1558 			     struct fw_packet *packet, u32 csr)
1559 {
1560 	struct fw_packet response;
1561 	int tcode, length, i;
1562 
1563 	tcode = HEADER_GET_TCODE(packet->header[0]);
1564 	if (TCODE_IS_BLOCK_PACKET(tcode))
1565 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1566 	else
1567 		length = 4;
1568 
1569 	i = csr - CSR_CONFIG_ROM;
1570 	if (i + length > CONFIG_ROM_SIZE) {
1571 		fw_fill_response(&response, packet->header,
1572 				 RCODE_ADDRESS_ERROR, NULL, 0);
1573 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1574 		fw_fill_response(&response, packet->header,
1575 				 RCODE_TYPE_ERROR, NULL, 0);
1576 	} else {
1577 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1578 				 (void *) ohci->config_rom + i, length);
1579 	}
1580 
1581 	fw_core_handle_response(&ohci->card, &response);
1582 }
1583 
handle_local_lock(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1584 static void handle_local_lock(struct fw_ohci *ohci,
1585 			      struct fw_packet *packet, u32 csr)
1586 {
1587 	struct fw_packet response;
1588 	int tcode, length, ext_tcode, sel, try;
1589 	__be32 *payload, lock_old;
1590 	u32 lock_arg, lock_data;
1591 
1592 	tcode = HEADER_GET_TCODE(packet->header[0]);
1593 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1594 	payload = packet->payload;
1595 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1596 
1597 	if (tcode == TCODE_LOCK_REQUEST &&
1598 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1599 		lock_arg = be32_to_cpu(payload[0]);
1600 		lock_data = be32_to_cpu(payload[1]);
1601 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1602 		lock_arg = 0;
1603 		lock_data = 0;
1604 	} else {
1605 		fw_fill_response(&response, packet->header,
1606 				 RCODE_TYPE_ERROR, NULL, 0);
1607 		goto out;
1608 	}
1609 
1610 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1611 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1612 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1613 	reg_write(ohci, OHCI1394_CSRControl, sel);
1614 
1615 	for (try = 0; try < 20; try++)
1616 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1617 			lock_old = cpu_to_be32(reg_read(ohci,
1618 							OHCI1394_CSRData));
1619 			fw_fill_response(&response, packet->header,
1620 					 RCODE_COMPLETE,
1621 					 &lock_old, sizeof(lock_old));
1622 			goto out;
1623 		}
1624 
1625 	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1626 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1627 
1628  out:
1629 	fw_core_handle_response(&ohci->card, &response);
1630 }
1631 
handle_local_request(struct context * ctx,struct fw_packet * packet)1632 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1633 {
1634 	u64 offset, csr;
1635 
1636 	if (ctx == &ctx->ohci->at_request_ctx) {
1637 		packet->ack = ACK_PENDING;
1638 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1639 	}
1640 
1641 	offset =
1642 		((unsigned long long)
1643 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1644 		packet->header[2];
1645 	csr = offset - CSR_REGISTER_BASE;
1646 
1647 	/* Handle config rom reads. */
1648 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1649 		handle_local_rom(ctx->ohci, packet, csr);
1650 	else switch (csr) {
1651 	case CSR_BUS_MANAGER_ID:
1652 	case CSR_BANDWIDTH_AVAILABLE:
1653 	case CSR_CHANNELS_AVAILABLE_HI:
1654 	case CSR_CHANNELS_AVAILABLE_LO:
1655 		handle_local_lock(ctx->ohci, packet, csr);
1656 		break;
1657 	default:
1658 		if (ctx == &ctx->ohci->at_request_ctx)
1659 			fw_core_handle_request(&ctx->ohci->card, packet);
1660 		else
1661 			fw_core_handle_response(&ctx->ohci->card, packet);
1662 		break;
1663 	}
1664 
1665 	if (ctx == &ctx->ohci->at_response_ctx) {
1666 		packet->ack = ACK_COMPLETE;
1667 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1668 	}
1669 }
1670 
at_context_transmit(struct context * ctx,struct fw_packet * packet)1671 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1672 {
1673 	unsigned long flags;
1674 	int ret;
1675 
1676 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1677 
1678 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1679 	    ctx->ohci->generation == packet->generation) {
1680 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1681 		handle_local_request(ctx, packet);
1682 		return;
1683 	}
1684 
1685 	ret = at_context_queue_packet(ctx, packet);
1686 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1687 
1688 	if (ret < 0)
1689 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1690 
1691 }
1692 
detect_dead_context(struct fw_ohci * ohci,const char * name,unsigned int regs)1693 static void detect_dead_context(struct fw_ohci *ohci,
1694 				const char *name, unsigned int regs)
1695 {
1696 	u32 ctl;
1697 
1698 	ctl = reg_read(ohci, CONTROL_SET(regs));
1699 	if (ctl & CONTEXT_DEAD)
1700 		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1701 			name, evts[ctl & 0x1f]);
1702 }
1703 
handle_dead_contexts(struct fw_ohci * ohci)1704 static void handle_dead_contexts(struct fw_ohci *ohci)
1705 {
1706 	unsigned int i;
1707 	char name[8];
1708 
1709 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1710 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1711 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1712 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1713 	for (i = 0; i < 32; ++i) {
1714 		if (!(ohci->it_context_support & (1 << i)))
1715 			continue;
1716 		sprintf(name, "IT%u", i);
1717 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1718 	}
1719 	for (i = 0; i < 32; ++i) {
1720 		if (!(ohci->ir_context_support & (1 << i)))
1721 			continue;
1722 		sprintf(name, "IR%u", i);
1723 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1724 	}
1725 	/* TODO: maybe try to flush and restart the dead contexts */
1726 }
1727 
cycle_timer_ticks(u32 cycle_timer)1728 static u32 cycle_timer_ticks(u32 cycle_timer)
1729 {
1730 	u32 ticks;
1731 
1732 	ticks = cycle_timer & 0xfff;
1733 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1734 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1735 
1736 	return ticks;
1737 }
1738 
1739 /*
1740  * Some controllers exhibit one or more of the following bugs when updating the
1741  * iso cycle timer register:
1742  *  - When the lowest six bits are wrapping around to zero, a read that happens
1743  *    at the same time will return garbage in the lowest ten bits.
1744  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1745  *    not incremented for about 60 ns.
1746  *  - Occasionally, the entire register reads zero.
1747  *
1748  * To catch these, we read the register three times and ensure that the
1749  * difference between each two consecutive reads is approximately the same, i.e.
1750  * less than twice the other.  Furthermore, any negative difference indicates an
1751  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1752  * execute, so we have enough precision to compute the ratio of the differences.)
1753  */
get_cycle_time(struct fw_ohci * ohci)1754 static u32 get_cycle_time(struct fw_ohci *ohci)
1755 {
1756 	u32 c0, c1, c2;
1757 	u32 t0, t1, t2;
1758 	s32 diff01, diff12;
1759 	int i;
1760 
1761 	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1762 		return 0;
1763 
1764 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1765 
1766 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1767 		i = 0;
1768 		c1 = c2;
1769 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1770 		do {
1771 			c0 = c1;
1772 			c1 = c2;
1773 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1774 			t0 = cycle_timer_ticks(c0);
1775 			t1 = cycle_timer_ticks(c1);
1776 			t2 = cycle_timer_ticks(c2);
1777 			diff01 = t1 - t0;
1778 			diff12 = t2 - t1;
1779 		} while ((diff01 <= 0 || diff12 <= 0 ||
1780 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1781 			 && i++ < 20);
1782 	}
1783 
1784 	return c2;
1785 }
1786 
1787 /*
1788  * This function has to be called at least every 64 seconds.  The bus_time
1789  * field stores not only the upper 25 bits of the BUS_TIME register but also
1790  * the most significant bit of the cycle timer in bit 6 so that we can detect
1791  * changes in this bit.
1792  */
update_bus_time(struct fw_ohci * ohci)1793 static u32 update_bus_time(struct fw_ohci *ohci)
1794 {
1795 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1796 
1797 	if (unlikely(!ohci->bus_time_running)) {
1798 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1799 		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1800 		                 (cycle_time_seconds & 0x40);
1801 		ohci->bus_time_running = true;
1802 	}
1803 
1804 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1805 		ohci->bus_time += 0x40;
1806 
1807 	return ohci->bus_time | cycle_time_seconds;
1808 }
1809 
get_status_for_port(struct fw_ohci * ohci,int port_index)1810 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1811 {
1812 	int reg;
1813 
1814 	mutex_lock(&ohci->phy_reg_mutex);
1815 	reg = write_phy_reg(ohci, 7, port_index);
1816 	if (reg >= 0)
1817 		reg = read_phy_reg(ohci, 8);
1818 	mutex_unlock(&ohci->phy_reg_mutex);
1819 	if (reg < 0)
1820 		return reg;
1821 
1822 	switch (reg & 0x0f) {
1823 	case 0x06:
1824 		return 2;	/* is child node (connected to parent node) */
1825 	case 0x0e:
1826 		return 3;	/* is parent node (connected to child node) */
1827 	}
1828 	return 1;		/* not connected */
1829 }
1830 
get_self_id_pos(struct fw_ohci * ohci,u32 self_id,int self_id_count)1831 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1832 	int self_id_count)
1833 {
1834 	int i;
1835 	u32 entry;
1836 
1837 	for (i = 0; i < self_id_count; i++) {
1838 		entry = ohci->self_id_buffer[i];
1839 		if ((self_id & 0xff000000) == (entry & 0xff000000))
1840 			return -1;
1841 		if ((self_id & 0xff000000) < (entry & 0xff000000))
1842 			return i;
1843 	}
1844 	return i;
1845 }
1846 
initiated_reset(struct fw_ohci * ohci)1847 static int initiated_reset(struct fw_ohci *ohci)
1848 {
1849 	int reg;
1850 	int ret = 0;
1851 
1852 	mutex_lock(&ohci->phy_reg_mutex);
1853 	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1854 	if (reg >= 0) {
1855 		reg = read_phy_reg(ohci, 8);
1856 		reg |= 0x40;
1857 		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1858 		if (reg >= 0) {
1859 			reg = read_phy_reg(ohci, 12); /* read register 12 */
1860 			if (reg >= 0) {
1861 				if ((reg & 0x08) == 0x08) {
1862 					/* bit 3 indicates "initiated reset" */
1863 					ret = 0x2;
1864 				}
1865 			}
1866 		}
1867 	}
1868 	mutex_unlock(&ohci->phy_reg_mutex);
1869 	return ret;
1870 }
1871 
1872 /*
1873  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1874  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1875  * Construct the selfID from phy register contents.
