• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 
111 #include "i915_drv.h"
112 #include "i915_trace.h"
113 #include "i915_vgpu.h"
114 #include "gen8_engine_cs.h"
115 #include "intel_breadcrumbs.h"
116 #include "intel_context.h"
117 #include "intel_engine_heartbeat.h"
118 #include "intel_engine_pm.h"
119 #include "intel_engine_stats.h"
120 #include "intel_execlists_submission.h"
121 #include "intel_gt.h"
122 #include "intel_gt_irq.h"
123 #include "intel_gt_pm.h"
124 #include "intel_gt_requests.h"
125 #include "intel_lrc.h"
126 #include "intel_lrc_reg.h"
127 #include "intel_mocs.h"
128 #include "intel_reset.h"
129 #include "intel_ring.h"
130 #include "intel_workarounds.h"
131 #include "shmem_utils.h"
132 
133 #define RING_EXECLIST_QFULL		(1 << 0x2)
134 #define RING_EXECLIST1_VALID		(1 << 0x3)
135 #define RING_EXECLIST0_VALID		(1 << 0x4)
136 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
137 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
138 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
139 
140 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
141 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
142 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
143 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
144 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
145 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
146 
147 #define GEN8_CTX_STATUS_COMPLETED_MASK \
148 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
149 
150 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
151 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
152 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
153 #define GEN12_IDLE_CTX_ID		0x7FF
154 #define GEN12_CSB_CTX_VALID(csb_dw) \
155 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
156 
157 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
158 #define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
159 #define XEHP_IDLE_CTX_ID			0xFFFF
160 #define XEHP_CSB_CTX_VALID(csb_dw) \
161 	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
162 
163 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
164 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
165 
166 struct virtual_engine {
167 	struct intel_engine_cs base;
168 	struct intel_context context;
169 	struct rcu_work rcu;
170 
171 	/*
172 	 * We allow only a single request through the virtual engine at a time
173 	 * (each request in the timeline waits for the completion fence of
174 	 * the previous before being submitted). By restricting ourselves to
175 	 * only submitting a single request, each request is placed on to a
176 	 * physical to maximise load spreading (by virtue of the late greedy
177 	 * scheduling -- each real engine takes the next available request
178 	 * upon idling).
179 	 */
180 	struct i915_request *request;
181 
182 	/*
183 	 * We keep a rbtree of available virtual engines inside each physical
184 	 * engine, sorted by priority. Here we preallocate the nodes we need
185 	 * for the virtual engine, indexed by physical_engine->id.
186 	 */
187 	struct ve_node {
188 		struct rb_node rb;
189 		int prio;
190 	} nodes[I915_NUM_ENGINES];
191 
192 	/* And finally, which physical engines this virtual engine maps onto. */
193 	unsigned int num_siblings;
194 	struct intel_engine_cs *siblings[];
195 };
196 
to_virtual_engine(struct intel_engine_cs * engine)197 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
198 {
199 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
200 	return container_of(engine, struct virtual_engine, base);
201 }
202 
203 static struct intel_context *
204 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count);
205 
206 static struct i915_request *
__active_request(const struct intel_timeline * const tl,struct i915_request * rq,int error)207 __active_request(const struct intel_timeline * const tl,
208 		 struct i915_request *rq,
209 		 int error)
210 {
211 	struct i915_request *active = rq;
212 
213 	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
214 		if (__i915_request_is_complete(rq))
215 			break;
216 
217 		if (error) {
218 			i915_request_set_error_once(rq, error);
219 			__i915_request_skip(rq);
220 		}
221 		active = rq;
222 	}
223 
224 	return active;
225 }
226 
227 static struct i915_request *
active_request(const struct intel_timeline * const tl,struct i915_request * rq)228 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
229 {
230 	return __active_request(tl, rq, 0);
231 }
232 
ring_set_paused(const struct intel_engine_cs * engine,int state)233 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
234 {
235 	/*
236 	 * We inspect HWS_PREEMPT with a semaphore inside
237 	 * engine->emit_fini_breadcrumb. If the dword is true,
238 	 * the ring is paused as the semaphore will busywait
239 	 * until the dword is false.
240 	 */
241 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
242 	if (state)
243 		wmb();
244 }
245 
to_priolist(struct rb_node * rb)246 static struct i915_priolist *to_priolist(struct rb_node *rb)
247 {
248 	return rb_entry(rb, struct i915_priolist, node);
249 }
250 
rq_prio(const struct i915_request * rq)251 static int rq_prio(const struct i915_request *rq)
252 {
253 	return READ_ONCE(rq->sched.attr.priority);
254 }
255 
effective_prio(const struct i915_request * rq)256 static int effective_prio(const struct i915_request *rq)
257 {
258 	int prio = rq_prio(rq);
259 
260 	/*
261 	 * If this request is special and must not be interrupted at any
262 	 * cost, so be it. Note we are only checking the most recent request
263 	 * in the context and so may be masking an earlier vip request. It
264 	 * is hoped that under the conditions where nopreempt is used, this
265 	 * will not matter (i.e. all requests to that context will be
266 	 * nopreempt for as long as desired).
267 	 */
268 	if (i915_request_has_nopreempt(rq))
269 		prio = I915_PRIORITY_UNPREEMPTABLE;
270 
271 	return prio;
272 }
273 
queue_prio(const struct i915_sched_engine * sched_engine)274 static int queue_prio(const struct i915_sched_engine *sched_engine)
275 {
276 	struct rb_node *rb;
277 
278 	rb = rb_first_cached(&sched_engine->queue);
279 	if (!rb)
280 		return INT_MIN;
281 
282 	return to_priolist(rb)->priority;
283 }
284 
virtual_prio(const struct intel_engine_execlists * el)285 static int virtual_prio(const struct intel_engine_execlists *el)
286 {
287 	struct rb_node *rb = rb_first_cached(&el->virtual);
288 
289 	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
290 }
291 
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * rq)292 static bool need_preempt(const struct intel_engine_cs *engine,
293 			 const struct i915_request *rq)
294 {
295 	int last_prio;
296 
297 	if (!intel_engine_has_semaphores(engine))
298 		return false;
299 
300 	/*
301 	 * Check if the current priority hint merits a preemption attempt.
302 	 *
303 	 * We record the highest value priority we saw during rescheduling
304 	 * prior to this dequeue, therefore we know that if it is strictly
305 	 * less than the current tail of ESLP[0], we do not need to force
306 	 * a preempt-to-idle cycle.
307 	 *
308 	 * However, the priority hint is a mere hint that we may need to
309 	 * preempt. If that hint is stale or we may be trying to preempt
310 	 * ourselves, ignore the request.
311 	 *
312 	 * More naturally we would write
313 	 *      prio >= max(0, last);
314 	 * except that we wish to prevent triggering preemption at the same
315 	 * priority level: the task that is running should remain running
316 	 * to preserve FIFO ordering of dependencies.
317 	 */
318 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
319 	if (engine->sched_engine->queue_priority_hint <= last_prio)
320 		return false;
321 
322 	/*
323 	 * Check against the first request in ELSP[1], it will, thanks to the
324 	 * power of PI, be the highest priority of that context.
325 	 */
326 	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
327 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
328 		return true;
329 
330 	/*
331 	 * If the inflight context did not trigger the preemption, then maybe
332 	 * it was the set of queued requests? Pick the highest priority in
333 	 * the queue (the first active priolist) and see if it deserves to be
334 	 * running instead of ELSP[0].
335 	 *
336 	 * The highest priority request in the queue can not be either
337 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
338 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
339 	 */
340 	return max(virtual_prio(&engine->execlists),
341 		   queue_prio(engine->sched_engine)) > last_prio;
342 }
343 
344 __maybe_unused static bool
assert_priority_queue(const struct i915_request * prev,const struct i915_request * next)345 assert_priority_queue(const struct i915_request *prev,
346 		      const struct i915_request *next)
347 {
348 	/*
349 	 * Without preemption, the prev may refer to the still active element
350 	 * which we refuse to let go.
351 	 *
352 	 * Even with preemption, there are times when we think it is better not
353 	 * to preempt and leave an ostensibly lower priority request in flight.
354 	 */
355 	if (i915_request_is_active(prev))
356 		return true;
357 
358 	return rq_prio(prev) >= rq_prio(next);
359 }
360 
361 static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs * engine)362 __unwind_incomplete_requests(struct intel_engine_cs *engine)
363 {
364 	struct i915_request *rq, *rn, *active = NULL;
365 	struct list_head *pl;
366 	int prio = I915_PRIORITY_INVALID;
367 
368 	lockdep_assert_held(&engine->sched_engine->lock);
369 
370 	list_for_each_entry_safe_reverse(rq, rn,
371 					 &engine->sched_engine->requests,
372 					 sched.link) {
373 		if (__i915_request_is_complete(rq)) {
374 			list_del_init(&rq->sched.link);
375 			continue;
376 		}
377 
378 		__i915_request_unsubmit(rq);
379 
380 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
381 		if (rq_prio(rq) != prio) {
382 			prio = rq_prio(rq);
383 			pl = i915_sched_lookup_priolist(engine->sched_engine,
384 							prio);
385 		}
386 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
387 
388 		list_move(&rq->sched.link, pl);
389 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
390 
391 		/* Check in case we rollback so far we wrap [size/2] */
392 		if (intel_ring_direction(rq->ring,
393 					 rq->tail,
394 					 rq->ring->tail + 8) > 0)
395 			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
396 
397 		active = rq;
398 	}
399 
400 	return active;
401 }
402 
403 struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)404 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
405 {
406 	struct intel_engine_cs *engine =
407 		container_of(execlists, typeof(*engine), execlists);
408 
409 	return __unwind_incomplete_requests(engine);
410 }
411 
412 static void
execlists_context_status_change(struct i915_request * rq,unsigned long status)413 execlists_context_status_change(struct i915_request *rq, unsigned long status)
414 {
415 	/*
416 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
417 	 * The compiler should eliminate this function as dead-code.
418 	 */
419 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
420 		return;
421 
422 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
423 				   status, rq);
424 }
425 
reset_active(struct i915_request * rq,struct intel_engine_cs * engine)426 static void reset_active(struct i915_request *rq,
427 			 struct intel_engine_cs *engine)
428 {
429 	struct intel_context * const ce = rq->context;
430 	u32 head;
431 
432 	/*
433 	 * The executing context has been cancelled. We want to prevent
434 	 * further execution along this context and propagate the error on
435 	 * to anything depending on its results.
436 	 *
437 	 * In __i915_request_submit(), we apply the -EIO and remove the
438 	 * requests' payloads for any banned requests. But first, we must
439 	 * rewind the context back to the start of the incomplete request so
440 	 * that we do not jump back into the middle of the batch.
441 	 *
442 	 * We preserve the breadcrumbs and semaphores of the incomplete
443 	 * requests so that inter-timeline dependencies (i.e other timelines)
444 	 * remain correctly ordered. And we defer to __i915_request_submit()
445 	 * so that all asynchronous waits are correctly handled.
446 	 */
447 	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
448 		     rq->fence.context, rq->fence.seqno);
449 
450 	/* On resubmission of the active request, payload will be scrubbed */
451 	if (__i915_request_is_complete(rq))
452 		head = rq->tail;
453 	else
454 		head = __active_request(ce->timeline, rq, -EIO)->head;
455 	head = intel_ring_wrap(ce->ring, head);
456 
457 	/* Scrub the context image to prevent replaying the previous batch */
458 	lrc_init_regs(ce, engine, true);
459 
460 	/* We've switched away, so this should be a no-op, but intent matters */
461 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
462 }
463 
bad_request(const struct i915_request * rq)464 static bool bad_request(const struct i915_request *rq)
465 {
466 	return rq->fence.error && i915_request_started(rq);
467 }
468 
469 static struct intel_engine_cs *
__execlists_schedule_in(struct i915_request * rq)470 __execlists_schedule_in(struct i915_request *rq)
471 {
472 	struct intel_engine_cs * const engine = rq->engine;
473 	struct intel_context * const ce = rq->context;
474 
475 	intel_context_get(ce);
476 
477 	if (unlikely(intel_context_is_closed(ce) &&
478 		     !intel_engine_has_heartbeat(engine)))
479 		intel_context_set_banned(ce);
480 
481 	if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
482 		reset_active(rq, engine);
483 
484 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
485 		lrc_check_regs(ce, engine, "before");
486 
487 	if (ce->tag) {
488 		/* Use a fixed tag for OA and friends */
489 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
490 		ce->lrc.ccid = ce->tag;
491 	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
492 		/* We don't need a strict matching tag, just different values */
493 		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
494 
495 		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
496 		clear_bit(tag - 1, &engine->context_tag);
497 		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
498 
499 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
500 
501 	} else {
502 		/* We don't need a strict matching tag, just different values */
503 		unsigned int tag = __ffs(engine->context_tag);
504 
505 		GEM_BUG_ON(tag >= BITS_PER_LONG);
506 		__clear_bit(tag, &engine->context_tag);
507 		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
508 
509 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
510 	}
511 
512 	ce->lrc.ccid |= engine->execlists.ccid;
513 
514 	__intel_gt_pm_get(engine->gt);
515 	if (engine->fw_domain && !engine->fw_active++)
516 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
517 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
518 	intel_engine_context_in(engine);
519 
520 	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
521 
522 	return engine;
523 }
524 
execlists_schedule_in(struct i915_request * rq,int idx)525 static void execlists_schedule_in(struct i915_request *rq, int idx)
526 {
527 	struct intel_context * const ce = rq->context;
528 	struct intel_engine_cs *old;
529 
530 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
531 	trace_i915_request_in(rq, idx);
532 
533 	old = ce->inflight;
534 	if (!old)
535 		old = __execlists_schedule_in(rq);
536 	WRITE_ONCE(ce->inflight, ptr_inc(old));
537 
538 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
539 }
540 
541 static void
resubmit_virtual_request(struct i915_request * rq,struct virtual_engine * ve)542 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
543 {
544 	struct intel_engine_cs *engine = rq->engine;
545 
546 	spin_lock_irq(&engine->sched_engine->lock);
547 
548 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
549 	WRITE_ONCE(rq->engine, &ve->base);
550 	ve->base.submit_request(rq);
551 
552 	spin_unlock_irq(&engine->sched_engine->lock);
553 }
554 
kick_siblings(struct i915_request * rq,struct intel_context * ce)555 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
556 {
557 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
558 	struct intel_engine_cs *engine = rq->engine;
559 
560 	/*
561 	 * After this point, the rq may be transferred to a new sibling, so
562 	 * before we clear ce->inflight make sure that the context has been
563 	 * removed from the b->signalers and furthermore we need to make sure
564 	 * that the concurrent iterator in signal_irq_work is no longer
565 	 * following ce->signal_link.
566 	 */
567 	if (!list_empty(&ce->signals))
568 		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
569 
570 	/*
571 	 * This engine is now too busy to run this virtual request, so
572 	 * see if we can find an alternative engine for it to execute on.
573 	 * Once a request has become bonded to this engine, we treat it the
574 	 * same as other native request.
575 	 */
576 	if (i915_request_in_priority_queue(rq) &&
577 	    rq->execution_mask != engine->mask)
578 		resubmit_virtual_request(rq, ve);
579 
580 	if (READ_ONCE(ve->request))
581 		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
582 }
583 
__execlists_schedule_out(struct i915_request * const rq,struct intel_context * const ce)584 static void __execlists_schedule_out(struct i915_request * const rq,
585 				     struct intel_context * const ce)
586 {
587 	struct intel_engine_cs * const engine = rq->engine;
588 	unsigned int ccid;
589 
590 	/*
591 	 * NB process_csb() is not under the engine->sched_engine->lock and hence
592 	 * schedule_out can race with schedule_in meaning that we should
593 	 * refrain from doing non-trivial work here.
594 	 */
595 
596 	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
597 	GEM_BUG_ON(ce->inflight != engine);
598 
599 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
600 		lrc_check_regs(ce, engine, "after");
601 
602 	/*
603 	 * If we have just completed this context, the engine may now be
604 	 * idle and we want to re-enter powersaving.
605 	 */
606 	if (intel_timeline_is_last(ce->timeline, rq) &&
607 	    __i915_request_is_complete(rq))
608 		intel_engine_add_retire(engine, ce->timeline);
609 
610 	ccid = ce->lrc.ccid;
611 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
612 		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
613 		ccid &= XEHP_MAX_CONTEXT_HW_ID;
614 	} else {
615 		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
616 		ccid &= GEN12_MAX_CONTEXT_HW_ID;
617 	}
618 
619 	if (ccid < BITS_PER_LONG) {
620 		GEM_BUG_ON(ccid == 0);
621 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
622 		__set_bit(ccid - 1, &engine->context_tag);
623 	}
624 
625 	lrc_update_runtime(ce);
626 	intel_engine_context_out(engine);
627 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
628 	if (engine->fw_domain && !--engine->fw_active)
629 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
630 	intel_gt_pm_put_async(engine->gt);
631 
632 	/*
633 	 * If this is part of a virtual engine, its next request may
634 	 * have been blocked waiting for access to the active context.
635 	 * We have to kick all the siblings again in case we need to
636 	 * switch (e.g. the next request is not runnable on this
637 	 * engine). Hopefully, we will already have submitted the next
638 	 * request before the tasklet runs and do not need to rebuild
639 	 * each virtual tree and kick everyone again.
640 	 */
641 	if (ce->engine != engine)
642 		kick_siblings(rq, ce);
643 
644 	WRITE_ONCE(ce->inflight, NULL);
645 	intel_context_put(ce);
646 }
647 
execlists_schedule_out(struct i915_request * rq)648 static inline void execlists_schedule_out(struct i915_request *rq)
649 {
650 	struct intel_context * const ce = rq->context;
651 
652 	trace_i915_request_out(rq);
653 
654 	GEM_BUG_ON(!ce->inflight);
655 	ce->inflight = ptr_dec(ce->inflight);
656 	if (!__intel_context_inflight_count(ce->inflight))
657 		__execlists_schedule_out(rq, ce);
658 
659 	i915_request_put(rq);
660 }
661 
execlists_update_context(struct i915_request * rq)662 static u64 execlists_update_context(struct i915_request *rq)
663 {
664 	struct intel_context *ce = rq->context;
665 	u64 desc = ce->lrc.desc;
666 	u32 tail, prev;
667 
668 	/*
669 	 * WaIdleLiteRestore:bdw,skl
670 	 *
671 	 * We should never submit the context with the same RING_TAIL twice
672 	 * just in case we submit an empty ring, which confuses the HW.
673 	 *
674 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
675 	 * the normal request to be able to always advance the RING_TAIL on
676 	 * subsequent resubmissions (for lite restore). Should that fail us,
677 	 * and we try and submit the same tail again, force the context
678 	 * reload.
679 	 *
680 	 * If we need to return to a preempted context, we need to skip the
681 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
682 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
683 	 * an earlier request.
684 	 */
685 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
686 	prev = rq->ring->tail;
687 	tail = intel_ring_set_tail(rq->ring, rq->tail);
688 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
689 		desc |= CTX_DESC_FORCE_RESTORE;
690 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
691 	rq->tail = rq->wa_tail;
692 
693 	/*
694 	 * Make sure the context image is complete before we submit it to HW.
695 	 *
696 	 * Ostensibly, writes (including the WCB) should be flushed prior to
697 	 * an uncached write such as our mmio register access, the empirical
698 	 * evidence (esp. on Braswell) suggests that the WC write into memory
699 	 * may not be visible to the HW prior to the completion of the UC
700 	 * register write and that we may begin execution from the context
701 	 * before its image is complete leading to invalid PD chasing.
702 	 */
703 	wmb();
704 
705 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
706 	return desc;
707 }
708 
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)709 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
710 {
711 	if (execlists->ctrl_reg) {
712 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
713 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
714 	} else {
715 		writel(upper_32_bits(desc), execlists->submit_reg);
716 		writel(lower_32_bits(desc), execlists->submit_reg);
717 	}
718 }
719 
720 static __maybe_unused char *
dump_port(char * buf,int buflen,const char * prefix,struct i915_request * rq)721 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
722 {
723 	if (!rq)
724 		return "";
725 
726 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
727 		 prefix,
728 		 rq->context->lrc.ccid,
729 		 rq->fence.context, rq->fence.seqno,
730 		 __i915_request_is_complete(rq) ? "!" :
731 		 __i915_request_has_started(rq) ? "*" :
732 		 "",
733 		 rq_prio(rq));
734 
735 	return buf;
736 }
737 
738 static __maybe_unused noinline void
trace_ports(const struct intel_engine_execlists * execlists,const char * msg,struct i915_request * const * ports)739 trace_ports(const struct intel_engine_execlists *execlists,
740 	    const char *msg,
741 	    struct i915_request * const *ports)
742 {
743 	const struct intel_engine_cs *engine =
744 		container_of(execlists, typeof(*engine), execlists);
745 	char __maybe_unused p0[40], p1[40];
746 
747 	if (!ports[0])
748 		return;
749 
750 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
751 		     dump_port(p0, sizeof(p0), "", ports[0]),
752 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
753 }
754 
755 static bool
reset_in_progress(const struct intel_engine_cs * engine)756 reset_in_progress(const struct intel_engine_cs *engine)
757 {
758 	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
759 }
760 
761 static __maybe_unused noinline bool
assert_pending_valid(const struct intel_engine_execlists * execlists,const char * msg)762 assert_pending_valid(const struct intel_engine_execlists *execlists,
763 		     const char *msg)
764 {
765 	struct intel_engine_cs *engine =
766 		container_of(execlists, typeof(*engine), execlists);
767 	struct i915_request * const *port, *rq, *prev = NULL;
768 	struct intel_context *ce = NULL;
769 	u32 ccid = -1;
770 
771 	trace_ports(execlists, msg, execlists->pending);
772 
773 	/* We may be messing around with the lists during reset, lalala */
774 	if (reset_in_progress(engine))
775 		return true;
776 
777 	if (!execlists->pending[0]) {
778 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
779 			      engine->name);
780 		return false;
781 	}
782 
783 	if (execlists->pending[execlists_num_ports(execlists)]) {
784 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
785 			      engine->name, execlists_num_ports(execlists));
786 		return false;
787 	}
788 
789 	for (port = execlists->pending; (rq = *port); port++) {
790 		unsigned long flags;
791 		bool ok = true;
792 
793 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
794 		GEM_BUG_ON(!i915_request_is_active(rq));
795 
796 		if (ce == rq->context) {
797 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
798 				      engine->name,
799 				      ce->timeline->fence_context,
800 				      port - execlists->pending);
801 			return false;
802 		}
803 		ce = rq->context;
804 
805 		if (ccid == ce->lrc.ccid) {
806 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
807 				      engine->name,
808 				      ccid, ce->timeline->fence_context,
809 				      port - execlists->pending);
810 			return false;
811 		}
812 		ccid = ce->lrc.ccid;
813 
814 		/*
815 		 * Sentinels are supposed to be the last request so they flush
816 		 * the current execution off the HW. Check that they are the only
817 		 * request in the pending submission.
818 		 *
819 		 * NB: Due to the async nature of preempt-to-busy and request
820 		 * cancellation we need to handle the case where request
821 		 * becomes a sentinel in parallel to CSB processing.
822 		 */
823 		if (prev && i915_request_has_sentinel(prev) &&
824 		    !READ_ONCE(prev->fence.error)) {
825 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
826 				      engine->name,
827 				      ce->timeline->fence_context,
828 				      port - execlists->pending);
829 			return false;
830 		}
831 		prev = rq;
832 
833 		/*
834 		 * We want virtual requests to only be in the first slot so
835 		 * that they are never stuck behind a hog and can be immediately
836 		 * transferred onto the next idle engine.
837 		 */
838 		if (rq->execution_mask != engine->mask &&
839 		    port != execlists->pending) {
840 			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
841 				      engine->name,
842 				      ce->timeline->fence_context,
843 				      port - execlists->pending);
844 			return false;
845 		}
846 
847 		/* Hold tightly onto the lock to prevent concurrent retires! */
848 		if (!spin_trylock_irqsave(&rq->lock, flags))
849 			continue;
850 
851 		if (__i915_request_is_complete(rq))
852 			goto unlock;
853 
854 		if (i915_active_is_idle(&ce->active) &&
855 		    !intel_context_is_barrier(ce)) {
856 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
857 				      engine->name,
858 				      ce->timeline->fence_context,
859 				      port - execlists->pending);
860 			ok = false;
861 			goto unlock;
862 		}
863 
864 		if (!i915_vma_is_pinned(ce->state)) {
865 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
866 				      engine->name,
867 				      ce->timeline->fence_context,
868 				      port - execlists->pending);
869 			ok = false;
870 			goto unlock;
871 		}
872 
873 		if (!i915_vma_is_pinned(ce->ring->vma)) {
874 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
875 				      engine->name,
876 				      ce->timeline->fence_context,
877 				      port - execlists->pending);
878 			ok = false;
879 			goto unlock;
880 		}
881 
882 unlock:
883 		spin_unlock_irqrestore(&rq->lock, flags);
884 		if (!ok)
885 			return false;
886 	}
887 
888 	return ce;
889 }
890 
execlists_submit_ports(struct intel_engine_cs * engine)891 static void execlists_submit_ports(struct intel_engine_cs *engine)
892 {
893 	struct intel_engine_execlists *execlists = &engine->execlists;
894 	unsigned int n;
895 
896 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
897 
898 	/*
899 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
900 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
901 	 * not be relinquished until the device is idle (see
902 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
903 	 * that all ELSP are drained i.e. we have processed the CSB,
904 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
905 	 */
906 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
907 
908 	/*
909 	 * ELSQ note: the submit queue is not cleared after being submitted
910 	 * to the HW so we need to make sure we always clean it up. This is
911 	 * currently ensured by the fact that we always write the same number
912 	 * of elsq entries, keep this in mind before changing the loop below.
913 	 */
914 	for (n = execlists_num_ports(execlists); n--; ) {
915 		struct i915_request *rq = execlists->pending[n];
916 
917 		write_desc(execlists,
918 			   rq ? execlists_update_context(rq) : 0,
919 			   n);
920 	}
921 
922 	/* we need to manually load the submit queue */
923 	if (execlists->ctrl_reg)
924 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
925 }
926 
ctx_single_port_submission(const struct intel_context * ce)927 static bool ctx_single_port_submission(const struct intel_context *ce)
928 {
929 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
930 		intel_context_force_single_submission(ce));
931 }
932 
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)933 static bool can_merge_ctx(const struct intel_context *prev,
934 			  const struct intel_context *next)
935 {
936 	if (prev != next)
937 		return false;
938 
939 	if (ctx_single_port_submission(prev))
940 		return false;
941 
942 	return true;
943 }
944 
i915_request_flags(const struct i915_request * rq)945 static unsigned long i915_request_flags(const struct i915_request *rq)
946 {
947 	return READ_ONCE(rq->fence.flags);
948 }
949 
can_merge_rq(const struct i915_request * prev,const struct i915_request * next)950 static bool can_merge_rq(const struct i915_request *prev,
951 			 const struct i915_request *next)
952 {
953 	GEM_BUG_ON(prev == next);
954 	GEM_BUG_ON(!assert_priority_queue(prev, next));
955 
956 	/*
957 	 * We do not submit known completed requests. Therefore if the next
958 	 * request is already completed, we can pretend to merge it in
959 	 * with the previous context (and we will skip updating the ELSP
960 	 * and tracking). Thus hopefully keeping the ELSP full with active
961 	 * contexts, despite the best efforts of preempt-to-busy to confuse
962 	 * us.
963 	 */
964 	if (__i915_request_is_complete(next))
965 		return true;
966 
967 	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
968 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
969 		      BIT(I915_FENCE_FLAG_SENTINEL))))
970 		return false;
971 
972 	if (!can_merge_ctx(prev->context, next->context))
973 		return false;
974 
975 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
976 	return true;
977 }
978 
virtual_matches(const struct virtual_engine * ve,const struct i915_request * rq,const struct intel_engine_cs * engine)979 static bool virtual_matches(const struct virtual_engine *ve,
980 			    const struct i915_request *rq,
981 			    const struct intel_engine_cs *engine)
982 {
983 	const struct intel_engine_cs *inflight;
984 
985 	if (!rq)
986 		return false;
987 
988 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
989 		return false;
990 
991 	/*
992 	 * We track when the HW has completed saving the context image
993 	 * (i.e. when we have seen the final CS event switching out of
994 	 * the context) and must not overwrite the context image before
995 	 * then. This restricts us to only using the active engine
996 	 * while the previous virtualized request is inflight (so
997 	 * we reuse the register offsets). This is a very small
998 	 * hystersis on the greedy seelction algorithm.
999 	 */
1000 	inflight = intel_context_inflight(&ve->context);
1001 	if (inflight && inflight != engine)
1002 		return false;
1003 
1004 	return true;
1005 }
1006 
1007 static struct virtual_engine *
first_virtual_engine(struct intel_engine_cs * engine)1008 first_virtual_engine(struct intel_engine_cs *engine)
1009 {
1010 	struct intel_engine_execlists *el = &engine->execlists;
1011 	struct rb_node *rb = rb_first_cached(&el->virtual);
1012 
1013 	while (rb) {
1014 		struct virtual_engine *ve =
1015 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1016 		struct i915_request *rq = READ_ONCE(ve->request);
1017 
1018 		/* lazily cleanup after another engine handled rq */
1019 		if (!rq || !virtual_matches(ve, rq, engine)) {
1020 			rb_erase_cached(rb, &el->virtual);
1021 			RB_CLEAR_NODE(rb);
1022 			rb = rb_first_cached(&el->virtual);
1023 			continue;
1024 		}
1025 
1026 		return ve;
1027 	}
1028 
1029 	return NULL;
1030 }
1031 
virtual_xfer_context(struct virtual_engine * ve,struct intel_engine_cs * engine)1032 static void virtual_xfer_context(struct virtual_engine *ve,
1033 				 struct intel_engine_cs *engine)
1034 {
1035 	unsigned int n;
1036 
1037 	if (likely(engine == ve->siblings[0]))
1038 		return;
1039 
1040 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1041 	if (!intel_engine_has_relative_mmio(engine))
1042 		lrc_update_offsets(&ve->context, engine);
1043 
1044 	/*
1045 	 * Move the bound engine to the top of the list for
1046 	 * future execution. We then kick this tasklet first
1047 	 * before checking others, so that we preferentially
1048 	 * reuse this set of bound registers.
1049 	 */
1050 	for (n = 1; n < ve->num_siblings; n++) {
1051 		if (ve->siblings[n] == engine) {
1052 			swap(ve->siblings[n], ve->siblings[0]);
1053 			break;
1054 		}
1055 	}
1056 }
1057 
defer_request(struct i915_request * rq,struct list_head * const pl)1058 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1059 {
1060 	LIST_HEAD(list);
1061 
1062 	/*
1063 	 * We want to move the interrupted request to the back of
1064 	 * the round-robin list (i.e. its priority level), but
1065 	 * in doing so, we must then move all requests that were in
1066 	 * flight and were waiting for the interrupted request to
1067 	 * be run after it again.
1068 	 */
1069 	do {
1070 		struct i915_dependency *p;
1071 
1072 		GEM_BUG_ON(i915_request_is_active(rq));
1073 		list_move_tail(&rq->sched.link, pl);
1074 
1075 		for_each_waiter(p, rq) {
1076 			struct i915_request *w =
1077 				container_of(p->waiter, typeof(*w), sched);
1078 
1079 			if (p->flags & I915_DEPENDENCY_WEAK)
1080 				continue;
1081 
1082 			/* Leave semaphores spinning on the other engines */
1083 			if (w->engine != rq->engine)
1084 				continue;
1085 
1086 			/* No waiter should start before its signaler */
1087 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1088 				   __i915_request_has_started(w) &&
1089 				   !__i915_request_is_complete(rq));
1090 
1091 			if (!i915_request_is_ready(w))
1092 				continue;
1093 
1094 			if (rq_prio(w) < rq_prio(rq))
1095 				continue;
1096 
1097 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1098 			GEM_BUG_ON(i915_request_is_active(w));
1099 			list_move_tail(&w->sched.link, &list);
1100 		}
1101 
1102 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1103 	} while (rq);
1104 }
1105 
defer_active(struct intel_engine_cs * engine)1106 static void defer_active(struct intel_engine_cs *engine)
1107 {
1108 	struct i915_request *rq;
1109 
1110 	rq = __unwind_incomplete_requests(engine);
1111 	if (!rq)
1112 		return;
1113 
1114 	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1115 						     rq_prio(rq)));
1116 }
1117 
1118 static bool
timeslice_yield(const struct intel_engine_execlists * el,const struct i915_request * rq)1119 timeslice_yield(const struct intel_engine_execlists *el,
1120 		const struct i915_request *rq)
1121 {
1122 	/*
1123 	 * Once bitten, forever smitten!
1124 	 *
1125 	 * If the active context ever busy-waited on a semaphore,
1126 	 * it will be treated as a hog until the end of its timeslice (i.e.
1127 	 * until it is scheduled out and replaced by a new submission,
1128 	 * possibly even its own lite-restore). The HW only sends an interrupt
1129 	 * on the first miss, and we do know if that semaphore has been
1130 	 * signaled, or even if it is now stuck on another semaphore. Play
1131 	 * safe, yield if it might be stuck -- it will be given a fresh
1132 	 * timeslice in the near future.