1876  */
find_and_insert_self_id(struct fw_ohci * ohci,int self_id_count)1877 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1878 {
1879 	int reg, i, pos, status;
1880 	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1881 	u32 self_id = 0x8040c800;
1882 
1883 	reg = reg_read(ohci, OHCI1394_NodeID);
1884 	if (!(reg & OHCI1394_NodeID_idValid)) {
1885 		ohci_notice(ohci,
1886 			    "node ID not valid, new bus reset in progress\n");
1887 		return -EBUSY;
1888 	}
1889 	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1890 
1891 	reg = ohci_read_phy_reg(&ohci->card, 4);
1892 	if (reg < 0)
1893 		return reg;
1894 	self_id |= ((reg & 0x07) << 8); /* power class */
1895 
1896 	reg = ohci_read_phy_reg(&ohci->card, 1);
1897 	if (reg < 0)
1898 		return reg;
1899 	self_id |= ((reg & 0x3f) << 16); /* gap count */
1900 
1901 	for (i = 0; i < 3; i++) {
1902 		status = get_status_for_port(ohci, i);
1903 		if (status < 0)
1904 			return status;
1905 		self_id |= ((status & 0x3) << (6 - (i * 2)));
1906 	}
1907 
1908 	self_id |= initiated_reset(ohci);
1909 
1910 	pos = get_self_id_pos(ohci, self_id, self_id_count);
1911 	if (pos >= 0) {
1912 		memmove(&(ohci->self_id_buffer[pos+1]),
1913 			&(ohci->self_id_buffer[pos]),
1914 			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1915 		ohci->self_id_buffer[pos] = self_id;
1916 		self_id_count++;
1917 	}
1918 	return self_id_count;
1919 }
1920 
bus_reset_work(struct work_struct * work)1921 static void bus_reset_work(struct work_struct *work)
1922 {
1923 	struct fw_ohci *ohci =
1924 		container_of(work, struct fw_ohci, bus_reset_work);
1925 	int self_id_count, generation, new_generation, i, j;
1926 	u32 reg;
1927 	void *free_rom = NULL;
1928 	dma_addr_t free_rom_bus = 0;
1929 	bool is_new_root;
1930 
1931 	reg = reg_read(ohci, OHCI1394_NodeID);
1932 	if (!(reg & OHCI1394_NodeID_idValid)) {
1933 		ohci_notice(ohci,
1934 			    "node ID not valid, new bus reset in progress\n");
1935 		return;
1936 	}
1937 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1938 		ohci_notice(ohci, "malconfigured bus\n");
1939 		return;
1940 	}
1941 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1942 			       OHCI1394_NodeID_nodeNumber);
1943 
1944 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1945 	if (!(ohci->is_root && is_new_root))
1946 		reg_write(ohci, OHCI1394_LinkControlSet,
1947 			  OHCI1394_LinkControl_cycleMaster);
1948 	ohci->is_root = is_new_root;
1949 
1950 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1951 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1952 		ohci_notice(ohci, "self ID receive error\n");
1953 		return;
1954 	}
1955 	/*
1956 	 * The count in the SelfIDCount register is the number of
1957 	 * bytes in the self ID receive buffer.  Since we also receive
1958 	 * the inverted quadlets and a header quadlet, we shift one
1959 	 * bit extra to get the actual number of self IDs.
1960 	 */
1961 	self_id_count = (reg >> 3) & 0xff;
1962 
1963 	if (self_id_count > 252) {
1964 		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1965 		return;
1966 	}
1967 
1968 	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1969 	rmb();
1970 
1971 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1972 		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1973 		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1974 
1975 		if (id != ~id2) {
1976 			/*
1977 			 * If the invalid data looks like a cycle start packet,
1978 			 * it's likely to be the result of the cycle master
1979 			 * having a wrong gap count.  In this case, the self IDs
1980 			 * so far are valid and should be processed so that the
1981 			 * bus manager can then correct the gap count.
1982 			 */
1983 			if (id == 0xffff008f) {
1984 				ohci_notice(ohci, "ignoring spurious self IDs\n");
1985 				self_id_count = j;
1986 				break;
1987 			}
1988 
1989 			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1990 				    j, self_id_count, id, id2);
1991 			return;
1992 		}
1993 		ohci->self_id_buffer[j] = id;
1994 	}
1995 
1996 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1997 		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1998 		if (self_id_count < 0) {
1999 			ohci_notice(ohci,
2000 				    "could not construct local self ID\n");
2001 			return;
2002 		}
2003 	}
2004 
2005 	if (self_id_count == 0) {
2006 		ohci_notice(ohci, "no self IDs\n");
2007 		return;
2008 	}
2009 	rmb();
2010 
2011 	/*
2012 	 * Check the consistency of the self IDs we just read.  The
2013 	 * problem we face is that a new bus reset can start while we
2014 	 * read out the self IDs from the DMA buffer. If this happens,
2015 	 * the DMA buffer will be overwritten with new self IDs and we
2016 	 * will read out inconsistent data.  The OHCI specification
2017 	 * (section 11.2) recommends a technique similar to
2018 	 * linux/seqlock.h, where we remember the generation of the
2019 	 * self IDs in the buffer before reading them out and compare
2020 	 * it to the current generation after reading them out.  If
2021 	 * the two generations match we know we have a consistent set
2022 	 * of self IDs.
2023 	 */
2024 
2025 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2026 	if (new_generation != generation) {
2027 		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2028 		return;
2029 	}
2030 
2031 	/* FIXME: Document how the locking works. */
2032 	spin_lock_irq(&ohci->lock);
2033 
2034 	ohci->generation = -1; /* prevent AT packet queueing */
2035 	context_stop(&ohci->at_request_ctx);
2036 	context_stop(&ohci->at_response_ctx);
2037 
2038 	spin_unlock_irq(&ohci->lock);
2039 
2040 	/*
2041 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2042 	 * packets in the AT queues and software needs to drain them.
2043 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2044 	 */
2045 	at_context_flush(&ohci->at_request_ctx);
2046 	at_context_flush(&ohci->at_response_ctx);
2047 
2048 	spin_lock_irq(&ohci->lock);
2049 
2050 	ohci->generation = generation;
2051 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2052 
2053 	if (ohci->quirks & QUIRK_RESET_PACKET)
2054 		ohci->request_generation = generation;
2055 
2056 	/*
2057 	 * This next bit is unrelated to the AT context stuff but we
2058 	 * have to do it under the spinlock also.  If a new config rom
2059 	 * was set up before this reset, the old one is now no longer
2060 	 * in use and we can free it. Update the config rom pointers
2061 	 * to point to the current config rom and clear the
2062 	 * next_config_rom pointer so a new update can take place.
2063 	 */
2064 
2065 	if (ohci->next_config_rom != NULL) {
2066 		if (ohci->next_config_rom != ohci->config_rom) {
2067 			free_rom      = ohci->config_rom;
2068 			free_rom_bus  = ohci->config_rom_bus;
2069 		}
2070 		ohci->config_rom      = ohci->next_config_rom;
2071 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2072 		ohci->next_config_rom = NULL;
2073 
2074 		/*
2075 		 * Restore config_rom image and manually update
2076 		 * config_rom registers.  Writing the header quadlet
2077 		 * will indicate that the config rom is ready, so we
2078 		 * do that last.
2079 		 */
2080 		reg_write(ohci, OHCI1394_BusOptions,
2081 			  be32_to_cpu(ohci->config_rom[2]));
2082 		ohci->config_rom[0] = ohci->next_header;
2083 		reg_write(ohci, OHCI1394_ConfigROMhdr,
2084 			  be32_to_cpu(ohci->next_header));
2085 	}
2086 
2087 	if (param_remote_dma) {
2088 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2089 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2090 	}
2091 
2092 	spin_unlock_irq(&ohci->lock);
2093 
2094 	if (free_rom)
2095 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2096 				  free_rom, free_rom_bus);
2097 
2098 	log_selfids(ohci, generation, self_id_count);
2099 
2100 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2101 				 self_id_count, ohci->self_id_buffer,
2102 				 ohci->csr_state_setclear_abdicate);
2103 	ohci->csr_state_setclear_abdicate = false;
2104 }
2105 
irq_handler(int irq,void * data)2106 static irqreturn_t irq_handler(int irq, void *data)
2107 {
2108 	struct fw_ohci *ohci = data;
2109 	u32 event, iso_event;
2110 	int i;
2111 
2112 	event = reg_read(ohci, OHCI1394_IntEventClear);
2113 
2114 	if (!event || !~event)
2115 		return IRQ_NONE;
2116 
2117 	/*
2118 	 * busReset and postedWriteErr must not be cleared yet
2119 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2120 	 */
2121 	reg_write(ohci, OHCI1394_IntEventClear,
2122 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2123 	log_irqs(ohci, event);
2124 
2125 	if (event & OHCI1394_selfIDComplete)
2126 		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2127 
2128 	if (event & OHCI1394_RQPkt)
2129 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2130 
2131 	if (event & OHCI1394_RSPkt)
2132 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2133 
2134 	if (event & OHCI1394_reqTxComplete)
2135 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2136 
2137 	if (event & OHCI1394_respTxComplete)
2138 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2139 
2140 	if (event & OHCI1394_isochRx) {
2141 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2142 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2143 
2144 		while (iso_event) {
2145 			i = ffs(iso_event) - 1;
2146 			tasklet_schedule(
2147 				&ohci->ir_context_list[i].context.tasklet);
2148 			iso_event &= ~(1 << i);
2149 		}
2150 	}
2151 
2152 	if (event & OHCI1394_isochTx) {
2153 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2154 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2155 
2156 		while (iso_event) {
2157 			i = ffs(iso_event) - 1;
2158 			tasklet_schedule(
2159 				&ohci->it_context_list[i].context.tasklet);
2160 			iso_event &= ~(1 << i);
2161 		}
2162 	}
2163 
2164 	if (unlikely(event & OHCI1394_regAccessFail))
2165 		ohci_err(ohci, "register access failure\n");
2166 
2167 	if (unlikely(event & OHCI1394_postedWriteErr)) {
2168 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2169 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2170 		reg_write(ohci, OHCI1394_IntEventClear,
2171 			  OHCI1394_postedWriteErr);
2172 		if (printk_ratelimit())
2173 			ohci_err(ohci, "PCI posted write error\n");
2174 	}
2175 
2176 	if (unlikely(event & OHCI1394_cycleTooLong)) {
2177 		if (printk_ratelimit())
2178 			ohci_notice(ohci, "isochronous cycle too long\n");
2179 		reg_write(ohci, OHCI1394_LinkControlSet,
2180 			  OHCI1394_LinkControl_cycleMaster);
2181 	}
2182 
2183 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2184 		/*
2185 		 * We need to clear this event bit in order to make
2186 		 * cycleMatch isochronous I/O work.  In theory we should
2187 		 * stop active cycleMatch iso contexts now and restart
2188 		 * them at least two cycles later.  (FIXME?)