1133 	 */
1134 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1135 }
1136 
needs_timeslice(const struct intel_engine_cs * engine,const struct i915_request * rq)1137 static bool needs_timeslice(const struct intel_engine_cs *engine,
1138 			    const struct i915_request *rq)
1139 {
1140 	if (!intel_engine_has_timeslices(engine))
1141 		return false;
1142 
1143 	/* If not currently active, or about to switch, wait for next event */
1144 	if (!rq || __i915_request_is_complete(rq))
1145 		return false;
1146 
1147 	/* We do not need to start the timeslice until after the ACK */
1148 	if (READ_ONCE(engine->execlists.pending[0]))
1149 		return false;
1150 
1151 	/* If ELSP[1] is occupied, always check to see if worth slicing */
1152 	if (!list_is_last_rcu(&rq->sched.link,
1153 			      &engine->sched_engine->requests)) {
1154 		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1155 		return true;
1156 	}
1157 
1158 	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1159 	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1160 		ENGINE_TRACE(engine, "timeslice required for queue\n");
1161 		return true;
1162 	}
1163 
1164 	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1165 		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1166 		return true;
1167 	}
1168 
1169 	return false;
1170 }
1171 
1172 static bool
timeslice_expired(struct intel_engine_cs * engine,const struct i915_request * rq)1173 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1174 {
1175 	const struct intel_engine_execlists *el = &engine->execlists;
1176 
1177 	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1178 		return false;
1179 
1180 	if (!needs_timeslice(engine, rq))
1181 		return false;
1182 
1183 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1184 }
1185 
timeslice(const struct intel_engine_cs * engine)1186 static unsigned long timeslice(const struct intel_engine_cs *engine)
1187 {
1188 	return READ_ONCE(engine->props.timeslice_duration_ms);
1189 }
1190 
start_timeslice(struct intel_engine_cs * engine)1191 static void start_timeslice(struct intel_engine_cs *engine)
1192 {
1193 	struct intel_engine_execlists *el = &engine->execlists;
1194 	unsigned long duration;
1195 
1196 	/* Disable the timer if there is nothing to switch to */
1197 	duration = 0;
1198 	if (needs_timeslice(engine, *el->active)) {
1199 		/* Avoid continually prolonging an active timeslice */
1200 		if (timer_active(&el->timer)) {
1201 			/*
1202 			 * If we just submitted a new ELSP after an old
1203 			 * context, that context may have already consumed
1204 			 * its timeslice, so recheck.
1205 			 */
1206 			if (!timer_pending(&el->timer))
1207 				tasklet_hi_schedule(&engine->sched_engine->tasklet);
1208 			return;
1209 		}
1210 
1211 		duration = timeslice(engine);
1212 	}
1213 
1214 	set_timer_ms(&el->timer, duration);
1215 }
1216 
record_preemption(struct intel_engine_execlists * execlists)1217 static void record_preemption(struct intel_engine_execlists *execlists)
1218 {
1219 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1220 }
1221 
active_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1222 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1223 					    const struct i915_request *rq)
1224 {
1225 	if (!rq)
1226 		return 0;
1227 
1228 	/* Only allow ourselves to force reset the currently active context */
1229 	engine->execlists.preempt_target = rq;
1230 
1231 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1232 	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1233 		return 1;
1234 
1235 	return READ_ONCE(engine->props.preempt_timeout_ms);
1236 }
1237 
set_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1238 static void set_preempt_timeout(struct intel_engine_cs *engine,
1239 				const struct i915_request *rq)
1240 {
1241 	if (!intel_engine_has_preempt_reset(engine))
1242 		return;
1243 
1244 	set_timer_ms(&engine->execlists.preempt,
1245 		     active_preempt_timeout(engine, rq));
1246 }
1247 
completed(const struct i915_request * rq)1248 static bool completed(const struct i915_request *rq)
1249 {
1250 	if (i915_request_has_sentinel(rq))
1251 		return false;
1252 
1253 	return __i915_request_is_complete(rq);
1254 }
1255 
execlists_dequeue(struct intel_engine_cs * engine)1256 static void execlists_dequeue(struct intel_engine_cs *engine)
1257 {
1258 	struct intel_engine_execlists * const execlists = &engine->execlists;
1259 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
1260 	struct i915_request **port = execlists->pending;
1261 	struct i915_request ** const last_port = port + execlists->port_mask;
1262 	struct i915_request *last, * const *active;
1263 	struct virtual_engine *ve;
1264 	struct rb_node *rb;
1265 	bool submit = false;
1266 
1267 	/*
1268 	 * Hardware submission is through 2 ports. Conceptually each port
1269 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1270 	 * static for a context, and unique to each, so we only execute
1271 	 * requests belonging to a single context from each ring. RING_HEAD
1272 	 * is maintained by the CS in the context image, it marks the place
1273 	 * where it got up to last time, and through RING_TAIL we tell the CS
1274 	 * where we want to execute up to this time.
1275 	 *
1276 	 * In this list the requests are in order of execution. Consecutive
1277 	 * requests from the same context are adjacent in the ringbuffer. We
1278 	 * can combine these requests into a single RING_TAIL update:
1279 	 *
1280 	 *              RING_HEAD...req1...req2
1281 	 *                                    ^- RING_TAIL
1282 	 * since to execute req2 the CS must first execute req1.
1283 	 *
1284 	 * Our goal then is to point each port to the end of a consecutive
1285 	 * sequence of requests as being the most optimal (fewest wake ups
1286 	 * and context switches) submission.
1287 	 */
1288 
1289 	spin_lock(&sched_engine->lock);
1290 
1291 	/*
1292 	 * If the queue is higher priority than the last
1293 	 * request in the currently active context, submit afresh.
1294 	 * We will resubmit again afterwards in case we need to split
1295 	 * the active context to interject the preemption request,
1296 	 * i.e. we will retrigger preemption following the ack in case
1297 	 * of trouble.
1298 	 *
1299 	 */
1300 	active = execlists->active;
1301 	while ((last = *active) && completed(last))
1302 		active++;
1303 
1304 	if (last) {
1305 		if (need_preempt(engine, last)) {
1306 			ENGINE_TRACE(engine,
1307 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1308 				     last->fence.context,
1309 				     last->fence.seqno,
1310 				     last->sched.attr.priority,
1311 				     sched_engine->queue_priority_hint);
1312 			record_preemption(execlists);
1313 
1314 			/*
1315 			 * Don't let the RING_HEAD advance past the breadcrumb
1316 			 * as we unwind (and until we resubmit) so that we do
1317 			 * not accidentally tell it to go backwards.
1318 			 */
1319 			ring_set_paused(engine, 1);
1320 
1321 			/*
1322 			 * Note that we have not stopped the GPU at this point,
1323 			 * so we are unwinding the incomplete requests as they
1324 			 * remain inflight and so by the time we do complete
1325 			 * the preemption, some of the unwound requests may
1326 			 * complete!
1327 			 */
1328 			__unwind_incomplete_requests(engine);
1329 
1330 			last = NULL;
1331 		} else if (timeslice_expired(engine, last)) {
1332 			ENGINE_TRACE(engine,
1333 				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1334 				     yesno(timer_expired(&execlists->timer)),
1335 				     last->fence.context, last->fence.seqno,
1336 				     rq_prio(last),
1337 				     sched_engine->queue_priority_hint,
1338 				     yesno(timeslice_yield(execlists, last)));
1339 
1340 			/*
1341 			 * Consume this timeslice; ensure we start a new one.
1342 			 *
1343 			 * The timeslice expired, and we will unwind the
1344 			 * running contexts and recompute the next ELSP.
1345 			 * If that submit will be the same pair of contexts
1346 			 * (due to dependency ordering), we will skip the
1347 			 * submission. If we don't cancel the timer now,
1348 			 * we will see that the timer has expired and
1349 			 * reschedule the tasklet; continually until the
1350 			 * next context switch or other preeemption event.
1351 			 *
1352 			 * Since we have decided to reschedule based on
1353 			 * consumption of this timeslice, if we submit the
1354 			 * same context again, grant it a full timeslice.
1355 			 */
1356 			cancel_timer(&execlists->timer);
1357 			ring_set_paused(engine, 1);
1358 			defer_active(engine);
1359 
1360 			/*
1361 			 * Unlike for preemption, if we rewind and continue
1362 			 * executing the same context as previously active,
1363 			 * the order of execution will remain the same and
1364 			 * the tail will only advance. We do not need to
1365 			 * force a full context restore, as a lite-restore
1366 			 * is sufficient to resample the monotonic TAIL.
1367 			 *
1368 			 * If we switch to any other context, similarly we
1369 			 * will not rewind TAIL of current context, and
1370 			 * normal save/restore will preserve state and allow
1371 			 * us to later continue executing the same request.
1372 			 */
1373 			last = NULL;
1374 		} else {
1375 			/*
1376 			 * Otherwise if we already have a request pending
1377 			 * for execution after the current one, we can
1378 			 * just wait until the next CS event before
1379 			 * queuing more. In either case we will force a
1380 			 * lite-restore preemption event, but if we wait
1381 			 * we hopefully coalesce several updates into a single
1382 			 * submission.
1383 			 */
1384 			if (active[1]) {
1385 				/*
1386 				 * Even if ELSP[1] is occupied and not worthy
1387 				 * of timeslices, our queue might be.
1388 				 */
1389 				spin_unlock(&sched_engine->lock);
1390 				return;
1391 			}
1392 		}
1393 	}
1394 
1395 	/* XXX virtual is always taking precedence */
1396 	while ((ve = first_virtual_engine(engine))) {
1397 		struct i915_request *rq;
1398 
1399 		spin_lock(&ve->base.sched_engine->lock);
1400 
1401 		rq = ve->request;
1402 		if (unlikely(!virtual_matches(ve, rq, engine)))
1403 			goto unlock; /* lost the race to a sibling */
1404 
1405 		GEM_BUG_ON(rq->engine != &ve->base);
1406 		GEM_BUG_ON(rq->context != &ve->context);
1407 
1408 		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1409 			spin_unlock(&ve->base.sched_engine->lock);
1410 			break;
1411 		}
1412 
1413 		if (last && !can_merge_rq(last, rq)) {
1414 			spin_unlock(&ve->base.sched_engine->lock);
1415 			spin_unlock(&engine->sched_engine->lock);
1416 			return; /* leave this for another sibling */
1417 		}
1418 
1419 		ENGINE_TRACE(engine,
1420 			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1421 			     rq->fence.context,
1422 			     rq->fence.seqno,
1423 			     __i915_request_is_complete(rq) ? "!" :
1424 			     __i915_request_has_started(rq) ? "*" :
1425 			     "",
1426 			     yesno(engine != ve->siblings[0]));
1427 
1428 		WRITE_ONCE(ve->request, NULL);
1429 		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1430 
1431 		rb = &ve->nodes[engine->id].rb;
1432 		rb_erase_cached(rb, &execlists->virtual);
1433 		RB_CLEAR_NODE(rb);
1434 
1435 		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1436 		WRITE_ONCE(rq->engine, engine);
1437 
1438 		if (__i915_request_submit(rq)) {
1439 			/*
1440 			 * Only after we confirm that we will submit
1441 			 * this request (i.e. it has not already
1442 			 * completed), do we want to update the context.
1443 			 *
1444 			 * This serves two purposes. It avoids
1445 			 * unnecessary work if we are resubmitting an
1446 			 * already completed request after timeslicing.
1447 			 * But more importantly, it prevents us altering
1448 			 * ve->siblings[] on an idle context, where
1449 			 * we may be using ve->siblings[] in
1450 			 * virtual_context_enter / virtual_context_exit.
1451 			 */
1452 			virtual_xfer_context(ve, engine);
1453 			GEM_BUG_ON(ve->siblings[0] != engine);
1454 
1455 			submit = true;
1456 			last = rq;
1457 		}
1458 
1459 		i915_request_put(rq);
1460 unlock:
1461 		spin_unlock(&ve->base.sched_engine->lock);
1462 
1463 		/*
1464 		 * Hmm, we have a bunch of virtual engine requests,
1465 		 * but the first one was already completed (thanks
1466 		 * preempt-to-busy!). Keep looking at the veng queue
1467 		 * until we have no more relevant requests (i.e.
1468 		 * the normal submit queue has higher priority).
1469 		 */
1470 		if (submit)
1471 			break;
1472 	}
1473 
1474 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1475 		struct i915_priolist *p = to_priolist(rb);
1476 		struct i915_request *rq, *rn;
1477 
1478 		priolist_for_each_request_consume(rq, rn, p) {
1479 			bool merge = true;
1480 
1481 			/*
1482 			 * Can we combine this request with the current port?
1483 			 * It has to be the same context/ringbuffer and not
1484 			 * have any exceptions (e.g. GVT saying never to
1485 			 * combine contexts).
1486 			 *
1487 			 * If we can combine the requests, we can execute both
1488 			 * by updating the RING_TAIL to point to the end of the
1489 			 * second request, and so we never need to tell the
1490 			 * hardware about the first.
1491 			 */
1492 			if (last && !can_merge_rq(last, rq)) {
1493 				/*
1494 				 * If we are on the second port and cannot
1495 				 * combine this request with the last, then we
1496 				 * are done.
1497 				 */
1498 				if (port == last_port)
1499 					goto done;
1500 
1501 				/*
1502 				 * We must not populate both ELSP[] with the
1503 				 * same LRCA, i.e. we must submit 2 different
1504 				 * contexts if we submit 2 ELSP.
1505 				 */
1506 				if (last->context == rq->context)
1507 					goto done;
1508 
1509 				if (i915_request_has_sentinel(last))
1510 					goto done;
1511 
1512 				/*
1513 				 * We avoid submitting virtual requests into
1514 				 * the secondary ports so that we can migrate
1515 				 * the request immediately to another engine
1516 				 * rather than wait for the primary request.
1517 				 */
1518 				if (rq->execution_mask != engine->mask)
1519 					goto done;
1520 
1521 				/*
1522 				 * If GVT overrides us we only ever submit
1523 				 * port[0], leaving port[1] empty. Note that we
1524 				 * also have to be careful that we don't queue
1525 				 * the same context (even though a different
1526 				 * request) to the second port.
1527 				 */
1528 				if (ctx_single_port_submission(last->context) ||
1529 				    ctx_single_port_submission(rq->context))
1530 					goto done;
1531 
1532 				merge = false;
1533 			}
1534 
1535 			if (__i915_request_submit(rq)) {
1536 				if (!merge) {
1537 					*port++ = i915_request_get(last);
1538 					last = NULL;
1539 				}
1540 
1541 				GEM_BUG_ON(last &&
1542 					   !can_merge_ctx(last->context,
1543 							  rq->context));
1544 				GEM_BUG_ON(last &&
1545 					   i915_seqno_passed(last->fence.seqno,
1546 							     rq->fence.seqno));
1547 
1548 				submit = true;
1549 				last = rq;
1550 			}
1551 		}
1552 
1553 		rb_erase_cached(&p->node, &sched_engine->queue);
1554 		i915_priolist_free(p);
1555 	}
1556 done:
1557 	*port++ = i915_request_get(last);
1558 
1559 	/*
1560 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1561 	 *
1562 	 * We choose the priority hint such that if we add a request of greater
1563 	 * priority than this, we kick the submission tasklet to decide on
1564 	 * the right order of submitting the requests to hardware. We must
1565 	 * also be prepared to reorder requests as they are in-flight on the
1566 	 * HW. We derive the priority hint then as the first "hole" in
1567 	 * the HW submission ports and if there are no available slots,
1568 	 * the priority of the lowest executing request, i.e. last.
1569 	 *
1570 	 * When we do receive a higher priority request ready to run from the
1571 	 * user, see queue_request(), the priority hint is bumped to that
1572 	 * request triggering preemption on the next dequeue (or subsequent
1573 	 * interrupt for secondary ports).
1574 	 */
1575 	sched_engine->queue_priority_hint = queue_prio(sched_engine);
1576 	i915_sched_engine_reset_on_empty(sched_engine);
1577 	spin_unlock(&sched_engine->lock);
1578 
1579 	/*
1580 	 * We can skip poking the HW if we ended up with exactly the same set
1581 	 * of requests as currently running, e.g. trying to timeslice a pair
1582 	 * of ordered contexts.