2189 		 */
2190 		if (printk_ratelimit())
2191 			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2192 	}
2193 
2194 	if (unlikely(event & OHCI1394_unrecoverableError))
2195 		handle_dead_contexts(ohci);
2196 
2197 	if (event & OHCI1394_cycle64Seconds) {
2198 		spin_lock(&ohci->lock);
2199 		update_bus_time(ohci);
2200 		spin_unlock(&ohci->lock);
2201 	} else
2202 		flush_writes(ohci);
2203 
2204 	return IRQ_HANDLED;
2205 }
2206 
software_reset(struct fw_ohci * ohci)2207 static int software_reset(struct fw_ohci *ohci)
2208 {
2209 	u32 val;
2210 	int i;
2211 
2212 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2213 	for (i = 0; i < 500; i++) {
2214 		val = reg_read(ohci, OHCI1394_HCControlSet);
2215 		if (!~val)
2216 			return -ENODEV; /* Card was ejected. */
2217 
2218 		if (!(val & OHCI1394_HCControl_softReset))
2219 			return 0;
2220 
2221 		msleep(1);
2222 	}
2223 
2224 	return -EBUSY;
2225 }
2226 
copy_config_rom(__be32 * dest,const __be32 * src,size_t length)2227 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2228 {
2229 	size_t size = length * 4;
2230 
2231 	memcpy(dest, src, size);
2232 	if (size < CONFIG_ROM_SIZE)
2233 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2234 }
2235 
configure_1394a_enhancements(struct fw_ohci * ohci)2236 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2237 {
2238 	bool enable_1394a;
2239 	int ret, clear, set, offset;
2240 
2241 	/* Check if the driver should configure link and PHY. */
2242 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2243 	      OHCI1394_HCControl_programPhyEnable))
2244 		return 0;
2245 
2246 	/* Paranoia: check whether the PHY supports 1394a, too. */
2247 	enable_1394a = false;
2248 	ret = read_phy_reg(ohci, 2);
2249 	if (ret < 0)
2250 		return ret;
2251 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2252 		ret = read_paged_phy_reg(ohci, 1, 8);
2253 		if (ret < 0)
2254 			return ret;
2255 		if (ret >= 1)
2256 			enable_1394a = true;
2257 	}
2258 
2259 	if (ohci->quirks & QUIRK_NO_1394A)
2260 		enable_1394a = false;
2261 
2262 	/* Configure PHY and link consistently. */
2263 	if (enable_1394a) {
2264 		clear = 0;
2265 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2266 	} else {
2267 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2268 		set = 0;
2269 	}
2270 	ret = update_phy_reg(ohci, 5, clear, set);
2271 	if (ret < 0)
2272 		return ret;
2273 
2274 	if (enable_1394a)
2275 		offset = OHCI1394_HCControlSet;
2276 	else
2277 		offset = OHCI1394_HCControlClear;
2278 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2279 
2280 	/* Clean up: configuration has been taken care of. */
2281 	reg_write(ohci, OHCI1394_HCControlClear,
2282 		  OHCI1394_HCControl_programPhyEnable);
2283 
2284 	return 0;
2285 }
2286 
probe_tsb41ba3d(struct fw_ohci * ohci)2287 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2288 {
2289 	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2290 	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2291 	int reg, i;
2292 
2293 	reg = read_phy_reg(ohci, 2);
2294 	if (reg < 0)
2295 		return reg;
2296 	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2297 		return 0;
2298 
2299 	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2300 		reg = read_paged_phy_reg(ohci, 1, i + 10);
2301 		if (reg < 0)
2302 			return reg;
2303 		if (reg != id[i])
2304 			return 0;
2305 	}
2306 	return 1;
2307 }
2308 
ohci_enable(struct fw_card * card,const __be32 * config_rom,size_t length)2309 static int ohci_enable(struct fw_card *card,
2310 		       const __be32 *config_rom, size_t length)
2311 {
2312 	struct fw_ohci *ohci = fw_ohci(card);
2313 	u32 lps, version, irqs;
2314 	int i, ret;
2315 
2316 	ret = software_reset(ohci);
2317 	if (ret < 0) {
2318 		ohci_err(ohci, "failed to reset ohci card\n");
2319 		return ret;
2320 	}
2321 
2322 	/*
2323 	 * Now enable LPS, which we need in order to start accessing
2324 	 * most of the registers.  In fact, on some cards (ALI M5251),
2325 	 * accessing registers in the SClk domain without LPS enabled
2326 	 * will lock up the machine.  Wait 50msec to make sure we have
2327 	 * full link enabled.  However, with some cards (well, at least
2328 	 * a JMicron PCIe card), we have to try again sometimes.
2329 	 *
2330 	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2331 	 * cannot actually use the phy at that time.  These need tens of
2332 	 * millisecods pause between LPS write and first phy access too.
2333 	 */
2334 
2335 	reg_write(ohci, OHCI1394_HCControlSet,
2336 		  OHCI1394_HCControl_LPS |
2337 		  OHCI1394_HCControl_postedWriteEnable);
2338 	flush_writes(ohci);
2339 
2340 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2341 		msleep(50);
2342 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2343 		      OHCI1394_HCControl_LPS;
2344 	}
2345 
2346 	if (!lps) {
2347 		ohci_err(ohci, "failed to set Link Power Status\n");
2348 		return -EIO;
2349 	}
2350 
2351 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2352 		ret = probe_tsb41ba3d(ohci);
2353 		if (ret < 0)
2354 			return ret;
2355 		if (ret)
2356 			ohci_notice(ohci, "local TSB41BA3D phy\n");
2357 		else
2358 			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2359 	}
2360 
2361 	reg_write(ohci, OHCI1394_HCControlClear,
2362 		  OHCI1394_HCControl_noByteSwapData);
2363 
2364 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2365 	reg_write(ohci, OHCI1394_LinkControlSet,
2366 		  OHCI1394_LinkControl_cycleTimerEnable |
2367 		  OHCI1394_LinkControl_cycleMaster);
2368 
2369 	reg_write(ohci, OHCI1394_ATRetries,
2370 		  OHCI1394_MAX_AT_REQ_RETRIES |
2371 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2372 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2373 		  (200 << 16));
2374 
2375 	ohci->bus_time_running = false;
2376 
2377 	for (i = 0; i < 32; i++)
2378 		if (ohci->ir_context_support & (1 << i))
2379 			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2380 				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2381 
2382 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2383 	if (version >= OHCI_VERSION_1_1) {
2384 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2385 			  0xfffffffe);
2386 		card->broadcast_channel_auto_allocated = true;
2387 	}
2388 
2389 	/* Get implemented bits of the priority arbitration request counter. */
2390 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2391 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2392 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2393 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2394 
2395 	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2396 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2397 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2398 
2399 	ret = configure_1394a_enhancements(ohci);
2400 	if (ret < 0)
2401 		return ret;
2402 
2403 	/* Activate link_on bit and contender bit in our self ID packets.*/
2404 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2405 	if (ret < 0)
2406 		return ret;
2407 
2408 	/*
2409 	 * When the link is not yet enabled, the atomic config rom
2410 	 * update mechanism described below in ohci_set_config_rom()
2411 	 * is not active.  We have to update ConfigRomHeader and
2412 	 * BusOptions manually, and the write to ConfigROMmap takes
2413 	 * effect immediately.  We tie this to the enabling of the
2414 	 * link, so we have a valid config rom before enabling - the
2415 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2416 	 * values before enabling.
2417 	 *
2418 	 * However, when the ConfigROMmap is written, some controllers
2419 	 * always read back quadlets 0 and 2 from the config rom to
2420 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2421 	 * They shouldn't do that in this initial case where the link
2422 	 * isn't enabled.  This means we have to use the same
2423 	 * workaround here, setting the bus header to 0 and then write
2424 	 * the right values in the bus reset tasklet.
2425 	 */
2426 
2427 	if (config_rom) {
2428 		ohci->next_config_rom =
2429 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2430 					   &ohci->next_config_rom_bus,
2431 					   GFP_KERNEL);
2432 		if (ohci->next_config_rom == NULL)
2433 			return -ENOMEM;
2434 
2435 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2436 	} else {
2437 		/*
2438 		 * In the suspend case, config_rom is NULL, which
2439 		 * means that we just reuse the old config rom.
2440 		 */
2441 		ohci->next_config_rom = ohci->config_rom;
2442 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2443 	}
2444 
2445 	ohci->next_header = ohci->next_config_rom[0];
2446 	ohci->next_config_rom[0] = 0;
2447 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2448 	reg_write(ohci, OHCI1394_BusOptions,
2449 		  be32_to_cpu(ohci->next_config_rom[2]));
2450 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2451 
2452 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2453 
2454 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2455 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2456 		OHCI1394_isochTx | OHCI1394_isochRx |
2457 		OHCI1394_postedWriteErr |
2458 		OHCI1394_selfIDComplete |
2459 		OHCI1394_regAccessFail |
2460 		OHCI1394_cycleInconsistent |
2461 		OHCI1394_unrecoverableError |
2462 		OHCI1394_cycleTooLong |
2463 		OHCI1394_masterIntEnable;
2464 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2465 		irqs |= OHCI1394_busReset;
2466 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2467 
2468 	reg_write(ohci, OHCI1394_HCControlSet,
2469 		  OHCI1394_HCControl_linkEnable |
2470 		  OHCI1394_HCControl_BIBimageValid);
2471 
2472 	reg_write(ohci, OHCI1394_LinkControlSet,
2473 		  OHCI1394_LinkControl_rcvSelfID |
2474 		  OHCI1394_LinkControl_rcvPhyPkt);
2475 
2476 	ar_context_run(&ohci->ar_request_ctx);
2477 	ar_context_run(&ohci->ar_response_ctx);
2478 
2479 	flush_writes(ohci);
2480 
2481 	/* We are ready to go, reset bus to finish initialization. */
2482 	fw_schedule_bus_reset(&ohci->card, false, true);
2483 
2484 	return 0;
2485 }
2486 
ohci_set_config_rom(struct fw_card * card,const __be32 * config_rom,size_t length)2487 static int ohci_set_config_rom(struct fw_card *card,
2488 			       const __be32 *config_rom, size_t length)
2489 {
2490 	struct fw_ohci *ohci;
2491 	__be32 *next_config_rom;
2492 	dma_addr_t next_config_rom_bus;
2493 
2494 	ohci = fw_ohci(card);
2495 
2496 	/*
2497 	 * When the OHCI controller is enabled, the config rom update
2498 	 * mechanism is a bit tricky, but easy enough to use.  See
2499 	 * section 5.5.6 in the OHCI specification.
2500 	 *
2501 	 * The OHCI controller caches the new config rom address in a
2502 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2503 	 * for the changes to take place.  When the bus reset is
2504 	 * detected, the controller loads the new values for the
2505 	 * ConfigRomHeader and BusOptions registers from the specified
2506 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2507 	 * shadow register. All automatically and atomically.
2508 	 *
2509 	 * Now, there's a twist to this story.  The automatic load of
2510 	 * ConfigRomHeader and BusOptions doesn't honor the
2511 	 * noByteSwapData bit, so with a be32 config rom, the
2512 	 * controller will load be32 values in to these registers
2513 	 * during the atomic update, even on litte endian
2514 	 * architectures.  The workaround we use is to put a 0 in the
2515 	 * header quadlet; 0 is endian agnostic and means that the
2516 	 * config rom isn't ready yet.  In the bus reset tasklet we
2517 	 * then set up the real values for the two registers.
2518 	 *
2519 	 * We use ohci->lock to avoid racing with the code that sets
2520 	 * ohci->next_config_rom to NULL (see bus_reset_work).
2521 	 */
2522 
2523 	next_config_rom =
2524 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2525 				   &next_config_rom_bus, GFP_KERNEL);
2526 	if (next_config_rom == NULL)
2527 		return -ENOMEM;
2528 
2529 	spin_lock_irq(&ohci->lock);
2530 
2531 	/*
2532 	 * If there is not an already pending config_rom update,
2533 	 * push our new allocation into the ohci->next_config_rom
2534 	 * and then mark the local variable as null so that we
2535 	 * won't deallocate the new buffer.
2536 	 *
2537 	 * OTOH, if there is a pending config_rom update, just
2538 	 * use that buffer with the new config_rom data, and
2539 	 * let this routine free the unused DMA allocation.
2540 	 */
2541 
2542 	if (ohci->next_config_rom == NULL) {
2543 		ohci->next_config_rom = next_config_rom;
2544 		ohci->next_config_rom_bus = next_config_rom_bus;
2545 		next_config_rom = NULL;
2546 	}
2547 
2548 	copy_config_rom(ohci->next_config_rom, config_rom, length);
2549 
2550 	ohci->next_header = config_rom[0];
2551 	ohci->next_config_rom[0] = 0;
2552 
2553 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2554 
2555 	spin_unlock_irq(&ohci->lock);
2556 
2557 	/* If we didn't use the DMA allocation, delete it. */
2558 	if (next_config_rom != NULL)
2559 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2560 				  next_config_rom, next_config_rom_bus);
2561 
2562 	/*
2563 	 * Now initiate a bus reset to have the changes take
2564 	 * effect. We clean up the old config rom memory and DMA
2565 	 * mappings in the bus reset tasklet, since the OHCI
2566 	 * controller could need to access it before the bus reset
2567 	 * takes effect.
2568 	 */
2569 
2570 	fw_schedule_bus_reset(&ohci->card, true, true);
2571 
2572 	return 0;
2573 }
2574 
ohci_send_request(struct fw_card * card,struct fw_packet * packet)2575 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2576 {
2577 	struct fw_ohci *ohci = fw_ohci(card);
2578 
2579 	at_context_transmit(&ohci->at_request_ctx, packet);
2580 }
2581 
ohci_send_response(struct fw_card * card,struct fw_packet * packet)2582 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2583 {
2584 	struct fw_ohci *ohci = fw_ohci(card);
2585 
2586 	at_context_transmit(&ohci->at_response_ctx, packet);
2587 }
2588 
ohci_cancel_packet(struct fw_card * card,struct fw_packet * packet)2589 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2590 {
2591 	struct fw_ohci *ohci = fw_ohci(card);
2592 	struct context *ctx = &ohci->at_request_ctx;
2593 	struct driver_data *driver_data = packet->driver_data;
2594 	int ret = -ENOENT;
2595 
2596 	tasklet_disable_in_atomic(&ctx->tasklet);
2597 
2598 	if (packet->ack != 0)
2599 		goto out;
2600 
2601 	if (packet->payload_mapped)
2602 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2603 				 packet->payload_length, DMA_TO_DEVICE);
2604 
2605 	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2606 	driver_data->packet = NULL;
2607 	packet->ack = RCODE_CANCELLED;
2608 	packet->callback(packet, &ohci->card, packet->ack);
2609 	ret = 0;
2610  out:
2611 	tasklet_enable(&ctx->tasklet);
2612 
2613 	return ret;
2614 }
2615 
ohci_enable_phys_dma(struct fw_card * card,int node_id,int generation)2616 static int ohci_enable_phys_dma(struct fw_card *card,
2617 				int node_id, int generation)
2618 {
2619 	struct fw_ohci *ohci = fw_ohci(card);
2620 	unsigned long flags;
2621 	int n, ret = 0;
2622 
2623 	if (param_remote_dma)
2624 		return 0;
2625 
2626 	/*
2627 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2628 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2629 	 */
2630 
2631 	spin_lock_irqsave(&ohci->lock, flags);
2632 
2633 	if (ohci->generation != generation) {
2634 		ret = -ESTALE;
2635 		goto out;
2636 	}
2637 
2638 	/*
2639 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2640 	 * enabled for _all_ nodes on remote buses.
2641 	 */
2642 
2643 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2644 	if (n < 32)
2645 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2646 	else
2647 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2648 
2649 	flush_writes(ohci);
2650  out:
2651 	spin_unlock_irqrestore(&ohci->lock, flags);
2652 
2653 	return ret;
2654 }
2655 
ohci_read_csr(struct fw_card * card,int csr_offset)2656 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2657 {
2658 	struct fw_ohci *ohci = fw_ohci(card);
2659 	unsigned long flags;
2660 	u32 value;
2661 
2662 	switch (csr_offset) {
2663 	case CSR_STATE_CLEAR:
2664 	case CSR_STATE_SET:
2665 		if (ohci->is_root &&
2666 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2667 		     OHCI1394_LinkControl_cycleMaster))
2668 			value = CSR_STATE_BIT_CMSTR;
2669 		else
2670 			value = 0;
2671 		if (ohci->csr_state_setclear_abdicate)
2672 			value |= CSR_STATE_BIT_ABDICATE;
2673 
2674 		return value;
2675 
2676 	case CSR_NODE_IDS:
2677 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2678 
2679 	case CSR_CYCLE_TIME:
2680 		return get_cycle_time(ohci);
2681 
2682 	case CSR_BUS_TIME:
2683 		/*
2684 		 * We might be called just after the cycle timer has wrapped
2685 		 * around but just before the cycle64Seconds handler, so we
2686 		 * better check here, too, if the bus time needs to be updated.