1583 	 */
1584 	if (submit &&
1585 	    memcmp(active,
1586 		   execlists->pending,
1587 		   (port - execlists->pending) * sizeof(*port))) {
1588 		*port = NULL;
1589 		while (port-- != execlists->pending)
1590 			execlists_schedule_in(*port, port - execlists->pending);
1591 
1592 		WRITE_ONCE(execlists->yield, -1);
1593 		set_preempt_timeout(engine, *active);
1594 		execlists_submit_ports(engine);
1595 	} else {
1596 		ring_set_paused(engine, 0);
1597 		while (port-- != execlists->pending)
1598 			i915_request_put(*port);
1599 		*execlists->pending = NULL;
1600 	}
1601 }
1602 
execlists_dequeue_irq(struct intel_engine_cs * engine)1603 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1604 {
1605 	local_irq_disable(); /* Suspend interrupts across request submission */
1606 	execlists_dequeue(engine);
1607 	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1608 }
1609 
clear_ports(struct i915_request ** ports,int count)1610 static void clear_ports(struct i915_request **ports, int count)
1611 {
1612 	memset_p((void **)ports, NULL, count);
1613 }
1614 
1615 static void
copy_ports(struct i915_request ** dst,struct i915_request ** src,int count)1616 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1617 {
1618 	/* A memcpy_p() would be very useful here! */
1619 	while (count--)
1620 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1621 }
1622 
1623 static struct i915_request **
cancel_port_requests(struct intel_engine_execlists * const execlists,struct i915_request ** inactive)1624 cancel_port_requests(struct intel_engine_execlists * const execlists,
1625 		     struct i915_request **inactive)
1626 {
1627 	struct i915_request * const *port;
1628 
1629 	for (port = execlists->pending; *port; port++)
1630 		*inactive++ = *port;
1631 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1632 
1633 	/* Mark the end of active before we overwrite *active */
1634 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1635 		*inactive++ = *port;
1636 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1637 
1638 	smp_wmb(); /* complete the seqlock for execlists_active() */
1639 	WRITE_ONCE(execlists->active, execlists->inflight);
1640 
1641 	/* Having cancelled all outstanding process_csb(), stop their timers */
1642 	GEM_BUG_ON(execlists->pending[0]);
1643 	cancel_timer(&execlists->timer);
1644 	cancel_timer(&execlists->preempt);
1645 
1646 	return inactive;
1647 }
1648 
invalidate_csb_entries(const u64 * first,const u64 * last)1649 static void invalidate_csb_entries(const u64 *first, const u64 *last)
1650 {
1651 	clflush((void *)first);
1652 	clflush((void *)last);
1653 }
1654 
1655 /*
1656  * Starting with Gen12, the status has a new format:
1657  *
1658  *     bit  0:     switched to new queue
1659  *     bit  1:     reserved
1660  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1661  *                 switch detail is set to "wait on semaphore"
1662  *     bits 3-5:   engine class
1663  *     bits 6-11:  engine instance
1664  *     bits 12-14: reserved
1665  *     bits 15-25: sw context id of the lrc the GT switched to
1666  *     bits 26-31: sw counter of the lrc the GT switched to
1667  *     bits 32-35: context switch detail
1668  *                  - 0: ctx complete
1669  *                  - 1: wait on sync flip
1670  *                  - 2: wait on vblank
1671  *                  - 3: wait on scanline
1672  *                  - 4: wait on semaphore
1673  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1674  *                       WAIT_FOR_EVENT)
1675  *     bit  36:    reserved
1676  *     bits 37-43: wait detail (for switch detail 1 to 4)
1677  *     bits 44-46: reserved
1678  *     bits 47-57: sw context id of the lrc the GT switched away from
1679  *     bits 58-63: sw counter of the lrc the GT switched away from
1680  *
1681  * Xe_HP csb shuffles things around compared to TGL:
1682  *
1683  *     bits 0-3:   context switch detail (same possible values as TGL)
1684  *     bits 4-9:   engine instance
1685  *     bits 10-25: sw context id of the lrc the GT switched to
1686  *     bits 26-31: sw counter of the lrc the GT switched to
1687  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1688  *                 switch detail is set to "wait on semaphore"
1689  *     bit  33:    switched to new queue
1690  *     bits 34-41: wait detail (for switch detail 1 to 4)
1691  *     bits 42-57: sw context id of the lrc the GT switched away from
1692  *     bits 58-63: sw counter of the lrc the GT switched away from
1693  */
1694 static inline bool
__gen12_csb_parse(bool ctx_to_valid,bool ctx_away_valid,bool new_queue,u8 switch_detail)1695 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1696 		  u8 switch_detail)
1697 {
1698 	/*
1699 	 * The context switch detail is not guaranteed to be 5 when a preemption
1700 	 * occurs, so we can't just check for that. The check below works for
1701 	 * all the cases we care about, including preemptions of WAIT
1702 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1703 	 * would require some extra handling, but we don't support that.
1704 	 */
1705 	if (!ctx_away_valid || new_queue) {
1706 		GEM_BUG_ON(!ctx_to_valid);
1707 		return true;
1708 	}
1709 
1710 	/*
1711 	 * switch detail = 5 is covered by the case above and we do not expect a
1712 	 * context switch on an unsuccessful wait instruction since we always
1713 	 * use polling mode.
1714 	 */
1715 	GEM_BUG_ON(switch_detail);
1716 	return false;
1717 }
1718 
xehp_csb_parse(const u64 csb)1719 static bool xehp_csb_parse(const u64 csb)
1720 {
1721 	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1722 				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1723 				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1724 				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1725 }
1726 
gen12_csb_parse(const u64 csb)1727 static bool gen12_csb_parse(const u64 csb)
1728 {
1729 	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1730 				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1731 				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1732 				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1733 }
1734 
gen8_csb_parse(const u64 csb)1735 static bool gen8_csb_parse(const u64 csb)
1736 {
1737 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1738 }
1739 
1740 static noinline u64
wa_csb_read(const struct intel_engine_cs * engine,u64 * const csb)1741 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1742 {
1743 	u64 entry;
1744 
1745 	/*
1746 	 * Reading from the HWSP has one particular advantage: we can detect
1747 	 * a stale entry. Since the write into HWSP is broken, we have no reason
1748 	 * to trust the HW at all, the mmio entry may equally be unordered, so
1749 	 * we prefer the path that is self-checking and as a last resort,
1750 	 * return the mmio value.
1751 	 *
1752 	 * tgl,dg1:HSDES#22011327657
1753 	 */
1754 	preempt_disable();
1755 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1756 		int idx = csb - engine->execlists.csb_status;
1757 		int status;
1758 
1759 		status = GEN8_EXECLISTS_STATUS_BUF;
1760 		if (idx >= 6) {
1761 			status = GEN11_EXECLISTS_STATUS_BUF2;
1762 			idx -= 6;
1763 		}
1764 		status += sizeof(u64) * idx;
1765 
1766 		entry = intel_uncore_read64(engine->uncore,
1767 					    _MMIO(engine->mmio_base + status));
1768 	}
1769 	preempt_enable();
1770 
1771 	return entry;
1772 }
1773 
csb_read(const struct intel_engine_cs * engine,u64 * const csb)1774 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1775 {
1776 	u64 entry = READ_ONCE(*csb);
1777 
1778 	/*
1779 	 * Unfortunately, the GPU does not always serialise its write
1780 	 * of the CSB entries before its write of the CSB pointer, at least
1781 	 * from the perspective of the CPU, using what is known as a Global
1782 	 * Observation Point. We may read a new CSB tail pointer, but then
1783 	 * read the stale CSB entries, causing us to misinterpret the
1784 	 * context-switch events, and eventually declare the GPU hung.
1785 	 *
1786 	 * icl:HSDES#1806554093
1787 	 * tgl:HSDES#22011248461
1788 	 */
1789 	if (unlikely(entry == -1))
1790 		entry = wa_csb_read(engine, csb);
1791 
1792 	/* Consume this entry so that we can spot its future reuse. */
1793 	WRITE_ONCE(*csb, -1);
1794 
1795 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1796 	return entry;
1797 }
1798 
new_timeslice(struct intel_engine_execlists * el)1799 static void new_timeslice(struct intel_engine_execlists *el)
1800 {
1801 	/* By cancelling, we will start afresh in start_timeslice() */
1802 	cancel_timer(&el->timer);
1803 }
1804 
1805 static struct i915_request **
process_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)1806 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1807 {
1808 	struct intel_engine_execlists * const execlists = &engine->execlists;
1809 	u64 * const buf = execlists->csb_status;
1810 	const u8 num_entries = execlists->csb_size;
1811 	struct i915_request **prev;
1812 	u8 head, tail;
1813 
1814 	/*
1815 	 * As we modify our execlists state tracking we require exclusive
1816 	 * access. Either we are inside the tasklet, or the tasklet is disabled
1817 	 * and we assume that is only inside the reset paths and so serialised.
1818 	 */
1819 	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1820 		   !reset_in_progress(engine));
1821 
1822 	/*
1823 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1824 	 * When reading from the csb_write mmio register, we have to be
1825 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1826 	 * the low 4bits. As it happens we know the next 4bits are always
1827 	 * zero and so we can simply masked off the low u8 of the register
1828 	 * and treat it identically to reading from the HWSP (without having
1829 	 * to use explicit shifting and masking, and probably bifurcating
1830 	 * the code to handle the legacy mmio read).
1831 	 */
1832 	head = execlists->csb_head;
1833 	tail = READ_ONCE(*execlists->csb_write);
1834 	if (unlikely(head == tail))
1835 		return inactive;
1836 
1837 	/*
1838 	 * We will consume all events from HW, or at least pretend to.
1839 	 *
1840 	 * The sequence of events from the HW is deterministic, and derived
1841 	 * from our writes to the ELSP, with a smidgen of variability for
1842 	 * the arrival of the asynchronous requests wrt to the inflight
1843 	 * execution. If the HW sends an event that does not correspond with
1844 	 * the one we are expecting, we have to abandon all hope as we lose
1845 	 * all tracking of what the engine is actually executing. We will
1846 	 * only detect we are out of sequence with the HW when we get an
1847 	 * 'impossible' event because we have already drained our own
1848 	 * preemption/promotion queue. If this occurs, we know that we likely
1849 	 * lost track of execution earlier and must unwind and restart, the
1850 	 * simplest way is by stop processing the event queue and force the
1851 	 * engine to reset.
1852 	 */
1853 	execlists->csb_head = tail;
1854 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1855 
1856 	/*
1857 	 * Hopefully paired with a wmb() in HW!
1858 	 *
1859 	 * We must complete the read of the write pointer before any reads
1860 	 * from the CSB, so that we do not see stale values. Without an rmb
1861 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1862 	 * we perform the READ_ONCE(*csb_write).
1863 	 */
1864 	rmb();
1865 
1866 	/* Remember who was last running under the timer */
1867 	prev = inactive;
1868 	*prev = NULL;
1869 
1870 	do {
1871 		bool promote;
1872 		u64 csb;
1873 
1874 		if (++head == num_entries)
1875 			head = 0;
1876 
1877 		/*
1878 		 * We are flying near dragons again.
1879 		 *
1880 		 * We hold a reference to the request in execlist_port[]
1881 		 * but no more than that. We are operating in softirq
1882 		 * context and so cannot hold any mutex or sleep. That
1883 		 * prevents us stopping the requests we are processing
1884 		 * in port[] from being retired simultaneously (the
1885 		 * breadcrumb will be complete before we see the
1886 		 * context-switch). As we only hold the reference to the
1887 		 * request, any pointer chasing underneath the request
1888 		 * is subject to a potential use-after-free. Thus we
1889 		 * store all of the bookkeeping within port[] as
1890 		 * required, and avoid using unguarded pointers beneath
1891 		 * request itself. The same applies to the atomic
1892 		 * status notifier.
1893 		 */
1894 
1895 		csb = csb_read(engine, buf + head);
1896 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1897 			     head, upper_32_bits(csb), lower_32_bits(csb));
1898 
1899 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1900 			promote = xehp_csb_parse(csb);
1901 		else if (GRAPHICS_VER(engine->i915) >= 12)
1902 			promote = gen12_csb_parse(csb);
1903 		else
1904 			promote = gen8_csb_parse(csb);
1905 		if (promote) {
1906 			struct i915_request * const *old = execlists->active;
1907 
1908 			if (GEM_WARN_ON(!*execlists->pending)) {
1909 				execlists->error_interrupt |= ERROR_CSB;
1910 				break;
1911 			}
1912 
1913 			ring_set_paused(engine, 0);
1914 
1915 			/* Point active to the new ELSP; prevent overwriting */
1916 			WRITE_ONCE(execlists->active, execlists->pending);
1917 			smp_wmb(); /* notify execlists_active() */
1918 
1919 			/* cancel old inflight, prepare for switch */
1920 			trace_ports(execlists, "preempted", old);
1921 			while (*old)
1922 				*inactive++ = *old++;
1923 
1924 			/* switch pending to inflight */
1925 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1926 			copy_ports(execlists->inflight,
1927 				   execlists->pending,
1928 				   execlists_num_ports(execlists));
1929 			smp_wmb(); /* complete the seqlock */
1930 			WRITE_ONCE(execlists->active, execlists->inflight);
1931 
1932 			/* XXX Magic delay for tgl */
1933 			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1934 
1935 			WRITE_ONCE(execlists->pending[0], NULL);
1936 		} else {
1937 			if (GEM_WARN_ON(!*execlists->active)) {
1938 				execlists->error_interrupt |= ERROR_CSB;
1939 				break;
1940 			}
1941 
1942 			/* port0 completed, advanced to port1 */
1943 			trace_ports(execlists, "completed", execlists->active);
1944 
1945 			/*
1946 			 * We rely on the hardware being strongly
1947 			 * ordered, that the breadcrumb write is
1948 			 * coherent (visible from the CPU) before the
1949 			 * user interrupt is processed. One might assume
1950 			 * that the breadcrumb write being before the
1951 			 * user interrupt and the CS event for the context
1952 			 * switch would therefore be before the CS event
1953 			 * itself...
1954 			 */
1955 			if (GEM_SHOW_DEBUG() &&
1956 			    !__i915_request_is_complete(*execlists->active)) {
1957 				struct i915_request *rq = *execlists->active;
1958 				const u32 *regs __maybe_unused =
1959 					rq->context->lrc_reg_state;
1960 
1961 				ENGINE_TRACE(engine,
1962 					     "context completed before request!\n");
1963 				ENGINE_TRACE(engine,
1964 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1965 					     ENGINE_READ(engine, RING_START),
1966 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1967 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1968 					     ENGINE_READ(engine, RING_CTL),
1969 					     ENGINE_READ(engine, RING_MI_MODE));
1970 				ENGINE_TRACE(engine,
1971 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1972 					     i915_ggtt_offset(rq->ring->vma),
1973 					     rq->head, rq->tail,
1974 					     rq->fence.context,
1975 					     lower_32_bits(rq->fence.seqno),
1976 					     hwsp_seqno(rq));
1977 				ENGINE_TRACE(engine,
1978 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1979 					     regs[CTX_RING_START],
1980 					     regs[CTX_RING_HEAD],
1981 					     regs[CTX_RING_TAIL]);
1982 			}
1983 
1984 			*inactive++ = *execlists->active++;
1985 
1986 			GEM_BUG_ON(execlists->active - execlists->inflight >
1987 				   execlists_num_ports(execlists));
1988 		}
1989 	} while (head != tail);
1990 
1991 	/*
1992 	 * Gen11 has proven to fail wrt global observation point between
1993 	 * entry and tail update, failing on the ordering and thus
1994 	 * we see an old entry in the context status buffer.
1995 	 *
1996 	 * Forcibly evict out entries for the next gpu csb update,
1997 	 * to increase the odds that we get a fresh entries with non
1998 	 * working hardware. The cost for doing so comes out mostly with
1999 	 * the wash as hardware, working or not, will need to do the
2000 	 * invalidation before.
2001 	 */
2002 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2003 
2004 	/*
2005 	 * We assume that any event reflects a change in context flow
2006 	 * and merits a fresh timeslice. We reinstall the timer after
2007 	 * inspecting the queue to see if we need to resumbit.
2008 	 */
2009 	if (*prev != *execlists->active) /* elide lite-restores */
2010 		new_timeslice(execlists);
2011 
2012 	return inactive;
2013 }
2014 
post_process_csb(struct i915_request ** port,struct i915_request ** last)2015 static void post_process_csb(struct i915_request **port,
2016 			     struct i915_request **last)
2017 {
2018 	while (port != last)
2019 		execlists_schedule_out(*port++);
2020 }
2021 
__execlists_hold(struct i915_request * rq)2022 static void __execlists_hold(struct i915_request *rq)
2023 {
2024 	LIST_HEAD(list);
2025 
2026 	do {
2027 		struct i915_dependency *p;
2028 
2029 		if (i915_request_is_active(rq))
2030 			__i915_request_unsubmit(rq);
2031 
2032 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2033 		list_move_tail(&rq->sched.link,
2034 			       &rq->engine->sched_engine->hold);
2035 		i915_request_set_hold(rq);
2036 		RQ_TRACE(rq, "on hold\n");
2037 
2038 		for_each_waiter(p, rq) {
2039 			struct i915_request *w =
2040 				container_of(p->waiter, typeof(*w), sched);
2041 
2042 			if (p->flags & I915_DEPENDENCY_WEAK)
2043 				continue;
2044 
2045 			/* Leave semaphores spinning on the other engines */
2046 			if (w->engine != rq->engine)
2047 				continue;
2048 
2049 			if (!i915_request_is_ready(w))
2050 				continue;
2051 
2052 			if (__i915_request_is_complete(w))
2053 				continue;
2054 
2055 			if (i915_request_on_hold(w))
2056 				continue;
2057 
2058 			list_move_tail(&w->sched.link, &list);
2059 		}
2060 
2061 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2062 	} while (rq);
2063 }
2064 
execlists_hold(struct intel_engine_cs * engine,struct i915_request * rq)2065 static bool execlists_hold(struct intel_engine_cs *engine,
2066 			   struct i915_request *rq)
2067 {
2068 	if (i915_request_on_hold(rq))
2069 		return false;
2070 
2071 	spin_lock_irq(&engine->sched_engine->lock);
2072 
2073 	if (__i915_request_is_complete(rq)) { /* too late! */
2074 		rq = NULL;
2075 		goto unlock;
2076 	}
2077 
2078 	/*
2079 	 * Transfer this request onto the hold queue to prevent it
2080 	 * being resumbitted to HW (and potentially completed) before we have
2081 	 * released it. Since we may have already submitted following
2082 	 * requests, we need to remove those as well.
2083 	 */
2084 	GEM_BUG_ON(i915_request_on_hold(rq));
2085 	GEM_BUG_ON(rq->engine != engine);
2086 	__execlists_hold(rq);
2087 	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2088 
2089 unlock:
2090 	spin_unlock_irq(&engine->sched_engine->lock);
2091 	return rq;
2092 }
2093 
hold_request(const struct i915_request * rq)2094 static bool hold_request(const struct i915_request *rq)
2095 {
2096 	struct i915_dependency *p;
2097 	bool result = false;
2098 
2099 	/*
2100 	 * If one of our ancestors is on hold, we must also be on hold,
2101 	 * otherwise we will bypass it and execute before it.
2102 	 */
2103 	rcu_read_lock();
2104 	for_each_signaler(p, rq) {
2105 		const struct i915_request *s =
2106 			container_of(p->signaler, typeof(*s), sched);
2107 
2108 		if (s->engine != rq->engine)
2109 			continue;
2110 
2111 		result = i915_request_on_hold(s);
2112 		if (result)
2113 			break;
2114 	}
2115 	rcu_read_unlock();
2116 
2117 	return result;
2118 }
2119 
__execlists_unhold(struct i915_request * rq)2120 static void __execlists_unhold(struct i915_request *rq)
2121 {
2122 	LIST_HEAD(list);
2123 
2124 	do {
2125 		struct i915_dependency *p;
2126 
2127 		RQ_TRACE(rq, "hold release\n");
2128 
2129 		GEM_BUG_ON(!i915_request_on_hold(rq));
2130 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2131 
2132 		i915_request_clear_hold(rq);
2133 		list_move_tail(&rq->sched.link,
2134 			       i915_sched_lookup_priolist(rq->engine->sched_engine,
2135 							  rq_prio(rq)));
2136 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2137 
2138 		/* Also release any children on this engine that are ready */
2139 		for_each_waiter(p, rq) {
2140 			struct i915_request *w =
2141 				container_of(p->waiter, typeof(*w), sched);
2142 
2143 			if (p->flags & I915_DEPENDENCY_WEAK)
2144 				continue;
2145 
2146 			if (w->engine != rq->engine)
2147 				continue;
2148 
2149 			if (!i915_request_on_hold(w))
2150 				continue;
2151 
2152 			/* Check that no other parents are also on hold */
2153 			if (hold_request(w))
2154 				continue;
2155 
2156 			list_move_tail(&w->sched.link, &list);
2157 		}
2158 
2159 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2160 	} while (rq);
2161 }
2162 
execlists_unhold(struct intel_engine_cs * engine,struct i915_request * rq)2163 static void execlists_unhold(struct intel_engine_cs *engine,
2164 			     struct i915_request *rq)
2165 {
2166 	spin_lock_irq(&engine->sched_engine->lock);
2167 
2168 	/*
2169 	 * Move this request back to the priority queue, and all of its
2170 	 * children and grandchildren that were suspended along with it.
2171 	 */
2172 	__execlists_unhold(rq);
2173 
2174 	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2175 		engine->sched_engine->queue_priority_hint = rq_prio(rq);
2176 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2177 	}
2178 
2179 	spin_unlock_irq(&engine->sched_engine->lock);
2180 }
2181 
2182 struct execlists_capture {
2183 	struct work_struct work;
2184 	struct i915_request *rq;
2185 	struct i915_gpu_coredump *error;
2186 };
2187 
execlists_capture_work(struct work_struct * work)2188 static void execlists_capture_work(struct work_struct *work)
2189 {
2190 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2191 	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2192 	struct intel_engine_cs *engine = cap->rq->engine;
2193 	struct intel_gt_coredump *gt = cap->error->gt;
2194 	struct intel_engine_capture_vma *vma;
2195 
2196 	/* Compress all the objects attached to the request, slow! */
2197 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2198 	if (vma) {
2199 		struct i915_vma_compress *compress =
2200 			i915_vma_capture_prepare(gt);
2201 
2202 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2203 		i915_vma_capture_finish(gt, compress);
2204 	}
2205 
2206 	gt->simulated = gt->engine->simulated;
2207 	cap->error->simulated = gt->simulated;
2208 
2209 	/* Publish the error state, and announce it to the world */
2210 	i915_error_state_store(cap->error);
2211 	i915_gpu_coredump_put(cap->error);
2212 
2213 	/* Return this request and all that depend upon it for signaling */
2214 	execlists_unhold(engine, cap->rq);
2215 	i915_request_put(cap->rq);
2216 
2217 	kfree(cap);
2218 }
2219 
capture_regs(struct intel_engine_cs * engine)2220 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2221 {
2222 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2223 	struct execlists_capture *cap;
2224 
2225 	cap = kmalloc(sizeof(*cap), gfp);
2226 	if (!cap)
2227 		return NULL;
2228 
2229 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2230 	if (!cap->error)
2231 		goto err_cap;
2232 
2233 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2234 	if (!cap->error->gt)
2235 		goto err_gpu;
2236 
2237 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2238 	if (!cap->error->gt->engine)
2239 		goto err_gt;
2240 
2241 	cap->error->gt->engine->hung = true;
2242 
2243 	return cap;
2244 
2245 err_gt:
2246 	kfree(cap->error->gt);
2247 err_gpu:
2248 	kfree(cap->error);
2249 err_cap:
2250 	kfree(cap);
2251 	return NULL;
2252 }
2253 
2254 static struct i915_request *
active_context(struct intel_engine_cs * engine,u32 ccid)2255 active_context(struct intel_engine_cs *engine, u32 ccid)
2256 {
2257 	const struct intel_engine_execlists * const el = &engine->execlists;
2258 	struct i915_request * const *port, *rq;
2259 
2260 	/*
2261 	 * Use the most recent result from process_csb(), but just in case
2262 	 * we trigger an error (via interrupt) before the first CS event has
2263 	 * been written, peek at the next submission.
2264 	 */
2265 
2266 	for (port = el->active; (rq = *port); port++) {
2267 		if (rq->context->lrc.ccid == ccid) {
2268 			ENGINE_TRACE(engine,
2269 				     "ccid:%x found at active:%zd\n",
2270 				     ccid, port - el->active);
2271 			return rq;
2272 		}
2273 	}
2274 
2275 	for (port = el->pending; (rq = *port); port++) {
2276 		if (rq->context->lrc.ccid == ccid) {
2277 			ENGINE_TRACE(engine,
2278 				     "ccid:%x found at pending:%zd\n",
2279 				     ccid, port - el->pending);
2280 			return rq;
2281 		}
2282 	}
2283 
2284 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2285 	return NULL;
2286 }
2287 
active_ccid(struct intel_engine_cs * engine)2288 static u32 active_ccid(struct intel_engine_cs *engine)
2289 {
2290 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2291 }
2292 
execlists_capture(struct intel_engine_cs * engine)2293 static void execlists_capture(struct intel_engine_cs *engine)
2294 {
2295 	struct execlists_capture *cap;
2296 
2297 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2298 		return;
2299 
2300 	/*
2301 	 * We need to _quickly_ capture the engine state before we reset.
2302 	 * We are inside an atomic section (softirq) here and we are delaying
2303 	 * the forced preemption event.
2304 	 */
2305 	cap = capture_regs(engine);
2306 	if (!cap)
2307 		return;
2308 
2309 	spin_lock_irq(&engine->sched_engine->lock);
2310 	cap->rq = active_context(engine, active_ccid(engine));
2311 	if (cap->rq) {
2312 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2313 		cap->rq = i915_request_get_rcu(cap->rq);
2314 	}
2315 	spin_unlock_irq(&engine->sched_engine->lock);
2316 	if (!cap->rq)
2317 		goto err_free;
2318 
2319 	/*
2320 	 * Remove the request from the execlists queue, and take ownership
2321 	 * of the request. We pass it to our worker who will _slowly_ compress
2322 	 * all the pages the _user_ requested for debugging their batch, after
2323 	 * which we return it to the queue for signaling.
2324 	 *
2325 	 * By removing them from the execlists queue, we also remove the
2326 	 * requests from being processed by __unwind_incomplete_requests()
2327 	 * during the intel_engine_reset(), and so they will *not* be replayed
2328 	 * afterwards.
2329 	 *
2330 	 * Note that because we have not yet reset the engine at this point,
2331 	 * it is possible for the request that we have identified as being
2332 	 * guilty, did in fact complete and we will then hit an arbitration
2333 	 * point allowing the outstanding preemption to succeed. The likelihood
2334 	 * of that is very low (as capturing of the engine registers should be
2335 	 * fast enough to run inside an irq-off atomic section!), so we will
2336 	 * simply hold that request accountable for being non-preemptible
2337 	 * long enough to force the reset.
2338 	 */
2339 	if (!execlists_hold(engine, cap->rq))
2340 		goto err_rq;
2341 
2342 	INIT_WORK(&cap->work, execlists_capture_work);
2343 	schedule_work(&cap->work);
2344 	return;
2345 
2346 err_rq:
2347 	i915_request_put(cap->rq);
2348 err_free:
2349 	i915_gpu_coredump_put(cap->error);
2350 	kfree(cap);
2351 }
2352 
execlists_reset(struct intel_engine_cs * engine,const char * msg)2353 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2354 {
2355 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2356 	unsigned long *lock = &engine->gt->reset.flags;
2357 
2358 	if (!intel_has_reset_engine(engine->gt))
2359 		return;
2360 
2361 	if (test_and_set_bit(bit, lock))
2362 		return;
2363 
2364 	ENGINE_TRACE(engine, "reset for %s\n", msg);
2365 
2366 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2367 	tasklet_disable_nosync(&engine->sched_engine->tasklet);
2368 
2369 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2370 	execlists_capture(engine);
2371 	intel_engine_reset(engine, msg);
2372 
2373 	tasklet_enable(&engine->sched_engine->tasklet);
2374 	clear_and_wake_up_bit(bit, lock);
2375 }
2376 
preempt_timeout(const struct intel_engine_cs * const engine)2377 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2378 {
2379 	const struct timer_list *t = &engine->execlists.preempt;
2380 
2381 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2382 		return false;
2383 
2384 	if (!timer_expired(t))
2385 		return false;
2386 
2387 	return engine->execlists.pending[0];
2388 }
2389 
2390 /*
2391  * Check the unread Context Status Buffers and manage the submission of new
2392  * contexts to the ELSP accordingly.
2393  */
execlists_submission_tasklet(struct tasklet_struct * t)2394 static void execlists_submission_tasklet(struct tasklet_struct *t)
2395 {
2396 	struct i915_sched_engine *sched_engine =
2397 		from_tasklet(sched_engine, t, tasklet);
2398 	struct intel_engine_cs * const engine = sched_engine->private_data;
2399 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2400 	struct i915_request **inactive;
2401 
2402 	rcu_read_lock();
2403 	inactive = process_csb(engine, post);
2404 	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2405 
2406 	if (unlikely(preempt_timeout(engine))) {
2407 		const struct i915_request *rq = *engine->execlists.active;
2408 
2409 		/*
2410 		 * If after the preempt-timeout expired, we are still on the
2411 		 * same active request/context as before we initiated the
2412 		 * preemption, reset the engine.
2413 		 *
2414 		 * However, if we have processed a CS event to switch contexts,
2415 		 * but not yet processed the CS event for the pending
2416 		 * preemption, reset the timer allowing the new context to
2417 		 * gracefully exit.
2418 		 */
2419 		cancel_timer(&engine->execlists.preempt);
2420 		if (rq == engine->execlists.preempt_target)
2421 			engine->execlists.error_interrupt |= ERROR_PREEMPT;
2422 		else
2423 			set_timer_ms(&engine->execlists.preempt,
2424 				     active_preempt_timeout(engine, rq));
2425 	}
2426 
2427 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2428 		const char *msg;
2429 
2430 		/* Generate the error message in priority wrt to the user! */
2431 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2432 			msg = "CS error"; /* thrown by a user payload */
2433 		else if (engine->execlists.error_interrupt & ERROR_CSB)
2434 			msg = "invalid CSB event";
2435 		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2436 			msg = "preemption time out";
2437 		else
2438 			msg = "internal error";
2439 
2440 		engine->execlists.error_interrupt = 0;
2441 		execlists_reset(engine, msg);
2442 	}
2443 
2444 	if (!engine->execlists.pending[0]) {
2445 		execlists_dequeue_irq(engine);
2446 		start_timeslice(engine);
2447 	}
2448 
2449 	post_process_csb(post, inactive);
2450 	rcu_read_unlock();
2451 }
2452 
execlists_irq_handler(struct intel_engine_cs * engine,u16 iir)2453 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2454 {
2455 	bool tasklet = false;
2456 
2457 	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2458 		u32 eir;
2459 
2460 		/* Upper 16b are the enabling mask, rsvd for internal errors */
2461 		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2462 		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2463 
2464 		/* Disable the error interrupt until after the reset */
2465 		if (likely(eir)) {
2466 			ENGINE_WRITE(engine, RING_EMR, ~0u);
2467 			ENGINE_WRITE(engine, RING_EIR, eir);
2468 			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2469 			tasklet = true;
2470 		}
2471 	}
2472 
2473 	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2474 		WRITE_ONCE(engine->execlists.yield,
2475 			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2476 		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2477 			     engine->execlists.yield);
2478 		if (del_timer(&engine->execlists.timer))
2479 			tasklet = true;
2480 	}
2481 
2482 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2483 		tasklet = true;
2484 
2485 	if (iir & GT_RENDER_USER_INTERRUPT)
2486 		intel_engine_signal_breadcrumbs(engine);
2487 
2488 	if (tasklet)
2489 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2490 }
2491 
__execlists_kick(struct intel_engine_execlists * execlists)2492 static void __execlists_kick(struct intel_engine_execlists *execlists)
2493 {
2494 	struct intel_engine_cs *engine =
2495 		container_of(execlists, typeof(*engine), execlists);
2496 
2497 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2498 	tasklet_hi_schedule(&engine->sched_engine->tasklet);
2499 }
2500 
2501 #define execlists_kick(t, member) \
2502 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2503 
execlists_timeslice(struct timer_list * timer)2504 static void execlists_timeslice(struct timer_list *timer)
2505 {
2506 	execlists_kick(timer, timer);
2507 }
2508 
execlists_preempt(struct timer_list * timer)2509 static void execlists_preempt(struct timer_list *timer)
2510 {
2511 	execlists_kick(timer, preempt);
2512 }
2513 
queue_request(struct intel_engine_cs * engine,struct i915_request * rq)2514 static void queue_request(struct intel_engine_cs *engine,
2515 			  struct i915_request *rq)
2516 {
2517 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2518 	list_add_tail(&rq->sched.link,
2519 		      i915_sched_lookup_priolist(engine->sched_engine,
2520 						 rq_prio(rq)));
2521 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2522 }
2523 
submit_queue(struct intel_engine_cs * engine,const struct i915_request * rq)2524 static bool submit_queue(struct intel_engine_cs *engine,
2525 			 const struct i915_request *rq)
2526 {
2527 	struct i915_sched_engine *sched_engine = engine->sched_engine;
2528 
2529 	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2530 		return false;
2531 
2532 	sched_engine->queue_priority_hint = rq_prio(rq);
2533 	return true;
2534 }
2535 
ancestor_on_hold(const struct intel_engine_cs * engine,const struct i915_request * rq)2536 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2537 			     const struct i915_request *rq)
2538 {
2539 	GEM_BUG_ON(i915_request_on_hold(rq));
2540 	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2541 }
2542 
execlists_submit_request(struct i915_request * request)2543 static void execlists_submit_request(struct i915_request *request)
2544 {
2545 	struct intel_engine_cs *engine = request->engine;
2546 	unsigned long flags;
2547 
2548 	/* Will be called from irq-context when using foreign fences. */
2549 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2550 
2551 	if (unlikely(ancestor_on_hold(engine, request))) {
2552 		RQ_TRACE(request, "ancestor on hold\n");
2553 		list_add_tail(&request->sched.link,
2554 			      &engine->sched_engine->hold);
2555 		i915_request_set_hold(request);
2556 	} else {
2557 		queue_request(engine, request);
2558 
2559 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2560 		GEM_BUG_ON(list_empty(&request->sched.link));
2561 
2562 		if (submit_queue(engine, request))
2563 			__execlists_kick(&engine->execlists);
2564 	}
2565 
2566 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2567 }
2568 
2569 static int
__execlists_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2570 __execlists_context_pre_pin(struct intel_context *ce,
2571 			    struct intel_engine_cs *engine,
2572 			    struct i915_gem_ww_ctx *ww, void **vaddr)
2573 {
2574 	int err;
2575 
2576 	err = lrc_pre_pin(ce, engine, ww, vaddr);
2577 	if (err)
2578 		return err;
2579 
2580 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2581 		lrc_init_state(ce, engine, *vaddr);
2582 
2583 		 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2584 	}
2585 
2586 	return 0;
2587 }
2588 
execlists_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2589 static int execlists_context_pre_pin(struct intel_context *ce,
2590 				     struct i915_gem_ww_ctx *ww,
2591 				     void **vaddr)
2592 {
2593 	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2594 }
2595 
execlists_context_pin(struct intel_context * ce,void * vaddr)2596 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2597 {
2598 	return lrc_pin(ce, ce->engine, vaddr);
2599 }
2600 
execlists_context_alloc(struct intel_context * ce)2601 static int execlists_context_alloc(struct intel_context *ce)
2602 {
2603 	return lrc_alloc(ce, ce->engine);
2604 }
2605 
execlists_context_cancel_request(struct intel_context * ce,struct i915_request * rq)2606 static void execlists_context_cancel_request(struct intel_context *ce,
2607 					     struct i915_request *rq)
2608 {
2609 	struct intel_engine_cs *engine = NULL;
2610 
2611 	i915_request_active_engine(rq, &engine);
2612 
2613 	if (engine && intel_engine_pulse(engine))
2614 		intel_gt_handle_error(engine->gt, engine->mask, 0,
2615 				      "request cancellation by %s",
2616 				      current->comm);
2617 }
2618 
2619 static const struct intel_context_ops execlists_context_ops = {
2620 	.flags = COPS_HAS_INFLIGHT,
2621 
2622 	.alloc = execlists_context_alloc,
2623 
2624 	.cancel_request = execlists_context_cancel_request,
2625 
2626 	.pre_pin = execlists_context_pre_pin,
2627 	.pin = execlists_context_pin,
2628 	.unpin = lrc_unpin,
2629 	.post_unpin = lrc_post_unpin,
2630 
2631 	.enter = intel_context_enter_engine,
2632 	.exit = intel_context_exit_engine,
2633 
2634 	.reset = lrc_reset,
2635 	.destroy = lrc_destroy,
2636 
2637 	.create_virtual = execlists_create_virtual,
2638 };
2639 
emit_pdps(struct i915_request * rq)2640 static int emit_pdps(struct i915_request *rq)
2641 {
2642 	const struct intel_engine_cs * const engine = rq->engine;
2643 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2644 	int err, i;
2645 	u32 *cs;
2646 
2647 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2648 
2649 	/*
2650 	 * Beware ye of the dragons, this sequence is magic!