2687 		 */
2688 		spin_lock_irqsave(&ohci->lock, flags);
2689 		value = update_bus_time(ohci);
2690 		spin_unlock_irqrestore(&ohci->lock, flags);
2691 		return value;
2692 
2693 	case CSR_BUSY_TIMEOUT:
2694 		value = reg_read(ohci, OHCI1394_ATRetries);
2695 		return (value >> 4) & 0x0ffff00f;
2696 
2697 	case CSR_PRIORITY_BUDGET:
2698 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2699 			(ohci->pri_req_max << 8);
2700 
2701 	default:
2702 		WARN_ON(1);
2703 		return 0;
2704 	}
2705 }
2706 
ohci_write_csr(struct fw_card * card,int csr_offset,u32 value)2707 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2708 {
2709 	struct fw_ohci *ohci = fw_ohci(card);
2710 	unsigned long flags;
2711 
2712 	switch (csr_offset) {
2713 	case CSR_STATE_CLEAR:
2714 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2715 			reg_write(ohci, OHCI1394_LinkControlClear,
2716 				  OHCI1394_LinkControl_cycleMaster);
2717 			flush_writes(ohci);
2718 		}
2719 		if (value & CSR_STATE_BIT_ABDICATE)
2720 			ohci->csr_state_setclear_abdicate = false;
2721 		break;
2722 
2723 	case CSR_STATE_SET:
2724 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2725 			reg_write(ohci, OHCI1394_LinkControlSet,
2726 				  OHCI1394_LinkControl_cycleMaster);
2727 			flush_writes(ohci);
2728 		}
2729 		if (value & CSR_STATE_BIT_ABDICATE)
2730 			ohci->csr_state_setclear_abdicate = true;
2731 		break;
2732 
2733 	case CSR_NODE_IDS:
2734 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2735 		flush_writes(ohci);
2736 		break;
2737 
2738 	case CSR_CYCLE_TIME:
2739 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2740 		reg_write(ohci, OHCI1394_IntEventSet,
2741 			  OHCI1394_cycleInconsistent);
2742 		flush_writes(ohci);
2743 		break;
2744 
2745 	case CSR_BUS_TIME:
2746 		spin_lock_irqsave(&ohci->lock, flags);
2747 		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2748 		                 (value & ~0x7f);
2749 		spin_unlock_irqrestore(&ohci->lock, flags);
2750 		break;
2751 
2752 	case CSR_BUSY_TIMEOUT:
2753 		value = (value & 0xf) | ((value & 0xf) << 4) |
2754 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2755 		reg_write(ohci, OHCI1394_ATRetries, value);
2756 		flush_writes(ohci);
2757 		break;
2758 
2759 	case CSR_PRIORITY_BUDGET:
2760 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2761 		flush_writes(ohci);
2762 		break;
2763 
2764 	default:
2765 		WARN_ON(1);
2766 		break;
2767 	}
2768 }
2769 
flush_iso_completions(struct iso_context * ctx)2770 static void flush_iso_completions(struct iso_context *ctx)
2771 {
2772 	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2773 			      ctx->header_length, ctx->header,
2774 			      ctx->base.callback_data);
2775 	ctx->header_length = 0;
2776 }
2777 
copy_iso_headers(struct iso_context * ctx,const u32 * dma_hdr)2778 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2779 {
2780 	u32 *ctx_hdr;
2781 
2782 	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2783 		if (ctx->base.drop_overflow_headers)
2784 			return;
2785 		flush_iso_completions(ctx);
2786 	}
2787 
2788 	ctx_hdr = ctx->header + ctx->header_length;
2789 	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2790 
2791 	/*
2792 	 * The two iso header quadlets are byteswapped to little
2793 	 * endian by the controller, but we want to present them
2794 	 * as big endian for consistency with the bus endianness.
2795 	 */
2796 	if (ctx->base.header_size > 0)
2797 		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2798 	if (ctx->base.header_size > 4)
2799 		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2800 	if (ctx->base.header_size > 8)
2801 		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2802 	ctx->header_length += ctx->base.header_size;
2803 }
2804 
handle_ir_packet_per_buffer(struct context * context,struct descriptor * d,struct descriptor * last)2805 static int handle_ir_packet_per_buffer(struct context *context,
2806 				       struct descriptor *d,
2807 				       struct descriptor *last)
2808 {
2809 	struct iso_context *ctx =
2810 		container_of(context, struct iso_context, context);
2811 	struct descriptor *pd;
2812 	u32 buffer_dma;
2813 
2814 	for (pd = d; pd <= last; pd++)
2815 		if (pd->transfer_status)
2816 			break;
2817 	if (pd > last)
2818 		/* Descriptor(s) not done yet, stop iteration */
2819 		return 0;
2820 
2821 	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2822 		d++;
2823 		buffer_dma = le32_to_cpu(d->data_address);
2824 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2825 					      buffer_dma & PAGE_MASK,
2826 					      buffer_dma & ~PAGE_MASK,
2827 					      le16_to_cpu(d->req_count),
2828 					      DMA_FROM_DEVICE);
2829 	}
2830 
2831 	copy_iso_headers(ctx, (u32 *) (last + 1));
2832 
2833 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2834 		flush_iso_completions(ctx);
2835 
2836 	return 1;
2837 }
2838 
2839 /* d == last because each descriptor block is only a single descriptor. */
handle_ir_buffer_fill(struct context * context,struct descriptor * d,struct descriptor * last)2840 static int handle_ir_buffer_fill(struct context *context,
2841 				 struct descriptor *d,
2842 				 struct descriptor *last)
2843 {
2844 	struct iso_context *ctx =
2845 		container_of(context, struct iso_context, context);
2846 	unsigned int req_count, res_count, completed;
2847 	u32 buffer_dma;
2848 
2849 	req_count = le16_to_cpu(last->req_count);
2850 	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2851 	completed = req_count - res_count;
2852 	buffer_dma = le32_to_cpu(last->data_address);
2853 
2854 	if (completed > 0) {
2855 		ctx->mc_buffer_bus = buffer_dma;
2856 		ctx->mc_completed = completed;
2857 	}
2858 
2859 	if (res_count != 0)
2860 		/* Descriptor(s) not done yet, stop iteration */
2861 		return 0;
2862 
2863 	dma_sync_single_range_for_cpu(context->ohci->card.device,
2864 				      buffer_dma & PAGE_MASK,
2865 				      buffer_dma & ~PAGE_MASK,
2866 				      completed, DMA_FROM_DEVICE);
2867 
2868 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2869 		ctx->base.callback.mc(&ctx->base,
2870 				      buffer_dma + completed,
2871 				      ctx->base.callback_data);
2872 		ctx->mc_completed = 0;
2873 	}
2874 
2875 	return 1;
2876 }
2877 
flush_ir_buffer_fill(struct iso_context * ctx)2878 static void flush_ir_buffer_fill(struct iso_context *ctx)
2879 {
2880 	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2881 				      ctx->mc_buffer_bus & PAGE_MASK,
2882 				      ctx->mc_buffer_bus & ~PAGE_MASK,
2883 				      ctx->mc_completed, DMA_FROM_DEVICE);
2884 
2885 	ctx->base.callback.mc(&ctx->base,
2886 			      ctx->mc_buffer_bus + ctx->mc_completed,
2887 			      ctx->base.callback_data);
2888 	ctx->mc_completed = 0;
2889 }
2890 
sync_it_packet_for_cpu(struct context * context,struct descriptor * pd)2891 static inline void sync_it_packet_for_cpu(struct context *context,
2892 					  struct descriptor *pd)
2893 {
2894 	__le16 control;
2895 	u32 buffer_dma;
2896 
2897 	/* only packets beginning with OUTPUT_MORE* have data buffers */
2898 	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2899 		return;
2900 
2901 	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2902 	pd += 2;
2903 
2904 	/*
2905 	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2906 	 * data buffer is in the context program's coherent page and must not
2907 	 * be synced.
2908 	 */
2909 	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2910 	    (context->current_bus          & PAGE_MASK)) {
2911 		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2912 			return;
2913 		pd++;
2914 	}
2915 
2916 	do {
2917 		buffer_dma = le32_to_cpu(pd->data_address);
2918 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2919 					      buffer_dma & PAGE_MASK,
2920 					      buffer_dma & ~PAGE_MASK,
2921 					      le16_to_cpu(pd->req_count),
2922 					      DMA_TO_DEVICE);
2923 		control = pd->control;
2924 		pd++;
2925 	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2926 }
2927 
handle_it_packet(struct context * context,struct descriptor * d,struct descriptor * last)2928 static int handle_it_packet(struct context *context,
2929 			    struct descriptor *d,
2930 			    struct descriptor *last)
2931 {
2932 	struct iso_context *ctx =
2933 		container_of(context, struct iso_context, context);
2934 	struct descriptor *pd;
2935 	__be32 *ctx_hdr;
2936 
2937 	for (pd = d; pd <= last; pd++)
2938 		if (pd->transfer_status)
2939 			break;
2940 	if (pd > last)
2941 		/* Descriptor(s) not done yet, stop iteration */
2942 		return 0;
2943 
2944 	sync_it_packet_for_cpu(context, d);
2945 
2946 	if (ctx->header_length + 4 > PAGE_SIZE) {
2947 		if (ctx->base.drop_overflow_headers)
2948 			return 1;
2949 		flush_iso_completions(ctx);
2950 	}
2951 
2952 	ctx_hdr = ctx->header + ctx->header_length;
2953 	ctx->last_timestamp = le16_to_cpu(last->res_count);
2954 	/* Present this value as big-endian to match the receive code */
2955 	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2956 			       le16_to_cpu(pd->res_count));
2957 	ctx->header_length += 4;
2958 
2959 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2960 		flush_iso_completions(ctx);
2961 
2962 	return 1;
2963 }
2964 
set_multichannel_mask(struct fw_ohci * ohci,u64 channels)2965 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2966 {
2967 	u32 hi = channels >> 32, lo = channels;
2968 
2969 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2970 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2971 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2972 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2973 	ohci->mc_channels = channels;