2651 	 *
2652 	 * Small changes to this sequence can cause anything from
2653 	 * GPU hangs to forcewake errors and machine lockups!
2654 	 */
2655 
2656 	cs = intel_ring_begin(rq, 2);
2657 	if (IS_ERR(cs))
2658 		return PTR_ERR(cs);
2659 
2660 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2661 	*cs++ = MI_NOOP;
2662 	intel_ring_advance(rq, cs);
2663 
2664 	/* Flush any residual operations from the context load */
2665 	err = engine->emit_flush(rq, EMIT_FLUSH);
2666 	if (err)
2667 		return err;
2668 
2669 	/* Magic required to prevent forcewake errors! */
2670 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2671 	if (err)
2672 		return err;
2673 
2674 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2675 	if (IS_ERR(cs))
2676 		return PTR_ERR(cs);
2677 
2678 	/* Ensure the LRI have landed before we invalidate & continue */
2679 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2680 	for (i = GEN8_3LVL_PDPES; i--; ) {
2681 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2682 		u32 base = engine->mmio_base;
2683 
2684 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2685 		*cs++ = upper_32_bits(pd_daddr);
2686 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2687 		*cs++ = lower_32_bits(pd_daddr);
2688 	}
2689 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2690 	intel_ring_advance(rq, cs);
2691 
2692 	intel_ring_advance(rq, cs);
2693 
2694 	return 0;
2695 }
2696 
execlists_request_alloc(struct i915_request * request)2697 static int execlists_request_alloc(struct i915_request *request)
2698 {
2699 	int ret;
2700 
2701 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2702 
2703 	/*
2704 	 * Flush enough space to reduce the likelihood of waiting after
2705 	 * we start building the request - in which case we will just
2706 	 * have to repeat work.
2707 	 */
2708 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2709 
2710 	/*
2711 	 * Note that after this point, we have committed to using
2712 	 * this request as it is being used to both track the
2713 	 * state of engine initialisation and liveness of the
2714 	 * golden renderstate above. Think twice before you try
2715 	 * to cancel/unwind this request now.
2716 	 */
2717 
2718 	if (!i915_vm_is_4lvl(request->context->vm)) {
2719 		ret = emit_pdps(request);
2720 		if (ret)
2721 			return ret;
2722 	}
2723 
2724 	/* Unconditionally invalidate GPU caches and TLBs. */
2725 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2726 	if (ret)
2727 		return ret;
2728 
2729 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2730 	return 0;
2731 }
2732 
reset_csb_pointers(struct intel_engine_cs * engine)2733 static void reset_csb_pointers(struct intel_engine_cs *engine)
2734 {
2735 	struct intel_engine_execlists * const execlists = &engine->execlists;
2736 	const unsigned int reset_value = execlists->csb_size - 1;
2737 
2738 	ring_set_paused(engine, 0);
2739 
2740 	/*
2741 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2742 	 * Bludgeon them with a mmio update to be sure.
2743 	 */
2744 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2745 		     0xffff << 16 | reset_value << 8 | reset_value);
2746 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2747 
2748 	/*
2749 	 * After a reset, the HW starts writing into CSB entry [0]. We
2750 	 * therefore have to set our HEAD pointer back one entry so that
2751 	 * the *first* entry we check is entry 0. To complicate this further,
2752 	 * as we don't wait for the first interrupt after reset, we have to
2753 	 * fake the HW write to point back to the last entry so that our
2754 	 * inline comparison of our cached head position against the last HW
2755 	 * write works even before the first interrupt.
2756 	 */
2757 	execlists->csb_head = reset_value;
2758 	WRITE_ONCE(*execlists->csb_write, reset_value);
2759 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2760 
2761 	/* Check that the GPU does indeed update the CSB entries! */
2762 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2763 	invalidate_csb_entries(&execlists->csb_status[0],
2764 			       &execlists->csb_status[reset_value]);
2765 
2766 	/* Once more for luck and our trusty paranoia */
2767 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2768 		     0xffff << 16 | reset_value << 8 | reset_value);
2769 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2770 
2771 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2772 }
2773 
sanitize_hwsp(struct intel_engine_cs * engine)2774 static void sanitize_hwsp(struct intel_engine_cs *engine)
2775 {
2776 	struct intel_timeline *tl;
2777 
2778 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2779 		intel_timeline_reset_seqno(tl);
2780 }
2781 
execlists_sanitize(struct intel_engine_cs * engine)2782 static void execlists_sanitize(struct intel_engine_cs *engine)
2783 {
2784 	GEM_BUG_ON(execlists_active(&engine->execlists));
2785 
2786 	/*
2787 	 * Poison residual state on resume, in case the suspend didn't!
2788 	 *
2789 	 * We have to assume that across suspend/resume (or other loss
2790 	 * of control) that the contents of our pinned buffers has been
2791 	 * lost, replaced by garbage. Since this doesn't always happen,
2792 	 * let's poison such state so that we more quickly spot when
2793 	 * we falsely assume it has been preserved.
2794 	 */
2795 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2796 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2797 
2798 	reset_csb_pointers(engine);
2799 
2800 	/*
2801 	 * The kernel_context HWSP is stored in the status_page. As above,
2802 	 * that may be lost on resume/initialisation, and so we need to
2803 	 * reset the value in the HWSP.
2804 	 */
2805 	sanitize_hwsp(engine);
2806 
2807 	/* And scrub the dirty cachelines for the HWSP */
2808 	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2809 
2810 	intel_engine_reset_pinned_contexts(engine);
2811 }
2812 
enable_error_interrupt(struct intel_engine_cs * engine)2813 static void enable_error_interrupt(struct intel_engine_cs *engine)
2814 {
2815 	u32 status;
2816 
2817 	engine->execlists.error_interrupt = 0;
2818 	ENGINE_WRITE(engine, RING_EMR, ~0u);
2819 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2820 
2821 	status = ENGINE_READ(engine, RING_ESR);
2822 	if (unlikely(status)) {
2823 		drm_err(&engine->i915->drm,
2824 			"engine '%s' resumed still in error: %08x\n",
2825 			engine->name, status);
2826 		__intel_gt_reset(engine->gt, engine->mask);
2827 	}
2828 
2829 	/*
2830 	 * On current gen8+, we have 2 signals to play with
2831 	 *
2832 	 * - I915_ERROR_INSTUCTION (bit 0)
2833 	 *
2834 	 *    Generate an error if the command parser encounters an invalid
2835 	 *    instruction
2836 	 *
2837 	 *    This is a fatal error.
2838 	 *
2839 	 * - CP_PRIV (bit 2)
2840 	 *
2841 	 *    Generate an error on privilege violation (where the CP replaces
2842 	 *    the instruction with a no-op). This also fires for writes into
2843 	 *    read-only scratch pages.
2844 	 *
2845 	 *    This is a non-fatal error, parsing continues.
2846 	 *
2847 	 * * there are a few others defined for odd HW that we do not use
2848 	 *
2849 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2850 	 * error (as the HW is validating and suppressing the mistakes), we
2851 	 * only unmask the instruction error bit.
2852 	 */
2853 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2854 }
2855 
enable_execlists(struct intel_engine_cs * engine)2856 static void enable_execlists(struct intel_engine_cs *engine)
2857 {
2858 	u32 mode;
2859 
2860 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2861 
2862 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2863 
2864 	if (GRAPHICS_VER(engine->i915) >= 11)
2865 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2866 	else
2867 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2868 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2869 
2870 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2871 
2872 	ENGINE_WRITE_FW(engine,
2873 			RING_HWS_PGA,
2874 			i915_ggtt_offset(engine->status_page.vma));
2875 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2876 
2877 	enable_error_interrupt(engine);
2878 }
2879 
execlists_resume(struct intel_engine_cs * engine)2880 static int execlists_resume(struct intel_engine_cs *engine)
2881 {
2882 	intel_mocs_init_engine(engine);
2883 	intel_breadcrumbs_reset(engine->breadcrumbs);
2884 
2885 	enable_execlists(engine);
2886 
2887 	return 0;
2888 }
2889 
execlists_reset_prepare(struct intel_engine_cs * engine)2890 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2891 {
2892 	ENGINE_TRACE(engine, "depth<-%d\n",
2893 		     atomic_read(&engine->sched_engine->tasklet.count));
2894 
2895 	/*
2896 	 * Prevent request submission to the hardware until we have
2897 	 * completed the reset in i915_gem_reset_finish(). If a request
2898 	 * is completed by one engine, it may then queue a request
2899 	 * to a second via its execlists->tasklet *just* as we are
2900 	 * calling engine->resume() and also writing the ELSP.
2901 	 * Turning off the execlists->tasklet until the reset is over
2902 	 * prevents the race.
2903 	 */
2904 	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2905 	GEM_BUG_ON(!reset_in_progress(engine));
2906 
2907 	/*
2908 	 * We stop engines, otherwise we might get failed reset and a
2909 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2910 	 * from system hang if batchbuffer is progressing when
2911 	 * the reset is issued, regardless of READY_TO_RESET ack.
2912 	 * Thus assume it is best to stop engines on all gens
2913 	 * where we have a gpu reset.
2914 	 *
2915 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2916 	 *
2917 	 * FIXME: Wa for more modern gens needs to be validated
2918 	 */
2919 	ring_set_paused(engine, 1);
2920 	intel_engine_stop_cs(engine);
2921 
2922 	engine->execlists.reset_ccid = active_ccid(engine);
2923 }
2924 
2925 static struct i915_request **
reset_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)2926 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2927 {
2928 	struct intel_engine_execlists * const execlists = &engine->execlists;
2929 
2930 	mb(); /* paranoia: read the CSB pointers from after the reset */
2931 	clflush(execlists->csb_write);
2932 	mb();
2933 
2934 	inactive = process_csb(engine, inactive); /* drain preemption events */
2935 
2936 	/* Following the reset, we need to reload the CSB read/write pointers */
2937 	reset_csb_pointers(engine);
2938 
2939 	return inactive;
2940 }
2941 
2942 static void
execlists_reset_active(struct intel_engine_cs * engine,bool stalled)2943 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2944 {
2945 	struct intel_context *ce;
2946 	struct i915_request *rq;
2947 	u32 head;
2948 
2949 	/*
2950 	 * Save the currently executing context, even if we completed
2951 	 * its request, it was still running at the time of the
2952 	 * reset and will have been clobbered.
2953 	 */
2954 	rq = active_context(engine, engine->execlists.reset_ccid);
2955 	if (!rq)
2956 		return;
2957 
2958 	ce = rq->context;
2959 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2960 
2961 	if (__i915_request_is_complete(rq)) {
2962 		/* Idle context; tidy up the ring so we can restart afresh */
2963 		head = intel_ring_wrap(ce->ring, rq->tail);
2964 		goto out_replay;
2965 	}
2966 
2967 	/* We still have requests in-flight; the engine should be active */
2968 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2969 
2970 	/* Context has requests still in-flight; it should not be idle! */
2971 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
2972 
2973 	rq = active_request(ce->timeline, rq);
2974 	head = intel_ring_wrap(ce->ring, rq->head);
2975 	GEM_BUG_ON(head == ce->ring->tail);
2976 
2977 	/*
2978 	 * If this request hasn't started yet, e.g. it is waiting on a
2979 	 * semaphore, we need to avoid skipping the request or else we
2980 	 * break the signaling chain. However, if the context is corrupt
2981 	 * the request will not restart and we will be stuck with a wedged
2982 	 * device. It is quite often the case that if we issue a reset
2983 	 * while the GPU is loading the context image, that the context
2984 	 * image becomes corrupt.
2985 	 *
2986 	 * Otherwise, if we have not started yet, the request should replay
2987 	 * perfectly and we do not need to flag the result as being erroneous.
2988 	 */
2989 	if (!__i915_request_has_started(rq))
2990 		goto out_replay;
2991 
2992 	/*
2993 	 * If the request was innocent, we leave the request in the ELSP
2994 	 * and will try to replay it on restarting. The context image may
2995 	 * have been corrupted by the reset, in which case we may have
2996 	 * to service a new GPU hang, but more likely we can continue on
2997 	 * without impact.
2998 	 *
2999 	 * If the request was guilty, we presume the context is corrupt
3000 	 * and have to at least restore the RING register in the context
3001 	 * image back to the expected values to skip over the guilty request.
3002 	 */
3003 	__i915_request_reset(rq, stalled);
3004 
3005 	/*
3006 	 * We want a simple context + ring to execute the breadcrumb update.
3007 	 * We cannot rely on the context being intact across the GPU hang,
3008 	 * so clear it and rebuild just what we need for the breadcrumb.
3009 	 * All pending requests for this context will be zapped, and any
3010 	 * future request will be after userspace has had the opportunity
3011 	 * to recreate its own state.
3012 	 */
3013 out_replay:
3014 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3015 		     head, ce->ring->tail);
3016 	lrc_reset_regs(ce, engine);
3017 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3018 }
3019 
execlists_reset_csb(struct intel_engine_cs * engine,bool stalled)3020 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3021 {
3022 	struct intel_engine_execlists * const execlists = &engine->execlists;
3023 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3024 	struct i915_request **inactive;
3025 
3026 	rcu_read_lock();
3027 	inactive = reset_csb(engine, post);
3028 
3029 	execlists_reset_active(engine, true);
3030 
3031 	inactive = cancel_port_requests(execlists, inactive);
3032 	post_process_csb(post, inactive);
3033 	rcu_read_unlock();
3034 }
3035 
execlists_reset_rewind(struct intel_engine_cs * engine,bool stalled)3036 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3037 {
3038 	unsigned long flags;
3039 
3040 	ENGINE_TRACE(engine, "\n");
3041 
3042 	/* Process the csb, find the guilty context and throw away */
3043 	execlists_reset_csb(engine, stalled);
3044 
3045 	/* Push back any incomplete requests for replay after the reset. */
3046 	rcu_read_lock();
3047 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3048 	__unwind_incomplete_requests(engine);
3049 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3050 	rcu_read_unlock();
3051 }
3052 
nop_submission_tasklet(struct tasklet_struct * t)3053 static void nop_submission_tasklet(struct tasklet_struct *t)
3054 {
3055 	struct i915_sched_engine *sched_engine =
3056 		from_tasklet(sched_engine, t, tasklet);
3057 	struct intel_engine_cs * const engine = sched_engine->private_data;
3058 
3059 	/* The driver is wedged; don't process any more events. */
3060 	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3061 }
3062 
execlists_reset_cancel(struct intel_engine_cs * engine)3063 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3064 {
3065 	struct intel_engine_execlists * const execlists = &engine->execlists;
3066 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
3067 	struct i915_request *rq, *rn;
3068 	struct rb_node *rb;
3069 	unsigned long flags;
3070 
3071 	ENGINE_TRACE(engine, "\n");
3072 
3073 	/*
3074 	 * Before we call engine->cancel_requests(), we should have exclusive
3075 	 * access to the submission state. This is arranged for us by the
3076 	 * caller disabling the interrupt generation, the tasklet and other
3077 	 * threads that may then access the same state, giving us a free hand
3078 	 * to reset state. However, we still need to let lockdep be aware that
3079 	 * we know this state may be accessed in hardirq context, so we
3080 	 * disable the irq around this manipulation and we want to keep
3081 	 * the spinlock focused on its duties and not accidentally conflate
3082 	 * coverage to the submission's irq state. (Similarly, although we
3083 	 * shouldn't need to disable irq around the manipulation of the
3084 	 * submission's irq state, we also wish to remind ourselves that
3085 	 * it is irq state.)
3086 	 */
3087 	execlists_reset_csb(engine, true);
3088 
3089 	rcu_read_lock();
3090 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3091 
3092 	/* Mark all executing requests as skipped. */
3093 	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3094 		i915_request_put(i915_request_mark_eio(rq));
3095 	intel_engine_signal_breadcrumbs(engine);
3096 
3097 	/* Flush the queued requests to the timeline list (for retiring). */
3098 	while ((rb = rb_first_cached(&sched_engine->queue))) {
3099 		struct i915_priolist *p = to_priolist(rb);
3100 
3101 		priolist_for_each_request_consume(rq, rn, p) {
3102 			if (i915_request_mark_eio(rq)) {
3103 				__i915_request_submit(rq);
3104 				i915_request_put(rq);
3105 			}
3106 		}
3107 
3108 		rb_erase_cached(&p->node, &sched_engine->queue);
3109 		i915_priolist_free(p);
3110 	}
3111 
3112 	/* On-hold requests will be flushed to timeline upon their release */
3113 	list_for_each_entry(rq, &sched_engine->hold, sched.link)
3114 		i915_request_put(i915_request_mark_eio(rq));
3115 
3116 	/* Cancel all attached virtual engines */
3117 	while ((rb = rb_first_cached(&execlists->virtual))) {
3118 		struct virtual_engine *ve =
3119 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3120 
3121 		rb_erase_cached(rb, &execlists->virtual);
3122 		RB_CLEAR_NODE(rb);
3123 
3124 		spin_lock(&ve->base.sched_engine->lock);
3125 		rq = fetch_and_zero(&ve->request);
3126 		if (rq) {
3127 			if (i915_request_mark_eio(rq)) {
3128 				rq->engine = engine;
3129 				__i915_request_submit(rq);
3130 				i915_request_put(rq);
3131 			}
3132 			i915_request_put(rq);
3133 
3134 			ve->base.sched_engine->queue_priority_hint = INT_MIN;
3135 		}
3136 		spin_unlock(&ve->base.sched_engine->lock);
3137 	}
3138 
3139 	/* Remaining _unready_ requests will be nop'ed when submitted */
3140 
3141 	sched_engine->queue_priority_hint = INT_MIN;
3142 	sched_engine->queue = RB_ROOT_CACHED;
3143 
3144 	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3145 	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3146 
3147 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3148 	rcu_read_unlock();
3149 }
3150 
execlists_reset_finish(struct intel_engine_cs * engine)3151 static void execlists_reset_finish(struct intel_engine_cs *engine)
3152 {
3153 	struct intel_engine_execlists * const execlists = &engine->execlists;
3154 
3155 	/*
3156 	 * After a GPU reset, we may have requests to replay. Do so now while
3157 	 * we still have the forcewake to be sure that the GPU is not allowed
3158 	 * to sleep before we restart and reload a context.
3159 	 *
3160 	 * If the GPU reset fails, the engine may still be alive with requests
3161 	 * inflight. We expect those to complete, or for the device to be
3162 	 * reset as the next level of recovery, and as a final resort we
3163 	 * will declare the device wedged.
3164 	 */
3165 	GEM_BUG_ON(!reset_in_progress(engine));
3166 
3167 	/* And kick in case we missed a new request submission. */
3168 	if (__tasklet_enable(&engine->sched_engine->tasklet))
3169 		__execlists_kick(execlists);
3170 
3171 	ENGINE_TRACE(engine, "depth->%d\n",
3172 		     atomic_read(&engine->sched_engine->tasklet.count));
3173 }
3174 
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)3175 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3176 {
3177 	ENGINE_WRITE(engine, RING_IMR,
3178 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3179 	ENGINE_POSTING_READ(engine, RING_IMR);
3180 }
3181 
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)3182 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3183 {
3184 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3185 }
3186 
execlists_park(struct intel_engine_cs * engine)3187 static void execlists_park(struct intel_engine_cs *engine)
3188 {
3189 	cancel_timer(&engine->execlists.timer);
3190 	cancel_timer(&engine->execlists.preempt);
3191 }
3192 
add_to_engine(struct i915_request * rq)3193 static void add_to_engine(struct i915_request *rq)
3194 {
3195 	lockdep_assert_held(&rq->engine->sched_engine->lock);
3196 	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3197 }
3198 
remove_from_engine(struct i915_request * rq)3199 static void remove_from_engine(struct i915_request *rq)
3200 {
3201 	struct intel_engine_cs *engine, *locked;
3202 
3203 	/*
3204 	 * Virtual engines complicate acquiring the engine timeline lock,
3205 	 * as their rq->engine pointer is not stable until under that
3206 	 * engine lock. The simple ploy we use is to take the lock then
3207 	 * check that the rq still belongs to the newly locked engine.
3208 	 */
3209 	locked = READ_ONCE(rq->engine);
3210 	spin_lock_irq(&locked->sched_engine->lock);
3211 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3212 		spin_unlock(&locked->sched_engine->lock);
3213 		spin_lock(&engine->sched_engine->lock);
3214 		locked = engine;
3215 	}
3216 	list_del_init(&rq->sched.link);
3217 
3218 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3219 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3220 
3221 	/* Prevent further __await_execution() registering a cb, then flush */
3222 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3223 
3224 	spin_unlock_irq(&locked->sched_engine->lock);
3225 
3226 	i915_request_notify_execute_cb_imm(rq);
3227 }
3228 
can_preempt(struct intel_engine_cs * engine)3229 static bool can_preempt(struct intel_engine_cs *engine)
3230 {
3231 	if (GRAPHICS_VER(engine->i915) > 8)
3232 		return true;
3233 
3234 	/* GPGPU on bdw requires extra w/a; not implemented */
3235 	return engine->class != RENDER_CLASS;
3236 }
3237 
kick_execlists(const struct i915_request * rq,int prio)3238 static void kick_execlists(const struct i915_request *rq, int prio)
3239 {
3240 	struct intel_engine_cs *engine = rq->engine;
3241 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3242 	const struct i915_request *inflight;
3243 
3244 	/*
3245 	 * We only need to kick the tasklet once for the high priority
3246 	 * new context we add into the queue.
3247 	 */
3248 	if (prio <= sched_engine->queue_priority_hint)
3249 		return;
3250 
3251 	rcu_read_lock();
3252 
3253 	/* Nothing currently active? We're overdue for a submission! */
3254 	inflight = execlists_active(&engine->execlists);
3255 	if (!inflight)
3256 		goto unlock;
3257 
3258 	/*
3259 	 * If we are already the currently executing context, don't
3260 	 * bother evaluating if we should preempt ourselves.
3261 	 */
3262 	if (inflight->context == rq->context)
3263 		goto unlock;
3264 
3265 	ENGINE_TRACE(engine,
3266 		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3267 		     prio,
3268 		     rq->fence.context, rq->fence.seqno,
3269 		     inflight->fence.context, inflight->fence.seqno,
3270 		     inflight->sched.attr.priority);
3271 
3272 	sched_engine->queue_priority_hint = prio;
3273 
3274 	/*
3275 	 * Allow preemption of low -> normal -> high, but we do
3276 	 * not allow low priority tasks to preempt other low priority
3277 	 * tasks under the impression that latency for low priority
3278 	 * tasks does not matter (as much as background throughput),
3279 	 * so kiss.
3280 	 */
3281 	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3282 		tasklet_hi_schedule(&sched_engine->tasklet);
3283 
3284 unlock:
3285 	rcu_read_unlock();
3286 }
3287 
execlists_set_default_submission(struct intel_engine_cs * engine)3288 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3289 {
3290 	engine->submit_request = execlists_submit_request;
3291 	engine->sched_engine->schedule = i915_schedule;
3292 	engine->sched_engine->kick_backend = kick_execlists;
3293 	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3294 }
3295 
execlists_shutdown(struct intel_engine_cs * engine)3296 static void execlists_shutdown(struct intel_engine_cs *engine)
3297 {
3298 	/* Synchronise with residual timers and any softirq they raise */
3299 	del_timer_sync(&engine->execlists.timer);
3300 	del_timer_sync(&engine->execlists.preempt);
3301 	tasklet_kill(&engine->sched_engine->tasklet);
3302 }
3303 
execlists_release(struct intel_engine_cs * engine)3304 static void execlists_release(struct intel_engine_cs *engine)
3305 {
3306 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3307 
3308 	execlists_shutdown(engine);
3309 
3310 	intel_engine_cleanup_common(engine);
3311 	lrc_fini_wa_ctx(engine);
3312 }
3313 
3314 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)3315 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3316 {
3317 	/* Default vfuncs which can be overridden by each engine. */
3318 
3319 	engine->resume = execlists_resume;
3320 
3321 	engine->cops = &execlists_context_ops;
3322 	engine->request_alloc = execlists_request_alloc;
3323 	engine->add_active_request = add_to_engine;
3324 	engine->remove_active_request = remove_from_engine;
3325 
3326 	engine->reset.prepare = execlists_reset_prepare;
3327 	engine->reset.rewind = execlists_reset_rewind;
3328 	engine->reset.cancel = execlists_reset_cancel;
3329 	engine->reset.finish = execlists_reset_finish;
3330 
3331 	engine->park = execlists_park;
3332 	engine->unpark = NULL;
3333 
3334 	engine->emit_flush = gen8_emit_flush_xcs;
3335 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3336 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3337 	if (GRAPHICS_VER(engine->i915) >= 12) {
3338 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3339 		engine->emit_flush = gen12_emit_flush_xcs;
3340 	}
3341 	engine->set_default_submission = execlists_set_default_submission;
3342 
3343 	if (GRAPHICS_VER(engine->i915) < 11) {
3344 		engine->irq_enable = gen8_logical_ring_enable_irq;
3345 		engine->irq_disable = gen8_logical_ring_disable_irq;
3346 	} else {
3347 		/*
3348 		 * TODO: On Gen11 interrupt masks need to be clear
3349 		 * to allow C6 entry. Keep interrupts enabled at
3350 		 * and take the hit of generating extra interrupts
3351 		 * until a more refined solution exists.
3352 		 */
3353 	}
3354 	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3355 
3356 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3357 	if (!intel_vgpu_active(engine->i915)) {
3358 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3359 		if (can_preempt(engine)) {
3360 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3361 			if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3362 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3363 		}
3364 	}
3365 
3366 	if (intel_engine_has_preemption(engine))
3367 		engine->emit_bb_start = gen8_emit_bb_start;
3368 	else
3369 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
3370 }
3371 
logical_ring_default_irqs(struct intel_engine_cs * engine)3372 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3373 {
3374 	unsigned int shift = 0;
3375 
3376 	if (GRAPHICS_VER(engine->i915) < 11) {
3377 		const u8 irq_shifts[] = {
3378 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3379 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3380 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3381 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3382 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3383 		};
3384 
3385 		shift = irq_shifts[engine->id];
3386 	}
3387 
3388 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3389 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3390 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3391 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3392 }
3393 
rcs_submission_override(struct intel_engine_cs * engine)3394 static void rcs_submission_override(struct intel_engine_cs *engine)
3395 {
3396 	switch (GRAPHICS_VER(engine->i915)) {
3397 	case 12:
3398 		engine->emit_flush = gen12_emit_flush_rcs;
3399 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3400 		break;
3401 	case 11:
3402 		engine->emit_flush = gen11_emit_flush_rcs;
3403 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3404 		break;
3405 	default:
3406 		engine->emit_flush = gen8_emit_flush_rcs;
3407 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3408 		break;
3409 	}
3410 }
3411 
intel_execlists_submission_setup(struct intel_engine_cs * engine)3412 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3413 {
3414 	struct intel_engine_execlists * const execlists = &engine->execlists;
3415 	struct drm_i915_private *i915 = engine->i915;
3416 	struct intel_uncore *uncore = engine->uncore;
3417 	u32 base = engine->mmio_base;
3418 
3419 	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3420 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3421 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3422 
3423 	logical_ring_default_vfuncs(engine);
3424 	logical_ring_default_irqs(engine);
3425 
3426 	if (engine->class == RENDER_CLASS)
3427 		rcs_submission_override(engine);
3428 
3429 	lrc_init_wa_ctx(engine);
3430 
3431 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3432 		execlists->submit_reg = uncore->regs +
3433 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3434 		execlists->ctrl_reg = uncore->regs +
3435 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3436 
3437 		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3438 				    RING_EXECLIST_CONTROL(engine->mmio_base),
3439 				    FW_REG_WRITE);
3440 	} else {
3441 		execlists->submit_reg = uncore->regs +
3442 			i915_mmio_reg_offset(RING_ELSP(base));
3443 	}
3444 
3445 	execlists->csb_status =
3446 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3447 
3448 	execlists->csb_write =
3449 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3450 
3451 	if (GRAPHICS_VER(i915) < 11)
3452 		execlists->csb_size = GEN8_CSB_ENTRIES;
3453 	else
3454 		execlists->csb_size = GEN11_CSB_ENTRIES;
3455 
3456 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3457 	if (GRAPHICS_VER(engine->i915) >= 11 &&
3458 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3459 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3460 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3461 	}
3462 
3463 	/* Finally, take ownership and responsibility for cleanup! */
3464 	engine->sanitize = execlists_sanitize;
3465 	engine->release = execlists_release;
3466 
3467 	return 0;
3468 }
3469 
virtual_queue(struct virtual_engine * ve)3470 static struct list_head *virtual_queue(struct virtual_engine *ve)
3471 {
3472 	return &ve->base.sched_engine->default_priolist.requests;
3473 }
3474 
rcu_virtual_context_destroy(struct work_struct * wrk)3475 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3476 {
3477 	struct virtual_engine *ve =
3478 		container_of(wrk, typeof(*ve), rcu.work);
3479 	unsigned int n;
3480 
3481 	GEM_BUG_ON(ve->context.inflight);
3482 
3483 	/* Preempt-to-busy may leave a stale request behind. */
3484 	if (unlikely(ve->request)) {
3485 		struct i915_request *old;
3486 
3487 		spin_lock_irq(&ve->base.sched_engine->lock);
3488 
3489 		old = fetch_and_zero(&ve->request);
3490 		if (old) {
3491 			GEM_BUG_ON(!__i915_request_is_complete(old));
3492 			__i915_request_submit(old);
3493 			i915_request_put(old);
3494 		}
3495 
3496 		spin_unlock_irq(&ve->base.sched_engine->lock);
3497 	}
3498 
3499 	/*
3500 	 * Flush the tasklet in case it is still running on another core.
3501 	 *
3502 	 * This needs to be done before we remove ourselves from the siblings'
3503 	 * rbtrees as in the case it is running in parallel, it may reinsert
3504 	 * the rb_node into a sibling.