2974 }
2975 
ohci_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)2976 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2977 				int type, int channel, size_t header_size)
2978 {
2979 	struct fw_ohci *ohci = fw_ohci(card);
2980 	struct iso_context *ctx;
2981 	descriptor_callback_t callback;
2982 	u64 *channels;
2983 	u32 *mask, regs;
2984 	int index, ret = -EBUSY;
2985 
2986 	spin_lock_irq(&ohci->lock);
2987 
2988 	switch (type) {
2989 	case FW_ISO_CONTEXT_TRANSMIT:
2990 		mask     = &ohci->it_context_mask;
2991 		callback = handle_it_packet;
2992 		index    = ffs(*mask) - 1;
2993 		if (index >= 0) {
2994 			*mask &= ~(1 << index);
2995 			regs = OHCI1394_IsoXmitContextBase(index);
2996 			ctx  = &ohci->it_context_list[index];
2997 		}
2998 		break;
2999 
3000 	case FW_ISO_CONTEXT_RECEIVE:
3001 		channels = &ohci->ir_context_channels;
3002 		mask     = &ohci->ir_context_mask;
3003 		callback = handle_ir_packet_per_buffer;
3004 		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3005 		if (index >= 0) {
3006 			*channels &= ~(1ULL << channel);
3007 			*mask     &= ~(1 << index);
3008 			regs = OHCI1394_IsoRcvContextBase(index);
3009 			ctx  = &ohci->ir_context_list[index];
3010 		}
3011 		break;
3012 
3013 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3014 		mask     = &ohci->ir_context_mask;
3015 		callback = handle_ir_buffer_fill;
3016 		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3017 		if (index >= 0) {
3018 			ohci->mc_allocated = true;
3019 			*mask &= ~(1 << index);
3020 			regs = OHCI1394_IsoRcvContextBase(index);
3021 			ctx  = &ohci->ir_context_list[index];
3022 		}
3023 		break;
3024 
3025 	default:
3026 		index = -1;
3027 		ret = -ENOSYS;
3028 	}
3029 
3030 	spin_unlock_irq(&ohci->lock);
3031 
3032 	if (index < 0)
3033 		return ERR_PTR(ret);
3034 
3035 	memset(ctx, 0, sizeof(*ctx));
3036 	ctx->header_length = 0;
3037 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3038 	if (ctx->header == NULL) {
3039 		ret = -ENOMEM;
3040 		goto out;
3041 	}
3042 	ret = context_init(&ctx->context, ohci, regs, callback);
3043 	if (ret < 0)
3044 		goto out_with_header;
3045 
3046 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3047 		set_multichannel_mask(ohci, 0);
3048 		ctx->mc_completed = 0;
3049 	}
3050 
3051 	return &ctx->base;
3052 
3053  out_with_header:
3054 	free_page((unsigned long)ctx->header);
3055  out:
3056 	spin_lock_irq(&ohci->lock);
3057 
3058 	switch (type) {
3059 	case FW_ISO_CONTEXT_RECEIVE:
3060 		*channels |= 1ULL << channel;
3061 		break;
3062 
3063 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3064 		ohci->mc_allocated = false;
3065 		break;
3066 	}
3067 	*mask |= 1 << index;
3068 
3069 	spin_unlock_irq(&ohci->lock);
3070 
3071 	return ERR_PTR(ret);
3072 }
3073 
ohci_start_iso(struct fw_iso_context * base,s32 cycle,u32 sync,u32 tags)3074 static int ohci_start_iso(struct fw_iso_context *base,
3075 			  s32 cycle, u32 sync, u32 tags)
3076 {
3077 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3078 	struct fw_ohci *ohci = ctx->context.ohci;
3079 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3080 	int index;
3081 
3082 	/* the controller cannot start without any queued packets */
3083 	if (ctx->context.last->branch_address == 0)
3084 		return -ENODATA;
3085 
3086 	switch (ctx->base.type) {
3087 	case FW_ISO_CONTEXT_TRANSMIT:
3088 		index = ctx - ohci->it_context_list;
3089 		match = 0;
3090 		if (cycle >= 0)
3091 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3092 				(cycle & 0x7fff) << 16;
3093 
3094 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3095 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3096 		context_run(&ctx->context, match);
3097 		break;
3098 
3099 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3100 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3101 		fallthrough;
3102 	case FW_ISO_CONTEXT_RECEIVE:
3103 		index = ctx - ohci->ir_context_list;
3104 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3105 		if (cycle >= 0) {
3106 			match |= (cycle & 0x07fff) << 12;
3107 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3108 		}
3109 
3110 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3111 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3112 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3113 		context_run(&ctx->context, control);
3114 
3115 		ctx->sync = sync;
3116 		ctx->tags = tags;
3117 
3118 		break;
3119 	}
3120 
3121 	return 0;
3122 }
3123 
ohci_stop_iso(struct fw_iso_context * base)3124 static int ohci_stop_iso(struct fw_iso_context *base)
3125 {
3126 	struct fw_ohci *ohci = fw_ohci(base->card);
3127 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3128 	int index;
3129 
3130 	switch (ctx->base.type) {
3131 	case FW_ISO_CONTEXT_TRANSMIT:
3132 		index = ctx - ohci->it_context_list;
3133 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3134 		break;
3135 
3136 	case FW_ISO_CONTEXT_RECEIVE:
3137 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3138 		index = ctx - ohci->ir_context_list;
3139 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3140 		break;
3141 	}
3142 	flush_writes(ohci);
3143 	context_stop(&ctx->context);
3144 	tasklet_kill(&ctx->context.tasklet);
3145 
3146 	return 0;
3147 }
3148 
ohci_free_iso_context(struct fw_iso_context * base)3149 static void ohci_free_iso_context(struct fw_iso_context *base)
3150 {
3151 	struct fw_ohci *ohci = fw_ohci(base->card);
3152 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3153 	unsigned long flags;
3154 	int index;
3155 
3156 	ohci_stop_iso(base);
3157 	context_release(&ctx->context);
3158 	free_page((unsigned long)ctx->header);
3159 
3160 	spin_lock_irqsave(&ohci->lock, flags);
3161 
3162 	switch (base->type) {
3163 	case FW_ISO_CONTEXT_TRANSMIT:
3164 		index = ctx - ohci->it_context_list;
3165 		ohci->it_context_mask |= 1 << index;
3166 		break;
3167 
3168 	case FW_ISO_CONTEXT_RECEIVE:
3169 		index = ctx - ohci->ir_context_list;
3170 		ohci->ir_context_mask |= 1 << index;
3171 		ohci->ir_context_channels |= 1ULL << base->channel;
3172 		break;
3173 
3174 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3175 		index = ctx - ohci->ir_context_list;
3176 		ohci->ir_context_mask |= 1 << index;
3177 		ohci->ir_context_channels |= ohci->mc_channels;
3178 		ohci->mc_channels = 0;
3179 		ohci->mc_allocated = false;
3180 		break;
3181 	}
3182 
3183 	spin_unlock_irqrestore(&ohci->lock, flags);
3184 }
3185 
ohci_set_iso_channels(struct fw_iso_context * base,u64 * channels)3186 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3187 {
3188 	struct fw_ohci *ohci = fw_ohci(base->card);
3189 	unsigned long flags;
3190 	int ret;
3191 
3192 	switch (base->type) {
3193 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3194 
3195 		spin_lock_irqsave(&ohci->lock, flags);
3196 
3197 		/* Don't allow multichannel to grab other contexts' channels. */
3198 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3199 			*channels = ohci->ir_context_channels;
3200 			ret = -EBUSY;
3201 		} else {
3202 			set_multichannel_mask(ohci, *channels);
3203 			ret = 0;
3204 		}
3205 
3206 		spin_unlock_irqrestore(&ohci->lock, flags);
3207 
3208 		break;
3209 	default:
3210 		ret = -EINVAL;
3211 	}
3212 
3213 	return ret;
3214 }
3215 
3216 #ifdef CONFIG_PM
ohci_resume_iso_dma(struct fw_ohci * ohci)3217 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3218 {
3219 	int i;
3220 	struct iso_context *ctx;
3221 
3222 	for (i = 0 ; i < ohci->n_ir ; i++) {
3223 		ctx = &ohci->ir_context_list[i];
3224 		if (ctx->context.running)
3225 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3226 	}
3227 
3228 	for (i = 0 ; i < ohci->n_it ; i++) {
3229 		ctx = &ohci->it_context_list[i];
3230 		if (ctx->context.running)
3231 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3232 	}
3233 }
3234 #endif
3235 
queue_iso_transmit(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3236 static int queue_iso_transmit(struct iso_context *ctx,
3237 			      struct fw_iso_packet *packet,
3238 			      struct fw_iso_buffer *buffer,
3239 			      unsigned long payload)
3240 {
3241 	struct descriptor *d, *last, *pd;
3242 	struct fw_iso_packet *p;
3243 	__le32 *header;
3244 	dma_addr_t d_bus, page_bus;
3245 	u32 z, header_z, payload_z, irq;
3246 	u32 payload_index, payload_end_index, next_page_index;
3247 	int page, end_page, i, length, offset;
3248 
3249 	p = packet;
3250 	payload_index = payload;
3251 
3252 	if (p->skip)
3253 		z = 1;
3254 	else
3255 		z = 2;
3256 	if (p->header_length > 0)
3257 		z++;
3258 
3259 	/* Determine the first page the payload isn't contained in. */
3260 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3261 	if (p->payload_length > 0)
3262 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3263 	else
3264 		payload_z = 0;
3265 
3266 	z += payload_z;
3267 
3268 	/* Get header size in number of descriptors. */
3269 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3270 
3271 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3272 	if (d == NULL)
3273 		return -ENOMEM;
3274 
3275 	if (!p->skip) {
3276 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3277 		d[0].req_count = cpu_to_le16(8);
3278 		/*
3279 		 * Link the skip address to this descriptor itself.  This causes
3280 		 * a context to skip a cycle whenever lost cycles or FIFO
3281 		 * overruns occur, without dropping the data.  The application
3282 		 * should then decide whether this is an error condition or not.