3505 	 */
3506 	tasklet_kill(&ve->base.sched_engine->tasklet);
3507 
3508 	/* Decouple ourselves from the siblings, no more access allowed. */
3509 	for (n = 0; n < ve->num_siblings; n++) {
3510 		struct intel_engine_cs *sibling = ve->siblings[n];
3511 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3512 
3513 		if (RB_EMPTY_NODE(node))
3514 			continue;
3515 
3516 		spin_lock_irq(&sibling->sched_engine->lock);
3517 
3518 		/* Detachment is lazily performed in the sched_engine->tasklet */
3519 		if (!RB_EMPTY_NODE(node))
3520 			rb_erase_cached(node, &sibling->execlists.virtual);
3521 
3522 		spin_unlock_irq(&sibling->sched_engine->lock);
3523 	}
3524 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3525 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3526 
3527 	lrc_fini(&ve->context);
3528 	intel_context_fini(&ve->context);
3529 
3530 	if (ve->base.breadcrumbs)
3531 		intel_breadcrumbs_put(ve->base.breadcrumbs);
3532 	if (ve->base.sched_engine)
3533 		i915_sched_engine_put(ve->base.sched_engine);
3534 	intel_engine_free_request_pool(&ve->base);
3535 
3536 	kfree(ve);
3537 }
3538 
virtual_context_destroy(struct kref * kref)3539 static void virtual_context_destroy(struct kref *kref)
3540 {
3541 	struct virtual_engine *ve =
3542 		container_of(kref, typeof(*ve), context.ref);
3543 
3544 	GEM_BUG_ON(!list_empty(&ve->context.signals));
3545 
3546 	/*
3547 	 * When destroying the virtual engine, we have to be aware that
3548 	 * it may still be in use from an hardirq/softirq context causing
3549 	 * the resubmission of a completed request (background completion
3550 	 * due to preempt-to-busy). Before we can free the engine, we need
3551 	 * to flush the submission code and tasklets that are still potentially
3552 	 * accessing the engine. Flushing the tasklets requires process context,
3553 	 * and since we can guard the resubmit onto the engine with an RCU read
3554 	 * lock, we can delegate the free of the engine to an RCU worker.
3555 	 */
3556 	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3557 	queue_rcu_work(system_wq, &ve->rcu);
3558 }
3559 
virtual_engine_initial_hint(struct virtual_engine * ve)3560 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3561 {
3562 	int swp;
3563 
3564 	/*
3565 	 * Pick a random sibling on starting to help spread the load around.
3566 	 *
3567 	 * New contexts are typically created with exactly the same order
3568 	 * of siblings, and often started in batches. Due to the way we iterate
3569 	 * the array of sibling when submitting requests, sibling[0] is
3570 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3571 	 * randomised across the system, we also help spread the load by the
3572 	 * first engine we inspect being different each time.
3573 	 *
3574 	 * NB This does not force us to execute on this engine, it will just
3575 	 * typically be the first we inspect for submission.
3576 	 */
3577 	swp = prandom_u32_max(ve->num_siblings);
3578 	if (swp)
3579 		swap(ve->siblings[swp], ve->siblings[0]);
3580 }
3581 
virtual_context_alloc(struct intel_context * ce)3582 static int virtual_context_alloc(struct intel_context *ce)
3583 {
3584 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3585 
3586 	return lrc_alloc(ce, ve->siblings[0]);
3587 }
3588 
virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3589 static int virtual_context_pre_pin(struct intel_context *ce,
3590 				   struct i915_gem_ww_ctx *ww,
3591 				   void **vaddr)
3592 {
3593 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3594 
3595 	 /* Note: we must use a real engine class for setting up reg state */
3596 	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3597 }
3598 
virtual_context_pin(struct intel_context * ce,void * vaddr)3599 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3600 {
3601 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3602 
3603 	return lrc_pin(ce, ve->siblings[0], vaddr);
3604 }
3605 
virtual_context_enter(struct intel_context * ce)3606 static void virtual_context_enter(struct intel_context *ce)
3607 {
3608 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3609 	unsigned int n;
3610 
3611 	for (n = 0; n < ve->num_siblings; n++)
3612 		intel_engine_pm_get(ve->siblings[n]);
3613 
3614 	intel_timeline_enter(ce->timeline);
3615 }
3616 
virtual_context_exit(struct intel_context * ce)3617 static void virtual_context_exit(struct intel_context *ce)
3618 {
3619 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3620 	unsigned int n;
3621 
3622 	intel_timeline_exit(ce->timeline);
3623 
3624 	for (n = 0; n < ve->num_siblings; n++)
3625 		intel_engine_pm_put(ve->siblings[n]);
3626 }
3627 
3628 static struct intel_engine_cs *
virtual_get_sibling(struct intel_engine_cs * engine,unsigned int sibling)3629 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3630 {
3631 	struct virtual_engine *ve = to_virtual_engine(engine);
3632 
3633 	if (sibling >= ve->num_siblings)
3634 		return NULL;
3635 
3636 	return ve->siblings[sibling];
3637 }
3638 
3639 static const struct intel_context_ops virtual_context_ops = {
3640 	.flags = COPS_HAS_INFLIGHT,
3641 
3642 	.alloc = virtual_context_alloc,
3643 
3644 	.cancel_request = execlists_context_cancel_request,
3645 
3646 	.pre_pin = virtual_context_pre_pin,
3647 	.pin = virtual_context_pin,
3648 	.unpin = lrc_unpin,
3649 	.post_unpin = lrc_post_unpin,
3650 
3651 	.enter = virtual_context_enter,
3652 	.exit = virtual_context_exit,
3653 
3654 	.destroy = virtual_context_destroy,
3655 
3656 	.get_sibling = virtual_get_sibling,
3657 };
3658 
virtual_submission_mask(struct virtual_engine * ve)3659 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3660 {
3661 	struct i915_request *rq;
3662 	intel_engine_mask_t mask;
3663 
3664 	rq = READ_ONCE(ve->request);
3665 	if (!rq)
3666 		return 0;
3667 
3668 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3669 	mask = rq->execution_mask;
3670 	if (unlikely(!mask)) {
3671 		/* Invalid selection, submit to a random engine in error */
3672 		i915_request_set_error_once(rq, -ENODEV);
3673 		mask = ve->siblings[0]->mask;
3674 	}
3675 
3676 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3677 		     rq->fence.context, rq->fence.seqno,
3678 		     mask, ve->base.sched_engine->queue_priority_hint);
3679 
3680 	return mask;
3681 }
3682 
virtual_submission_tasklet(struct tasklet_struct * t)3683 static void virtual_submission_tasklet(struct tasklet_struct *t)
3684 {
3685 	struct i915_sched_engine *sched_engine =
3686 		from_tasklet(sched_engine, t, tasklet);
3687 	struct virtual_engine * const ve =
3688 		(struct virtual_engine *)sched_engine->private_data;
3689 	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3690 	intel_engine_mask_t mask;
3691 	unsigned int n;
3692 
3693 	rcu_read_lock();
3694 	mask = virtual_submission_mask(ve);
3695 	rcu_read_unlock();
3696 	if (unlikely(!mask))
3697 		return;
3698 
3699 	for (n = 0; n < ve->num_siblings; n++) {
3700 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3701 		struct ve_node * const node = &ve->nodes[sibling->id];
3702 		struct rb_node **parent, *rb;
3703 		bool first;
3704 
3705 		if (!READ_ONCE(ve->request))
3706 			break; /* already handled by a sibling's tasklet */
3707 
3708 		spin_lock_irq(&sibling->sched_engine->lock);
3709 
3710 		if (unlikely(!(mask & sibling->mask))) {
3711 			if (!RB_EMPTY_NODE(&node->rb)) {
3712 				rb_erase_cached(&node->rb,
3713 						&sibling->execlists.virtual);
3714 				RB_CLEAR_NODE(&node->rb);
3715 			}
3716 
3717 			goto unlock_engine;
3718 		}
3719 
3720 		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3721 			/*
3722 			 * Cheat and avoid rebalancing the tree if we can
3723 			 * reuse this node in situ.
3724 			 */
3725 			first = rb_first_cached(&sibling->execlists.virtual) ==
3726 				&node->rb;
3727 			if (prio == node->prio || (prio > node->prio && first))
3728 				goto submit_engine;
3729 
3730 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3731 		}
3732 
3733 		rb = NULL;
3734 		first = true;
3735 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3736 		while (*parent) {
3737 			struct ve_node *other;
3738 
3739 			rb = *parent;
3740 			other = rb_entry(rb, typeof(*other), rb);
3741 			if (prio > other->prio) {
3742 				parent = &rb->rb_left;
3743 			} else {
3744 				parent = &rb->rb_right;
3745 				first = false;
3746 			}
3747 		}
3748 
3749 		rb_link_node(&node->rb, rb, parent);
3750 		rb_insert_color_cached(&node->rb,
3751 				       &sibling->execlists.virtual,
3752 				       first);
3753 
3754 submit_engine:
3755 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3756 		node->prio = prio;
3757 		if (first && prio > sibling->sched_engine->queue_priority_hint)
3758 			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3759 
3760 unlock_engine:
3761 		spin_unlock_irq(&sibling->sched_engine->lock);
3762 
3763 		if (intel_context_inflight(&ve->context))
3764 			break;
3765 	}
3766 }
3767 
virtual_submit_request(struct i915_request * rq)3768 static void virtual_submit_request(struct i915_request *rq)
3769 {
3770 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3771 	unsigned long flags;
3772 
3773 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3774 		     rq->fence.context,
3775 		     rq->fence.seqno);
3776 
3777 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3778 
3779 	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3780 
3781 	/* By the time we resubmit a request, it may be completed */
3782 	if (__i915_request_is_complete(rq)) {
3783 		__i915_request_submit(rq);
3784 		goto unlock;
3785 	}
3786 
3787 	if (ve->request) { /* background completion from preempt-to-busy */
3788 		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3789 		__i915_request_submit(ve->request);
3790 		i915_request_put(ve->request);
3791 	}
3792 
3793 	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3794 	ve->request = i915_request_get(rq);
3795 
3796 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3797 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3798 
3799 	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3800 
3801 unlock:
3802 	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3803 }
3804 
3805 static struct intel_context *
execlists_create_virtual(struct intel_engine_cs ** siblings,unsigned int count)3806 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count)
3807 {
3808 	struct virtual_engine *ve;
3809 	unsigned int n;
3810 	int err;
3811 
3812 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3813 	if (!ve)
3814 		return ERR_PTR(-ENOMEM);
3815 
3816 	ve->base.i915 = siblings[0]->i915;
3817 	ve->base.gt = siblings[0]->gt;
3818 	ve->base.uncore = siblings[0]->uncore;
3819 	ve->base.id = -1;
3820 
3821 	ve->base.class = OTHER_CLASS;
3822 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3823 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3824 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3825 
3826 	/*
3827 	 * The decision on whether to submit a request using semaphores
3828 	 * depends on the saturated state of the engine. We only compute
3829 	 * this during HW submission of the request, and we need for this
3830 	 * state to be globally applied to all requests being submitted
3831 	 * to this engine. Virtual engines encompass more than one physical
3832 	 * engine and so we cannot accurately tell in advance if one of those
3833 	 * engines is already saturated and so cannot afford to use a semaphore
3834 	 * and be pessimized in priority for doing so -- if we are the only
3835 	 * context using semaphores after all other clients have stopped, we
3836 	 * will be starved on the saturated system. Such a global switch for
3837 	 * semaphores is less than ideal, but alas is the current compromise.
3838 	 */
3839 	ve->base.saturated = ALL_ENGINES;
3840 
3841 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3842 
3843 	intel_engine_init_execlists(&ve->base);
3844 
3845 	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3846 	if (!ve->base.sched_engine) {
3847 		err = -ENOMEM;
3848 		goto err_put;
3849 	}
3850 	ve->base.sched_engine->private_data = &ve->base;
3851 
3852 	ve->base.cops = &virtual_context_ops;
3853 	ve->base.request_alloc = execlists_request_alloc;
3854 
3855 	ve->base.sched_engine->schedule = i915_schedule;
3856 	ve->base.sched_engine->kick_backend = kick_execlists;
3857 	ve->base.submit_request = virtual_submit_request;
3858 
3859 	INIT_LIST_HEAD(virtual_queue(ve));
3860 	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3861 
3862 	intel_context_init(&ve->context, &ve->base);
3863 
3864 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3865 	if (!ve->base.breadcrumbs) {
3866 		err = -ENOMEM;
3867 		goto err_put;
3868 	}
3869 
3870 	for (n = 0; n < count; n++) {
3871 		struct intel_engine_cs *sibling = siblings[n];
3872 
3873 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3874 		if (sibling->mask & ve->base.mask) {
3875 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3876 				  sibling->name);
3877 			err = -EINVAL;
3878 			goto err_put;
3879 		}
3880 
3881 		/*
3882 		 * The virtual engine implementation is tightly coupled to
3883 		 * the execlists backend -- we push out request directly
3884 		 * into a tree inside each physical engine. We could support
3885 		 * layering if we handle cloning of the requests and
3886 		 * submitting a copy into each backend.
3887 		 */
3888 		if (sibling->sched_engine->tasklet.callback !=
3889 		    execlists_submission_tasklet) {
3890 			err = -ENODEV;
3891 			goto err_put;
3892 		}
3893 
3894 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3895 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3896 
3897 		ve->siblings[ve->num_siblings++] = sibling;
3898 		ve->base.mask |= sibling->mask;
3899 
3900 		/*
3901 		 * All physical engines must be compatible for their emission
3902 		 * functions (as we build the instructions during request
3903 		 * construction and do not alter them before submission
3904 		 * on the physical engine). We use the engine class as a guide
3905 		 * here, although that could be refined.
3906 		 */
3907 		if (ve->base.class != OTHER_CLASS) {
3908 			if (ve->base.class != sibling->class) {
3909 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3910 					  sibling->class, ve->base.class);
3911 				err = -EINVAL;
3912 				goto err_put;
3913 			}
3914 			continue;
3915 		}
3916 
3917 		ve->base.class = sibling->class;
3918 		ve->base.uabi_class = sibling->uabi_class;
3919 		snprintf(ve->base.name, sizeof(ve->base.name),
3920 			 "v%dx%d", ve->base.class, count);
3921 		ve->base.context_size = sibling->context_size;
3922 
3923 		ve->base.add_active_request = sibling->add_active_request;
3924 		ve->base.remove_active_request = sibling->remove_active_request;
3925 		ve->base.emit_bb_start = sibling->emit_bb_start;
3926 		ve->base.emit_flush = sibling->emit_flush;
3927 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3928 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3929 		ve->base.emit_fini_breadcrumb_dw =
3930 			sibling->emit_fini_breadcrumb_dw;
3931 
3932 		ve->base.flags = sibling->flags;
3933 	}
3934 
3935 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3936 
3937 	virtual_engine_initial_hint(ve);
3938 	return &ve->context;
3939 
3940 err_put:
3941 	intel_context_put(&ve->context);
3942 	return ERR_PTR(err);
3943 }
3944 
intel_execlists_show_requests(struct intel_engine_cs * engine,struct drm_printer * m,void (* show_request)(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent),unsigned int max)3945 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3946 				   struct drm_printer *m,
3947 				   void (*show_request)(struct drm_printer *m,
3948 							const struct i915_request *rq,
3949 							const char *prefix,
3950 							int indent),
3951 				   unsigned int max)
3952 {
3953 	const struct intel_engine_execlists *execlists = &engine->execlists;
3954 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3955 	struct i915_request *rq, *last;
3956 	unsigned long flags;
3957 	unsigned int count;
3958 	struct rb_node *rb;
3959 
3960 	spin_lock_irqsave(&sched_engine->lock, flags);
3961 
3962 	last = NULL;
3963 	count = 0;
3964 	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
3965 		if (count++ < max - 1)
3966 			show_request(m, rq, "\t\t", 0);
3967 		else
3968 			last = rq;
3969 	}
3970 	if (last) {
3971 		if (count > max) {
3972 			drm_printf(m,
3973 				   "\t\t...skipping %d executing requests...\n",
3974 				   count - max);
3975 		}
3976 		show_request(m, last, "\t\t", 0);
3977 	}
3978 
3979 	if (sched_engine->queue_priority_hint != INT_MIN)
3980 		drm_printf(m, "\t\tQueue priority hint: %d\n",
3981 			   READ_ONCE(sched_engine->queue_priority_hint));
3982 
3983 	last = NULL;
3984 	count = 0;
3985 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
3986 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3987 
3988 		priolist_for_each_request(rq, p) {
3989 			if (count++ < max - 1)
3990 				show_request(m, rq, "\t\t", 0);
3991 			else
3992 				last = rq;
3993 		}
3994 	}
3995 	if (last) {
3996 		if (count > max) {
3997 			drm_printf(m,
3998 				   "\t\t...skipping %d queued requests...\n",
3999 				   count - max);
4000 		}
4001 		show_request(m, last, "\t\t", 0);
4002 	}
4003 
4004 	last = NULL;
4005 	count = 0;
4006 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4007 		struct virtual_engine *ve =
4008 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4009 		struct i915_request *rq = READ_ONCE(ve->request);
4010 
4011 		if (rq) {
4012 			if (count++ < max - 1)
4013 				show_request(m, rq, "\t\t", 0);
4014 			else
4015 				last = rq;
4016 		}
4017 	}
4018 	if (last) {
4019 		if (count > max) {
4020 			drm_printf(m,
4021 				   "\t\t...skipping %d virtual requests...\n",
4022 				   count - max);
4023 		}
4024 		show_request(m, last, "\t\t", 0);
4025 	}
4026 
4027 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4028 }
4029 
4030 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4031 #include "selftest_execlists.c"
4032 #endif
4033