3283 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3284 		 */
3285 		d[0].branch_address = cpu_to_le32(d_bus | z);
3286 
3287 		header = (__le32 *) &d[1];
3288 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3289 					IT_HEADER_TAG(p->tag) |
3290 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3291 					IT_HEADER_CHANNEL(ctx->base.channel) |
3292 					IT_HEADER_SPEED(ctx->base.speed));
3293 		header[1] =
3294 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3295 							  p->payload_length));
3296 	}
3297 
3298 	if (p->header_length > 0) {
3299 		d[2].req_count    = cpu_to_le16(p->header_length);
3300 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3301 		memcpy(&d[z], p->header, p->header_length);
3302 	}
3303 
3304 	pd = d + z - payload_z;
3305 	payload_end_index = payload_index + p->payload_length;
3306 	for (i = 0; i < payload_z; i++) {
3307 		page               = payload_index >> PAGE_SHIFT;
3308 		offset             = payload_index & ~PAGE_MASK;
3309 		next_page_index    = (page + 1) << PAGE_SHIFT;
3310 		length             =
3311 			min(next_page_index, payload_end_index) - payload_index;
3312 		pd[i].req_count    = cpu_to_le16(length);
3313 
3314 		page_bus = page_private(buffer->pages[page]);
3315 		pd[i].data_address = cpu_to_le32(page_bus + offset);
3316 
3317 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3318 						 page_bus, offset, length,
3319 						 DMA_TO_DEVICE);
3320 
3321 		payload_index += length;
3322 	}
3323 
3324 	if (p->interrupt)
3325 		irq = DESCRIPTOR_IRQ_ALWAYS;
3326 	else
3327 		irq = DESCRIPTOR_NO_IRQ;
3328 
3329 	last = z == 2 ? d : d + z - 1;
3330 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3331 				     DESCRIPTOR_STATUS |
3332 				     DESCRIPTOR_BRANCH_ALWAYS |
3333 				     irq);
3334 
3335 	context_append(&ctx->context, d, z, header_z);
3336 
3337 	return 0;
3338 }
3339 
queue_iso_packet_per_buffer(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3340 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3341 				       struct fw_iso_packet *packet,
3342 				       struct fw_iso_buffer *buffer,
3343 				       unsigned long payload)
3344 {
3345 	struct device *device = ctx->context.ohci->card.device;
3346 	struct descriptor *d, *pd;
3347 	dma_addr_t d_bus, page_bus;
3348 	u32 z, header_z, rest;
3349 	int i, j, length;
3350 	int page, offset, packet_count, header_size, payload_per_buffer;
3351 
3352 	/*
3353 	 * The OHCI controller puts the isochronous header and trailer in the
3354 	 * buffer, so we need at least 8 bytes.
3355 	 */
3356 	packet_count = packet->header_length / ctx->base.header_size;
3357 	header_size  = max(ctx->base.header_size, (size_t)8);
3358 
3359 	/* Get header size in number of descriptors. */
3360 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3361 	page     = payload >> PAGE_SHIFT;
3362 	offset   = payload & ~PAGE_MASK;
3363 	payload_per_buffer = packet->payload_length / packet_count;
3364 
3365 	for (i = 0; i < packet_count; i++) {
3366 		/* d points to the header descriptor */
3367 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3368 		d = context_get_descriptors(&ctx->context,
3369 				z + header_z, &d_bus);
3370 		if (d == NULL)
3371 			return -ENOMEM;
3372 
3373 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3374 					      DESCRIPTOR_INPUT_MORE);
3375 		if (packet->skip && i == 0)
3376 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3377 		d->req_count    = cpu_to_le16(header_size);
3378 		d->res_count    = d->req_count;
3379 		d->transfer_status = 0;
3380 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3381 
3382 		rest = payload_per_buffer;
3383 		pd = d;
3384 		for (j = 1; j < z; j++) {
3385 			pd++;
3386 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3387 						  DESCRIPTOR_INPUT_MORE);
3388 
3389 			if (offset + rest < PAGE_SIZE)
3390 				length = rest;
3391 			else
3392 				length = PAGE_SIZE - offset;
3393 			pd->req_count = cpu_to_le16(length);
3394 			pd->res_count = pd->req_count;
3395 			pd->transfer_status = 0;
3396 
3397 			page_bus = page_private(buffer->pages[page]);
3398 			pd->data_address = cpu_to_le32(page_bus + offset);
3399 
3400 			dma_sync_single_range_for_device(device, page_bus,
3401 							 offset, length,
3402 							 DMA_FROM_DEVICE);
3403 
3404 			offset = (offset + length) & ~PAGE_MASK;
3405 			rest -= length;
3406 			if (offset == 0)
3407 				page++;
3408 		}
3409 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3410 					  DESCRIPTOR_INPUT_LAST |
3411 					  DESCRIPTOR_BRANCH_ALWAYS);
3412 		if (packet->interrupt && i == packet_count - 1)
3413 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3414 
3415 		context_append(&ctx->context, d, z, header_z);
3416 	}
3417 
3418 	return 0;
3419 }
3420 
queue_iso_buffer_fill(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3421 static int queue_iso_buffer_fill(struct iso_context *ctx,
3422 				 struct fw_iso_packet *packet,
3423 				 struct fw_iso_buffer *buffer,
3424 				 unsigned long payload)
3425 {
3426 	struct descriptor *d;
3427 	dma_addr_t d_bus, page_bus;
3428 	int page, offset, rest, z, i, length;
3429 
3430 	page   = payload >> PAGE_SHIFT;
3431 	offset = payload & ~PAGE_MASK;
3432 	rest   = packet->payload_length;
3433 
3434 	/* We need one descriptor for each page in the buffer. */
3435 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3436 
3437 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3438 		return -EFAULT;
3439 
3440 	for (i = 0; i < z; i++) {
3441 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3442 		if (d == NULL)
3443 			return -ENOMEM;
3444 
3445 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3446 					 DESCRIPTOR_BRANCH_ALWAYS);
3447 		if (packet->skip && i == 0)
3448 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3449 		if (packet->interrupt && i == z - 1)
3450 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3451 
3452 		if (offset + rest < PAGE_SIZE)
3453 			length = rest;
3454 		else
3455 			length = PAGE_SIZE - offset;
3456 		d->req_count = cpu_to_le16(length);
3457 		d->res_count = d->req_count;
3458 		d->transfer_status = 0;
3459 
3460 		page_bus = page_private(buffer->pages[page]);
3461 		d->data_address = cpu_to_le32(page_bus + offset);
3462 
3463 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3464 						 page_bus, offset, length,
3465 						 DMA_FROM_DEVICE);
3466 
3467 		rest -= length;
3468 		offset = 0;
3469 		page++;
3470 
3471 		context_append(&ctx->context, d, 1, 0);
3472 	}
3473 
3474 	return 0;
3475 }
3476 
ohci_queue_iso(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3477 static int ohci_queue_iso(struct fw_iso_context *base,
3478 			  struct fw_iso_packet *packet,
3479 			  struct fw_iso_buffer *buffer,
3480 			  unsigned long payload)
3481 {
3482 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3483 	unsigned long flags;
3484 	int ret = -ENOSYS;
3485 
3486 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3487 	switch (base->type) {
3488 	case FW_ISO_CONTEXT_TRANSMIT:
3489 		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3490 		break;
3491 	case FW_ISO_CONTEXT_RECEIVE:
3492 		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3493 		break;
3494 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3495 		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3496 		break;
3497 	}
3498 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3499 
3500 	return ret;
3501 }
3502 
ohci_flush_queue_iso(struct fw_iso_context * base)3503 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3504 {
3505 	struct context *ctx =
3506 			&container_of(base, struct iso_context, base)->context;
3507 
3508 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3509 }
3510 
ohci_flush_iso_completions(struct fw_iso_context * base)3511 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3512 {
3513 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3514 	int ret = 0;
3515 
3516 	tasklet_disable_in_atomic(&ctx->context.tasklet);
3517 
3518 	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3519 		context_tasklet((unsigned long)&ctx->context);
3520 
3521 		switch (base->type) {
3522 		case FW_ISO_CONTEXT_TRANSMIT:
3523 		case FW_ISO_CONTEXT_RECEIVE:
3524 			if (ctx->header_length != 0)
3525 				flush_iso_completions(ctx);
3526 			break;
3527 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3528 			if (ctx->mc_completed != 0)
3529 				flush_ir_buffer_fill(ctx);
3530 			break;
3531 		default:
3532 			ret = -ENOSYS;
3533 		}
3534 
3535 		clear_bit_unlock(0, &ctx->flushing_completions);
3536 		smp_mb__after_atomic();
3537 	}
3538 
3539 	tasklet_enable(&ctx->context.tasklet);
3540 
3541 	return ret;
3542 }
3543 
3544 static const struct fw_card_driver ohci_driver = {
3545 	.enable			= ohci_enable,
3546 	.read_phy_reg		= ohci_read_phy_reg,
3547 	.update_phy_reg		= ohci_update_phy_reg,
3548 	.set_config_rom		= ohci_set_config_rom,
3549 	.send_request		= ohci_send_request,
3550 	.send_response		= ohci_send_response,
3551 	.cancel_packet		= ohci_cancel_packet,
3552 	.enable_phys_dma	= ohci_enable_phys_dma,
3553 	.read_csr		= ohci_read_csr,
3554 	.write_csr		= ohci_write_csr,
3555 
3556 	.allocate_iso_context	= ohci_allocate_iso_context,
3557 	.free_iso_context	= ohci_free_iso_context,
3558 	.set_iso_channels	= ohci_set_iso_channels,
3559 	.queue_iso		= ohci_queue_iso,
3560 	.flush_queue_iso	= ohci_flush_queue_iso,
3561 	.flush_iso_completions	= ohci_flush_iso_completions,
3562 	.start_iso		= ohci_start_iso,
3563 	.stop_iso		= ohci_stop_iso,
3564 };
3565 
3566 #ifdef CONFIG_PPC_PMAC
pmac_ohci_on(struct pci_dev * dev)3567 static void pmac_ohci_on(struct pci_dev *dev)
3568 {
3569 	if (machine_is(powermac)) {
3570 		struct device_node *ofn = pci_device_to_OF_node(dev);
3571 
3572 		if (ofn) {
3573 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3574 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3575 		}
3576 	}
3577 }
3578 
pmac_ohci_off(struct pci_dev * dev)3579 static void pmac_ohci_off(struct pci_dev *dev)
3580 {
3581 	if (machine_is(powermac)) {
3582 		struct device_node *ofn = pci_device_to_OF_node(dev);
3583 
3584 		if (ofn) {
3585 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3586 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3587 		}
3588 	}
3589 }
3590 #else
pmac_ohci_on(struct pci_dev * dev)3591 static inline void pmac_ohci_on(struct pci_dev *dev) {}
pmac_ohci_off(struct pci_dev * dev)3592 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3593 #endif /* CONFIG_PPC_PMAC */
3594 
pci_probe(struct pci_dev * dev,const struct pci_device_id * ent)3595 static int pci_probe(struct pci_dev *dev,
3596 			       const struct pci_device_id *ent)
3597 {
3598 	struct fw_ohci *ohci;
3599 	u32 bus_options, max_receive, link_speed, version;
3600 	u64 guid;
3601 	int i, err;
3602 	size_t size;
3603 
3604 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3605 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3606 		return -ENOSYS;
3607 	}
3608 
3609 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3610 	if (ohci == NULL) {
3611 		err = -ENOMEM;
3612 		goto fail;
3613 	}
3614 
3615 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3616 
3617 	pmac_ohci_on(dev);
3618 
3619 	err = pci_enable_device(dev);
3620 	if (err) {
3621 		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3622 		goto fail_free;
3623 	}
3624 
3625 	pci_set_master(dev);
3626 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3627 	pci_set_drvdata(dev, ohci);
3628 
3629 	spin_lock_init(&ohci->lock);
3630 	mutex_init(&ohci->phy_reg_mutex);
3631 
3632 	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3633 
3634 	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3635 	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3636 		ohci_err(ohci, "invalid MMIO resource\n");
3637 		err = -ENXIO;
3638 		goto fail_disable;
3639 	}
3640 
3641 	err = pci_request_region(dev, 0, ohci_driver_name);
3642 	if (err) {
3643 		ohci_err(ohci, "MMIO resource unavailable\n");
3644 		goto fail_disable;
3645 	}
3646 
3647 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3648 	if (ohci->registers == NULL) {
3649 		ohci_err(ohci, "failed to remap registers\n");
3650 		err = -ENXIO;
3651 		goto fail_iomem;
3652 	}
3653 
3654 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3655 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3656 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3657 		     ohci_quirks[i].device == dev->device) &&
3658 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3659 		     ohci_quirks[i].revision >= dev->revision)) {
3660 			ohci->quirks = ohci_quirks[i].flags;
3661 			break;
3662 		}
3663 	if (param_quirks)
3664 		ohci->quirks = param_quirks;
3665 
3666 	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3667 		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3668 
3669 	/*
3670 	 * Because dma_alloc_coherent() allocates at least one page,
3671 	 * we save space by using a common buffer for the AR request/
3672 	 * response descriptors and the self IDs buffer.
3673 	 */
3674 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3675 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3676 	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3677 					       PAGE_SIZE,
3678 					       &ohci->misc_buffer_bus,
3679 					       GFP_KERNEL);
3680 	if (!ohci->misc_buffer) {
3681 		err = -ENOMEM;
3682 		goto fail_iounmap;
3683 	}
3684 
3685 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3686 			      OHCI1394_AsReqRcvContextControlSet);
3687 	if (err < 0)
3688 		goto fail_misc_buf;
3689 
3690 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3691 			      OHCI1394_AsRspRcvContextControlSet);
3692 	if (err < 0)
3693 		goto fail_arreq_ctx;
3694 
3695 	err = context_init(&ohci->at_request_ctx, ohci,
3696 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3697 	if (err < 0)
3698 		goto fail_arrsp_ctx;
3699 
3700 	err = context_init(&ohci->at_response_ctx, ohci,
3701 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3702 	if (err < 0)
3703 		goto fail_atreq_ctx;
3704 
3705 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3706 	ohci->ir_context_channels = ~0ULL;
3707 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3708 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3709 	ohci->ir_context_mask = ohci->ir_context_support;
3710 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3711 	size = sizeof(struct iso_context) * ohci->n_ir;
3712 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3713 
3714 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3715 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3716 	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3717 	if (!ohci->it_context_support) {
3718 		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3719 		ohci->it_context_support = 0xf;
3720 	}
3721 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3722 	ohci->it_context_mask = ohci->it_context_support;
3723 	ohci->n_it = hweight32(ohci->it_context_mask);
3724 	size = sizeof(struct iso_context) * ohci->n_it;
3725 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3726 
3727 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3728 		err = -ENOMEM;
3729 		goto fail_contexts;
3730 	}
3731 
3732 	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3733 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3734 
3735 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3736 	max_receive = (bus_options >> 12) & 0xf;
3737 	link_speed = bus_options & 0x7;
3738 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3739 		reg_read(ohci, OHCI1394_GUIDLo);
3740 
3741 	if (!(ohci->quirks & QUIRK_NO_MSI))
3742 		pci_enable_msi(dev);
3743 	if (request_irq(dev->irq, irq_handler,
3744 			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3745 			ohci_driver_name, ohci)) {
3746 		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3747 		err = -EIO;
3748 		goto fail_msi;
3749 	}
3750 
3751 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3752 	if (err)
3753 		goto fail_irq;
3754 
3755 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3756 	ohci_notice(ohci,
3757 		    "added OHCI v%x.%x device as card %d, "
3758 		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3759 		    version >> 16, version & 0xff, ohci->card.index,
3760 		    ohci->n_ir, ohci->n_it, ohci->quirks,
3761 		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3762 			", physUB" : "");
3763 
3764 	return 0;
3765 
3766  fail_irq:
3767 	free_irq(dev->irq, ohci);
3768  fail_msi:
3769 	pci_disable_msi(dev);
3770  fail_contexts:
3771 	kfree(ohci->ir_context_list);
3772 	kfree(ohci->it_context_list);
3773 	context_release(&ohci->at_response_ctx);
3774  fail_atreq_ctx:
3775 	context_release(&ohci->at_request_ctx);
3776  fail_arrsp_ctx:
3777 	ar_context_release(&ohci->ar_response_ctx);
3778  fail_arreq_ctx:
3779 	ar_context_release(&ohci->ar_request_ctx);
3780  fail_misc_buf:
3781 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3782 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3783  fail_iounmap:
3784 	pci_iounmap(dev, ohci->registers);
3785  fail_iomem:
3786 	pci_release_region(dev, 0);
3787  fail_disable:
3788 	pci_disable_device(dev);
3789  fail_free:
3790 	kfree(ohci);
3791 	pmac_ohci_off(dev);
3792  fail:
3793 	return err;
3794 }
3795 
pci_remove(struct pci_dev * dev)3796 static void pci_remove(struct pci_dev *dev)
3797 {
3798 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3799 
3800 	/*
3801 	 * If the removal is happening from the suspend state, LPS won't be
3802 	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3803 	 */
3804 	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3805 		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3806 		flush_writes(ohci);
3807 	}
3808 	cancel_work_sync(&ohci->bus_reset_work);
3809 	fw_core_remove_card(&ohci->card);
3810 
3811 	/*
3812 	 * FIXME: Fail all pending packets here, now that the upper
3813 	 * layers can't queue any more.
3814 	 */
3815 
3816 	software_reset(ohci);
3817 	free_irq(dev->irq, ohci);
3818 
3819 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3820 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3821 				  ohci->next_config_rom, ohci->next_config_rom_bus);
3822 	if (ohci->config_rom)
3823 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3824 				  ohci->config_rom, ohci->config_rom_bus);
3825 	ar_context_release(&ohci->ar_request_ctx);
3826 	ar_context_release(&ohci->ar_response_ctx);
3827 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3828 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3829 	context_release(&ohci->at_request_ctx);
3830 	context_release(&ohci->at_response_ctx);
3831 	kfree(ohci->it_context_list);
3832 	kfree(ohci->ir_context_list);
3833 	pci_disable_msi(dev);
3834 	pci_iounmap(dev, ohci->registers);
3835 	pci_release_region(dev, 0);
3836 	pci_disable_device(dev);
3837 	kfree(ohci);
3838 	pmac_ohci_off(dev);
3839 
3840 	dev_notice(&dev->dev, "removed fw-ohci device\n");
3841 }
3842 
3843 #ifdef CONFIG_PM
pci_suspend(struct pci_dev * dev,pm_message_t state)3844 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3845 {
3846 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3847 	int err;
3848 
3849 	software_reset(ohci);
3850 	err = pci_save_state(dev);
3851 	if (err) {
3852 		ohci_err(ohci, "pci_save_state failed\n");
3853 		return err;
3854 	}
3855 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3856 	if (err)
3857 		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3858 	pmac_ohci_off(dev);
3859 
3860 	return 0;
3861 }
3862 
pci_resume(struct pci_dev * dev)3863 static int pci_resume(struct pci_dev *dev)
3864 {
3865 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3866 	int err;
3867 
3868 	pmac_ohci_on(dev);
3869 	pci_set_power_state(dev, PCI_D0);
3870 	pci_restore_state(dev);
3871 	err = pci_enable_device(dev);
3872 	if (err) {
3873 		ohci_err(ohci, "pci_enable_device failed\n");
3874 		return err;
3875 	}
3876 
3877 	/* Some systems don't setup GUID register on resume from ram  */
3878 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3879 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3880 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3881 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3882 	}
3883 
3884 	err = ohci_enable(&ohci->card, NULL, 0);
3885 	if (err)
3886 		return err;
3887 
3888 	ohci_resume_iso_dma(ohci);
3889 
3890 	return 0;
3891 }
3892 #endif
3893 
3894 static const struct pci_device_id pci_table[] = {
3895 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3896 	{ }
3897 };
3898 
3899 MODULE_DEVICE_TABLE(pci, pci_table);
3900 
3901 static struct pci_driver fw_ohci_pci_driver = {
3902 	.name		= ohci_driver_name,
3903 	.id_table	= pci_table,
3904 	.probe		= pci_probe,
3905 	.remove		= pci_remove,
3906 #ifdef CONFIG_PM
3907 	.resume		= pci_resume,
3908 	.suspend	= pci_suspend,
3909 #endif
3910 };
3911 
fw_ohci_init(void)3912 static int __init fw_ohci_init(void)
3913 {
3914 	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3915 	if (!selfid_workqueue)
3916 		return -ENOMEM;
3917 
3918 	return pci_register_driver(&fw_ohci_pci_driver);
3919 }
3920 
fw_ohci_cleanup(void)3921 static void __exit fw_ohci_cleanup(void)
3922 {
3923 	pci_unregister_driver(&fw_ohci_pci_driver);
3924 	destroy_workqueue(selfid_workqueue);
3925 }
3926 
3927 module_init(fw_ohci_init);
3928 module_exit(fw_ohci_cleanup);
3929 
3930 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3931 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3932 MODULE_LICENSE("GPL");
3933 
3934 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3935 MODULE_ALIAS("ohci1394");
3936